TD 2: Exemples de distributions

Distributions: notations générales

 Ω désigne un ouvert de \mathbb{R}^n , qui peut être \mathbb{R}^n .

• $\mathcal{D}(\Omega)$ désigne l'ensemble des fonctions \mathcal{C}^{∞} à support compact dans Ω , muni de la topologie (métrisable) définie par

$$f_n \xrightarrow{\mathcal{D}} f \iff \begin{cases} \exists K \in \Omega \text{ tel que } \operatorname{Supp}(f_n) \subset K \ \forall n, \\ \forall m \in \mathbb{N}, \|f_n^{(m)} - f^{(m)}\|_{\infty} \longrightarrow 0 \end{cases}$$
.

• $\mathcal{D}'(\Omega)$ est l'ensemble des formes linéaires φ sur $\mathcal{D}(\Omega)$ qui sont continues vis-à-vis de la topologie précédente. Ceci signifie que

$$(f_n \xrightarrow{\mathcal{D}} 0) \Longrightarrow (\varphi(f_n) \to 0).$$

On note indifféremment $\varphi(f) = \langle \varphi, f \rangle$.

• Pour $m \in \mathbb{N}$ et $f \in \mathcal{D}(\Omega)$, on définit

$$||f||_{m,\infty} := \sum_{|I| \le m} ||\frac{\partial^{|I|} f}{\partial x^I}||_{\infty},$$

où la somme porte sur tous les multi-indices $I:=(i_1,\ldots,i_n)$ de longueur $|I|:=i_1+\cdots+i_n$ inférieurs à m et $\partial x^I:=\partial x_1^{i_1}\ldots\partial x_n^{i_n}$.

• Toute fonction $g \in L^1_{loc}(\Omega)$ définit une distribution T(g), aussi notée g, définie par

$$\langle g, f \rangle := \int_{\Omega} f g dx.$$

• On dit qu'une distribution φ est dans $L^p(\Omega)$ si il existe $g \in L^p(\Omega)$ (qui est alors dans $L^1_{loc}(\Omega)$) telle que $\varphi(\cdot) = \langle g, \cdot \rangle$ On note simplement $\varphi = g$. On dit de même que φ est de classe \mathcal{C}^k si $\varphi = g$ avec $g \in \mathcal{C}^k(\Omega)$.

Exercice 1: Soit

$$\begin{array}{cccc} H & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & x & \longmapsto & \left\{ \begin{array}{l} 0 \text{ si } x \leq 0 \\ 1 \text{ si } x > 0 \end{array} \right. \end{array}$$

- 1. Montrer que $H \in L^1_{loc}(\mathbb{R})$ et expliciter la distribution associée.
- 2. Montrer que $H' = \delta_0$.

Exercice 2: Montrer que

$$\varphi(f) := \lim_{n \to +\infty} \left(\sum_{j=1}^n f\left(\frac{1}{j}\right) \right) - nf(0) - f'(0) \ln n$$

définit une distribution sur \mathbb{R} , dont vous déterminerez le support et l'ordre.

Exercice 3: Montrer que

$$\varphi : \mathcal{D}(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$f \longmapsto \sum_{n \in \mathbb{N}} f^{(n)}(n)$$

est une distribution d'ordre infini.

Exercice 4 : Valeur principale de $\frac{1}{x}$. On définit, pour $f \in \mathcal{D}(\mathbb{R})$:

$$\operatorname{VP}\left(\frac{1}{x}\right)(f) := \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{f(x)}{x} dx.$$

- 1. Montrer que la fonction $g(x) := \frac{f(x) f(-x)}{x}$ est dans $\mathcal{D}(\mathbb{R})$ et vérifie $||g||_{\infty} \le 2||f'||_{\infty}$.
- 2. Montrer que VP $\left(\frac{1}{x}\right) f = \int_0^{+\infty} g(x) dx$. En déduire que VP $\left(\frac{1}{x}\right)$ est une distribution d'ordre 1 sur \mathbb{R} .
- 3. Montrer que si $f \in \mathcal{D}(\mathbb{R})$ est paire, $\operatorname{VP}\left(\frac{1}{x}\right)(f) = 0$.
- 4. On fixe $f_0 \in \mathcal{D}(\mathbb{R})$ paire, avec $f_0(0) = 1$. Montrer que $\forall f \in \mathcal{D}(\mathbb{R})$, il existe $c \in \mathbb{R}$ et $g \in \mathcal{D}(\mathbb{R})$ telles que

