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LIOUVILLE POLARIZATION AND THE RIGIDITY OF THEIR

LAGRANGIAN SKELETA IN DIMENSION 4

E. OPSHTEIN AND F. SCHLENK

ABSTRACT. In [3], Biran introduced polarizations of closed symplec-

tic manifolds and showed that their Lagrangian skeleta exhibit remark-

able rigidity properties. He in particular found that their complements

contain only small balls. In this paper, we introduce so-called Liou-

ville polarizations of certain open 4-dimensional symplectic manifolds.

This leads to several symplectic embedding results, that in turn lead to

new Lagrangian non-removable intersections and a novel phenomenon

of Legendrian barriers.

We show for instance that given any connected symplectic 4-manifold

(M,ω) and a 4-ball of smaller volume, their exists an explicit finite union

of Lagrangian discs in the 4-ball such that their complement symplecti-

cally embeds into (M,ω), extending a result by Sackel-Song-Varolgunes-

Zhu and Brendel.
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1. INTRODUCTION AND MAIN RESULTS

A polarization of a closed symplectic manifold (M,ω) is a decomposi-

tion of the symplectic class [ω] along positive real multiples of the Poincaré-

dual classes of codimension 2 symplectic submanifolds. Closed symplectic

manifolds always admit polarizations, and these have proven useful to study

the flexible side of symplectic embedding problems [6, 25]. In this work,

we introduce polarizations of open symplectic manifolds and show that this

concept offers new opportunities, at least in dimension 4. Referring to § 2.3

for the definition, we focus in this introduction on the applications.

1.1. Symplectic embeddings. As usual, D(a), B4(a), C4(a), and Z4(a)
denote the open round disc of area a, the open 4-ball of capacity πr2 = a,

the open “cube” D(a)×D(a), and the open cylinder D(a)× C ⊂ C× C,

all endowed with the standard symplectic form ωst =
∑2

j=1 dxj∧dyj on R4

with primitive αst = 1
2

∑2
j=1 xjdyj − yjdxj .

A cornerstone of modern symplectic geometry is Gromov’s non-squeezing

theorem from [17], stating in dimension four thatB4(a) symplectically em-

beds into Z4(1) only for a ≤ 1. In [29], Sackel, Song, Varolgunes, and Zhu

investigated a refinement of this result, asking how big a set (in the sense of

the Hausdorff dimension, for instance) one has to remove from B4(a) such

that the complement symplectically embeds into Z4(1). They first proved

that it does not suffice to remove a set of lower Minkowski dimension < 2,

and then showed optimality of this result by proving that for a ≤ 2 it suf-

fices to remove a Lagrangian coordinate disc from B4(a). Later, Brendel

in the appendix to [29] showed that for a < 3 it suffices to remove three

Lagrangian pinwheels (certain simple Lagrangian CW-complexes) and a

symplectic torus. In their Question 3, these authors then asked:

Question 1.1. What is the largest a such that the complement of a 2-dimen-

sional subset of B4(a) symplectically embeds into Z4(1)?

We denote by Γ1

k
the union of the k half-lines emanating from the origin

in C and cutting the plane into isometric sectors, as partly shown in (i), (ii),

and (iii) of Figure 1.1 on page 5 for k = 2, 3, 4, and write

∆k := Γ1

k
× Γ1

k
⊂ C

2.
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Then ∆k is the orbit of the Lagrangian quadrant R2
≥0 ⊂ C2 under the sub-

group G of U(2) generated by (e2πi/k, 1) and (1, e2πi/k). When k is even,

then ∆k is also the G-orbit of the standard Lagrangian plane R2 ⊂ C2.

A symplectic embedding ϕ : (M, dα) → (M ′, dα′) between exact sym-

plectic manifolds is (α, α′)-exact if ϕ∗α′ = α+ df for a smooth function f
on M . Since B4(1) ⊂ C4(1), our first symplectic embedding result give a

positive answer to Question 1.1 for every a.

Theorem 1. There exists an (αst, αst)-exact symplectic embedding

C4(1)\∆k → Z4
(
2
k

)
.

Remarks 1.2. (i) There exists a symplectic embedding of D( 1
k
) × D( 1

k
)

into C4(1) \∆k, so C4(1) \∆k does not symplectically embed into Z4(A)
for A < 1

k
by the nonsqueezing theorem. Thus Theorem 1 is sharp up to a

possible factor of 2. We do not know the exact size of the thinnest cylinder

into which C4(1)\∆k or B4(1)\∆k symplectically embed, except for the

optimal embedding B4(1) \ ∆2 → Z4(1
2
) from [29]. For a different such

embedding see Remark 4.7.

(ii) A different positive answer to Question 1.1 was independently given

by Haim-Kislev, Hind, and Ostrover in [18], and it is interesting to compare

the two constructions, see § 1.5.

Our construction also applies to unbounded domains. For instance, con-

sider the union of Lagrangian planes Γ × Γ in R4, where Γ ⊂ R2 is the

square grid

Γ =
⋃

(n,m)∈Z2

{n} × R ∪ R× {m}.

Theorem 2. There exists an (αst, αst)-exact symplectic embedding

R
4 \ (Γ× Γ) → Z4(1).

We can construct similar embeddings when the source or the target have

topology. If we take the 4-ball as domain, we can fill “anything” after re-

moving sufficiently many Lagrangian planes:

Theorem 3. Let (M,ω) be a connected symplectic 4-manifold of finite vol-

ume. Let B4(a) be the ball of the same volume. Then for every ε > 0 there

exist an even number k ∈ N such thatB4(a−ε)\∆k symplectically embeds

into (M,ω).

In fact a much more general statement holds. Any affine part of a closed

symplectic 4-manifold (defined as the complement of a polarizing divisor,

see Definition 2.2) verifies the same kind of flexibility: After removing a

suitable Lagrangian CW-complex, it can be embedded into any other affine
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part of a closed symplectic 4-manifold of larger volume. We shall give

the proof of this result in a separate paper, [27], because in addition to the

embedding method developped here the proof relies on a relative version

of Giroux’s result in [16] and requires specific techniques. In contrast to

the results of this paper, the removed CW-complex cannot be explicitly de-

scribed, however.

1.2. Rigidity properties of Lagrangian skeleta. Following Biran [2], we

notice that if the complement of a Lagrangian CW-complex ∆ in a do-

main U symplectically embeds into a cylinder, then any domain V ⊂ U
that does not symplectically embed into that cylinder must intersect ∆.

The results of the previous paragraph therefore have implications on non-

removable intersections of ∆ with various subsets, and even with Lagrangian

submanifolds. We shall remove Lagrangian CW-complexes more general

than the ∆k, namely products of arbitrary connected graphs.

Definition 1.3. A grid Γ in D(A) is the part in D(A) of a connected graph

Γ ∪ ∂D(A) in D(A) that has no 1-valent vertex, contains the boundary

of D(A), and has smooth edges.

Note that the complement of a grid consists of topological discs. Fig-

ure 1.1 shows examples of grids. Note that for two grids Γ and Γ′, the

Lagrangian CW-complex Γ×Γ′ is smooth if and only if both Γ and Γ′ have

no vertex, as in (i), (iv), and (vii).

