Feuille 2: sphères, tores, projectifs

Correction

Exercice 1. 1. L'application ϕ_N est clairement bijective de $\mathbb{S}^n \setminus \{N\}$ dans \mathbb{R}^n (argument de géométrie euclidienne classique : pour tout $y \in \mathbb{R}^n$, en notant $Y = (y,0) \in \mathbb{R}^n \times \{0\}$, la demidroite [NY) rencontre $\mathbb{S}^n \setminus \{N\}$ en un unique point X, donc y est la projection stéréographique d'un unique point X de $\mathbb{S}^n \setminus \{N\}$). De même pour ϕ_S .

Pour établir la continuité des projections stéréographiques et de leurs inverses, on les exprime en fonction des coordonnées canoniques de \mathbb{R}^{n+1} et \mathbb{R}^n . Les applications apparaissent alors comme restrictions d'applications continues. On conclut avec le critère suivant : pour toute application continue $f: X \to Y$ et parties A et B de X et Y telles que $f(A) \subset B$, l'application $g: A \to B$ qui envoie x sur f(x) est continue si A et B sont munis de la topologie induite.

Les coordonnées (y_1, \ldots, y_n) de la projection stéréographique par rapport au pôle nord d'un point de coordonnées (x_1, \ldots, x_{n+1}) satisfont :

$$\exists \lambda \in \mathbb{R}_{+}^{*} \text{ t.q. } (y_{1},...,y_{n},0) - (0,...,0,1) = \lambda((x_{1},...,x_{n+1}) - (0,...,0,1))$$

i.e. $\exists \lambda \in \mathbb{R}_{+}^{*} \text{ t.q. } (y_{1},...,y_{n},-1) = \lambda(x_{1},...,x_{n+1}-1),$

ce qui détermine λ :

$$\lambda = \frac{1}{1 - x_{n+1}},$$

et donc

$$\phi_N(x_1,...,x_{n+1})=(y_1,...,y_n)=\frac{1}{1-x_{n+1}}(x_1,...,x_n)\quad (*)$$

D'où la continuité de ϕ_N , les coordonnées de $\phi_N(x)$ étant des fonctions rationnelles (bien définies) de celles de x.

Réciproquement, comme $\sum_{i=1}^{n+1} x_i^2 = 1$,

$$||y||^2 = \sum_{i=1}^n y_i^2 = \frac{\sum_{i=1}^n x_i^2}{(1 - x_{n+1})^2} = \frac{1 - x_{n+1}^2}{(1 - x_{n+1})^2} = \frac{1 + x_{n+1}}{1 - x_{n+1}} = -1 + \frac{2}{1 - x_{n+1}}$$

d'où l'on tire x_{n+1} puis $x_1, \ldots x_n$ en fonction des y_i :

$$x_{n+1} = \frac{\|y\|^2 - 1}{\|y\|^2 + 1}, \qquad x_i = \frac{2y_i}{1 + \|y\|^2}.$$
 (**)

On en déduit que la réciproque de ϕ_N est continue. De même, les coordonnées (z_1, \ldots, z_n) de la projection par rapport au pôle sud sont

$$z_i = \frac{x_i}{1 + x_{n+1}}, \qquad x_{n+1} = \frac{1 - \|z\|^2}{1 + \|z\|^2}, \qquad x_i = \frac{2z_i}{1 + \|z\|^2}.$$

2. Ainsi, $\phi_N : \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ et $\phi_S : \mathbb{S}^n \setminus \{S\} \to \mathbb{R}^n$ sont deux cartes. Leurs domaines recouvrent la sphère. Ils s'intersectent en $U = \mathbb{S}^n \setminus \{N, S\}$. L'application de changement de carte envoie $\phi_N(U) = \mathbb{R}^n \setminus \{0\}$ sur $\phi_S(U) = \mathbb{R}^n \setminus \{0\}$. On déduit des formules précédentes l'expression de l'application et son inverse en coordonnées

$$z_i = \frac{y_i}{\|y\|^2}, \qquad y_i = \frac{z_i}{\|z\|^2}$$

Les applications ainsi définies (une seule à vrai dire, c'est une involution de $\mathbb{R}^n \setminus \{0\}$) sont lisses, donc le changement de carte est bien un difféomorphisme.

