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Abstract

The aim of this paper is to explain a link between symplectic iso-
topies of open objects such as balls and flexibility properties of sym-
plectic hypersurfaces. We get connectedness results for spaces of sym-
plectic ellipsoids or maximal packings of P2.

Introduction

In [3], Biran proved a decomposition theorem for rational Kähler manifolds
which has proved useful in many situations such as symplectic packings
[2, 19], Lagrangian embeddings [4] . . . This paper tries to add symplectic
isotopies to this list of applications. In polarized symplectic manifolds -
triples (M,ω,Σ) where ω ∈ H2(M,Z) and Σ is a symplectic hypersurface
Poincaré-dual to a (necessarily positive) multiple kω of the symplectic form
-, this decomposition result may be expressed as :

Theorem 1 (Biran). In a polarized closed symplectic manifold (M,ω,Σ),
there exists a zero-volume closed skeleton in M whose complement is a stan-
dard symplectic disc bundle supported by Σ.

In fact, polarizations of sufficiently high degree exist on all closed (i.e.
compact, without boundary) rational symplectic manifolds [6]. These man-
ifolds split into a standard symplectic part - an explicit disc bundle over Σ
- and a negligible skeleton, even isotropic in the Kähler case. Although no
kind of uniqueness can be expected (see [3] for a discussion on the skeleton
for instance), our next theorem explains how to construct many such de-
compositions, all of whose symplectic parts are isotopic. In order to state
it, let us mention that both M\Σ and the complement of the zero-section
L0 in the symplectic disc bundle SDB(Σ, k) are exact symplectic manifolds,
so they admit Liouville forms. In the statement below, λ0 is a distinguished
such form on SDB(Σ, k)\L0 (see section 1). Also, by a local embedding of
(X,M) into (Y,N) - where X ⊂M and Y ⊂ N - we always mean an embed-
ding of a neighbourhood of X in M into N which induces a diffeomorphism
from X to Y .

∗Partially supported by ANR projects ”Floer Power” ANR-08-BLAN-0291-03 and
”Symplexe” BLAN06-3-137237
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Theorem 2. Let ϕ be a local symplectic embedding of
(
SDB (Σ, k),L0

)

into (M,Σ). Any Liouville form β on M\Σ which differs from ϕ∗λ0 by
a smooth 1-form on M gives rise to a unique symplectic embedding Φ :
SDB(Σ, k) →֒ M such that Φ∗λ0 = β. The embeddings obtained in this way
form a contractible space.

The symplectic disc bundles naturally contain ellipsoids or ball packings
[19]. Theorem 2 can be seen as a flexibility statement for embeddings of
such objects, which are restricted to a jet condition on a hypersurface. In
full generality the flexibility of this condition seems hardly tractable, but
in dimension 4 hypersurfaces are symplectic curves and pseudo-holomorphic
techniques come to our rescue. We get for instance :

Theorem 3. The space of symplectic embeddings of one closed ball of fixed
radius or of an ellipsoid E(a+, a−) with a− < a+ < π in P2 is connected
(with the Fubini-Study form that gives area π to the curves of degree 1).

It reproves in particular McDuff’s connectedness results on the space of
symplectic balls of P2 [12], and of symplectic ellipsoids [15] for not too long
ellipsoids. Her approach via blow-up and inflation is more efficient : her
results are valid in more general manifolds than only P2, for more than one
ball alone [13, 14] and for any ellipsoid. The present technique may simply
be considered as another attempt to approach this still open question of
symplectic isotopy. In one respect at least it shows interest : compared to
the inflation process, the isotopies we produce are more explicit. As such,
we can follow them enough to achieve results for maximal objects. I proved
for instance in [19] that all smooth maximal packings of P2 by two balls -
i.e. smooth embeddings of two closed balls of maximal radii (r21 + r22 = 1)
whose images have disjoint interior - have basically the same intersections.
In fact, these maximal packings are unique up to symplectic isotopies.

Theorem 4. The space of smooth maximal symplectic packings of P2 by
two balls of fixed radii is connected.

We do not intend to get the most general results in this paper. For
instance theorem 4 can be easily adapted to five balls and theorem 3 to
other ellipsoids (e.g. (a+, a−) ≈ (2π, π2 )), other spaces such as S2 × S2 with
split symplectic forms (see [20] theorem 10) or to results in the directions
of Lalonde-Pinsonnault [11, 1]. Our aim is rather to present a method,
fundamentally based on the fact that since open domains can be made out
of symplectic hypersurfaces, these two classes of objects should share some
rigidity or flexibility properties. Each piece of information on the flexibility
of some class of symplectic hypersurfaces is liable to have an interpretation
in terms of packings.

The paper is organized as follows. We first review Biran’s description
of the standard disc bundles. We then carry out an alternative proof of
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theorem 1 following the lines suggested in [3]. Although this proof gives less
information on the skeleton, it is purely symplectic and it clearly shows how
much flexibility sould be expected for Biran decompositions. It leads to a
weak form of theorem 2, enough for all subsequent applications. We come
to symplectic isotopies in section 3, where we let aside the most delicate
point of the method - finding convenient symplectic curves. We deal with
this last point in section 4 with classical techniques of pseudo-holomorphic
curves [9, 18] as well as SFT-like techniques [8, 5] similar in spirit to those
used by Hind-Kerman [10]. We finally prove theorem 2 in appendix A.

Aknowledgements. I wish to thank C. Viterbo, F. Bourgeois and A. Oancea

for explaining me how Symplectic Field Theory can be useful in the kind of problems

we are led to here. This paper owes a lot to D. McDuff who pointed out (and

sometimes even fixed) inaccuracies in the first versions.

1 Symplectic disc bundles

1.1 Description.

Let (Σ, τ) be a closed symplectic manifold with τ ∈ H2(Σ,Z). Let π : L −→
Σ be a line bundle on Σ with first chern class c1(L) = [kτ ] endowed with a
hermitian metric g and a connection ∇ with curvature R∇ = 2iπkτ . Define
the transgression 1-form on the complement of the zero-section L0 by :

α(
∂

∂r
) = 0, α(

∂

∂θ
) =

1

2π
,

α|H∇ = 0,

where r is the radial coordinate, ∂/∂θ is the infinitesimal generator of the
S1-action eiθ· on L and H∇ is the horizontal distribution of the connection
∇. With this normalization, a simple computation shows that dα = −kπ∗τ .
Out of this 1-form, one can make an obviously closed 2-form on L :

ω0 := π∗τ + d(r2α) = (1 − kr2)π∗τ + dr2 ∧ α.

This 2-form degenerates on the circle bundle {r2 = 1/k}, and therefore
restricts to a symplectic form on the π/k-disc bundle on Σ (that is the set
{r2 < 1/k}). Here, π/k refers to area rather than radius. This disc bundle
together with the form ω0 will be called the standard symplectic disc bundle
of degree k and denoted by SDB(Σ, k, τ). Of course, this construction relies
on a choice of a hermitian metric on L, but it can be shown that any such
choice leads to the same symplectic manifold. This fact justifies the wording
”standard” and the omission of the metric in the notation SDB(Σ, k, τ). Let
us point out that these bundles appear naturally in symplectic geometry by
Weinstein’s theorem [21] :
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Theorem (Weinstein). Let (M,ω) be a closed rational symplectic manifold
and Σ a symplectic hypersurface of M which is Poincaré-dual to an integer
kω. Then a neighbourhood of Σ in M is symplectomorphic to a neighbour-
hood of L0 in SDB(Σ, k, ω|Σ).

When it is clear enough from the context that Σ is a hypersurface of a
symplectic manifold, we may write SDB(Σ, k) in place of SDB(Σ, k, ω|Σ).