Cieliebak and Mohnke in [9] defined for every closed Lagrangian sub-

manifold L ⊂ R4 its minimal symplectic area by

(1.1) Amin(L) := inf

{∫

σ

ωst | [σ] ∈ π2(R
4, L),

∫

σ

ωst > 0

}
∈ [0,∞].

Theorem 4. Let Γ≤a ⊂ D(A) and Γ≤b ⊂ D(B) be any two grids whose

complements are a union of topological discs of area ≤ a and ≤ b, respec-

tively. Then a closed Lagrangian submanifold L of D(A)×D(B) with

Amin(L) ≥ a+ b

cannot be mapped to
(
D(A) × D(B)

)
\
(
Γ≤a × Γ≤b

)
by a Hamiltonian

diffeomorphism of R4.

Example. For every Markov triple m there exists a monotone Lagrangian

torus L̂(m) in the complex projective plane endowed with the Fubini–Study

form integrating to 3 over complex lines. Each such torus gives rise to a La-

grangian torus L(m) ⊂ B4(3), and L(m) is Hamiltonian isotopic to L(m′)
in B4(3) only if m = m

′, see [31]. For these Lagrangians, Amin(L(m)) =
1. If φH is a Hamiltonian diffeomorphism of R4 such that φH(L(m)) ⊂
B4(A) \∆k, then A ≥ k

2
. ⋄
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your turn

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

FIGURE 1.1. Examples of grids.

1.3. Legendrian barriers. Lagrangian CW-complexes ∆ with symplecti-

cally small complement were called Lagrangian barriers in [3] (cf. § 1.5).

A further consequence of the phenomenon of Lagrangian barriers, that ap-

parently went unnoticed, is a similar Legendrian barrier phenomenon in

contact dynamics. A grid is radial if it consists of straight rays emanating

from the origin.

Theorem 5. Let Γ≤δ1 and Γ≤δ2 be two radial grids that divide D(1) into

sectors of area ≤ δ1 and area ≤ δ2, respectively. Let U ⊂ C4(1) be a star-

shaped domain with smooth boundary S, endowed with the usual contact

form λS = αst|S , and consider the connected Legendrian graph

Λδ =
(
Γ≤δ1× Γ≤δ2

)
∩ S.
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Then any Legendrian knot Λ in S has a Reeb chord from Λ to Λ ∪ Λδ of

length ≤ δ1 + δ2 for the contact form λS .

Remarks 1.4. (i) While the proof of Theorem 5 relies on tools from hard

symplectic geometry, the case of the round sphere can be shown by elemen-

tary geometric arguments, see Section 6.

(ii) The smooth arcs of Λδ are indeed Legendrian curves on S, because

ιr∂rωst = αst and ∂r is tangent to Γ≤δ1 × Γ≤δ2 . The theorem says that for

any Legendrian knot Λ, every embedded Reeb cylinder of length ≥ δ1 + δ2
over Λ must intersect Λδ, hence the name Legendrian barrier for Λδ. It

follows in particular that for a > 2
k

there exists no exact contact embedding
(
D(a)× R/Z, αst + dt

)
→֒

(
S\∆k, λS

)
.

It is then natural to ask whether there is a purely contact topological state-

ment of this kind. For instance, using the Reeb flows one constructs exact

contact embeddings
(
D(a)× R/Z, αst + dt

)
→֒

(
S3(1), λS

)

for all a ≤ 1. Is it true that for a ∈ ( 2
k
, 1] the image of these embeddings

cannot be displaced from ∆k ∩ S3(1) by a (not necessarily exact) contact

isotopy?

(iii) In fact, the proof will show that there exist both forwards and back-

wards Reeb chord from Λ to Λ ∪ Λδ of length ≤ δ1 + δ2.

(iv) (Improved return time) Theorem 5 states an alternative: There must

be short Reeb chords from Λ to Λ or Λδ. This is a relative version of the

solution of the Arnold chord conjecture by Cieliebak–Mohnke in [22, 9].

They proved that for Λ ⊂ S = ∂U as in the theorem, there must be a Reeb

chord from Λ to Λ of length at most

min
{
e(U), 1

2

}

where e(U) denotes the displacement energy ofU . Theorem 5 improves this

bound on the return time for all those Λ that lie in the complement of the

Reeb cylinder of Λδ of length δ1 + δ2, whenever δ1 + δ2 < min
{
e(U), 1

2

}
.

1.4. A general embedding result. The upper bounds on the cylindrical

capacity of the complement of our Lagrangian CW-complexes all rely on a

single embedding result. To state it, we need to introduce the subclass of

regular grids.

Definition. A grid Γ on D(A) (as defined in 1.3) is regular if every vertex

of Γ ∪ ∂D(A) has a Darboux chart in which Γ consists of radial rays that

cut the disc into equal sectors. When the vertex belongs to the boundary,

the Darboux chart must be understood with imageD(ε)∩{im z ≥ 0} ⊂ H.
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In Figure 1.1, all grids are regular except for (iv) and (v) – and possi-

bly (ix).

Theorem 6. Let Γ≤a ⊂ D(A) and Γ≤b ⊂ D(B) be any two regular grids

whose complements are a union of topological discs of area ≤ a and ≤ b,
respectively. Then there exists an (αst, αst)-exact symplectic embedding

(
D(A)×D(B)

)
\
(
Γ≤a× Γ≤b

)
→֒ Z4(a+ b).

Theorem 1 is a special case of this theorem, and Theorem 2 is a general-

ization to a non-compact setting. The exactness in this statement is essential

to derive Theorems 4 and 5 on Lagrangian rigidity and Legendrian barriers.

1.5. Related results and references.

Biran’s Lagrangian barriers. As we have already alluded to, the present

paper is in many ways a sequel of Biran’s work [3], that is useful to have

in mind while reading our paper. We therefore briefly recall it, integrat-

ing Giroux’s results from [15, 16] that allow to generalize Biran’s results

from the Kähler to the symplectic setting. Let (M,ω) be a closed symplec-

tic manifold with integral symplectic class (meaning that [ω] ∈ H2(M,Z)).
For every sufficiently large k, Donaldson [10] produced a symplectic hyper-

surface Σ Poincaré-dual to k[ω], called a polarization of degree k of (M,ω).
The complementM \Σ was proven to be Weinstein by Giroux [16]. Hence

there exists an isotropic CW-complex (called the skeleton) ∆ ⊂ M\Σ to

which M\Σ retracts. Furthermore, any compact subset of M\∆ embeds

into a ruled symplectic manifold, namely a symplectic sphere bundle over Σ
whose fibers have area 1

k
, see [2, 3]. A fundamental example to have in mind

along this discussion is the following:

Example 1.5. ([3, § 3.1.3]) In the complex projective space CPn with

Fubini–Study form integrating to 1 over complex lines, the hypersurface

(1.2) Σ2k =

{
n∑

j=0

z2kj = 0

}

is a symplectic polarization of degree 2k, and one can arrange the skeleton

of CPn \Σ2k to be the union ∆2k(CP
n) of kn equally distributed images

of RPn by projectivized unitary maps. The complement of 2k fibers of

the symplectic disc bundle over Σ2k is symplectomorphic to B2n(1) \∆n
2k,

where

∆n
2k := (Γ2k)

n

is the union of kn unitary images of Rn. For n = 2 this is our set ∆2
2k = ∆2k.