$$f = cf_0 + xg.$$

En déduire que

$$\operatorname{VP}\left(\frac{1}{x}\right)(f) = \int_{\mathbb{R}} g(x)dx.$$

5. Montrer que si on écrit f = f(0) + xg, $g \in \mathcal{C}^{\infty}(\mathbb{R})$, g n'est pas intégrable mais la fonction $A \mapsto \int_{-A}^{A} g(x) dx$ est constante pour $A \gg 1$. En déduire que

$$\operatorname{VP}\left(\frac{1}{x}\right)f = \lim_{A \to +\infty} \int_{-A}^{A} g(x)dx.$$

Exercice 5 : Partie Finie de $\frac{1}{x^2}$.

1. Pour $f \in \mathcal{D}(\mathbb{R})$, montrer que

$$\int_{|x|>\varepsilon} \frac{f(x)}{x^2} = \frac{f(\varepsilon) + f(-\varepsilon)}{\varepsilon} + \int_{|x>\varepsilon|} \frac{f'(x)}{x} dx,$$

et que des deux termes de droite, le premier est non-borné et le second est borné (pour $\varepsilon \to 0$).

2. En déduire que

$$PF\left(\frac{1}{x^2}\right)(f) := \lim_{\varepsilon \to 0} \left(\int_{|x| > \varepsilon} \frac{f(x)}{x^2} dx - \frac{f(\varepsilon) + f(-\varepsilon)}{\varepsilon} \right)$$

définit une distribution sur \mathbb{R} . On l'appelle "la partie finie de $\frac{1}{x^2}$ ".

3. Montrer que VP $\left(\frac{1}{x}\right)' = -\text{PF}\left(\frac{1}{x^2}\right)$. En déduire que PF $\left(\frac{1}{x^2}\right)$ est d'ordre 2.

Exercice 6 : Formule des sauts. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction \mathcal{C}^1 par morceaux : il existe un ensemble dénombrable $A \subset \mathbb{R}$ sans point d'accumulation dans \mathbb{R} , tels que f est de classe \mathcal{C}^1 sur $\mathbb{R} \setminus A$ et les restrictions de f' aux intervalles de $\mathbb{R} \setminus A$ se prolongent continûment à leurs adhérences. On définit $\{f'\}$ la fonction définie sur $\mathbb{R} \setminus A$ par $\{f'\}(x) = f'(x)$ et qui vaut 0 sur A. Pour $a \in A$, on définit aussi $[f]_a := \lim_{a_+} f - \lim_{a_-} f$.

- 1. Montrer que $\lim_{a_{+}} f$ et $\lim_{a_{-}} f$ existent dans \mathbb{R} pour tout $a \in A$.
- 2. Montrer que $\{f'\}$ définit une distribution.
- 3. Montrer que la dérivée au sens des distributions de f vérifie :

$$T(f)' = \{f'\} + \sum_{a \in A} [f]_a \delta_a.$$

4. Exemple : calculer la dérivée de |x| au sens des distributions.

Exercice 7 : Théorème de Schwartz Montrer que $\forall \varphi \in \mathcal{D}'(\Omega), \frac{\partial^2 \varphi}{\partial x_i \partial x_j} = \frac{\partial^2 \varphi}{\partial x_j \partial x_i}$.

Exercice 8 : Soit $\rho : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ vérifiant les hypothèses suivantes :

- (i) $\forall x, \, \rho(x, \cdot) \in L^1_{loc}(\mathbb{R}).$
- (ii) p.s.t, $\rho(t,\cdot)$ est de classe \mathcal{C}^1 .
- (iii) $x \mapsto \rho(x,\cdot)$ est continue en topologie $L^1_{loc}(\mathbb{R})$. Ceci signifie plus précisément que pour tout R > 0, la même application, mais à valeurs dans $L^1([-R,R])$ est continue.

On définit $\varphi_x \in \mathcal{D}'(\mathbb{R})$ par

$$\varphi_x(f) := \int_{\mathbb{D}} \rho(t, x) f(x) dx.$$

- 1. Montrer que si $\rho: \mathbb{R}^2 \to \mathbb{R}$ est continue, elle vérifie automatiquement (i) et (iii).
- 2. A $f \in \mathcal{D}(\mathbb{R})$ fixée, vérifier que l'application $x \mapsto \varphi_x(f)$ est continue (sous l'hypothèse de continuité de ρ ou bien des hypothèses (i) et (iii)).
- 3. Calculer la dérivée de l'application $x \mapsto \varphi_x(f)$ au sens des distributions.
- 4. Si $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ est de classe \mathcal{C}^1 et vérifie $f(x,\cdot)$ a support compact pour tout x, calculer la dérivée au sens des distributions de $x \mapsto \varphi_x(f_x)$.