1.2 Liouville forms.

The symplectic disc bundles above retract onto their zero-section, so the
symplectic form ω0 is exact on the complement of L0. Our present aim is
to describe some features of their primitives, called Liouville forms, and of
their associated vector fields. Throughout this paper, a Liouville form for
a symplectic structure ω is a 1-form λ such that dλ = −ω. Recall that the
Liouville vector field associated to λ is defined by ω(Xλ, ·) = λ and is a
contracting vector field for ω : LXλ

ω = −ω, so Φt
Xλ

∗
ω = e−tω. Let us now

fix a symplectic manifold (Σ, τ) and its symplectic disc bundle SDB(Σ, k, τ)
with form ω0 = (1 − kr2)π∗τ + dr2 ∧ α.

The form λ0 := (1−kr2)α/k is a Liouville form, whose associated vector

field is X0 :=
1 − kr2

2kr

∂

∂r
. This vector field is radial, forward complete (its

flow is defined for any positive time), but it explodes at L0, where it points
outwards. An easy computation shows that if p ∈ SDB(Σ, k, τ) is at distance
r(p) from L0, then Φt

X0
(p) goes to the boundary of the disc bundle when

the time goes forward to +∞ while it reaches L0 in finite negative time
τ(p) = − ln(1 − kr(p)2). Notice now that if ϑ is any closed 1-form on Σ,
the form λϑ := λ0 + π∗ϑ is also a Liouville form. Since π∗ϑ vanishes on the
fiber, the radial component of the Liouville vector field Xϑ associated to λϑ
is X0. Moreover, the invariance of π∗ϑ with respect to r ensures that X0

and Xϑ − X0 commute. Finally, since Σ is compact, Xϑ −X0 is complete
so the above completeness properties also hold for Xϑ. In fact - but we
will not need this precise statement in the sequel - Xϑ differs from X0 by
a horizontal vector field which projects by π to the symplectic vector field
τ -dual to ϑ. Let us summarize this discussion.

Proposition 1.1. Let (Σ, τ) be a closed symplectic manifold with τ ∈
H2(Σ,Z). Any closed 1-form ϑ on Σ gives rise to a Liouville form λϑ :=
λ0 + π∗ϑ on SDB(Σ, k)\L0 (λ0 := (1 − kr2)α/k) with corresponding vector
field Xϑ which is forward complete and whose flow satisfies the following :

Φt
Xϑ

(p) −→
{
∂SDB(Σ, k) = {r2 = 1/k}, when t −→ +∞
L0 = {r = 0}, when t −→ τ(p) := ln(1 − kr(p)2).

(1)

We finish this paragraph with the definition of a convex domain relative
to a Liouville form.
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Definition 1.2. We say that a smoothly bounded compact subset U ⊂
SDB(Σ, k) is λϑ-convex if Xϑ points outward along ∂U .

The relevance of this definition lies in that a convex domain U can be
recovered from U ∩ L0 only, by ”inflation” along Xϑ. Moreover this infla-
tion process only depends on Xϑ inside U . For this reason, we call L0 a
supporting hypersurface of U .

1.3 Symplectic disc bundles and ellipsoids.

The role that symplectic disc bundles play in the applications of this paper
comes from their link with ellipsoids. This link was noticed in [19], but we
recall it now for self-containedness. Call E(a1, a2, . . . , an) the closed ellipsoid
defined in the following way :

E(a1, . . . , an) =

{
(z1, . . . , zn) ∈ Cn | π |z1|

2

a1
+ · · · + π

|zn|2
an

≤ 1

}
.

With this definition, the ai are the areas of the ”complex axes” of the el-
lipsoid, and in symplectic terms they are Ekeland-Hofer capacities of the
ellipsoid. A symplectic embedding of an ellipsoid into a symplectic manifold
will be simply called a symplectic ellipsoid. Unless explicitly stated, the
ellipsoids are closed in all the paper. The following proposition shows how
they get into the picture (see [19] for a proof):

Proposition 1.3. The restriction of a symplectic disc bundle SDB(Σ, k) to
an open symplectic ellipsoid E(a1, . . . , an) of the base is an open symplectic

ellipsoid
◦
E(a1, . . . , an, 1/k).

In dimension 4, that is when Σ is of dimension 2, an ellipsoid of the base
is simply an embedded disc in Σ. The proof of proposition 1.3 goes by finding
an explicit mapping Ψ between the disc bundle and an ellipsoid. It is easy to
prove that smaller straight ellipsoids (or balls) are identified through Ψ to λ0-
convex sets. By a straight ellipsoid of E(a1, . . . , an) ⊂ Cn we mean the image
of the unit ball by a diagonal complex map (z1, . . . , zn) 7→ (λ1z1, . . . , λnzn).

Proposition 1.4. Let E be a symplectic ellipsoid in Σ and Ψ : E ′−̃→π−1(E)
be the natural parametrisation of the restriction of SDB(Σ, k, τ) to E by an
ellipsoid. Then the image of any straight ellipsoid of E ′ ⊂ Cn by Ψ is λ0-
convex as well as λϑ-convex provided that the 1-form ϑ vanishes on E (this
condition is not of cohomological nature).

2 Biran decomposition theorem.

2.1 Proof of theorem 1.

Let (M,ω) be a closed rational symplectic manifold with a symplectic hy-
persurface Σ which is Poincaré-dual to kω. By Weinstein’s neighbourhood
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theorem, there is an embedding ϕ between open neighbourhoods U ,V of
L0 ⊂ SDB(Σ, k) and Σ ⊂ M . Observe that being Poincaré-dual to kω im-
plies that M\Σ is an exact symplectic manifold because ω vanishes on any
2-cycle of M\Σ. The following lemma ensures that one of the λϑ defined in
the previous section is compatible with a Liouville form on M\Σ. Precisely,

Lemma 2.1. There exists a 1-form ϑ on Σ such that ϕ∗λϑ - defined on V\Σ
- extends to a Liouville form on M\Σ.

Let us first explain why theorem 1 is a consequence of this lemma. First,
restrict U to a λϑ-convex domain if necessary. Let β be an extension of ϕ∗λϑ
to a Liouville form of M\Σ and Xβ its dual vector field. Since it coincides
with ϕ∗Xϑ on V\Σ, Xβ points outward along ∂V so it is forward complete
by compactness of M , exactly as Xϑ is. Define therefore the map

Φ : SDB(Σ, k) −→ M

x 7−→
{
ϕ(x) if x ∈ U ,
Φτ
Xβ

◦ ϕ ◦ Φ−τ
Xϑ

(x) if Φ−τ
Xϑ

(x) ∈ U .

Since Φ transports Xϑ to Xβ , it commutes with the flows of these two vector
fields inside U , so there is in fact no need to specify which value of τ should
be considered above : thanks to the convexity of U , any choice gives the
same point for Φ(x). Notice moreover that the procedure above actually
defines Φ on SDB(Σ, k) because of property (1) : the flow of Xϑ expands
U and its image eventually covers the whole of SDB(Σ, k). The map Φ is
obviously a symplectic embedding. Finally, notice that M\Im Φ is endowed
with a backward complete (volume-contracting) Liouville vector field so its
volume must vanish by compactness of M . �

Let us finally turn back to the missing lemma.
Proof of lemma 2.1 : Pick first a Liouville form β on M\Σ. If we can
find a closed 1-form ϑ on Σ such that β − ϕ∗λϑ is exact on V\Σ, then
the lemma follows. Indeed, ϕ∗λϑ then coincides with β + dh where h is a
smooth function defined on V\Σ, and any extension of h to M\Σ provides
an extension of ϕ∗λϑ to a Liouville form on M\Σ.

In order to construct the form ϑ, consider a generating family {γ0, (γi)}
of the 1-dimensional homology of V\Σ where γ0 is ”the small loop around
Σ” parameterized by {ϕ(eiθ · p), θ ∈ [0, 2π]} and γi project by π ◦ ϕ−1 to
simple closed loops γ′i which span H1(Σ). Let us choose a 1-form ϑ on Σ
such that [ϑ] · γ′i =

∫
γi

(β − ϕ∗λ0). Then β − ϕ∗λϑ vanishes on each class
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[γi] ∈ H1(V\Σ) because

∫

γi

β − ϕ∗λϑ =

∫

γi

β −
∫

γi

ϕ∗λϑ

=

∫

γi

β −
∫

γi

ϕ∗(λ0 + π∗ϑ)

=

∫

γi

(
β − ϕ∗λ0

)
−

∫

γi

ϕ∗π
∗ϑ

=

∫

γi

(
β − ϕ∗λ0

)
−

∫

γ′i

ϑ = 0 by construction.