Ruled symplectic manifolds are known to have many symplectic invari-

ants bounded by the area of their sphere fibres, which allowed Biran to



8 E. OPSHTEIN AND F. SCHLENK

get interesting non-removable intersections with the skeleton. For instance,

for a polarization of degree k with skeleton ∆, every symplectic ball of

capacity ≥ 1
k

in M must intersect ∆. He therefore called these skeleta

Lagrangian barriers. In particular, such balls cannot be displaced from ∆
by a Hamiltonian isotopy. Combined with the work [9] by Cieliebak and

Mohnke, Biran’s decomposition result also implies non-displaceability of

small Lagrangian submanifolds from the skeleton. Namely, applying the

neck-stretching in [9] to the set-up in [2, 3], one finds that the general

Cieliebak–Mohnke Lagrangian width

Amin(L,M) := inf

{∫

σ

ω | [σ] ∈ π2(M,L),

∫

σ

ω > 0

}

can be estimated as follows.

Theorem 7 (Biran–Cieliebak–Mohnke). Let ∆ be the skeleton of a polar-

ization of degree k of (M,ω). Then for any closed Lagrangian submanifold

L ⊂M\∆ it holds that

Amin(L,M) <
1

k
.

In other words, a closed Lagrangian submanifold with Amin(L,M) ≥ 1
k

cannot be displaced from the skeleton ∆ by a Hamiltonian isotopy.

For instance, for x ≥ 1
k

the product torus Tn(x) ⊂ B2n(1) whose factors

are circles enclosing area x cannot be displaced from ∆n
2k inside B2n(1).

Again, Theorem 7 has a Legendrian corollary:

Theorem 8. Let U ⊂ B2n(1) be a starshaped domain with smooth bound-

ary S, endowed with the usual contact form λS = αst|S , and consider the

Legendrian CW-complex Λ2k = ∆n
2k ∩ S. Then for every Legendrian sub-

manifold Λ ⊂ S there exists a Reeb chord from Λ to Λ ∪ Λ2k of length

T ≤ 1
2k

.

Biran’s decomposition theorem thus implies the same kind of applica-

tions that we have drawn from our embedding results, in any dimension and

with better constants. We should therefore explain what this paper adds be-

yond the embedding results from Section 1.1. Here is a first answer. Biran’s

intersection result and Theorem 7 state that some symplectic capacities of

M\∆k are smaller than 1
k
, namely Gromov’s ball embedding capacity

cB(M) := sup {a | B2n(a) symplectically embeds into M} ,

which is the smallest normalized symplectic capacity, and the Cieliebak–

Mohnke capacity

cLag(M) := sup {Amin(L,M) | L ⊂M}
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where the supremum runs over all closed Lagrangian submanifolds. Since

the cylindrical capacity

cZ(U) := inf {A | U symplectically embeds into Z2n(A)}

is the largest normalized capacity, Theorem 1 states instead that all sym-

plectic capacities of B4(1)\∆k are small, and our work [27] generalizes

this property to the affine part of any closed symplectic manifold. There

are many different capacities, whose estimates have different implications.

For instance, applied to the Hofer–Zehnder capacity, Theorem 1 says that

the flow of any compactly supported Hamiltonian function on C4(1) that

vanishes on a neighbourhood of ∆k and whose maximum is at least 2
k

has a

non-trivial closed orbit of period ≤ 1.

Another, more important, gain is that our approach allows to study the

rigidity properties of certain singular polarizations. The role of singular po-

larizations for symplectic embeddings has been observed earlier, and they

were used in several works [6, 7, 25, 26]. But the study of their skeleta was

left aside in these works. The question of rigidity of Lagrangian skeleta

associated to singular polarizations is more subtle than for smooth polariza-

tions. Indeed, the complement of the skeleton of a singular polarization is

not ruled anymore, at if its degree is k the Gromov width may not be 1
k

but

may be arbitrarily large [26, Theorem 1]. The present work opens a way to

identify singular polarizations for which the complement of the skeleton has

small width. It may also be worth noting that some very natural Lagrangian

CW-complexes are the skeleta of singular polarizations and not of smooth

ones. For instance, the Clifford torus in CP2 is the skeleton of a polarization

by three lines, but cannot be the skeleton of a smooth polarization, see § 2.2.

And even if the skeleton of a smooth polarization is computable (like ∆2k

for Σ2k), it may be much easier to obtain it from a singular polarization, see

e.g. § 3.2.

Around Theorems 4 and 5. Traditionally, Lagrangian intersection results

were proven for smooth closed monotone Lagrangians. For non-smooth La-

grangians, the Floer machinery does not work directly (see however [13]),

and for non-monotone Lagrangians it is more difficult [14]. Our Lagrangian

skeleta Γ≤a × Γ≤b may be smooth or not, are not closed, and they may be

very far from monotone.

Theorem 4 says that even rather small Lagrangians must intersect Γ≤a ×
Γ≤b. Such Lagrangian rigidity at a small scale has been observed recently

in [19, 28]. In these papers, the role of our ∆ is played by Lagrangian

submanifolds of S2 × S2 that are products of one circle in the first fac-

tor with a collection of circles in the second factor which, in contrast to
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our grids, decompose S2 into components that may have arbitrary topol-

ogy. Another difference is that these Lagrangian submanifolds are secretly

monotone (when lifted to a symmetric product), whereas our skeleta do not

need to be monotone in any sense: Already each disc D(A) or D(B) may

contain several discs bounded by Γ≤a or Γ≤b whose areas are completely

independent. Theorem 4 therefore suggests that rigidity at a small scale is

not intrinsically related to monotonicity.

Singular Lagrangian were first studied in [12, 13], where it is shown that

the product of the 1-skeleton of a fine enough triangulation of the 2-sphere

is super-heavy and hence must intersect any heavy Lagrangian. Recall that

heavy sets are non-displaceable. Our intersection condition on the minimal

action is thus very often much weaker.

Theorem 6 versus the main result of [18]. A different positive answer

to Question 1.1 was given by Haim-Kislev, Hind, and Ostrover afterwards

in [18]. They showed that for every a one can remove from the ball B4(a)
a finite number (depending on a) of parallel symplectic planes such that the

complement symplectically embeds into Z4(1). Their embedding has very

different properties from ours: The removed set is symplectic instead of

Lagrangian, and the construction is rigid in the sense that one cannot alter

the position of the planes, while our grids are rather arbitrary in view of

Theorem 6. The key difference is that in contrast to theirs, our embeddings

are exact, a property that we crucially need for deriving Theorems 4 and 5.

Organisation of the paper. The paper is organized as follows. In Section 2

we recall the results from [24, 25] on symplectic polarisations in dimension

four, introduce Liouville polarizations and explain their main relations with

symplectic embeddings. In Section 3 we compute some explicit pairs polar-

izations/skeleta. Combining these tools, we prove our embedding results in

Section 4, deduce the Lagrangian rigidities in Section 5 and the Legendrian

ones in Section 6.

Notation and conventions. Since the paper is long, we list here some of

our terminology and conventions, to which the reader may return when nec-

essary.

• A symplectic embedding ϕ : (M, dα) → (M ′, dα′) between ex-

act symplectic manifolds is (α, α′)-exact if ϕ∗α′ = α + df for

a smooth function f on M . Equivalently,
∫
γ
α =

∫
ϕ(γ)

α′ for all

closed curves γ in M . It is enough to check this equality of actions

on a set of closed curves that generateH1(M ;R). IfH1(M ;R) = 0,

then (α, α′)-exactness is automatic; and otherwise, the notion of

(α, α′)-exactness may depend on the choice of primitives α, α′. We
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sometimes write ֒
αst−−→ to abbreviate “there exists an (αst, αst)-exact

symplectic embedding”.

