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TD 2 : Bases, dimension.

1 Familles libres

Exercice 1 : Soit F := (v1, . . . , vn) une famille de vecteurs d’un K-espace vecto-
riel E. Montrer que F est liée si et seulement si il existe k ∈ {1, . . . , n} tel que vk =
CLK(v1, . . . , vk−1, vk+1, . . . , vn).

Exercice 2 : Soient E,F deux K-espace vectoriel. Montrer que :

1. Si F := (v1, . . . , vn) est une famille libre de E et si u ∈ L(E,F ) est injective alors(
u(v1), . . . , u(vn)

)
est libre dans F .

2. Si F := (v1, . . . , vn) est une famille génératrice de E et si u ∈ L(E,F ) est surjective
alors

(
u(v1), . . . , u(vn)

)
est génératrice de F .

3. Montrer que la famille (v1, . . . , vn) est libre si et seulement si la famille

(v1, . . . , vi−1, vi +CL(v1, . . . , vi−1, vi+1, . . . , vn), vi+1 . . . , vn)

est libre.

Exercice 3 :

1. Montrer que la famille
((1

1

)
,

(
1
−1

))
forme une famille libre de R2. En déduire que

cette famille est également génératrice. Interpréter ces deux résultats en terme de
systèmes linéaires.

2. Montrer que la famille
((1

1

)
,

(
1
−1

)
,

(
1
0

))
est génératrice, n’est pas libre mais que

chaque couple de vecteurs dans cette famille est libre.

Exercice 4 : Dans R3, déterminer si les familles suivantes sont génératrices :

1. {t(1, 0, 0), t(0, 1, 0), t(1, 1, 0)}
2. {t(1, 2, 3), t(4, 5, 6), t(7, 8, 9)}

Exercice 5 : Dans R4, compléter la famille libre {t(1, 0, 1, 0), t(0, 1, 0, 1)} en une base
de R4.

Exercice 6 : Soit Pn une suite de polynômes de degrés exactement n. Montrer que
(Pn)n∈N est une base de R[X], et que (P0, . . . , Pn) est une base de Rn[X]. On dit que la
famille est à degrés échelonnés.

Exercice 7 : Soit K un corps infini (par exemple R ou C). Soit a0, . . . , an ∈ K des
éléments deux à deux distincts.

1. Montrer qu’il existe un unique polynôme Li ∈ Rn[X] tel que Li(aj) = δij .

2. Montrer que la famille L(a0, . . . , an) := (Li)i=0,...,n est libre dans Rn(X).

3. En déduire que cette famille est une base de Rn[X].

4. Montrer directement que cette famille est génératrice.
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Exercice 8 :

1. Montrer que {t 7→ eλt, λ ∈ R} ⊂ C0(R,R) est une famille libre (Indication : considérer

une combinaison linéaire nulle, et utiliser les croissances différentes en ±∞).

2. Montrer que {t 7→ eλt, λ ∈ C} ⊂ C0(R,C) est une famille libre.

3. En déduire que {t 7→ cos(λt), λ ∈ R} est une famille libre.

Exercice 9 : (∗) Soient P,Q ∈ C[X] deux polynômes non proportionnels. Montrer que
pour tout n, la famille (P kQn−k)0≤k≤n est libre. Même question dans R[X] ? (Indication :

récurrence sur le degré.)

Exercice 10 : Soit S(K,K) l’ensemble des fonctions paires de K dans K et A(K,K)
l’ensemble des fonctions impaires.

1. Montrer que S(K,K) et A(K,K) sont des sous-espaces vectoriels de KK et que S ⊕
A = KK.

2. Montrer que S0(R,R) := S(R,R)∩C0(R,R) etA0(R,R) définis de la même façon sont
aussi des sous-espaces vectoriels de C0(R,R) et que S0(R,R)⊕S0(R,R) = C0(R,R).

Exercice 11 : (∗) On rappelle que R est un Q-espace vectoriel. Soit α, β ∈ R. Le but
de l’exercice est de montrer que (α, β) est une famille indépendante sur Q si et seulement
si

Z⟨α, β⟩ := {mα+ nβ, m, n ∈ Z}

est dense dans R.
1. Montrer que la famille α, β est toujours liée sur R.
2. Montrer que (α, β) est libre sur Q si et seulement si κ := α/β /∈ Q.

3. Montrer que (Z⟨α, β⟩,+) est un sous groupe de (R,+).

4. Montrer que si (α, β) est liée sur Q, alors il existe γ ∈ R tel que

Z⟨α, β⟩ ⊂ γZ.

En déduire que Z⟨α, β⟩ n’est pas dense dans R.
5. Si κ = α/β /∈ Q, montrer que pour tout n ∈ N∗, il existe m ∈ Z tel que∣∣∣κ− m

n

∣∣∣ < 1

n
.

(Indication : 1
n
Z définit une grille de R uniforme de largeur 1/n.)

6. En déduire que si (α, β) est libre sur Q, il existe une infinité d’éléments de Z⟨α, β⟩
dans (0, 1).

7. En déduire que pour tout ε il existe deux éléments de Z⟨α, β⟩ distants de moins de
ε.

8. En utilisant que Z⟨α, β⟩ est un groupe additif, montrer que cet ensemble est dense
dans R.

2 Dimension

Exercice 12 : Montrer que dimQQ[
√
2] = 2 et dimQQ[ 3

√
2] = 3.
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Exercice 13 : Soit E un espace vectoriel de dimension finie et F < E un sous-espace
vectoriel qui vérifie dimF = dimE. Montrer que F = E.

Exercice 14 : Soit E un K-espace vectoriel de dimension finie n et F,G deux sous-
espaces vectoriels. On définit

Φ : F ×G −→ E
(x, y) 7−→ x+ y.