Observe now that γ0 is a torsion element in H1(V\Σ). Indeed, [γ0] represents
the class of the fiber in the S1-bundle P := ∂V over Σ. Since the Euler class
of this bundle is k[ω], the image of ∂∗ in the long exact sequence

. . . −→ H2(Σ)
∂∗−→ H1(S

1)
i∗−→ H1(P ) −→ . . . ,

is [kω]
(
H2(Σ)

)
6= {0}. Thus [γ0] ∈ H1(P ) = H1(V\Σ) has finite order as

claimed and β − ϕ∗λϑ[γ0] = 0. Having no period, this one form is exact in
V\Σ. �

2.2 Comments.

The proof prompts two remarks. First, we were only able to produce a map
which pulls back β to some λϑ but not necessarily to λ0, which seems in
contradiction with theorem 2. The reason for this restriction is however
purely technical and we get rid of it in the appendix. The second remark is
that this proof of theorem 1 already gives a partial flexibility.

Corollary 2.2. Let (M,ω,Σ) be a polarized symplectic manifold, ϕ a sym-
plectic embedding of SDB(Σ, k) into M and ϑ a 1-form on Σ such that ϕ∗λϑ
extends to a Liouville form on M . The space of symplectic embeddings of a
λϑ-convex domain U ⊂ SDB(Σ, k) into M which coincide with ϕ near L0 is
contractible.

Proof : It is enough to prove that the space of symplectic embeddings which
coincide with ϕ on a fixed neighbourhood of L0 is contractible. Then we
may as well assume that U contains all L0, simply extending all these maps
by ϕ on some neighbourhood of L0. Consider now an element ψ of

E := {ψ : U −→M |ψ∗ω = ω0, ψ = ϕ on a neighbourhood of L0}.

Since U is λϑ-convex, it retracts to L0 so the cohomological condition on ϑ
implies that ψ∗λϑ extends to a Liouville form β on M\Σ. Arguing as in the
proof of theorem 1, we get a symplectic embedding Ψβ : SDB(Σ, k) →֒ M
with Ψ∗

ββ = λϑ. Moreover, because of the λϑ-convexity of U , the restriction

7



of Ψβ to U is ψ, whatever extension β of ψ∗λϑ we have chosen. This means
that we have a surjective, obviously continuous map from E′ onto E, where

E′ := {β | dβ = −ω , β ≡ ϕ∗λϑ on a neighbourhood of L0}.

A right-inverse for this map is easily constructed by hand. Since its fibers
together with E′ are contractible as affine spaces, E also is contractible. �

3 Applications to isotopy problems in P2

The goal of this section is to exploit corollary 2.2 in some isotopy problems
in symplectic geometry. Let us first describe a recipe. Let (M,Σ) be a po-
larized symplectic manifold M with an embedding of SDB(Σ, k) into M as
constructed above. Let U be a λ0-convex domain of SDB(Σ, k), ϕ : U →֒M
be the induced embedding and ψ : U →֒ M be another symplectic embed-
ding. In order to isotop ψ to ϕ, proceed as follows :

• Find a closed symplectic hypersurface Σ′ ⊂ M symplectomorphic to Σ,
whose intersection with ψ(U) coincides with ψ(U ∩ L0). We say that Σ′ is
a supporting hypersurface of ψ(U).

• Isotop Σ′ to ϕ(L0).

Without further information on ψ, both previous steps need ”hard” tech-
niques, and for this reason the present receipe only works in dimension 4.

• Isotop ψ to ϕ on Σ ∩ U , and then even on a neighbourhood of Σ ∩ U in
U . This means finding local normal forms, which is often tractable in the
symplectic world.

• Use finally corollary 2.2 to isotop ψ to ϕ.

Roughly speaking, the above method reduces the isotopy problem for
certain open domains from a question on symplectic foliations to a question
on one single symplectic hypersurface. Indeed, when isotoping an open do-
main it is a priori necessary to move full coordinate charts. For instance,
Gromov’s isotopies between the compactly supported symplectic transfor-
mations of the bidisc are done through deformations of the images of the
grid {z2 = c}, {z1 = c}. McDuff’s proofs that the space of embeddings of
one ball in P2 is connected consists in straightening the foliation of ψ(B4)
by Hopf discs (the images by ψ of the intersections of B4 with complex
lines). By contrast, theorem 1 and its corollary 2.2 show that the data of a
single ”hard object” - one symplectic hypersurface - together with ”soft ob-
jects” - Liouville forms - provide symplectic coordinates which can already
be deformed rather freely.

In this section, we first focus on the soft part : local isotopies. We then
reprove Gromov’s result on the connectedness of the space of symplectic au-
tomorphisms of the ball which are the identity near the boundary. Although
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this result is well-known, we hope that its proof will illustrate clearly the
above receipe. We finally prove theorems 3 and 4, postponing however the
proof of the needed hard results to the next section.

3.1 Preliminaries : some local normal forms.

Local ellipsoids. The first proposition gives local isotopies between sym-
plectic embeddings of an ellipsoid Ea := E(1, a) which coincide on the Hopf
disc D := {z2 = 0}. A local embedding of (Ea,D) is simply an embedding
of a neighbourhood of D in Ea.

Proposition 3.1. Let ψ : (Ea,D) → C2 be a local symplectic embedding
with ψ|D = Id . Then there is a symplectic isotopy Φt which is the identity
on D and which isotops ψ to the identity (that is Φ1 ◦ ψ = Id ). Moreover,
the relative version holds : if ψ|∂Ea

= Id then one can impose Φt|∂Ea
≡ Id .

Proof : Since ψ|D = Id the map ψ writes

ψ(z1, z2) = (z1, A(z1)z2) + o(|z2|),

where A(z1) is a symplectic linear map. Consider a path of maps At : D →
Sp (4) such that A0 = A and A1 = Id . Impose also that At|∂D ≡ Id when
ψ|∂Ea

≡ Id , which is possible because π2(Sp (4)) = 0. Then there is a path
of diffeomorphisms ft : (Ea,D) → R4 such that

1. f0 = ψ, f1 = Id ,

2. ft(z1, z2) = (z1, At(z1)z2) + o(|z2|),

3. ft|∂Ea
≡ Id if ψ|∂Ea

≡ Id .

Since ft is symplectic on D (and ∂Ea in the relative situation), ft∗ω differs
from ω by a small exact 2-form nearD, which can even be chosen to vanish on
D (and ∂Ea). Then Moser’s method gives maps ht which are the identity on
D (and ∂Ea) such that Φt := ht ◦ft is a path of symplectic diffeomorphisms.
Moreover, h0 = h1 = Id because f0 and f1 are symplectic. �

The kissing of two spheres along a characteristic. The next propo-
sition gives a local model, which can be reached via isotopies, for a con-
figuration of two spheres which intersect exactly along one characteristic.
It will only be used in the proof of theorem 4. Before stating the re-
sult, let us describe one such configuration. Consider the two surfaces
S± := {|z1|2 = 1 ± |z2|2} ⊂ C2. Then S− is the 3-sphere of radius 1,
S+ ∩ S− = C := {(eiθ, 0)} ⊂ C2 and in fact S+ is also a symplectic sphere
locally near C. Consider indeed the complex valued function defined in a
neighbourhood of the unit circle by ρ(reiθ) :=

√
2 − r2e−iθ. It is an area-

preserving involution that preserves the foliation by circles and exchanges
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the interior and exterior of the unit disc. Then the map (ρ(z1), z2) is a
symplectomorphism - only defined locally in a neighbourhood of C - which
sends S− to S+. Let us denote by ϕ1 := Id and ϕ2 := (ρ(z1), z2) the local
parametrization of S− and S+ by S3 ⊂ C2.