• A Liouville form on a symplectic manifold (M,ω) is just a prim-

itive λ of the symplectic form: dλ = ω. The associated Liouville

vector field Xλ is defined by ιXλ
dλ = λ. Its flow, the Liouville

flow, is conformally symplectic:
(
φt
Xλ

)∗
ω = et ω.

• By a symplectic curve in a symplectic 4-manifold we mean a 2-

dimensional embedded symplectic submanifold, which is closed if

the ambient symplectic manifold is, or properly embedded if it is

open. A normal crossing between symplectic curves Σ,Σ′ is an in-

tersection point p ∈ Σ∩Σ′ such that TpΣ and TpΣ
′ are ω-orthogonal.

• A symplectic multi-curve with normal crossings Σ is a union of

symplectic curves Σi (called the components of Σ) whose pairwise

intersections are all normal crossings. The singularities of a multi-

curve is the set of intersection points between components and is

denoted Sing(Σ). The complement of the singular locus is called

the regular part of Σ.

• Usual objects of differential geometry are generalized to multi-curves

by just taking a collection of such objects on each component. For

instance, a differential k-form α on Σ = ∪Σi is a collection of dif-

ferential k-forms on the Σi. The morphisms between multi-curves

Σ,Σ′ are smooth maps from Σ to Σ′ (in the sense that they are

smooth when restricted to each components), and send the regular

part and singular locus of Σ to those of Σ′. A symplectic embedding

between multi-curves is an injective such morphism that pulls back

ω′|Σ′ to ω|Σ.

• A weighted symplectic multi-curve Σ := {(Σi, µi)} with normal

crossings is a collection of symplectic curves Σi weighted by real

numbers µi, whose total space Σ := ∪Σi is a symplectic multi-curve

with normal crossings.

• A symplectic morphism from Σ to Σ
′ is a symplectic embedding

of Σ into Σ′ that sends each component to a component of the same

weight and sends the regular part and singular locus of Σ to those

of Σ′. We write Σ → Σ
′.

• Symplectic multi-curves will also be called symplectic divisors, or

simply divisors.

• Given a subset S of a manifold M , we write Op(S,M) or just

Op(S) instead of “some open neighbourhood of S in M”.
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2. POLARIZATIONS OF SYMPLECTIC MANIFOLDS

In this section we review those results from [3, 24, 25, 26] that we need in

this paper, in a form useful for us. For simplicity, we stick to dimension 4,

although most of the statements can be adapted to higher dimensions.

2.1. Neighborhoods of symplectic curves in dimension 4. Let π : L →
(Σ, τ) be a complex line bundle with first Chern class c1 over a symplectic

curve of area A =
∫
Σ
τ . The multiplication by e2πiθ defines a vector field ∂

∂θ
which, together with the complex structure on the fiber, provides a closed 1-

form dθ on the punctured fibers F \ {0}. We now in addition endow L with

a Hermitian metric. This provides a radial coordinate r, and throughout the

paper we write R := r2. Chern–Weil theory guarantees the existence of a

connection 1-form with curvature c1
A
τ . This is a 1-form Θ on L \ Σ that

satisfies

Θ|F\{0} = dθ for each fiber F and dΘ = −
c1
A
π∗τ on L.

The 2-form

(2.1) ω0 := π∗τ + d(RΘ) =

(
1−

c1R

A

)
π∗τ + dR ∧Θ

is defined on all of L, is closed, and is symplectic on
{
R < A

c1

}
. Further-

more, ω0 is exact on L \ Σ (where we identify 0L with Σ), with Liouville

form

(2.2) λ0 :=

(
R −

A

c1

)
Θ.

The associated Liouville vector field is

(2.3)

(
R−

A

c1

)
∂

∂R
.

The 1-form dθ is defined on the punctured fibers F \ {0}, and in a local

trivialization of L over U ⊂ Σ it is defined on L|U \ U , but not on all

of L \ Σ. A transition function between two local trivializations is of the
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form (z, w) 7→ (z, g(z) w), where g is a smooth C \ {0}-valued function,

and dθ is pulled back by this map to dθ + im dg
g

. We can therefore define

the angular class {dθ} as the set of 1-forms on L \ Σ that locally are equal

to dθ up to a smooth 1-form on L. The form Θ is a representative of {dθ}.

Recall that we have fixed a Hermitian metric on L.

Definition 2.1. The symplectic disc bundle over (Σ, τ) with Chern class c1
is

SDB(Σ, τ, c1) :=

({
R <

A

c1

}
, ω0, λ0

)
⊂ L.

It comes with a distinguished class of 1-forms on SDB(Σ, τ, c1) \Σ modulo

smooth forms on SDB(Σ, τ, c1), called the angular class. Any connection

1-form provides a representative of the angular class. For ε ≤ A
c1

, we denote

SDBε(Σ, τ, c1) :=
(
{R < ε}, ω0, λ0

)
⊂ L.

By the symplectic neighbourhood theorem, for any symplectic curve Σ ⊂
(M4, ω) and for ε > 0 sufficiently small, an open neighbourhood of Σ is

symplectomorphic to

SDBε(Σ,M) := SDBε

(
Σ, ω|Σ, c1(TΣ

ω)
)

by a symplectomorphism that lifts any given symplectomorphism between

the zero section of SDBε(Σ,M) and Σ ⊂M .

2.2. Polarizations (closed case). In [3], Biran introduced the notion of po-

larization for closed symplectic manifolds with rational symplectic class.

This definition was later extended in [25] as follows.

Definition 2.2. A polarization Σ := {(Σi, µi)} of a closed 4-dimensional

symplectic manifold (M,ω) is a finite collection of closed 2-dimensional

symplectic submanifolds Σi that intersect ω-orthogonally, weighted by real

coefficients µi > 0, such that

(2.4) [Σ] :=
∑

i

µi [Σi] = PD([ω]) ∈ H2(M ;R).

In other terms, a polarization is a weighted symplectic divisor with normal

crossings Poincaré-dual to [ω] in the sense of (2.4). We write Σ :=
⋃

i Σi.

We say that the polarization is smooth if it consists of a single component.

In this case, µ is determined by Σ and [ω], and we say that Σ has degree

d = 1/µ.

Let (M,ω,Σ) be a polarized closed symplectic manifold. The symplectic

form ω is exact on the complement of Σ, hence ω has primitives on M \
Σ. Throughout the paper, we consider only Liouville forms that satisfy a

regularity assumption near Σ, that we discuss now.
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When Σ is smooth, a neighbourhood can be modeled on

SDBε(Σ,M) := SDBε

(
Σ, ω|Σ, c1(TΣ

ω)
)

for ε small enough, and is therefore endowed with a radial coordinate R
and a connection 1-form Θ, as in Section 2.1. When Σ consists of sev-

eral pairwise ω-orthogonal components Σi, we follow [25, Section 3.1] and

make a neighbourhood of Σ a symplectic plumbing of the ε-disc bundles

over the Σi, which we still denote SDBε(Σ,M): a deleted neighbourhood

of each Σi can be endowed with local coordinates (Ri, θi), dθi belonging

to the angular class around Σi, such that on a neighbourhood of an inter-

section point of Σi and Σj we have Σi = {Rj = 0}, Σj = {Ri = 0} and

ω = d(Ridθi +Rjdθj).

