Examen final du 10 janvier 2019

Durée: 3 heures

Le clarté des explications sera appréciée. Sont autorisées les notes individuelles de cours et de TD, ainsi que les deux polycopiés du cours. Le sujet est constitué de 3 exercices indépendants.

Exercice 1 : (demi-plans affines) Soit \mathcal{P} un plan affine réel, $\mathcal{D} \subset \mathcal{P}$ une droite et $A \in \mathcal{P}$ un point qui n'est pas situé sur la droite \mathcal{D} . On note

$$\mathcal{P}_A = \{ M \in \mathcal{P} : [AM] \cap \mathcal{D} = \emptyset \},$$

où [AM] désigne le segment d'extrémités A et M. On appelle \mathcal{P}_A le demi-plan ouvert déterminé par \mathcal{D} qui contient A.

- 1. Soient $I, P \in \mathcal{D}$ deux points distincts. Montrer que (I, P, A) est un repère affine.
- 2. Pour tout point $M \in \mathcal{P}$ nous écrivons $M = \lambda_1 I + \lambda_2 P + \lambda_3 A$ avec $\lambda_1 + \lambda_2 + \lambda_3 = 1$ pour signifier que les coordonnées barycentriques de P dans le repère affine (I, P, A) sont $(\lambda_1, \lambda_2, \lambda_3)$. Montrer que pour tout repère affine comme dans (i) la coordonnée λ_3 selon A est indépendante du choix de I et P. On la note $\lambda_3(M)$.
- 3. Montrer les égalités d'ensembles

$$\mathcal{D} = \{ M \in \mathcal{P} : \lambda_3(M) = 0 \}, \qquad \mathcal{P}_A = \{ M \in \mathcal{P} : \lambda_3(M) > 0 \}.$$

4. Montrer que, pour tout point $B \in \mathcal{P}_A$, l'on a

$$\mathcal{P}_B = \mathcal{P}_A$$
.

5. Soit $\varphi : \mathcal{P} \to \mathcal{P}$ une transformation affine bijective qui préserve la droite \mathcal{D} , c'est-à-dire qui vérifie $\varphi(\mathcal{D}) = \mathcal{D}$. Montrer que

$$\varphi(\mathcal{P}_A) = \mathcal{P}_{\varphi(A)}.$$

- 6. Donner un exemple de transformation affine bijective $\varphi : \mathcal{P} \to \mathcal{P}$ qui préserve \mathcal{D} et vérifie $\varphi(\mathcal{P}_A) \neq \mathcal{P}_A$.
- 7. Donner un exemple de transformation affine bijective $\varphi : \mathcal{P} \to \mathcal{P}$ qui préserve \mathcal{D} , qui vérifie $\varphi(\mathcal{P}_A) = \mathcal{P}_A$ et telle que :
 - i) φ est une translation par un vecteur non-nul.
 - ii) φ n'est pas une translation.

Exercice 2 : (conique projective) Dans $\mathbb{P}^2(\mathbb{R})$ muni des coordonnées homogènes standard [X:Y:Z] l'on considère la conique

$$C: X^2 - Y^2 - Z^2 = 0.$$

- 1. Justifier que la conique \mathcal{C} est lisse.
- 2. Déterminer les deux points d'intersection A, B de la droite $\{Z=0\}$ avec la conique C.
- 3. Déterminer l'équation des tangentes T_A , T_B à \mathcal{C} en ces points d'intersection.
- 4. Déterminer le point d'intersection $T_A \cap T_B$ de ces deux tangentes.
- 5. Donner une équation de la conique affine déterminée par \mathcal{C} en choisissant la droite $\{Z=0\}$ comme droite à l'infini.
- 6. Reconnaître une hyperbole affine et montrer que les droites affines déterminées par les tangentes T_A et T_B sont les droites asymptotes de cette hyperbole.

Exercice 3 : (hyperboles euclidiennes) Dans \mathbb{R}^2 muni du produit euclidien standard et des coordonnées standard (x, y) considérons la famille d'hyperboles

$$\mathcal{H}_{\lambda}: x^2 - y^2 = \lambda, \qquad \lambda \neq 0.$$

- 1. Dessiner quelques éléments de cette famille dans un même repère de coordonnées.
- 2. Déterminer pour l'hyperbole \mathcal{H}_{λ} les deux points qui réalisent la distance de l'origine à \mathcal{H}_{λ} , définie comme

$$d(O, \mathcal{H}_{\lambda}) = \inf\{d(O, P) : P \in \mathcal{H}_{\lambda}\}.$$

3. Soit $A \in O(2)$ et $A(\mathcal{H}_{\lambda})$ l'image de \mathcal{H}_{λ} par A. Montrer l'égalité

$$d(O, \mathcal{H}_{\lambda}) = d(O, A(\mathcal{H}_{\lambda})).$$

4. Déterminer les paires de réels non-nuls (λ, μ) pour lesquels il existe un élément $A \in SO(2)$ tel que

$$A(\mathcal{H}_{\lambda}) = \mathcal{H}_{\mu}.$$

- 5. Déterminer les éléments $A \in O(2)$ tels que $A(\mathcal{H}_1) = \mathcal{H}_1$.
- 6. Considérons maintenant aussi la famille

$$\mathcal{K}_{\mu}: xy = \mu, \qquad \mu \neq 0.$$

Montrer que, pour tous $\lambda, \mu \in \mathbb{R}^*$, l'hyperbole \mathcal{H}_{λ} intersecte l'hyperbole \mathcal{K}_{μ} orthogonalement au sens suivant : en tout point $(x_0, y_0) \in \mathcal{H}_{\lambda} \cap \mathcal{K}_{\mu}$ les tangentes à \mathcal{H}_{λ} et \mathcal{K}_{μ} sont orthogonales. On dit que \mathcal{H}_{λ} est orthogonale à \mathcal{K}_{μ} et on le note

$$\mathcal{H}_{\lambda} \perp \mathcal{K}_{\mu}$$
.