Proposition 3.2. Let ψ1, ψ2 be two local symplectic embeddings of (S3, C)
into (C2, C) with the properties that ψ1|C = Id , ψ2|C(eiθ, 0) = (e−iθ, 0) and
ψ1(S

3) ∩ ψ2(S
3) = C. Then there exist symplectic isotopies Φt

1,Φ
t
2 with

supports in a neighbourhood of C such that Φ1
i ◦ ψi = ϕi near C and Φt

1 ◦
ψ1(S

3) ∩ Φt
2 ◦ ψ2(S

3) = C for all time.

Proof : Throughout this proof, we will denote by Bi := ψi(B ∩ U) and
∂Bi := ψi(S

3) where U is the neighbourhood of C on which the ψi are
defined. Consider the orthogonal projections (Dθ)θ∈[0,2π[ of the discs {z1 =

eiθ, |z2| < ε} to the sphere S3. It defines a local foliation D of S3 around
C by symplectic discs, which are tangent to the vertical lines {z1 = eiθ}.
Notice that this foliation is invariant by the diagonal S1-action on C2, whose
infinitesimal generator X is tangent to the characteristic foliation of S3.
Denote also by Di = (Dθ,i), D′

i = (D′
θ,i), Xi and X ′

i the images of D and X
by ψi and ϕi respectively.

Step 1 : Making all the foliations Di,D′
i tangent along C. Since all the discs

Dθ,i, D
′
θ,i are transverse to C, there exist isotopies of foliations (Ds

i )s∈[0,1] of
∂Bi whose discs (Ds

θ,i) verify





D0
θ,i = Dθ,i,

Ds
θ,i ⋔ C = {(eiθ, 0)} ∀s ∈ [0, 1],

D1
i is tangent to D′

i along C.

Define now an area preserving map Φs
i : D0,i → Ds

0,i and extend it to
a self-map of ∂Bi by requiring that Φs

i sends Dθ,i to Ds
θ,i and preserves

the characteristic foliation of ∂Bi. It is then easy to see that Φs
i extends

to a symplectomorphism between neighbourhoods of ∂Bi. This symplectic
isotopy preserves ∂Bi and precisely brings Di to a foliation of ∂Bi which is
tangent to D′

i. Henceforth, we assume that the four foliations D1,D2,D′
1,D′

2

are tangent along C.

Step 2: Making the local images coincide. Thanks to the first step, all the
discs are now tangent so there exists a local diffeomorphism f around C
which verifies the following :

1. f is tangent to the identity on C (that is f∗|C = Id ),

2. f : D0,i → D′
0,i is an area-preserving map,

3. f∗Xi = X ′
i (then f : Dθ,i → D′

θ,i is also area-preserving),

4. f∗ is symplectic on ∂Bi. This is a requirement on the normal derivative
of f which is compatible with condition (1),
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Now since f is tangent to the identity on C, f∗ω differs from ω only by a
small exact two form which vanishes on ∂Bi, provided that we restrict it
to a sufficiently small neighbourhood of C. Moser’s path method therefore
gives a ”correcting map” h which is the identity on ∂B1, ∂B2 and such that
h∗f∗ω = ω. The map Φ := h ◦ f is a symplectic map which transforms ∂Bi
to S±, so Φ ◦ ψi has the same image as ϕi.

In order to see that Φ can be obtained by a symplectic isotopy, we
use Moser’s method once again. Consider a path (ft)t∈[0,1] of (germs of)
diffeomorphisms near C between Id to Φ such that all ft are tangent to the
identity on C. Again, ft∗ω is close to ω near C, so we can apply Moser’s
method and get a path of correction maps ht such that ht◦ft is a symplectic
isotopy between Φ and the identity - recall that Id and Φ are symplectic
so h0 = h1 = Id . Notice also that since ht is a global isotopy, it obviously
preserves the feature ∂B1 ∩ ∂B2 = C.

Step 3 : Reparametrization. We are now in the situation where ψi(S
3) =

ϕi(S
3), ψi(Dθ) = ϕi(Dθ) and ψi∗X = ϕi∗X. Observe that the condition

ψi(S
3) = ϕi(S

3) together with the fact that these two maps coincide on C
impose that their derivatives only differ by rotations around C : ψ∗i(p) =

ϕ∗i(p) ◦ Aip, where Aip(z1, z2) = (z1, e
iθi

pz2). Hence rotating the balls allows
that ψ∗i(1, 0) = ϕ∗i(1, 0). Either being more cautious in the previous step,
or applying it again at this point of the proof, we can even achieve that
ψi|D0

= ϕi|D0
. Since Φt

X(D0) = Dt and ψi∗X = ϕi∗X we thus get ψi|Dt
=

ϕi|Dt
, so ψi|S3 = ϕi|S3 . Arguing exactly as for the proof of proposition 3.1,

we get symplectic isotopies from ψi to ϕi which are the identity on ∂Bi, so
they preserve the intersection property ∂B1 ∩ ∂B2 = C. �

3.2 Gromov’s theorem

We now prove Gromov’s theorem cited above. Figure 1 illustrates the proof.

Theorem (Gromov). The space of compactly supported symplectomorphisms
of B4(1) is connected.

Proof : Let ψ : B4(1)

x

be a symplectomorphism which is the identity near
∂B4(1). Gromov’s proof shows that the disc ψ(D) := ψ({z2 = 0}) is sym-
plectic isotopic to D via a symplectic isotopy with compact support, so we
can assume that ψ(D) = D. Moreover, a Hamiltonian isotopy with support
in D transforms ψ|D to the identity (this is an easy 2-dimensional prob-
lem). This isotopy obviously extends to a compactly supported symplectic
isotopy, achieving ψ|D = Id . By proposition 3.1, we can even assume that
ψ ≡ Id on a neighbourhood of D. Since the restriction of SDB(S2, 1) to
S2\{N} (N is the north pole) is symplectomorphic to B4(1), we can see ψ
as a transformation of SDB(S2, 1) with compact support which is the iden-
tity near L0 and the fiber over N . As in corollary 2.2, moving ψ∗λ0 to λ0

via a path of Liouville forms which fits with λ0 wherever ψ∗λ0 = λ0 gives a
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path of symplectomorphisms of B4(1) which are the identity on ∂B4(1) and
connect ψ to the identity. �

ψ∗λ0

ϕ∗X0
ψ∗X0

ψ(D)

(hard) (soft)

ψ(Sr)

Rectification of Deformation of

ψ(D)

Figure 1: Proof of Gromov’s theorem.

3.3 Isotopies of ellipsoids : proof of theorem 3.

We isotop a symplectic embedding ψ : E(a+, a−) →֒ P2 with a− ≤ a+ < π to
a model embedding which we describe now. Given a projective line L in P2,
there is an explicit embedding Φ of SDB(S2, 1) into P2, whose complement is
one point. The restriction of the symplectic disc bundle to the disc S2\{N}
is symplectomorphic to B4(1). Our reference embeddings ϕ is simply the
restriction of Φ ◦ s to the standard inclusion E(a+, a−) ⊂ B4(1), where
s is the coordinate exchange s(z1, z2) = (z2, z1) in B4(1). Notice that L
intersects Imϕ through the small axis ϕ({z1 = 0}) of the ellipsoid. Our first
task is to find a supporting line for ψ also, that is a symplectic line of P2

which intersects Imψ exactly through ψ({z1 = 0}).

Lemma 3.3. Every symplectic embedding ψ : E(a+, a−) →֒ P2 with a− ≤
a+ < π has a supporting surface of symplectic area π.