Definition 2.3. A 1-form λ on M \ Σ is tame

• at a regular point p ∈ Σi \
⋃

j 6=iΣj , if there exists a real number ai
and a bounded 1-form λ′ on Op (p) \ Σi such that λ = ai dθi + λ′

on Op (p) \ Σi (λ′ is then smooth on Op (p)\Σi). In other terms, λ
locally represents a multiple of a connection form modulo bounded

forms.

• at an intersection point p ∈ Σi ∩ Σj , if there exist real num-

bers ai, aj such that λ = (Ri + ai) dθi + (Rj + aj) dθj on Op (p) \
(Σi ∪ Σj) in the plumbing coordinates.

• along Σ, if it is tame at each point of Σ.

Remarks 2.4. (i) The class of tame forms around Σ depends on the choice

of the Hermitian metrics on the Li, and on the identification of our neigh-

bourhood of Σ inM with the plumbing of the ε-disc bundles over Σi. Given

a polarization, we fix these choices, whether implicitely or after a construc-

tion. The notion of tameness will always refer to these choices.

(ii) Liouville forms in the complement of a normal crossing divisor Σ ⊂
M have been used in many works, for instance in [20, 5]. In these works,

the main interest was the symplectic homology ofM \Σ, whence it sufficed

to understand that the Liouville flow is pointing towards Σ. Variants of the

notion of tameness, that is crucial here, were introduced in [26]. ⋄

It is not hard to check that the number ai depends only on the compo-

nent Σi and not on the point p on this component (see [26, Lemma 4.1]). We

call ai the residue of λ at Σi and denote it Res (λ,Σi). By [25, Lemma 3.2]

plumbings of symplectic disc bundles have tame Liouville forms with arbi-

trary residues. When, moreover, the homological polarizing condition (2.4)

holds for µi = −Res (λ,Σi), then these tame Liouville forms extend to Li-

ouville forms on M \ Σ, see the proof of [26, Lemma 4.1 (iii)]. For further

reference we state:
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Proposition 2.5. Let (M,ω,Σ) be a polarized closed symplectic manifold

with Σ = {(Σi, µi)}. Then

(i) There exists a tame Liouville form λ onM\Σ with residues Res (λ,Σi) =
−µi.

(ii) Let U be an open subset of M . Two Liouville forms on U tame

along Σ with the same residues differ on U\Σ by a bounded smooth

closed 1-form ϑ.

(iii) Let λ be a tame Liouville form on M\Σ. For every small enough

ε > 0 the vector field Xλ is pointing inwards along the boundary

of SDBε(Σ,M), and for every point p ∈ SDBε(Σ,M) \ Σ the flow

line of Xλ starting at p hits Σ in finite positive time. The Liouville

field Xλ is therefore backward complete, meaning that any trajec-

tory is defined on R≤0.

Proof. (i) has been discussed above and (ii) holds by definition of tameness.

We prove (iii). Let λ be a Liouville form tame along Σ. Near a regular point

of Σi, λ is then equal to −µiΘi modulo a bounded one-form on M\Σi, and

we have seen that Θi is ω-dual to ∂
∂Ri

, so

Xλ = −µi
∂

∂Ri

+ Z

for a bounded vector field Z. Since ∂
∂Ri

has norm of order 1
ri

and since

µi > 0, Xλ · Ri < 0 near Σi = {Ri = 0}. A similar argument applies near

a singular point. �

Definition 2.6 (Biran decomposition). Given a polarized closed symplectic

manifold (M,ω,Σ) and a tame Liouville form λ on M \ Σ, we denote

B(Σ, λ,M) := Σ ∪ {p ∈M | ∃ t(p) > 0, lim
tրt(p)

φt
Xλ

(p) ∈ Σ},

Skel(Σ, λ,M) := M \ B(M,Σ, λ).

More generally, for any subset X ⊂ Σ, we define

B(X, λ,M) := X ∪ {p ∈M | ∃ t(p) > 0, lim
tրt(p)

φt
Xλ

(p) ∈ X}.

There is a natural continuous projection map π : B(X, λ,M) → X that

associates to x the point on X to which its flow line arrives.

By (iii) of Proposition 2.5, the set B(Σ, λ,M) is open. It is the basin of

attraction of Σ under the Liouville flow of λ. The closed set Skel(Σ, λ,M)
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is the maximal compact subset of M \ Σ that is invariant under the Liou-

ville flow. It is called the skeleton of (M,ω) with respect to the polariza-

tion Σ and the Liouville form λ. Finally, point (iii) also guarantees that

B(X, λ,M) ∩ Σ = X .

The following examples should be useful for readers unfamiliar with

these notions.

Example 2.7. If (Σ, µ) is a smooth polarization of (M,ω), then the basin

B(Σ, λ,M) is symplectomorphic to the symplectic disc bundle SDB(Σ,M) =
SDBµ

(
Σ, ω|Σ, c1(TΣ

ω)
)
. It therefore depends only very mildly on M or λ

from a symplectic perspective.

Examples 2.8. As before, endow the complex projective plane CP2 with

the Fubini–Study symplectic form ωFS that integrates to 1 over every pro-

jective line. Every smooth algebraic curve in CP2 is symplectic and (since

H2(CP
2) has rank 1) is a polarization when weighted by the inverse of its

algebraic degree. For instance:

• When Σ is a line, then (CP2 \Σ, ωFS) is symplectomorphic to the

ball (B4(1), ωst). Using the usual toric description of (CP2, ωFS),
one checks that the Liouville form λ0 = αst = R1 dθ1 + R2 dθ2
defined on B4(1) ∼= CP2 \Σ is tame along Σ. The skeleton of λ0 is

a single point, namely the origin of B4(1).

• When Σ = Σk := {zk0 + zk1 + zk2 = 0} ⊂ CP2, then Σ is the van-

ishing locus of a holomorphic section sk of the Hermitian line bun-

dle O(k) → CP2 of curvature −kωFS. The form − 1
k
dc log ‖sk‖, de-

fined on CP2 \Σ, provides a tame Liouville form with residue − 1
k
.

For k even, its skeleton is the set ∆k(CP
2) described in Exam-

ple 1.5, and for all k the intersection of the skeleton with B4(1) =
CP2 \CP1 is ∆k.

For these examples in CP2, notice the discrepancy between the “alge-

braic degree” of a curve and its degree as a polarizartion (the “symplectic

degree”). These two degrees coincide when the Fubini–Study form is nor-

malized so that the area of a line is 1, but they differ for different normal-

izations. For instance, if CP2 is obtained as the compactification of B4(2),
so that the symplectic form becomes 2ωFS, a curve of algebraic degree 2 is

a polarization of degree 1.

Examples 2.9.

•
(
CP1×CP1, aωFS ⊕ bωFS

)
is polarized by

Σ1 :=
{(

CP1 ×{0}, b
)
,
(
{0} × CP1, a

)}
.
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For λ = (R1 − a) dθ1 + (R2 − b) dθ2 the skeleton is the single

point {(∞,∞)}.

