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Abstract:  We recapitulate Feynman's demonstration that 
Kepler's laws follow from Newton's laws plus ordinary plane 
geometry: no calculus required. No differential equations, no 
conservation laws, no dynamics, no angular momentum, no 
constants of integration. This is Feynman at his best: reducing 
something seemingly big, complicated, and difficult to 
something small, simple, and easy.   

 

1. Introduction 
This presentation is very short, on purpose, but omits no detail. We back 

up the monologue with constructions in the software Geometry Expressions . To 
get a more lengthy presentation PLUS an audio CD recording of Professor 
Feynman delivering the lost lecture, see the book referenced at top. My method 
was to read the book, then put it away and reproduce the arguments from 
memory with my own twists tossed in. This is an original reproduction of 
Feynman’s argument, as it were. Here are Kepler’s three laws, in the order 
proved here (not Kepler’s order):  
 
K1: A planet orbiting a star sweeps out equal areas in equal times  
K2: The square of the period of a closed orbit is proportional to the cube of its 
longest axis  
K3: A closed orbit is an ellipse (open orbits are parabolic or hyperbolic)  
 
For the sake of discussion, a “star” is defined as the fixed point in space about 
which the “planet” orbits. Bodies actually orbit around their mutual barycenter – 
their center of mass. There is a side theorem, not proved here, that the orbit of 
planet  and star  about their barycenter is equivalent to an orbit of planet  
around a fictional fixed star of mass /( + ) (the symmetric case also holds: 
the star can be thought of as orbiting a planet of tiny mass /( + ), but that 
looks strange). For the following, presume the star is fixed in space. 
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 Now, here are Newton’s laws (specialized to the fixed-star assumption and 
numbered as we need them)  

 

N1: A body (planet) in motion continues in straight-line motion unless acted on 
by a force 

N2: The change in velocity of a planet over a time interval is proportional to the 
force applied (N1 is really a special case of N2 with force equal to zero) 

 N3: The force between a planet and a star acts along the line connecting them 
(central-force law)  

N4: The magnitude of the gravitational force between a star and a planet is 
proportional to 1/ 2, where  is the distance between them (inverse-square 
law)  

 

Velocity is a vector: it has both magnitude – the speed – and direction. Force is 
also a vector, and to say that the change in a velocity is proportional to a force is 
to say that both magnitude and direction are proportional. There is a preliminary 
deduction we need to get out of the way: we only need plane geometry. The 
reasons are that if a planet starts out moving in a straight line and if any 
changes in its direction must be directed precisely toward the star, the planet 
can never leave the two-dimensional plane described by two points on the 
straight line of its motion and the one point located at the star.  

 

Step 1: N1 and N3 imply K1 - equal areas in equal times 
Notice we do not need the magnitude of the force – the inverse-square 

law, N4, is not needed for K1.  

First, we prove the special case that if the force is zero, that is, if the planet 
proceeds in straight-line motion (N1), then equal areas are swept out in equal 
times (K1). Consider the following construction in Geometry Expressions (in file 
named Step1.gx): 
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Figure 1. If the force is zero then equal areas are swept out in equal times 

 

Let the star be at point , and let the planet move with constant velocity along 
the vertical line . Constant velocity means two things: that in each equal 
interval of time, the planet moves a constant distance; and that the planet does 
not change direction. To express in Geometry Expressions that the planet moves 
constant distance in constant time, that is, that distances , constrain 
all those segments to be equal to the same variable, , which is, conceptually, a 
constant velocity, , times a constant small interval of time ∆ . To express that 
the planet does not change direction, just make sure all the triangles have one 
leg coincident with line . In each time interval, the planetary path demarcates 
a triangle with the first point at the star, the second point at the beginning of the 
segment, and the third point at the end of the segment. Three such triangles are 
shown in the diagram, but, of course, there is a limitless number of them. All the 
triangles have exactly the same area. How do we know? They each have the 
same altitude, namely , and the same base, namely . That is what we 
mean by “sweeping out equal areas in equal times.” In the .gx file, move things 
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around. Make the triangles extra thin, extra fat, rotate them around: no matter 
what you do, their areas remain the same.  