This lemma is the hardest point of the proof, and it is postponed to the
next section. Now since any two symplectic lines are isotopic, we can assume
that the supporting surface is L. Moreover, any two discs of the same area
in L are isotopic by an ambient Hamiltonian, so we can also assume that
ψ|{z1=0} = ϕ|{z1=0}. Proposition 3.1 actually shows that these embeddings
can even fit as germs around {z1 = 0}. By corollary 2.2, we thus get that ψ
is isotopic to ϕ. �

3.4 Isotopies of maximal symplectic packings.

We now explain theorem 4. Let us first recall the setting. A symplectic
packing of P2 by k balls of radii r1, . . . , rk is a symplectic embedding ϕ :
◦
B

4

(r1)⊔ · · · ⊔
◦
B

4

(rk) →֒ P2. Is is called smooth if each ϕi := ϕ
|
◦
B(ri)

extends

to a smooth embedding of the closed ball. It is called maximal if none of
the ϕi can be extended to a larger ball while still defining a packing (that
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is Imϕi ∩ Imϕj = ∅). Finally, we say that two packings ϕ, ψ are isotopic if
there exist paths of symplectomorphisms (Φt

i) such that

• Φ0
i = Id , Φ1

i ◦ ϕi = ψi

• the embeddings ϕti := Φt
i ◦ ϕi define a packing for each t ∈ [0, 1].

When the packing is not maximal and the closure of the balls are disjoint, it
is easy to see that this notion of isotopy coincides with the notion of ambiant
isotopy. However, when the closed balls are not disjoint, this notion allows
for more freedom : breaking intersections or reparametrizing only one of the
balls for instance. Symplectic packings were first introduced by Gromov,
who showed that a symplectic packing of P2 by two balls is subject to a
symplectic obstruction : r21 + r22 ≤ 1. In [16], it was proved that this is
the only obstruction, and Karshon constructed an example of smooth max-
imal 2-packings. Theorem 4 explains that all smooth maximal symplectic
packings are isotopic to this particular one. We will only address below the
problem for two balls of the same capacity π/2, but the generalization is
completely straightforward.

Since Karshon’s example is the packing to which all the others will be
isotoped, we describe it briefly now (the description is not Karshon’s one).
We already pointed out that the restriction of the bundle SDB(S2, 1) to a
disc of area π/2 is an ellipsoid E(π/2, π). Covering S2 with two such discs, we
get a packing of SDB(S2, 1) by two ellipsoids E(π/2, π), which contain balls
B1,B2 of capacity π/2. The embedding Φ of SDB(S2, 1) around the line
L already used in the previous section therefore gives a smooth maximal
symplectic packing when restricted to B1,B2. Note that the line L is a
supporting line of the packing (i.e. for both balls) and that the two balls
intersect along a characteristic circle C of their boundaries (we also write a
Hopf circle in the following). We denote by ϕ = {ϕ1, ϕ2} := {Φ|B1

,Φ|B2
}

this reference maximal packing and by Ci ⊂ ∂Bi the circle ϕ−1
i (C).

S2 L0

SDB(S2, 1)
ϕ1

C1

L0 L0

C2

B2B1

ϕ2
B2

C

B1

Figure 2: Karshon’s maximal packing.

Proof of theorem 4 : Let Ψ = {ψ1, ψ2} be a smooth maximal symplectic
packing of P2 by two balls of capacity π/2. By [19], we know that Ψ is iso-
topic to a packing whose balls intersect exactly along one Hopf circle of their
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boundaries. Taking this circle to C ⊂ L and performing yet another packing
isotopy, we can assume that Imψ1 ∩ Imψ2 = C, ψi(Ci) = C and even that
ψi|Ci

= ϕi|Ci
. By proposition 3.2, we can even assume that ψi = ϕi near C.

The two Hopf discs ψi(L0 ∩ Bi) then glue together to a smooth symplectic
curve of area π, which we can isotop to L. After this isotopy, we may well
have destroyed the coincidence between ϕi and ψi near Ci (although they
still can be assumed to coincide on Ci itself). But since the images of the
Hopf discs L0∩Bi by ϕi and ψi are the same, the local discs foliations near C
of the boundary spheres used in the proof of proposition 3.2 are tangent for
ϕi and ψi (because they are symplectic orthogonal to the Hopf disc bounded
by Ci). Therefore, we can make ϕi and ψi coincide near C by a C1-small
symplectic isotopy (because the first step of the proof of proposition 3.2 can
be skipped). Of course, the effect is to bend the discs ψi(L0 ∩ Bi) out of
L, but they remain C1-close. Summing up this discussion, we can assume
that ψi and ϕi coincide near C, and that the intersections L ∩ ψi(Bi) are
symplectic discs. These discs coincide with the images ψi(L0) of the zero
section L0 ⊂ SDB(S2, 1) on their boundary because ϕi = ψi near C. By
Gromov’s result, ψ−1

i (L ∩ ψi(Bi)) can be isotoped to L0 via a symplectic
isotopy which is the identity on the boundary of the ball. So we can safely
assume that ψi and ϕi coincide on L0. By the relative version of proposition
3.1, we can achieve that ψi = ϕi on a neighbourhood of L0. Then {ψ1, ψ2}
can be seen as an embedding Ψ : B1∪B2 ⊂ SDB(S2, 1) →֒ P2 which coincides
with Φ = {ϕ1, ϕ2} on a neighbourhood of L0. By corollary 2.2, Ψ and Φ are
symplectic isotopic. �

4 Supporting surfaces of embedded ellipsoids.

We now turn back to the proof of lemma 3.3.

4.1 The case of a ball.

The assertion of lemma 3.3 when a− = a+ = a is weaker than what is
established in [12], namely that all Hopf discs of a ball extend to supporting
lines. We explain however the proof briefly for the convenience of the reader.
It relies on the blow-up procedure introduced by McDuff (see [17]), which
we recall now. Let Ĉ2

1 := {(p, d) ∈ C2 × P1, p ∈ d} together with its
projections π1 on C2 and π2 on P1 (so that π1 : Ĉ2

1 → C2 is the classical
blow-up of C2 at the origin). Put E := π−1

1 ({0}), Lδ := π−1
1

(
B4(δ)

)
and

define the symplectic form ωλ := π∗1ωst + λ
ππ

∗
2ωFS on Ĉ2

1. Denote finally by

g : C2\B4(λ) → C2\{0} the map defined by g(z) :=
√

|z|2 − λ
π
z
|z| . Then,
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Proposition 4.1. The map Φ := π−1
1 ◦ g is a symplectomorphism between(

B4(λ+ δ)\B4(λ), ωst

)
and (L(δ)\L0, ωλ). Moreover,

i) Φ∗i is ωst-compatible,

ii) A disc D intersects E transversally at exactly one point ξ if and only
if Φ−1(D) is an annulus, one of whose boundary components coincides
with the circle Φ−1(ξ) ∈ ∂B4(λ).

The blow-up procedure can now be summed-up as follows. Given a
symplectic embedding ψ of a ball of capacity (slightly larger than) λ in P2,
one can use the map Φ to replace the image of ψ by a neighbourhood of L0

in Ĉ2
1. The resulting symplectic manifold is diffeomorphic to the standard

complex blow-up of P2, denoted by P̂2
1. Thus the embedding ψ defines

a symplectic form ωψ on P̂2
1. It is also possible to extend the standard

Kähler structure i defined in a neighbourhood of L0 to an ωψ-compatible

almost complex structure Jψ on P̂2
1. Notice that the exceptional divisor E

is automatically a Jψ-curve.

Proof of lemma 3.3 (a− = a+ = a): First blow up the ball ψ(B4(a)) and
consider the induced stuctures ωψ, Jψ on P̂2

1. In view of the positivity of
intersection between holomorphic curves and the point ii) above, it is enough
to establish the existence of a Jψ-holomorphic curve of P̂ 2

1 in the class L−E
(where L stands for the projective line and E for the exceptional divisor).
Indeed, such a curve has area π−a and intersects E precisely at one point ξ,
so its preimage by Φ is a symplectic disc in P2 with boundary ∂D = Φ−1(ξ).
Gluing the Hopf disc attached to Φ−1(ξ), we get a topological supporting
surface - it may not be smooth along Φ−1(ξ) - of area π. Such a topological
symplectic curve can easily be perturbed to a smooth supporting line for
ψ(B4(a)) ([19], lemma 5.2).