•
(
CP1×CP1, aωFS ⊕ bωFS

)
is polarized by Σ2 :=

{(
CP1×{0}, b

2

)
,
(
{0} × CP1, a

2

)
,
(
CP1×{∞}, b

2

)
,
(
{∞} × CP1, a

2

)}
.

For a suitable choice of λ the skeleton is the Clifford torus, i.e. the

product of the two equators.

•
(
CP2, ωFS

)
is polarized by

Σ :=
{(

{z0 = 0}, 1
3

)
,
(
{z1 = 0}, 1

3

)
,
(
{z2 = 0}, 1

3

)}
.

For a suitable choice of λ the skeleton is the Clifford torus.

We end this section by keeping a promise made in the introduction:

Proposition 2.10. There exists no smooth polarization of CP2 whose skele-

ton is the Clifford torus.

Proof. Assume that the Clifford torus L is the skeleton of a smooth po-

larization of CP2 of degree k. By [2], the Gromov width of the comple-

ment is cG(CP
2 \L) ≤ 1

k
. On the other hand, CP2 \L is symplectomor-

phic to the standard symplectic disc bundle SDB 1

k
(Σ, τ, k) over a closed

surface of area k with disc fibres of area 1
k
. By [24, Proposition 1.3] this

disc bundle contains a symplectic ellipsoidE(k, 1
k
) and hence a ball B4( 1

k
).

It follows that cG(CP
2 \L) = 1

k
. This is in contradiction to the fact that

cG(CP
2 \L) = 2

3
, proven in [4, p. 2887]. �

2.3. Liouville polarizations (open case). Let (Ω, ω) be a connected sym-

plectic manifold (without boundary) and with an exact symplectic form ω.

Let Σ ⊂ Ω be a symplectic divisor with normal crossings. This now means

that each of the finitely many components Σi is a properly embedded sym-

plectic surface and that the singular locus Sing(Σ) is compact.

Tameness of a 1-form λ on Ω \ Σ along Σ is defined as in the closed case

(Definition 2.3), in terms of Hermitian line bundles Li → Σi modeled on

the symplectic normal bundles, and an identification of a neighbourhood

of Σ in Ω with the plumbing of disc bundles over the Σi.

Definition 2.11. A Liouville polarization (Σ, λ) of (Ω, ω) consists of Σ =
{(Σi, µi)}, where Σ = ∪iΣi ⊂ Ω is a symplectic divisor as above and

µi > 0, together with a Liouville form λ on Ω \ Σ that is tame along Σ,

with residues −µi at Σi, and such that the Liouville flow φt
Xλ

on Ω \ Σ is

backward complete and “forward complete up to hittingΣ”: For every point
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p ∈ Ω \ Σ, the flow line starting at p is defined for t ∈ (−∞, t+(p)), where

either t+(p) = +∞ or limtրt+(p) φ
t
Xλ

(p) ∈ Σ.

The points p with t+(p) < ∞ form the basin of attraction B(Σ, λ,Ω).
The complement of the basin of attraction of Σ under the Liouville flow

is the skeleton of (Ω, ω,Σ, λ). This is the set of points whose Liouville

flow line is defined for all times. If Σ has only one component Σ, we call

the polarization smooth, and in analogy with the closed case say that it has

degree d = 1/µ.

Remarks 2.12. (i) In the context of closed manifolds, we have called polar-

ization the sole weighted divisor Σ, which could be easily separated from

the Liouville form. In the context of open manifolds, the situation is more

intricate because the homological condition [Σ] = PD([ω]) does not make

sense anymore. This condition is replaced by the residue and integrability

conditions on λ and its Liouville flow, making impossible to separate Σ

from λ in the above definition.

(ii) Whether or not an exact symplectic manifold (Ω, ω) has a Liouville

polarization does not seem to be easy to decide, in general. We think that

if Ω is the interior of a compact manifold with smooth boudary, this only

holds when (Ω, ω) is the interior of a very special kind of Liouville domain

(Ω, dβ). Note that for Liouville domains, the Liouville vector field Xβ is

transverse to the boundary, pointing outwards. This is in sharp contrast to

our Liouville vector fields Xλ, that in view of the integrability condition

on Xλ are “tangent at infinity”.

(iii) The reader may wonder why we insist on assuming Ω open, and pro-

pose a definition that may look a bit artificial. Indeed, if Ω were assumed

compact with smooth boundary, we could as well define our Liouville po-

larization in terms of a Liouville form on Ω\Σ whose Liouville vector field

is tangent to ∂Ω. This makes a perfectly sound definition in this case, that

would however discard important examples that we want to consider: open

manifolds whose boundaries have corners, like the bidisc and, more gener-

ally, symplectic disc bundles over open surfaces as in Example 2.14 below,

and R4, which is not compact.

Definition 2.13. A Liouville polarization (Σ, λ) of (Ω, ω) is extendable if

there exists an exact symplectic manifold (Ω̂, ω̂) with Ω ⊂ Ω̂ and ω̂|Ω = ω,

a symplectic divisor Σ̂ ⊂ Ω̂ with Σ ⊂ Σ̂ and such that the closure Σ of Σ

in Σ̂ is a compact surface with boundary and Σ̂ is a collar neighbourhood

of Σ and a tame Liouville form λ̂ on Ω̂\Σ̂ with λ̂|Ω̂\Σ̂ = λ|Ω\Σ such that

the boundary ∂Ω of Ω in Ω̂ is a smooth manifold to which Σ̂ is transverse
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(cf. Figure 2.1). For an extendable polarization (Σ, λ), we denote Σ the

closure of Σ in Σ̂. ⋄

The completeness assumption on Xλ implies that Xλ̂ is tangent to the

boundary of Ω in Ω̂.

Ω Ω̂

Σ Σ̂

Xλ̂

FIGURE 2.1. An extension (Ω̂, Σ̂) of (Ω,Σ).

In [27] we give a large class of examples of extendable Liouville polar-

izations. For the moment, we look at the following model example.

Example 2.14. Let (X, τ) be a compact symplectic surface with smooth

non-empty boundary, and let µ > 0. Consider an extension (Σ, τ) of (X, τ)
to a closed symplectic surface, whose area Aτ (Σ) is an integral multiple c1
of µ. Let π :

(
SDB(Σ, τ, c1), λ0

)
→ Σ be the symplectic disc bundle defined

in Section 2.1, together with its Liouville form of residue −µ = −Aτ (Σ)
c1

.

Then Xλ0
vanishes on the boundary of SDB(Σ, τ, c1) by (2.3) and is tangent

to the fibers. Hence
(
(

◦

X, µ), λ0
)

is a Liouville polarization of

SDB(
◦

X, τ, µ) := π−1(
◦

X) ⊂ SDB(Σ, τ, c1).

The basin of attraction is the whole manifold, and the skeleton is empty.

Taking an open collar neighbourhood of X ⊂ Σ we see that this Liouville

polarization is extendable.

From the differentiable view point, SDB(
◦

X, τ, µ) is just
◦

X ×
◦

D with a

twisted symplectic form, with the particularity of having a Liouville vector

field tangent to the fibers and vanishing at their boundaries. ⋄

The above construction does not rule out the possibility that different ex-

tensions (Σ, τ, c1) of (X, τ) lead to different symplectic manifolds SDB(
◦

X, τ, µ).
This is not so. While this fact is not crucial for us, its proof is a good warm-

up for the main result of this section (Theorem 2.20), and it leads to two

lemmas needed later on.