3. D'après (**), l'expression de $i: \mathbb{S}^n \to \mathbb{R}^{n+1}$ dans la carte $(\mathbb{S}^n \setminus \{N\}, \phi_N, \mathbb{R}^n)$ est

$$i \circ \phi_N^{-1} : \mathbb{R}^n \to \mathbb{R}^{n+1}, \qquad (y_1, \dots, y_n) \to (1 + ||y||^2)^{-1} (2y_1, \dots, 2y_n, ||y||^2 - 1).$$

Elle est de classe C^{∞} , et il en est de même pour l'expression de i dans la carte obtenue par projection stéréographique par rapport au pôle sud. Par conséquent i est C^{∞} .

Soit $f: X \to \mathbb{S}^n$. Si f est lisse, $i \circ f$ l'est aussi comme composée d'applications lisse. Supposons maintenant que $i \circ f$ est lisse et montrons que f est de classe C^{∞} . Cela équivaut à montrer que $\phi_N \circ f$ et $\phi_S \circ f$ sont C^{∞} sur les ouverts $f^{-1}(\mathbb{S}^n \setminus \{N\})$ et $f^{-1}(\mathbb{S}^n \setminus \{S\})$ (ce sont bien des ouverts car $i \circ f$ est lisse donc continue et donc f est continue par définition de la topologie induite). Or d'après (*), $\phi_N = \Phi_N \circ i$ où Φ_N est l'application lisse de $\mathbb{R}^{n+1} \setminus \{x_0 = 1\}$ dans \mathbb{R}^n

$$(x_1,\ldots,x_{n+1})\to (1-x_{n+1})^{-1}(x_1,\ldots,x_n)$$

Et $i \circ f$ C^{∞} implique que $\phi_N \circ f = \Phi_N \circ (i \circ f)$ est C^{∞} . On raisonne de la même façon pour la deuxième carte.

Enfin, l'inclusion de \mathbb{R}^{p+1} dans \mathbb{R}^{p+n+1} étant C^{∞} , sa composition j avec l'injection $\mathbb{S}^p \to \mathbb{R}^{p+1}$ l'est aussi. L'image de j étant incluse dans \mathbb{S}^{n+p} , elle est de la forme $j=i\circ f$ où i est l'injection $\mathbb{S}^{n+p}\to\mathbb{R}^{p+n+1}$ et $f:\mathbb{S}^n\to\mathbb{S}^{n+p}$. D'après ce qui précède, f est une application C^{∞} de \mathbb{S}^p dans \mathbb{S}^{n+p} .

Applications lisses entre sous-variétés d'espaces euclidiens. (cf. exercice 1 feuille 3)

Exercice 2. 1. Soit $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$ l'application lisse (car polynomiale en les coordonnées) $(x,y) \mapsto \|x\|^2 - \|y\|^2$, et $Q = f^{-1}(\{1\})$ (i.e. la quadrique d'équation $\|x\|^2 - \|y\|^2 = 1$). La jacobienne de f en (x,y) est $(2x,-2y) = (2x_1,...,2x_n,-2y_1,...,-2y_p)$, qui n'est nulle que pour (x,y) = (0,0). Or $f(0,0) = 0 \neq 1$ donc $(0,0) \notin Q$. Autrement dit, 1 est une valeur régulière de la fonction f, donc $Q = f^{-1}(\{1\})$ est une sous-variété lisse de \mathbb{R}^{n+p} de codimension 1, i.e. une hypersurface.

Pour tout $(x,y) \in Q$, $||x||^2 = 1 + ||y||^2 > 0$ donc l'application

$$\phi: \quad Q \subset \mathbb{R}^n \times \mathbb{R}^p \quad \to \quad \mathbb{S}^{n-1} \times \mathbb{R}^p$$

$$(x,y) \qquad \mapsto \qquad \left(\frac{x}{\|x\|},y\right)$$

est bien définie. Par définition de la structure différentiable induite sur une sous-variété de \mathbb{R}^{n+p} (resp. \mathbb{R}^n), ϕ est lisse comme restriction à Q à la source et à $\mathbb{S}^{n-1} \times \mathbb{R}^p$ au but de l'application

$$\Phi: \quad (\mathbb{R}^n \setminus \{0\}) \times \mathbb{R}^p \quad \to \quad \mathbb{R}^n \times \mathbb{R}^p \\ (x,y) \qquad \mapsto \quad (\frac{x}{\|x\|},y)$$

lisse (entre ouverts d'espaces euclidiens) car rationnelle en les coordonnées.