Let (ωt, Jt)t∈]0,1] be the symplectic and almost-complex structures on P̂2
1

given by the blown-up procedure when carried out for ψ
(
B4(ta)

)
. Denote

by Mt the moduli space of interest to us :

Mt := {u : P1 −→ P̂ 2
1 | du ◦ i = Jt ◦ du, [u] = L−E, p ∈ Imu},

where p is a fixed point of P̂2
1 not on the exceptional divisor, and where the

moduli-space has to be understood modulo reparametrization. Let also Mε
t

be the same moduli space but for a generic ε-perturbation Jεt of the path
Jt. Our task is to understand that M1 is not empty. By Alexander’s trick,
we know that if δ is small enough, ψ(B(δa)) is symplectically isotopic to
a standard ball in P2. We can thus assume that ψ and ϕ (the standard
embedding described in paragraph 3.3) coincide on B(δa), which implies
that Jδ is the standard complex structure on P̂ 2

1 . Thus Jδ is generic for this
problem and it is easy to see that Mδ consists of exactly one element (the
proper transform of a line passing through p and the center of the ball in
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P2). If M1 is empty, then the space {Mε
t , t ∈ [δ, 1]} cannot be compact, so

that a bubbling appears by Gromov’s compactness theorem [9]. Taking the
perturbation ε small enough, we even see that the bubbling has to appear at
some unperturbed almost-complex structure Jt0 , where t0 ∈]δ, 1]. It means
that there is a non trivial decomposition

L− E =
∑

i

Ai ,

where Ai = kiL+ liE are homology classes of P̂2
1 which are represented by

Jt0 -holomorphic spheres. Since holomorphic curves intersect transversally,
have positive symplectic area, and noting that E is always Jt0-holomorphic,
we easily see that the decomposition must be of the form

a0 = L− kE where k ≥ 2,
ai = kiE, where ki ≥ 0 and

∑
i≥1 ki = k − 1.

But we claim that the class A0 is not represented by a Jt0-holomorphic
curve. Indeed, such a curve would project to a symplectic curve of area π
in P2 which coincides with k ≥ 2 Hopf discs inside the ball ψ

(
B(t0a)

)
. This

symplectic line would therefore have self-intersections which is prohibited by
the adjunction inequality. This argument shows that M1 consists of exactly
one point. �

4.2 Symplectic Field Theory and supporting surfaces.

This paragraph is aimed at setting the framework for completing the proof
of lemma 3.3 via SFT-type arguments. Let us first explain the broad idea.
Lemma 3.3 asserts that one can find a supporting surface of our ellipsoids
in the class of a symplectic line (of area π). Following Gromov, we look
for this curve among the pseudo-holomorphic spheres for tame almost com-
plex structures. In fact, if we consider a sequence Jτ of almost complex
structures which ”stretches the neck” around the boundary of our ellipsoid,
the Jτ -holomorphic curves passing through the ellipsoid tend to intersect
its boundary along closed characteristics when τ goes to +∞. These curves
are therefore good candidates for providing the supporting curves we are
looking for. We now review the construction of Symplectic Field Theory
relevant to us and the results we need to prove lemma 3.3.

Let ψ : E(a+, a−) →֒ P2 be a symplectic embedding of an irrational
ellipsoid (that is a+, a− are independent over Q) and E its image. Then
V := ∂E is a hypersurface of contact type in P2, which has a standard
neighbourhood of the form (V×] − δ, δ[, d(etλ)) where λ is a contact form
on V (with associated plane field ξ). The Reeb vector field defined on V
by dλ(R, ·) = 0, λ(R) = 1 and extended by t-invariance to V×] − δ, δ[ is
easily seen to be Hamiltonian. One defines an ω-compatible almost complex
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structure on V×] − δ, δ[ by

{
J : ξ −→ ξ is ω-compatible,

J
∂

∂t
= R,

(∗)

and it can be extended to an ω-compatible almost complex structure J0 on
P2. Note that (∗) can be used to define an almost-complex structure J̃ on
V × R. Pulling back J̃ to V×] − δ, δ[ by a map of the form

Φ : V×] − δ, δ[ −→ V×] − τ, τ [
(x, t) 7−→ (x, f(t))

where f ′(t) = 1 near −δ and δ, we get an almost complex structure Jτ
which extends J0 and remains ω-compatible. The process of stretching the
neck consists in letting τ go to ∞ in this construction. From the complex
structure point of view, P2 then breaks in (at least, see proposition 4.2)
two pieces bounded by V (the ellipsoid and its complement in our context),
both equipped with the almost complex structure J∞ only defined on the
interior of each piece. What makes this process interesting is a compactness
result for sequences of Jτ -holomorphic curves due to Bourgeois-Eliashberg-
Hofer-Wysocki-Zehnder [5]. We sum it up briefly (and not in a strictly
rigorous way) in our context : V ⊂ P2 is the boundary of an irrational
ellipsoid and the curves are Jτ -holomorphic lines (that is homologous to a
projective line). Recall that since bubbling cannot appear for this special
class of curves, there exists exactly one Jτ -holomorphic line passing through
two fixed points for every τ < +∞. These curves are moreover smoothly
embedded spheres.

Proposition 4.2. Let ψ : E(a+, a−) →֒ P2 a symplectic embedding of an
irrational ellipsoid, E := Imψ, V := ∂E, γ± := ψ({z2/1 = 0}) ∩ ∂E and
Jτ the almost-complex structures defined above. Fix two points in P2 (at
least one lying inside E), and denote by Sτ the Jτ -holomorphic line passing
through these two points. Then :

i) Sτ ∩E converges on any compact set to a collection of J∞-holomorphic
punctured spheres, each of whose ends is asymptotic to some positive
multiple of γ+ and γ−.

ii) The same happens for Sτ ∩ cE, except that the ends are asymptotic to
negative multiples of γ+ or γ−.

iii) As a whole, in a sense made precise in [5], Sτ converges to a so-called
holomorphic building : the main layers are the ones described in i)
and ii) above. The intermediate layers are J̃-holomorphic punctured
spheres on V × R asymptotic to positive multiples of γ1 and γ2 near
V ×{+∞} and negative multiples near V ×{−∞}. All the layers glue
together to form a topological sphere.
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Figure 3: A holomorphic building.

The previous proposition describes how the spheres Sτ look like for
large τ . We need to reduce further the possible shapes of these curves.
The relevant ingredient is an index formula giving the virtual dimensions
of the moduli spaces of the involved curves. More specifically, denote by
ME(γ1, . . . , γn, k) the space of J∞-spheres with n punctures in E , asymptotic
to γi = liγ± (li > 0) at these punctures, which pass through k fixed points
in E (k = 1 or 2 in our proof), and which are somewhere injective. Simi-
larly, MP2\E((γi)i≤n, k) is the space of somewhere injective J∞-holomorphic
spheres with n punctures in P2\E asymptotic to γi = liγ± (ki < 0) in the
homology class of a projective line (relative to (γi)i≥n) :

ME
(
(γi), k

)
:=




u : S2\{(xi)} → E

∣∣∣∣∣∣∣∣

u is somewhere injective
du ◦ i = J∞ ◦ du
u(V(xi)\{xi}) ≈ γi,
y1, . . . , yk ∈ Imu





MP2\E
(
(γi), k,mL

)
:=





u : S2\{(xi)} → P2\E

∣∣∣∣∣∣∣∣∣∣

u is somewhere injective
du ◦ i = J∞ ◦ du
u(V(xi)\{xi}) ≈ γi,
y1, . . . , yk ∈ Imu
u ∈ m[L] rel. (γi)i}





.