Exercice 9: Montrer qu'une distribution est dans $L^q(\Omega)$ si et seulement si elle s'étend continuement à $(L^p(\Omega), \|\cdot\|_{L^p})$. Autrement dit, si elle est la restriction à $\mathcal{D}(\Omega)$ d'un élément de $L^p(\Omega)^*$.

Exercice 10 : Les distributions de dérivées nulles sont constantes.

- 1. Montrer que $f \in \mathcal{D}(\mathbb{R}) = g'$ avec $g \in \mathcal{D}(\mathbb{R})$ si et seulement si $\int_{\mathbb{R}} f(x) dx = 0$.
- 2. En déduire qu'il existe une fonction $f_0 \in \mathcal{D}(\mathbb{R})$ telle que $\forall f \in \mathcal{D}(\mathbb{R})$,

$$f = cf_0 + g'$$
, $g \in \mathcal{D}(\mathbb{R})$.

3. En déduire que si $\varphi \in \mathcal{D}'(\mathbb{R})$ vérifie $\varphi' = 0$, alors il existe une constante $c \in \mathbb{R}$ telle que $\varphi = c$ (on dira plus simplement que φ est constante).

4. Soit à présent $f(x,y) \in \mathcal{D}(\mathbb{R}^2)$. Montrer qu'il existe des fonctions $g_1 \in \mathcal{D}(\mathbb{R}^2)$ et $c \in \mathcal{D}(\mathbb{R})$ telles que

$$f(x,y) = c(y)f_0(x) + \frac{\partial g_1}{\partial x}(x,y).$$

5. En déduire l'existence de $c \in \mathbb{R}$, $g_1, g_2 \in \mathcal{D}(\mathbb{R}^2)$ telles que

$$f(x,y) = cf_0(x)f_0(y) + \frac{\partial g_1}{\partial x}(x,y) + \frac{\partial g_2}{\partial y}(x,y).$$

- 6. Vérifier que $f_0(x)f_0(y) \in \mathcal{D}(\mathbb{R}^2)$ et prouver que si $\varphi \in \mathcal{D}'(\mathbb{R}^2)$ vérifie $\varphi' = 0$, alors φ est constante.
- 7. Traiter le cas $\mathcal{D}'(\mathbb{R}^n)$.
- 8. Montrer que si $\varphi \in \mathcal{D}'(\mathbb{R})$ vérifie $\varphi^{(m)} = 0$ alors φ est un polynôme de degré m-1.

Exercice 11: Une équation distributionnelle.

- 1. Soit $f \in \mathcal{D}(\mathbb{R})$ avec f(0) = 0. Montrer qu'il existe $g \in \mathcal{D}(\mathbb{R})$ telle que f = xg. Indication : pour la régularité, on pourra écrire $f(x) = \int_0^x f'(t)dt$ et effectuer un changement de variable pour obtenir une intégrale à paramètre.
- 2. En déduire que si $\varphi \in \mathcal{D}'(\mathbb{R})$ vérifie $x\varphi = 0$ alors il existe une constante $c \in \mathbb{R}$ telle que $\varphi = c\delta_0$.

Exercice 12: Distributions positives. Une distribution est dite positive si elle prend des valeurs positives sur toute fonction test positive.

1. Démontrez que toute distribution positive vérifie :

$$\forall K \in \mathbb{R}^n, \exists C_K \text{ tel que Supp} f \subset K \Longrightarrow |\varphi(f)| \leq C_K ||f||_{\infty}.$$

- 2. En déduire que φ s'étend continûment en une forme linéaire sur $\mathcal{C}_c^0(\mathbb{R}^n)$.
- 3. Montrer qu'on peut prendre $C_K := \inf \{ \varphi(g), g \in \mathcal{D}(\mathbb{R}^n), g_{|K} = 1 \}.$

On pourrait démontrer en étant tenace que φ est en fait une mesure de Radon : une mesure Borélienne qui prend des valeurs finies sur les compacts de \mathbb{R}^n .