COURS M2 "GÉOMÉTRIE ET TOPOLOGIE DIFFÉRENTIELLES" 2013-2014

FEUILLE D'EXERCICES NO. 5 : TRANSVERSALITÉ; DEGRÉ; NOMBRE D'EULER

ALEXANDRU OANCEA

Exercice 1. Soient X et Y deux variétés modelées sur des espaces de Banach séparables. Si $f: X \to Y$ est une application de Fredholm d'indice négatif, alors l'image de f est un ensemble d'intérieur vide.

Exercice 2. (i) Soient V, W des espaces de Banach et $L \in \mathcal{L}(V, W)$ une application linéaire et continue de Fredholm.

(i.1) Si $V' \subset V$ est un sous-espace de codimension finie k, alors $L|_{V'}: V' \to W$ est une application de Fredholm d'indice

$$\operatorname{ind}(L|_{V'}) = \operatorname{ind}(L) - k.$$

(i.2) Si $V\subset \tilde V$ est une inclusion de codimension ℓ et $\tilde L:\tilde V\to W$ étend L, alors $\tilde L$ est de Fredholm et

$$\operatorname{ind}(\tilde{L}) = \operatorname{ind}(L) + \ell.$$

(ii) Soit $f:X\to Y$ une application de Fredholm entre des variétés de Banach. Si $\mathcal{M}\subset X$ est une sous-variété de codimension k, alors $f|_{\mathcal{M}}:\mathcal{M}\to Y$ est une application de Fredholm d'indice

$$\operatorname{ind}(f|_{\mathcal{M}}) = \operatorname{ind}(f) - k.$$

Exercice 2. Démontrer que les applications $f: S^1 \to \mathbb{R}^3$ de classe C^1 qui sont injectives forment un sous-ensemble de deuxième catégorie de Baire dans $\mathcal{F}:=C^1(S^1,\mathbb{R}^3)$. Ou encore : toute application $S^1 \to \mathbb{R}^3$ de classe C^1 peut être approchée par une suite d'applications C^1 injectives.

[L'on pourra considérer la diagonale $\Delta:=\{(x,x):x\in S^1\}\subset S^1\times S^1,$ définir l'application

$$\Phi: \mathcal{F} \times (S^1 \times S^1 \setminus \Delta) \to \mathbb{R}^3, \qquad (f, x, y) \longmapsto f(x) - f(y),$$

montrer que l'espace de modules universel $\mathcal{M} := \Phi^{-1}(0)$ est une sous-variété de Banach de codimension 3, et finalement montrer que la projection $\mathcal{M} \to \mathcal{F}$ est une application de Fredholm d'indice -1.

Exercice 3 (théorème de plongement de Whitney). L'on montre ici que toute variété compacte M^n de dimension n se plonge dans \mathbb{R}^{2n+1} par un argument de généricité : l'ensemble des plongements de classe C^2 de M dans \mathbb{R}^{2n+1} est de

Date: 8 Octobre 2013.

deuxième catégorie dans $C^2(M^n, \mathbb{R}^{2n+1})$. L'on pourra montrer séparément cette propriété pour les applications injectives et pour les immersions.

Exercice 4. Soit $Z \subset \mathbb{R}^n$ une sous-variété et X une variété (compacte). Montrer que l'ensemble des applications $X \to \mathbb{R}^n$ qui sont transverses à Z est de deuxième catégorie dans $C^1(X, \mathbb{R}^n)$.

[L'on pourra considérer l'espace de Banach $\mathcal{F} := C^1(X, \mathbb{R}^n)$, montrer que $\mathcal{M} := \{(f,x) : f(x) \in Z\} \subset \mathcal{F} \times X$ est une sous-variété de Banach et montrer que $f \in \mathcal{F}$ est une valeur régulière de la projection $\mathcal{M} \to \mathcal{F}$ si et seulement si $f \pitchfork Z$.]

Déduire par approximation que l'ensemble des applications C^{∞} de X dans \mathbb{R}^n qui sont transverses à Z est dense dans $C^{\infty}(X,\mathbb{R}^n)$.

Démontrer les mêmes résultats lorsque l'on remplace \mathbb{R}^n par une variété Y quelconque. Dans ce cas $C^1(X,Y)$ est une variété de Banach.

Exercice 5. Soit $A: \mathbb{R}^n \to \mathbb{R}^n$ un isomorphisme linéaire. Soit $S^{n-1} \subset \mathbb{R}^n$ la sphère unité. Montrer que le degré de l'application

$$S^{n-1} \to S^{n-1}, \qquad x \longmapsto \frac{Ax}{\|Ax\|}$$

vaut ± 1 selon que A préserve ou renverse l'orientation.

Exercice 6. Une fonction $f: M \to \mathbb{R}$ de classe C^2 est dite de Morse si, en tout point $x \in M$ tel que df(x) = 0 (point critique), la hessienne

$$d^2 f(x): T_r M \times T_r M \to \mathbb{R}$$

définie par

$$d^2 f(x)(X,Y) := X_x(\tilde{Y}f)$$

avec \tilde{Y} une extension locale quel conque de Y, est une application bilinéaire symétrique non-dégénérée.

Montrer que f est de Morse si et seulement si la section $df \in \Gamma(T^*M)$ est transverse à la section nulle.

Démontrer que les fonctions de Morse forment un ensemble de deuxième catégorie dans $C^2(M,\mathbb{R})$.

Exercice 7. (i) Montrer que le nombre d'Euler d'une sphère de dimension paire vaut 2 (l'on pourra considérer par exemple le champ de vecteurs qui engendre une rotation).

(ii) Montrer que le nombre d'Euler du tore

$$T^n := S^1 \times \dots \times S^1$$

vaut 0.

- (iii) Montrer que le nombre d'Euler d'une surface de Riemann de genre g vaut 2-2g.
- (iv) Montrer que le nombre d'Euler e(X) d'une variété compacte X satisfait à la relation

$$e(X \times Y) = e(X) \cdot e(Y)$$
.