We then have (see [8], proposition 1.7.1 for the dimension of the moduli
spaces and [7] for the regularity assertions) :

Proposition 4.3. Let µCZ(γi) be the Conley-Zehnder index of γi ⊂ ∂E ⊂
C2. Then :

i) VirtDimME
(
(γi), k

)
= −2 +

∑
(µCZ(γi) + 1) − 2k,

ii) VirtDimMP2\E
(
(γi), k,mL

)
= 2c1(mL)−2+

∑
(−µCZ(γi)+1)−2k =∑

(−µCZ(γi) + 1) + 6m− 2 − 2k,

iii) The moduli space ME
(
(γi), k

)
or MP2\E

(
(γi), k,mL

)
of negative vir-

tual dimension are empty for a generic choice of J0.
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4.3 Proof of lemma 3.3.

Let ψ : E(a+, a−) →֒ P2 be a symplectic embedding. Denote by E its image
and by γ+, γ− the closed characteristics of ∂E of ω-area a+, a− in E . Let
us fix two points p1 ∈ E , p2 ∈ cE , consider a stretching of the neck (Jτ )
defined as above, and let (Sτ ) be the path of Jτ -holomorphic lines in P2 (of
symplectic area π) passing through (p1, p2).

When τ tends to +∞, the spheres Sτ converge to a J∞-holomorphic
building S∞ (in the sense of proposition 4.2), whose main layers will be
denoted in the sequel S∞ ∩E and S∞ ∩ cE . We know that Sτ ∩ cE converges
to S∞ ∩ cE on all compact sets of cE .

Lemma 4.4. The surface S∞ ∩ cE is made of exactly one connected com-
ponent.

Proof : The number n of these components is obviously not zero since no
compact surface of E is symplectic. Moreover, each connected component of
S∞ ∩ cE contributes at least by π to the total area of Sτ for large enough τ
(i.e. Aω(Sτ ) ≥ nπ). Indeed since Sτ is close to S∞ in cE , it has n connected
components, each symplectic. These components thus have positive sym-
plectic areas on one hand, and are asymptotic to negative multiples −kiγi
of γ+, γ− on the other hand, so they have area at least π − kiai. Since the
complement of these components in Sτ belongs to a contractible set, the
total symplectic area of Sτ verifies :

Aω(Sτ ) ≥
n∑

i=1

(π − kiai) +

n∑

i=1

kiai = nπ. �

Call γi the asymptotes of S∞∩ cE . The curve S∞∩ cE belongs to the moduli
space MP2\E

(
(γi), 1

)
which must have non-negative virtual dimension by

proposition 4.3 iii). Thus,
∑

(−µCZ(γi) + 1) + 2 ≥ 0.

Since the Conley-Zehnder indices of the γi are all no less than 3 (and γ− is
the only orbit with index 3), we conclude that S∞∩cE is a disk asymptotic to
γ−. This implies that for τ large enough, a small Hamiltonian perturbation
of Sτ ∩ cE makes it a symplectic disk in P2\E asymptotic to γ−. Closing it
by the Hopf disc ψ({z1 = 0}), we thus get a piecewise smooth symplectic
curve whose intersection with E is exactly ψ({z1 = 0}). The smoothening
of this kind of singular symplectic surfaces is done in [19], lemma 5.2, and
it produces a smooth supporting symplectic line for E . �

4.4 Further supporting polarizations.

The proof of theorem 3 went by finding a supporting line of an ellipsoid
passing through its small axis (lemma 3.3). It is however so specific to the
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situation a+ < π that it would be almost dishonest to claim it is really
relevant. Commonly, the polarizations have high degree, so the ellipsoids
which live in the associated disc bundles are very thin and excentric. The
needed supporting surface must therefore intersect the ellipsoid we wish to
isotop along its big axis instead of the small one. The aim of this paragraph
is to show that although it is much harder this way round, finding these
supporting curves is not always hopeless. We focus on the following :

Theorem 5. The space of symplectic embeddings of ellipsoids E(a+, a−) in
P2 with a+ ∈]π, 2π[ and 4a− < a+ < 2π < 5a− is connected.

Since all symplectic conics are isotopic, the same reasoning as in para-
graph 3.3 shows that we only need to find a supporting conic for every
embedded ellipsoid E := ψ

(
E(a+, a−)

)
which intersects E along its big axis.

Lemma 4.5. Every symplectic embedding ψ : E(a+, a−) →֒ P2 with a+ ∈
]π, 2π[ and 2π

5 < a− < a+
4 admits a supporting conic, that is a symplectic

curve of area 2π whose intersection with Imψ is exactly ψ({z2 = 0}).

Proof : Under the hypothesis of lemma 4.5, the Conley-Zehnder indices are :

µCZ(γ−) = 3, µCZ(2γ−) = 5, µCZ(3γ−) = 7, µCZ(4γ−) = 9,
µCZ(γ+) = 11, µCZ(5γ−) = 13.

Consider a stretching of the neck (Jτ ) around ∂E . Fix five generic points
(p1, . . . , p5) inside E . Since bubbling of spheres appears in codimension 2, a
choice of a generic almost-complex structure J0 around p1 insures that for
each τ there is a Jτ -holomorphic sphere Sτ in the class of a conic passing
through these five points. This sphere is even unique by positivity of in-
tersection. When τ tends to infinity, Sτ converges in the sense of [5] to a
holomorphic building S∞. Call again S∞∩E and S∞∩ cE the main layers of
the building inside and outside E , respectively. Arguing as in lemma 4.4 we
see that S∞∩ cE has one or two connected components which are punctured
spheres. Since S∞ is a topological sphere, we conclude that

• either S∞∩ cE has two components and the components of S∞∩E are
disks and at most one annulus (the annulus required to connect the
two outside connected components may lie in an intermediate layer),

• or S∞ ∩ cE has one component and all the components of S∞ ∩ E are
disks.

Using a trick due to Hind-Kerman [10], we can get a sharp energy-related
restriction on S∞ ∩ E :

Lemma 4.6. The curve S∞ ∩ E is a disk asymptotic to γ+.
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Proof : Since a− < a+/5, the open ellispoid
◦
E(a+, a−) contains five disjoint

closed symplectic balls ϕi(B
4(a+/5 − ε)), i = 1, . . . , 5. Starting with an

almost complex structure J0 which coincides with ψ ◦ ϕi∗i on the images of
the ϕi, and p1, . . . , p5 at the centers of these balls, the area of any J∞-curve
passing through p1, . . . , p5 is no less than a+ − 5ε which is greater than 4a−
provided that ε is small enough. The asymptotes of S∞ ∩ E must therefore
contain at least ”one γ+” or ”five γ−”. Since a+ + a− > 5a− > 2π, the only
possibility is that S∞ ∩ E has exactly one puncture, asymptotic to γ+. �

Let us finally conclude the proof of lemma 4.5. Lemma 4.6 together with
the fact that a+ + a− > 2π shows that there can be no intermediate layer.
Thus S∞ ∩ cE is one disk asymptotic to −γ+, of area 2π − a+. Gluing the
Hopf disc ψ({z2 = 0}) to S∞ ∩ cE , we get again a singular symplectic curve,
the kind of singularities of which we know how to deal with by [19]. We
can smoothen this surface to a symplectic conic coinciding with ψ({z2 = 0})
inside E . �

A Proof of theorem 2.

Theorem 2 may be considered as yet another proof of theorem 1, construct-
ing however the symplectic part of Biran decompositions out of a data with
minimal assumptions : a polarization Σ and a Liouville form on M\Σ only
satisfying a jet condition. Although this proof is more technical and may
not allow for more applications than the proof of section 2, it is more satis-
factory in my opinion since it replaces a condition on the germ of a Liouville
form - most unnatural in such a flexible world as symplectic geometry - by
a much more conceivable 1-jet condition.

The actual content of theorem 2 is contained in the following lemma.