Now, let the star exert a little, percussive, attractive force on the planet – a tug – 
once each time step Δ ,  directed precisely radially toward the star. In the figure 
below, the tug is the vector, . By the parallelogram rule, , and 

. The original direction of the velocity, Δ , gets changed to 
the direction of  through the action of the force. There is a big change to the 
direction and a small change to the magnitude:  

 
Figure 2.  The star exerts a little percussive, attractive force on the planet 

The really important thing is that the little tug force doesn’t change the area of 
the original triangle, ! The new triangle is , which has base , just like 
the original, and altitude , which is equal to the altitude  of the original 
triangle, by construction. Just to be sure we have everything right, we let 
Geometry Expressions calculate the areas of the two triangles. Sure enough, 
they’re both /2. This is in the file Step2.gx. Again, move things all around the 
place and notice the areas cannot change.   

Since the centrally-directed, i.e. radial, force does not change the area of this 
particular triangle, it can’t change the area of any such triangle, since this one 
was not special. Just keep stitching together these tugged triangles, the way we 
stitched together the untugged triangles before, each starting at points like  
above where the last triangle left off. Three steps of such an iterated 
construction appears in the next diagram (in file Step7.gx), with the jagged 
path of the planet, under the influence of repeated, percussive tugs from the 
star, in red. Geometry Expressions computes the six triangular areas symbolically 
and proves they are all equal despite the fact that I chose the magnitude of the 
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tugs capriciously. Only their directions matter. Radial forces never affect the 
area, even though they change the magnitude of the velocities a little, so the 
orbit sweeps equal angles in equal times under the action of any radial force. We 
have proved K1 using just N3 and N1.   

 

 

Figure 3. Radial forces never affect the area 

Now, those who know calculus may be rolling their eyes and saying “ok, look, we 
can see through your subterfuge! All these little triangles, all these little forces, 
that little time interval Δ : you’re obviously leading up to a limiting process, and 
you will cheat and drag in all of calculus.” Not so. While it’s true that a limiting 
process would lead to calculus, it’s not necessary for these demonstrations. 
Everything is finite, not infinitesimal. It’s true that things look better – more like 
real orbits – if the triangles are skinny and if the tugs and time intervals are 
small and closely spaced, but there is nothing in our logic that requires it, as 
playing around with the .gx files will show. Go ahead and drag everything around 
into grotesque shapes that don’t look like parts of orbits: the areas will stay the 
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same, and that’s all we set out to prove. In fact, the geometrical facts are more 
general than needed for the limiting process that would lead to the differential 
theory of orbits. It’s precisely that latter theory, while more sophisticated and 
realistic, that is not needed to prove Kepler’s laws, and that’s the whole point of 
this demonstration. To drive the point home, file Step11.gx contains a 
complete, 12-point, discrete Keplerian orbit, and is illustrated below. The last leg, 
BA-C, is left free to avoid a lengthy constraint-resolution step. All the areas 
compute symbolically to /2, but only the first six are shown, to avoid lengthy 
algebraic computations.  

 

 
 

Figure 4. A complete, 12-point, discrete Keplerian orbit 
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Step 2: K2 - period squared proportional to radius cubed 
This proof is easy for the special case of a circular orbit of radius , where the 
planet’s speed is also constant at every point. The distance the planet travels in 
one orbit is the circumference 2 . Let the period – the time it takes to orbit – 
be . So, the average speed is 2 / , which is also the speed at every point 
in the orbit.   

The star’s tugs on the planet don’t change its speed, only the direction of its 
velocity. So, although the change in speed is zero, the change in velocity is not. 
How much does the velocity change? Imagine copying the velocity vectors into 
their own, abstract velocity space, rooting every vector at the origin – see 
“Diagram V” in figure 5 below. As the planet goes around the circle, the velocity 
vectors also sweep around their own circle – like a radar sweep. In this velocity 
circle, the velocity changes show up around the circumference. The total amount 
of velocity change in a single orbit is the circumference of the velocity circle, 
namely 2 2 2 / . Since this occurs over a time , we may say that the 
average rate of change of velocity has magnitude 2 / 2 2 / 2. Since the 
orbit is circular and symmetrical, the average rate of change in velocity equals 
the rate of change in velocity at any time – it’s just a constant. By N2, the rate of 
change in velocity is proportional to the force, which, by N4, is proportional to 
1/ 2. So we’ve shown that / 2 ~ 1/ 2, which is the same as saying 3~  2.   