1. Calculer ImΦ et montrer que kerΦ ≈ F ∩G.

2. Montrer que dimF + dimG− dim(F ∩G) = dimE.

3. En déduire que si dimF + dimG > dimE, F ∩G ̸= {0}.

Exercice 15 : Soit E un espace vectoriel de dimension finie et E1, E2 des sous-espaces
vectoriels de E avec dimE1 = dimE2. Montrer qu’il existe un supplémentaire commun à
E1, E2, c’est à dire un sous-espace H tel que H ⊕E1 = H ⊕E2 = E. Même question avec
un nombre quelconque de sous-espaces vectoriels Ei de même dimension.

3 Endomorphisme, théorème du rang

Exercice 16 : Soit E un espace vectoriel.

1. Soient F,G < E des sous-espaces vectoriels de même dimension. Montrer qu’il existe
u ∈ GL(E) tel que u(F ) = G.

2. Soit w ∈ L(E). Montrer qu’il existe H < E tel que w|H : H → Imw est un iso-
morphisme. Déterminer l’ensemble des sous-espaces vectoriels H < E ayant cette
propriété.

3. Soit u ∈ L(E). Montrer que

{w ∈ L(E) | kerw ⊃ keru} = {w ∈ L(E) | ∃a ∈ L(E), w = a ◦ u}.

4. (∗) Si u, v, w ∈ L(E), montrer que kerw ⊃ keru ∩ ker v si et seulement si il existe
a, b ∈ L(E) tels que

w = a ◦ u+ b ◦ v.

(Reprenez les questions 2 et 3 pour u,w ∈ L(E,F ). Puis considérer (u, v) ∈ L(E,E × E) et

(w,w) ∈ L(E,E × E). Utilisez éventuellement des matrices.)

5. En déduire que l’ensemble des (a, b) ∈ L(E)2 tels que au = bv est un sous-espace
vectoriel de dimension

n(n+ dim(keru ∩ ker v)).

Exercice 17 : Soit E un espace vectoriel de dimension n < +∞ et u ∈ L(E). On
rappelle qu’un vecteur propre de u est un vecteur x ∈ E\{0} tel que u(x) ∈ Vect (x).

1. Si n = 2 et u a trois vecteurs propres différents, montrer que u est une homotétie.

2. Construire un endomorphisme d’un espace vectoriel de dimension 3 qui n’est pas une
homotétie, mais qui a 4 vecteurs propres distincts.

On dit qu’un sous-espace vectoriel F < E est stable par u si u(F ) ⊂ F .

3. On suppose que pour un certain 0 < k < n, tous les sous-espaces vectoriels de
dimension k sont invariants par u. Montrer que toutes les droites sont invariantes
par u, puis que u est une homotétie.
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Exercice 18 : Soit E un K-espace vectoriel de dimension n ∈ N ∪ {∞} et u ∈ L(E).

1. Montrer que ∀k, keruk ⊂ keruk+1.

2. Montrer que si keruk = keruk+1, alors ∀p ≥ k, kerup = keruk. On dit alors que la
suite des noyaux de u est stable à partir du rang k.

3. En déduire que si n < ∞, la suite des noyaux de u est toujours stable à partir du
rang n.

4. Si n = +∞, construire un enomorphisme u ∈ L(E) dont la suite des noyaux ne se
stabilise pas.

5. Pour tout n et k ≤ n (mais k < +∞), construire un endomorphisme u ∈ L(E) dont
la suite des noyaux se stabilise exactement au rang k.

Exercice 19 : Endomorphismes nilpotents. Soit E un K-espace vectoriel de dimen-
sion finie. Un endomorphisme u ∈ L(E) est nilpotent si il existe k tel que uk = 0. On
définit l’indice de nilpotence de u comme

nil(u) := {min k | uk = 0}.

1. Montrer que nil(u) ≤ n. (Indication : voir exercice 3).

2. On suppose que nil(u) = n. Soit x ∈ E tel que un−1(x) ̸= 0 (justifier son existence).
Montrer que la famille

(x, u(x), . . . , un−1(x))

est une base de E.

3. Plus généralement, montrer qu’il existe x ∈ E tel que

(x, u(x), . . . , uk−1(x)), k = nil(u)

est libre.

La suite de l’exercice est de difficulté (∗∗). On pose k = nil(u). On cherche une base de E
sur laquelle l’action de u est très simple.

4. Soit (y1, . . . , yp1) une base de Imuk−1 et x1, . . . , xp1 ∈ E tels que uk−1(xi) = yi.
Montrer que la famille

(x1, u(x1), . . . , u
k−1(x1), x2, u(x2), u

k−1(x2), . . . , xp1 , u(xp1), . . . , u
k−1(xp1))

est libre. Quelle est l’action de u sur cette famille ?

5. Montrer que (y1, . . . , yp1 , u
k−2(x1), . . . , u

k−2(xp1)) est une famille libre de Imuk−2.
On complète cette famille par des vecteurs yp1+1, . . . , yp2 en une base de Imuk−2.
Comme avant, on choisit (xp1+1, . . . , xp2) tels que uk−2(xi) = yi. Montrer que la
famille

(x1, . . . , u
k−1(x1), . . . , xp1 , . . . , u

k−1(xp1), xp1+1, . . . , u
k−2(xp1+1), . . . )

est une famille libre. Quelle est l’action de u sur cette famille. Lesquels de ces vecteurs
appartiennent à Imuk−3 ?

6. En raisonnant par récurrence en complétant les Imuj successivement, construire une
base de E sur laquelle l’action de E est très simple.
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