Lemma A.1. Let µ be a closed 1-form on SDB(Σ, k)\L0 which is bounded
near L0. Then there is a unique local symplectomorphism Ψ of (SDB(Σ, k),L0)
which pulls back λ := λ0 + µ to λ0.

Indeed, once this fact is established, the map Φ := ϕ ◦ Ψ is a local
symplectic embedding of (SDB(Σ, k),L0) into (M,Σ) with Φ∗β = λ0. The
proof of theorem 1 shows that Φ extends uniquely to a global embedding of
SDB(Σ, k) into M with the required property. The last point of the theorem
concerning the contractibility of this particular kind of embeddings is then
obvious since there is a one-to-one correspondence between them and the
space of the Liouville forms which are 2-tangent to ϕ∗λ - an affine space.

Let us therefore turn back to lemma A.1. Before getting to the core of
the proof, let us fix the notation and give the idea. On each fiber of a the
symplectic disc bundle SDB(Σ, k) there are polar coordinates (r, θ). Unlike
the function r, the angular coordinates on the fibers do not fit together to a
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well-defined global function on of SDB(Σ, k)\L0 (because of non-vanishing
Chern class). However, since nothing in the sequel is affected by this torsion,
and in order to avoid irrelevant technicalities, we will suppose that we have
a system of coordinates (r, θ, z) on SDB(Σ, k)\L0, where z is a coordinate
on Σ. These polar coordinates naturally extend to coordinates (r, θ, z) ∈
[0, 1[×[0, 2π[×Σ on the blow-up of L0, which we denote by SDB∗(Σ, k). In
these coordinates, the flow of the Liouville vector field X0 associated to λ0

is

Φ0(t, θ, z) := Φt
X0

(0, θ, z) = (

√
1 − e−t

k
, θ, z).

It is therefore a diffeomorphism of R∗
+ × [0, 2π[×Σ to SDB(Σ, k)\L0 which

extends (only continuously) to a homeomorphism between R+ × [0, 2π[×Σ
and SDB∗(Σ, k). Since the vector field X dual to λ differs from X0 by a
bounded vector field, it is asymptotic to X0 on L0 (recall that X0 is of
order r−1 near L0). Although it is not obvious at once, the map ΦX defined
by ΦX(t, θ, z) := Φt

X(0, θ, z) also extends to a homeomorphism between
R+×[0, 2π[×Σ and SDB∗(Σ, k) which is a diffeomorphism on the complement
of L0. The diffeomorphism Ψ := ΦX ◦Φ−1

0 transports λ0 to λ. This map Ψ
also proceeds from the conjugacy procedure used in the proof of theorem 1,
but in a more delicate context : if τ(p) := − ln(1− kr2) denotes the time at
which the trajectory of p = (r, θ, z) along −X0 hits L0, Ψ is given by :

Ψ : SDB∗(Σ, k) −→ SDB∗(Σ, k)

p = (r, θ, z) 7−→ Φ
τ(p)
X (θ, z) = Φ

− ln(1−kr2)
X (θ, z).

Proof of lemma A.1 : Let us first accept the existence and smoothness
of the maps ΦX and Ψ. The derivative of Ψ in the (θ, z) directions is
clearly the identity on L0. Moreover, since near L0, the leading term of
X is X0 = 1−kr2

2kr
∂
∂r ∼ 1

2kr
∂
∂r near L0, the radial derivative of Ψ is also

radial, and the function f(t) := r(Φt
X(θ, z)) satisfies f ′(t) ∼ [2kf(t)]−1 so

f(t) ∼
√

t
k . Therefore, r(Ψ(r, θ, z)) ∼

√
− ln(1 − kr2)/k ∼ r so the radial

derivative of Ψ is also 1 and Ψ is tangent to the identity on L0. That Ψ is
symplectic is now easy to check. Indeed, Ψ verifies the functional identity

Ψ = Φ
τ(p)−ε
X ◦ Ψ ◦ Φ

−τ(p)+ε
X0

for all ε, so

Ψ∗ωp = Φ
−τ(p)+ε ∗
X0

Ψ∗Φτ(p)−ε ∗
X ωp

= Φ
−τ(p)+ε ∗
X0

Ψ∗(e−τ(p)+εω
Φ

τ(p)−ε

X
(p)

)
, where r(Φ

τ(p)−ε
X (p)) −→

ε→0
0

= e−τ(p)+εΦ−τ(p)+ε ∗
X0

[ω
Ψ◦Φτ(p)−ε

X
(p)

+O(ε)] = ωΨ(p) +O(ε).

Let us turn to the existence and regularity of the involved maps ΦX and
Ψ. In order to investigate the flow of the singular vector field X, we compare
it with the flow of the regular vector field rX. Since these vector fields are
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colinear, their flows are related by a time rescaling : there exists a function
τ(t, θ, z) such that

Φt
X(θ, z) = Φ

τ(t,θ,z)
rX (θ, z).

Differentiating both sides, we get

∂τ

∂t
(t, θ, z) r

(
Φ
τ(t,θ,z)
rX (θ, z)

)
= 1

or equivalently ∫ τ(t,θ,z)

0
r
(
Φu
rX(θ, z)

)
du = t.

Lemma A.2. There exists a C1-smooth function f(x, θ, z) on R+×[0, 2π[×Σ
such that τ(t, θ, z) = f(

√
t, θ, z). Equivalently,

∫ τ

0
r
(
Φu
rX(θ, z)

)
du = t⇐⇒ τ = f(

√
t, θ, z).

We conclude from this lemma that ΦX extends continuously to R+ ×
SDB∗(Σ, k) by the formula Φt

X(θ, z) = Φ
τ(t,θ,z)
rX (θ, z) = Φ

f(
√
t,θ,z)

rX . Moreover,
the map Ψ is given by

Ψ(r, θ, z) := Φ
− ln(1−r2)
X (θ, z) = Φ

f(
√

− ln(1−r2),θ,z)

rX (θ, z),

so is C1-smooth as a composition of smooth maps (because
√

− ln(1 − r2)
is indeed C1-smooth on R+). �

Proof of lemma A.2: The vector field rX = 1−kr2
2k

∂
∂r + rV is of class C1

on SDB∗(Σ, k) and radial on L0. Its flow is therefore defined globally on
SDB∗(Σ, k), and r

(
Φu
rX(θ, z)

)
: R+×[0, 2π[×Σ −→ [0, 1[ is C2-smooth. More-

over, since rX ∼ 1
2k

∂
∂r on L0, we have r

(
Φu
rX(θ, z)

)
= u

2k+uh1(u, θ, z), where
h1(u, θ, z) is a C1-smooth function which vanishes at u = 0. Now,

∫ τ

0
r
(
Φu
rX(θ, z)

)
du =

∫ τ

0

u

2k
+ uh1(u, θ, z) du

=
τ2

4k
+ τ2

∫ 1

0
vh1(τ v, θ, z)dv

=
τ2

4k

(
1 + h2(τ, θ, z)

)
where

{
h2 is C1 − smooth,
h2(0, θ, z) ≡ 0

=

[
τ

2
√
k
(1 + h2(τ, θ, z))

1
2

]2

= [τh3(τ, θ, z)]
2 ,

where h3 is a C1-smooth function which does not vanish at τ = 0. Finally,
we get that ∫ τ

0
r
(
Φu
rX(θ, z)

)
du = G(τ, θ, z)2,
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where G is a C1-smooth function with non-vanishing derivative in the direc-
tion of τ at τ = 0. The lemma follows from the implicit function theorem. �

Again this proof has a corollary in terms of embeddings.

Corollary A.3. Let (M,ω,Σ) be a polarized symplectic manifold, ϕ an
embedding of SDB(Σ, k) into M and λa a Liouville form on SDB(Σ, k) such
that ϕ∗λa extends to a Liouville form on M\Σ. Then the space of symplectic
embeddings of a λa-convex domain of SDB(Σ, k) whose 1-jets coincide with
the 1-jet of ϕ on L0 is contractible.
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