 

Figure 5. Velocity vectors around the orbit 
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 Ok, so much for circular orbits. What about other shapes? Let’s first find out 
what those other shapes are, then get back to proving K2 for them. K3 states 
that those other shapes are ellipses, so it’s time to prove K3. Afterwards, we 
come back to prove K2 for ellipses.   

Step 3: K3 – closed orbits are elliptical   
We have seen that any radial force implies K1, equal areas in equal times. The 
magnitudes of the forces do not matter, only their directions. But arbitrary forces 
do not generate any particular shape unless we say something about  the 
magnitudes of the forces. Time to bring in the inverse-square law.  

Feynman observed that if we consider equal angles at the star instead of equal 
areas or equal times, each little tug will have identical magnitude and symmetric 
directions under N4, Newton’s inverse-square law. Before proving these points, 
look at the following cartoon of an equiangular construction. This is deliberately 
cartoonish to emphasize the fact that we don’t know the real shape of the orbit, 
yet:  
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Figure 6. Deliberately cartoonish drawing of an equiangular construction 

 

This is, again, Feynman at his absolute best: somehow finding just the right way 
to crack a problem. To understand his magic, observe that this is really a 
refinement of the prior, equal-time construction. Here’s the argument:  

First, realize that the area of any swept-out triangle of a given constant angle at 
the star is proportional to the squared distance from the star, that is, to 2. The 
reason is, roughly, that both the base and the height are proportional to . More 
precisely, consider the following sketch (from EquiAngular.gx): 
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Figure 7. The area of any swept-out triangle of a given constant angle at the star is proportional 

to the squared distance from the star. 

Let  be the path of the planet, in red, as usual. It is always possible to find a 
point  a distance  from the star such that the area  equals the area of the 
triangle , which is constructed off the bisector of the angle  at  with a 
perpendicular segment, , as a pair of right triangles,  and . The 
important things are that this construction (1) gives us a way to define the “The 
Distance”  of the planet from the star while it is in segment  of its orbit, and 
(2) makes it obvious that the area of the triangles is proportional to 2 – the 
base, , is proportional to  and the height, , is also proportional to .   

The following figure shows two such triangles,  and , laid on top of one 
another. Their angles at the star – point  – are equal; their “distances” from  
are 1 and 2, respectively. Points  and  are constructed specifically, as 
before, so that  and  have the same areas as the skew triangles,  
and , which contain segments of the orbit –  and , respectively. The 
shaded triangle pairs, like ), and  have equal areas, 
though they may not look so because the drawing is exaggerated to separate the 
points  from  and  from .   
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Figure 8. The area of the triangles is proportional to 2 

At this point, we’ve established that the areas of equiangular triangles in an orbit 
are proportional to the square distances of the planet from the star. We already 
know that the areas are proportional to the time intervals Δ , so they are no 
longer constant, but now proportional to 2; symbolically, Δ ~ 2. Recall N2 – 
The change in velocity of a planet over a time interval is proportional to the force 
applied. Write this symbolically as Δ /Δ  ~   ~ Δ / 2. Recall N4 – The 
magnitude of the force is proportional to 1/ 2, so N2 and N4 imply that 
Δ / 2~1/ 2, that is, Δ  ~ 1, that is, the magnitude of the change in velocity  
is constant for each equiangular bit in an orbit.   

The velocities change around the orbit, but the magnitudes of the velocity deltas 
are constant. What about the directions of the Δ  changes? Since the orbit has 
been divided into equal angles and the velocity deltas – the tugs – are always 
radial, each tug varies from the previous by an equal angle. In other words, each 
Δ  vector is of equal length and differs from its prior by an equal angle. The Δ ’s 
go around the circumference of a circle in abstract velocity space, exactly like 
Figure 5 above. Only now, the velocities themselves do not necessarily radiate 
from the center of the velocity circle, but rather from some other, offset point. Of 
course, they all radiate from the same point, though, because that’s how the 
abstract velocity space is set up. We have just deduced, however, given only N4 
and the equiangular construction, that the velocities are constrained in exactly 
such a way that their deltas go around a perfect circle. The following, from 
Circle2.gx illustrates:  
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Figure 9. Velocities are constrained in exactly such a way that their deltas go around a circle. 