Lemma 2.15. Let (X, τ) be a compact symplectic surface with boundary,

and let (X̂, τ̂) be an open collar neighbourhood of X . Let W be a neigh-

bourhood of X̂ in SDB(X̂, τ̂ , µ), and let ϑ be a bounded closed 1-form
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on W \ X̂ . Let λ be a Liouville 1-form for SDB(X̂, τ̂ , µ) as constructed in

Example 2.14.

(i) There exist neighbourhoods V, V ′ of X in W and a C1-smooth sym-

plectomorphism f : (V, ω) → (V ′, ω) such that f |X = id and f ∗(λ+ϑ) = λ

on V \ X̂ .

(ii) If, moreover, ϑ vanishes near a union ∂′X of components of the

boundary ∂X , then we can choose V, V ′ and f such that f = id on a

neighbourhood of π−1(∂′X) ∩ V .

X X̂

V

V ′f

W

FIGURE 2.2. The symplectomorphism f : V → V ′ with

f ∗(λ+ ϑ) = λ.

Proof. This is proven in [24, Lemma A.1] in the case that X̂ is a closed

surface. The same proof yields Lemma 2.15. �

Proposition 2.16. The symplectic manifold SDB(
◦

X, τ, µ) does not depend

on the choice of the extension (Σ, τ, c1).

Proof. For i = 0, 1, let
(

SDBi(X, τ, µ), λi
)

be defined as above by the

inclusion ιi : (X, τ) → (Σi, τi). We need to show that SDB0(
◦

X, τ, µ) is

symplectomorphic to SDB1(
◦

X, τ, µ). Let X̂i ⊂ Σi be open collar neigh-

bourhoods of X ⊂ Σi. We can assume that there exists a symplectomor-

phism ϕ : (X̂0, τ0) → (X̂1, τ1) that is the identity on X . By the symplec-

tic neighbourhood theorem, there exist open neighbourhoods Ui of X̂i in

SDB(X̂i, τi, µ) and a symplectic diffeomorphism ψ : U0 → U1 that ex-

tends ϕ.

XX X̂0 X̂1Σ0 Σ1

ϕ

ψ
U0 U1

FIGURE 2.3. The extension ψ : U0 → U1 of ϕ : X̂0 → X̂1.
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By Proposition 2.5 (ii) there exists a bounded smooth closed one-form ϑ

on imψ\X̂1 such that ψ∗λ0− λ1 = ϑ. Let X̃1 be a closed collar neighbour-

hood of X that lies in X̂1. Applying Lemma 2.15 (i) with (X, X̂,W ) :=

(X̃1, X̂1, imψ), we obtain open neighbourhoods V, V ′ of X in imψ and a

C1-smooth symplectomorphism f : V → V ′ that equals the identity on X̂1

and takes λ1 + ϑ to λ1. Choose ε > 0 so small that ψ
(

SDB0,ε(X, τ, µ)
)
⊂

Dom f . Then the map

ϕ := f ◦ ψ : SDB0,ε(X, τ, µ) →֒ SDB(Σ1, τ1, c
1
1)

is well-defined, covers ι1 ◦ ι
−1
0 , and verifies ϕ∗λ0 = λ1. Define

Φ : SDB0(X, τ, µ) −→ SDB1(X, τ, µ)
x 7−→ φ−t

Xλ1
◦ ϕ ◦ φt

Xλ0
(x),

where for x ∈ X we take t = 0 and for x /∈ X we take any t ≥ 0
such that φt

Xλ0
(x) ∈ Dom(ϕ) \ X . Then Φ(x) is well-defined because

ϕ∗λ0 = λ1, and aC1-smooth symplectomorphism (see e.g. [24, Section 2.1]

if needed). By restriction, we obtain a C1-smooth symplectomorphism

SDB0(
◦

X, τ, µ) → SDB1(
◦

X, τ, µ). The claim in the C∞-category now fol-

lows from the Smoothing Lemma 2.21 relegated to the end of this section.

�

Almost the same proof yields the following statement.

Lemma 2.17. Let ((Σ, µ), λ) be a smooth and extendable Liouville polar-

ization of (Ω, ω). Then there exists ε > 0 and a C1-smooth symplectic

embedding

Φ: SDBε(Σ, ω|Σ, µ) → B(Σ, λ,Ω)

that is onto a neighbourhood of Σ in B(Σ, λ,Ω) and is such that Φ|Σ = idΣ

and Φ∗λ = λ0.

Proof. The previous proof shows the existence of a symplectic embedding

Φ: SDBε(Σ, ω|Σ, µ) → B(Σ̂, λ̂, Ω̂),

where (Σ̂, λ̂, Ω̂) is an extension of the Liouville polarization (Σ, λ), with

Φ|Σ = id and Φ∗λ̂ = λ0. The map Φ is constructed by a dynamical conju-

gacy procedure that guarantees that imΦ ⊂ B(Σ, λ̂, Ω̂). Since the Liouville

flow associated to λ̂ is tangent to ∂Ω in a neighbourhood of Σ̂ ∩ ∂Ω, this

basin of attraction lies in Ω and coincides with B(Σ, λ,Ω). �

Putting Lemmas 2.15 and 2.17 together, we obtain the following lemma.
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Lemma 2.18. Let (Σ, λ) be an extendable polarization of an exact sym-

plectic manifold Ω. Let (Ω̂, Σ̂, λ̂) be an extension and let ϑ be a bounded

closed 1-form on a deleted neighbourhood of Σ̂ in Ω̂ \ Σ̂ that vanishes

near Sing(Σ). Then there exists a C1-smooth symplectomorphism Φ be-

tween neighbourhoods of Σ in Ω̂ such that:

• Φ is the identity on Σ,

• Φ∗(λ̂+ ϑ) = λ̂.

Proof. For each i choose small open discs
∐

j D
j
i around the points in

Σi ∩ Sing(Σ) whose closures are disjoint from the support of ϑ, and take

the compact surface Xi := Σ̃i \
∐

j D
j
i , where Σ̃i is a closed collar neigh-

bourhood of Σi in Σ̂i. Then X :=
∐

iXi is a disjoint union, and so is the

basin B(X, λ̂) = ⊔iB(Xi, λ̂).

X1

X2

Σ̂1

Σ̂2

FIGURE 2.4. X ⊂ Σ̂ and supp ϑ.

By Lemma 2.17 we can identify a neighbourhood of Xi in B(Xi, λ̂)

with SDBεi(Xi, λ̂). By Lemma 2.15 (ii) there exists a C1-smooth symplec-

tomorphismΦi between neighbourhoods ofXi in Ω̂ such thatΦ∗
i (λ̂+ϑ) = λ̂

and Φi = id on Xi and near the boundaries of the discs Dj
i . Extend Φi by

the identity to an open neighbourhood of all of Σ̃i. Then the map Φ obtained

by gluing together the Φi is as required. �

Our main interest in the definition of Liouville polarizations is the next

result, that allows to use the techniques set up to study the symplectic em-

bedding problems in [24, 25] in the context of exact symplectic manifolds.