Soient $(u,v) \in \mathbb{S}^{n-1} \times \mathbb{R}^p$ et $(x,y) \in Q$, donc satisfaisant $||x||^2 - ||y||^2 = 1$, ou encore $||x|| = \sqrt{1 + ||y||^2}$. On a

$$\begin{split} (u,v) &= \phi(x,y) \Leftrightarrow (u,v) = (\frac{x}{\|x\|},y) \\ &\Leftrightarrow v = y \text{ et } u = \frac{x}{\|x\|} = \frac{x}{\sqrt{1+\|y\|^2}} = \frac{x}{\sqrt{1+\|v\|^2}} \\ &\Leftrightarrow (x,y) = (u\sqrt{1+\|v\|^2},v). \end{split}$$

 $(u\sqrt{1+\|v\|^2},v)$ appartient bien à Q donc ϕ est bijective, d'inverse

$$\phi^{-1}: \quad \mathbb{S}^{n-1} \times \mathbb{R}^p \quad \to \quad Q \subset \mathbb{R}^n \times \mathbb{R}^p \\ (u,v) \quad \mapsto \quad (u\sqrt{1+\|v\|^2},v),$$

qui est lisse par un argument similaire à celui utilisé pour ϕ . ϕ est donc un difféomorphisme entre les sous-variétés Q et $\mathbb{S}^{n-1} \times \mathbb{R}^p$.

"Rappels" sur la topologie quotient. Étant donné un ensemble X et une relation d'équivalence \sim sur X, on note $p: X \to X/\sim$ la projection canonique qui à tout élément x de X associe sa classe d'équivalence pour \sim . Si X est un espace topologique, on définit sur X/\sim la topologie quotient par : U est un ouvert de X/\sim si et seulement si $p^{-1}(U)$ est un ouvert de X. Pour cette topologie, la projection p est alors trivialement continue, et on vérifie immédiatement d'une application de X/\sim dans un espace topologique Y est continue ssi $f\circ p: X\to Y$ l'est.

Exercice 3. 1. Ici, X est \mathbb{R} et la relation \sim est : $x \sim y \Leftrightarrow x - y \in \mathbb{Z}$. $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$ est l'image par p, continue, d'un ensemble connexe (\mathbb{R}), donc est connexe. En outre, si on note [x] la classe modulo \mathbb{Z} d'un réel x et E(x) sa partie entière, pour tout réel x, [x] = [x - E(x)] et $x - E(x) \in [0, 1[$ donc $\mathbb{T}^1 = p([0, 1[)])$ et a fortiori $\mathbb{T}^1 = p([0, 1])$. Donc \mathbb{T}^1 est l'image d'un compact par une application continue. Si l'on montre que \mathbb{T}^1 est séparé, cela entraînera qu'il est compact.

Considérons donc deux éléments distincts de \mathbb{T}^1 , i.e. de la forme [x] et [y] avec $x,y\in\mathbb{R}$ et $x-y\notin\mathbb{Z}$. Soient U et V des ouverts de \mathbb{T}^1 contenant [x] et [y] respectivement. Alors $U'=p^{-1}(U)$ et $V'=p^{-1}(V)$ sont des ouverts de \mathbb{R} (contenant respectivement x et y) invariants par translation entière :

$$z \in U' \Leftrightarrow p(z) \in U \Leftrightarrow \forall k \in \mathbb{Z}, p(z+k) \in U \Leftrightarrow \forall k \in \mathbb{Z}, z+k \in U',$$

et

$$U \cap V = \emptyset \Leftrightarrow U' \cap V' = \emptyset.$$

En effet, $p(U'\cap V')\subset p(U')\cap p(V')=U\cap V$ donc si $U'\cap V'\neq\varnothing$, $U\cap V\neq\varnothing$. Et réciproquement, si $U\cap V=p(U')\cap p(V')\neq\varnothing$, il existe $x'\in U'$ et $y'\in V'$ tels que p(x')=p(y'), i.e. tels que $x-y\in\mathbb{Z}$, mais alors comme $x\in U'$ et U' est invariant par translation entière, $y=x+(y-x)\in U'$ donc $U'\cap V'\neq\varnothing$.

Il suffit donc, pour construire deux ouverts disjoints de \mathbb{T}^1 contenant respectivement [x] et [y], de construire deux ouverts disjoints U' et V' de \mathbb{R} invariants par translation entière et contenant respectivement x et y. Pour cela, posons

$$\delta = \frac{1}{2} \inf_{x' \in [x], y' \in [y]} |x' - y'| = \frac{1}{2} \inf_{k, l \in \mathbb{Z}} |x + k - (y + l)| = \frac{1}{2} \inf_{n \in \mathbb{Z}} |(x - y) - n| = \frac{1}{2} d(x - y, \mathbb{Z}) > 0$$

car $x-y\notin\mathbb{Z}$ et \mathbb{Z} est un fermé de \mathbb{R} . Alors

$$U' = \bigcup_{x' \in [x]}]x' - \delta, x' + \delta[\text{ et } V' = \bigcup_{x' \in [x]}]x' - \delta, x' + \delta[$$

conviennent. \mathbb{T}^1 est donc bien séparé.