In this file, point  is free to move horizontally, and by playing with it one can 
get a feel for exactly how the velocities are allowed and constrained to change in 
this construction.  Since we know each velocity is tangent to the orbit, back in 
position space, not in abstract velocity space, we have a way to construct the 
orbit! We know the tangent intersects the orbit at exactly one point, so, if we can 
find where the tangent intersects the infinite line between the star and the 
planet, we’ve caught that one point! Take a deep breath and look at the 
following: 
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Figure 10. The total angle, , from the geometric center  of the velocity circle to  is equal to 

the total angle the planet has traveled around the orbit figure. 

 is the velocity center of the velocity space, and  shows both the magnitude 
and direction of a velocity. Since the circumference of the circle contains a 
number of equal, radial Δ ’s, the total angle, , from the geometric center  of 
the velocity circle to  is equal to the total angle the planet has traveled around 
the orbit figure! This is perhaps the most difficult part of the entire 
demonstration to understand, but here is the way for you to convince yourself it 
is true. The largest velocity is , this should be plain to see. When the orbit has 
that largest velocity, the planet is closest to the star, because if the planet gets 
any closer, it will go faster because the force is greater the closer the planet gets 
and the force is proportional to Δ /Δ . Furthermore, the path of the planet must 
be perpendicular to the velocity at that closest point, because the planet is 
further from the star on either side of that closest point and the only way to do 
that is perpendicularly. Now, since the Δ ’s accumulate by equal angles, lets say 
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1 degree at a time for a total of 360 little increments, and we set up the orbit to 
have equal angles to begin with, the increments of orbital angles must also be 
equal to one another. Once around the velocity circle for the Δ ’s in equal steps 
corresponds to once around the orbit circle for the planet in equal steps. The 
angle at  must stay in lock-sync with as the angle of the planet at the star. 
We might as well just consider the diagram above to be a combined velocity 
diagram and orbit diagram with  being always perpendicular to a segment 
of the infinite line along the direction between the star and the planet. It’s 
perpendicular to it because it starts out perpendicular when the velocity has its 
maximum value, , and it can never get out of sync, so it stays perpendicular 
always.   

 

If we can find the intersection of the infinite direction line of the orbit with the 
infinite direction line of the velocity, then we have found a point on the orbit! 
Since we have the direction of the velocity, namely , and we have a 
perpendicular to the direction of the orbit, namely , we’re almost there. The 
easiest thing to do is just take another perpendicular, this time to the velocity 
direction, at a proportional distance along its length. Two perpendiculars, one 
against the orbit direction and another against the velocity, make everything 
come out right! This is, again, Feynman at his unique best.  

 

Take another deep breath and construct the perpendicular bisector, , 
representing a scaled version of the infinite direction line of the velocity. We 
don’t care about the scale factor, because we’re just interested in the shape of 
the orbit. Intersect  with  and we are guaranteed to have a point on a 
scaled and rotated version of the orbit. In Geometry Expressions, set up a locus 
construction for point  as angle  varies from 0 to 360 and we have an ellipse. 
Proof?  since triangles  and  are congruent.  is constant 
since it’s just the radius of a circle, therefore  is constant, and that’s the 
definition of an ellipse, just the old push-pins-and-string construction (in 
Orbit1.gx).  
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Figure 11.  The orbit of E is an ellipse. 

 I realize that the last two steps of the argument are heady, and Feynman states 
in his lecture it took him quite a while to find them. Specifically, the idea of 
intersecting the perpendicular bisector of the velocity vector and using it as the 
tangent was the hardest to come up with. But the argument is water tight. Play 
around with it for a while, reconstruct it in your own terms, build up the angles 
little by little, and you will eventually own it.   

 

We can now close the loop on K2, proving that 2~ 3 for ellipses. The result for 
elliptical orbits follows immediately from the facts that (1) the equiangular 
construction results in a circular diagram in abstract velocity space for Δ ’s and 
(2) the fact that the perimeter of the ellipse is proportional to its longest axis 
(see, for instance http://home.att.net/~numericana/answer/ellipse.htm ). 
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