Géométrie Affine et Projective - TD9

Exercice 1:

Soit C un conique propre d'un plan projectif réel P.

Quels sont les points de \mathcal{P} d'où l'on peut mener deux (resp. une, resp. aucune) tangentes à \mathcal{C} ?

Exercice 2:

Soit A, B, C, D quatre points distincts d'une conique propre C. Montrer que le birapport [A, B, C, D] est égal à -1 si et seulement si la polaire de (BC) est sur la droite (AD).

Exercice 3:

Soit D une droite d'un plan projectif, et $A \neq B$ deux points hors de D. Soit ϕ une bijection de D dans D.

- a) Montrer que ϕ est une homographie si et seulement si il existe une conique \mathcal{C} tel que pour tout $M \in D$, $(AM) \cap (B\phi(M)) \in \mathcal{C}$.
- b) Montrer, le cas échéant, que l'homographie ϕ est involutive si et seulement si la polaire de (AB) par rapport à \mathcal{C} est sur D.

Exercice 4:

Soit $\mathcal{P} = \mathbb{P}(V)$ un plan projectif. Soit P un plan de l'espace vectoriel des formes quadratiques sur V.

- a) Associer à tout élément de $\mathcal{F} := \mathbb{P}(P)$ une conique de \mathcal{P} (\mathcal{F} sera appelé un faisceau de coniques).
- b) Soit $A \in \mathcal{P}$. Montrer qu'il existe $B \in \mathcal{P}$ qui appartient à la polaire de A par rapport à n'importe quelle conique de \mathcal{F} .
- c) Montrer qu'étant donnés quatre points A, B, C, D tels que 3 ne sont pas alignés, il existe un unique faisceau de conique passant par ces quatre points.
- d) Montrer qu'il existe au plus quatre points passant par toute conique du faisceau \mathcal{F} (un tel point sera appelé un point de base de \mathcal{F}).
- e) Soit $E \in \mathcal{P}$ qui n'est pas un point de base de \mathcal{F} . Montrer qu'il existe une unique conique \mathcal{C}_E de \mathcal{F} passant par E.
- f) Soit d une droite ne passant par aucun point de base de \mathcal{F} . On considère l'application $\phi: d \to d$ qui à M associe l'autre point d'intersection de \mathcal{C}_M avec d (celui qui n'est pas M, sauf si \mathcal{C}_M est tangente à d). Montrer que ϕ est une homographie.

Exercice 5:

Soit $\mathcal{E} = \mathbb{R}^2$ muni de sa structure euclidienne canonique, et vu dans le plan projectif $\mathbb{P}^2(\mathbb{R})$. On considère la conique projective $\mathcal{C}_{\mathcal{E}} \subset \mathbb{P}^2(\mathbb{R})$ d'équation $X^2 + Y^2 + Z^2 = 0$. On appelle points cycliques de \mathcal{E} l'intersection de $\mathcal{C}_{\mathcal{E}}$ avec la droite à l'infini : ces points sont des points de $\mathbb{P}^2(\mathbb{C})$.

Montrer que les cercles de \mathcal{E} sont exactement les coniques propres de \mathcal{E} contenant les points cycliques. En déduire une explication sur le nombre de points d'intersection de deux cercles de \mathcal{E} par rapport au nombre de points d'intersection de deux coniques de \mathcal{E} en général. Comprendre aussi pourquoi l'énoncé "par cinq points passe une conique" devient "par trois points passe un cercle".

1 Coniques euclidiennes

Exercice 6: Soit \mathcal{P} un plan affine euclidien.

- a) Soient \mathcal{D} une droite affine (la *directrice*) de \mathcal{P} et $F \in \mathcal{P}$ un point (le *foyer*) n'appartenant pas à \mathcal{D} . Soit e > 0. On note $\pi_{\mathcal{D}}$ la projection orthogonale sur \mathcal{D} .
 - Soit \mathcal{C} l'ensemble des points $M \in \mathcal{P}$ tels que $d(M, F) = ed(M, \pi_{\mathcal{D}}(M))$.
 - i) Montrer que C est une conique affine non dégénérée.
 - ii) A quelle condition sur $e \mathcal{C}$ est-elle une ellipse? une parabole? une hyperbole?
- b) Réciproquement, soit \mathcal{C} une conique non dégénérée de \mathcal{P} (non vide) qui n'est pas un cercle. Montrer qu'il existe une droite \mathcal{D} , un point F et e > 0 tels que \mathcal{C} soit l'ensemble des points $M \in \mathcal{P}$ tels que $d(M, F) = ed(M, \pi_{\mathcal{D}}(M))$.

Exercice 7:

Soit \mathcal{E} un plan affine euclidien, \mathcal{C} une conique propre de \mathcal{E} , F un foyer de \mathcal{C} et D la directrice correspondante. Soient $M, N \in \mathcal{C}$ deux points distincts. On suppose que (MN) et D se coupent en un unique point P.

Montrer que (PF) est une bissectrice de l'angle de droites formé par (FM) et (FN). Que dire dans le cas où (MN) et D sont parallèles?

Exercice 8:

Soit \mathcal{E} un plan affine euclidien, \mathcal{C} une conique propre de \mathcal{E} qui n'est pas un cercle, F un foyer de \mathcal{C} et D la directrice correspondante. Soit $M \in \mathcal{C}$. On suppose que la tangente en M intersecte D en un unique point P.

Montrer que (PF) est orthogonale à (FM).

Que dire dans le cas où la tangente est parallèle à D? Et si \mathcal{C} est un cercle?

Exercice 9:

Soit \mathcal{E} un plan affine euclidien, \mathcal{P} une parabole dans \mathcal{E} de foyer F et directrice D. Soit $M \in \mathcal{P}$. On note H le projeté orthogonal de M sur D.

Montrer que la tangente en M à \mathcal{P} est la médiatrice du segment [FH].

Exercice 10 : Soit \mathcal{E} un plan affine euclidien, \mathcal{C} une conique propre à centre dans \mathcal{E} . On note F et F' les foyers de \mathcal{C} . Soit $M \in \mathcal{C}$.

Montrer que la tangente en M est une bissectrice de l'angle en M du triangle FMF'. Peut-on dire s'il s'agit de la bissectrice intérieure ou de la bissectrice extérieure? Que se passe-t-il dans le cas d'une parabole?

Exercice 11:

Soit \mathcal{E} un plan affine euclidien muni d'un repère orthonormé (O, I, J). Soit $q(x, y) := \frac{x^2}{a^2} + \frac{y^2}{b^2}$, avec 0 < b < a, une forme quadratique et \mathcal{E} la conique de \mathcal{E} d'équation q = 1.

Soient $M, M' \in \mathcal{C}$ deux points distincts tels que les vecteurs \overline{OM} et OM' soient orthogonaux pour le produit scalaire défini par q.

- a) Montrer que le quadrilatère OMPM' est un parallélogramme, d'aire constante égale à ab, où P est le point d'intersection des tangentes en M et en M'.
- b) Montrer que la quantité $OM^2 + OM'^2$ est constante égale à $a^2 + b^2$.

Exercice 12:

Soit \mathcal{C} une conique propre d'un plan affine euclidien. Décrire le groupe des isométries qui préservent \mathcal{C} .