2. La restriction de p à]0, 1[est injective, donc induit une application bijective (et continue car p l'est) de]0, 1[dans $p(]0, 1[) = \mathbb{T}^1 \setminus \{p(0)\} =: U$, qui est un ouvert de \mathbb{T}^1 (puisque complémentaire d'un point). Notons $\varphi_{]0,1[}$ son inverse, qui à une classe dans U associe l'unique représentant de cette classe dans]0,1[. $\varphi_{]0,1[}$ est continue ssi $\varphi_{]0,1[} \circ p:p^{-1}(U)=\mathbb{R} \setminus \mathbb{Z} \to]0,1[$ l'est. Mais la restriction de cette application à chaque composante connexe]k,k+1[, $k\in\mathbb{Z}$, de $\mathbb{R} \setminus \mathbb{Z}$ n'est autre que la translation $x\mapsto x-k$, qui est continue, et même lisse, ce qui servira plus tard. Donc $\varphi_{]0,1[} \circ p$ est continue et donc $\varphi_{]0,1[}$ aussi. Finalement, $\varphi_{]0,1[}:U\to]0,1[$ définit bien une carte de \mathbb{T}^1 .

En raisonnant de même pour la restriction de p à]1/2,3/2[, on obtient une seconde carte $\varphi_{\lceil 1/2,3/2 \rceil}: V = \mathbb{T}^1 \setminus \{p(1/2)\} \rightarrow]1/2,3/2[$. L'application de changement de carte est

$$]0,1/2[\cup]1/2,1[\to]1/2,1[\cup]1,3/2[,\quad x\mapsto \begin{cases} x \text{ si } x\in]1/2,1[\\ x+1 \text{ si } x\in]0,1/2[.\end{cases}$$

C'est un difféomorphisme et les deux domaines de cartes recouvrent le tore. Les deux cartes forment donc un atlas.

3. On a déjà vu que l'application $\varphi_{]0,1[} \circ p$ exprimant la projection $p : \mathbb{R} \to \mathbb{T}^1$ dans la première carte était lisse. Il en est de même pour $\varphi_{]1/2,3/2[} \circ p$. Ainsi, p est lisse.

Par conséquent, si $f: \mathbb{T}^1 \to \mathbb{R}$ est lisse, $f \circ p$ l'est aussi. Vérifions la réciproque. Supposons $f \circ p$ lisse. L'expression de f dans la première carte de \mathbb{T}^1 est $f \circ \varphi_{]0,1[}^{-1}$, qui n'est autre autre que la restriction de $f \circ p$ à]0,1[, donc de classe C^{∞} . Il en est de même pour l'expression de f dans la deuxième carte. f est donc lisse.

4. Soit Ψ l'application lisse $x \in \mathbb{R} \mapsto (\cos(2\pi x), \sin(2\pi x)) \in \mathbb{S}^1$ (lisse car restriction au but d'une application clairement lisse de \mathbb{R} dans \mathbb{R}^2). On a

$$\Psi(x) = \Psi(x') \Leftrightarrow p(x) = p(x')$$

donc Ψ se factorise de façon unique en une application injective $\psi: \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$ satisfaisant $\psi \circ p = \Psi$. Comme Ψ est surjective, ψ l'est nécessairement, donc ψ est en fait bijective. Comme Ψ est lisse, ψ l'est aussi d'après la question précédente. Enfin, pour tout $x \in \mathbb{R}$, $d\Psi_x : \mathbb{R} \to T_{\Psi(x)}\mathbb{S}^1$ envoie 1 sur $\Psi'(x) = 2\pi(-\sin(2\pi x), \cos(2\pi x)) \neq (0,0)$ donc est de rang supérieur ou égal à 1, donc surjective puisque $T_{\Psi(x)}\mathbb{S}^1$ est de dimension 1. Mais alors comme $d\Psi_x = d\psi_{p(x)} \circ dp(x)$, $d\psi_{p(x)}$ est elle aussi surjective, donc inversible car entre espaces de même dimension. Ceci étant vrai pour tout $x \in \mathbb{R}$, par le théorème d'inversion locale, ψ est un difféomorphisme local, et ψ étant en outre bijective, ψ est un difféomorphisme entre \mathbb{T}^1 et \mathbb{S}^1 .