Definition 2.19. A symplectic morphism φ : Σ → Σ
′ between weighted

symplectic divisors Σ, Σ′ is an injective continuous map φ : Σ → Σ′ with

the following two properties:
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• For every component (Σi, µi) ofΣ there exists a component (Σ′
i′ , µi′)

of Σ′ with µi = µi′ such that φ|Σi
: Σi → Σ′

i′ is a symplectic em-

bedding.

• φ|Σi
: Σi → Σ′

i′ takes smooth points to smooth points, i.e.,

φ
(
Σi \

⋃

j 6=i

Σj

)
⊂ Σ′

i′ \
⋃

j′ 6=i′

Σ′
j′.

Recall that an embedding ϕ is (α, α′)-exact if ϕ∗α′ = α+df for a smooth

function f .

Theorem 2.20. Let (Ω, ω = dα) and (Ω′, ω′ = dα′) be exact symplectic

manifolds with Liouville polarizations (Σ, λ) and (Σ′, λ′), respectively. As-

sume that (Σ, λ) is extendable, with extension (Σ̂, λ̂). Assume further that

there exists a symplectic morphism φ : Σ̂ → Σ
′ that is (α|Σ, α

′|Σ′)-exact.

Then there exists an (α, α′)-exact symplectic embedding

Φ: B(Σ, λ) = Ω \ Skel(Ω,Σ, λ) → B(Σ′, λ′) = Ω′ \ Skel(Ω′,Σ′, λ′).

Proof. Let (Ω̂, Σ̂, λ̂) be the extension of (Ω,Σ, λ). Let Σ̃ be a closed col-

lar neighbourhood of Σ in Σ̂. By the symplectic neighbourhood theorem,

there exists an open neighbourhood V of Σ̃ in Ω̂ and a symplectic extension

ψ : V →֒ B(Σ′, λ′) ⊂ Ω′ of φ that preserves the symplectic plumbing struc-

ture (i.e., the Darboux coordinates (R1, θ1, R2, θ2) near the intersections).

Since ψ∗λ′ and λ̂ are tame and have the same residues,

ψ∗λ′ − λ̂ = ϑ

where ϑ is a smooth bounded closed 1-form on V \Σ̂. Since ψ preserves the

plumbing structure, we also have ϑ = 0 on Op (Sing Σ).
By Lemma 2.18 there exists a C1-smooth symplectomorphism Φ1 be-

tween open neighbourhoods of Σ in B(Σ̃, λ̂) such that Φ∗
1λ̂ = λ̂ + ϑ and

Φ1|Σ̃ = id. Then the map Φ := ψ ◦ Φ−1
1 provides a symplectic extension

of φ such that Φ∗λ′ = λ̂. As in the proof of Proposition 2.16 define

Ψ1 : B(Σ, λ) −→ B(Σ′, λ′)
x 7−→ φ−t

Xλ′
◦ Φ ◦ φt

Xλ
(x),

where for x ∈ Σ we take t = 0 and for x /∈ Σ we take any t ≥ 0 such that

φt
Xλ

(x) ∈ Dom(Φ) \ Σ. Then Ψ1 is a C1-smooth symplectic embedding.

It is (α, α′)-exact. Indeed, since B(Σ, λ) retracts to Σ, its first homology is

generated by cycles in Σ, on which Ψ1 = φ. Since φ is (α|Σ, α
′|Σ′)-exact

by assumption, Ψ1 is (α, α′)-exact. The claim in the smooth category now

follows from Lemma 2.21. �
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Lemma 2.21. Let Ψ1 : (M,ω) → (M ′, ω′) be a C1-smooth symplectomor-

phism of symplectic manifolds without boundary. Then there exists a C∞-

smooth symplectomorphism Ψ: (M,ω) → (M ′, ω′). Furthermore, if Ψ1 is

(α, α′)-exact, then Ψ can be taken (α, α′)-exact.

Proof. It is shown in [32, pp. 831–836] that there exists a C∞-smooth

symplectomorphism Ψ: (M,ω) → (M ′, ω′) which is C1-close to Ψ1. The

proof shows that Ψ is (α, α′)-exact whenever Ψ1 is (α, α′)-exact: Take Dar-

boux charts ϕi : B
4(ai) → Ui ⊂ M such that ϕi

(
B4(ai/2)

)
=: U ′

i form a

locally finite covering of M . Smoothing a suitable generating function, one

replaces Ψ1 by Ψ1
1 that is C∞-smooth on U ′

1 and agrees with Ψ1 outside U1.

In fact, convex interpolation of the two generating functions yields a smooth

symplectic isotopy Ψt
1 from Ψ1 to Ψ1

1 such that Ψ−1
1 ◦Ψt

1 is supported in U1.

Since U1 = ϕ1(B
4(a1)) is simply-connected, this isotopy is Hamiltonian,

and hence Ψ−1
1 ◦ Ψ1

1 is (α, α)-exact, see e.g. [21, Proposition 9.3.1]. Since

Ψ1 is (α, α′)-exact, we find that Ψ1
1 is also (α, α′)-exact. In the same way,

smoothen Ψ1
1 to Ψ2

1 on U ′
2, . . . , Ψ

k
1 to Ψk+1

1 on U ′
k+1, . . . . The limit map Ψ

is then (α, α′)-exact. �

3. SOME EXPLICIT POLARIZATIONS AND SKELETA

We start our computation of explicit polarizations with the simplest case,

in dimension 2. This case is then used in § 3.2 to construct Liouville po-

larizations on bidiscs. In § 3.3 we show how certain singular Liouville

polarizations can be surgered to smooth Liouville polarizations.

3.1. Polarizations in dimension 2. Let (S, ω) be a 2-dimensional compact

symplectic surface with non-empty boundary ∂S. We define a Liouville po-

larization of S to be a finite set of points pi in IntS with weights µi > 0
together with a tame Liouville form λ defined on S \

⋃
i pi such that Xλ is

tangent to ∂S. Tameness now means that for each i there are symplectic

polar coordinates (R, θ) near pi such that λ = −µidθ+λ
′ on Op(pi)\{pi},

where λ′ is a bounded 1-form on Op(pi) \ {pi}. One easily checks that∑
i µi = Aω(S). Conversely, any finite set of positively weighted points

{(pi, µi)} on (S, ω) that satisfies
∑

i µi = Aω(S) admits a Liouville po-

larization, as is easy to see. Because of this very direct link between the

residues and the area in dimension 2, we switch notation from µi to ai
throughout this section. Its main purpose is to explain that in dimension 2,

the skeleton can be prescribed, which seems much harder in higher dimen-

sions. We recall the notion of regular grid in a slightly more general setting.

Definition 3.1. A regular grid Γ on a compact surface S with boundary is

a finite connected graph Γ ⊂ S with smooth edges, whose edges cover ∂S
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and such that each vertex has a Darboux chart on which Γ is a union of

radial rays that cut the disc into equal sectors. When the vertex belongs to

the interior of S, the Darboux chart takes values in D(ε) ⊂ C, while it takes

values in D(ε) ∩ {im z ≥ 0} ⊂ H if the vertex belongs to ∂S.

Proposition 3.2. Let (S, ω) be a compact surface with boundary, and let

Γ be a regular grid that decomposes S into m discs of area ai, in each

of which we chose a point pi. Then there exists a Liouville polarization(
{(pi, ai)}, λ

)
of S whose skeleton is Γ. This Liouville form can be required

to coincide with (R− ai)dθ in Darboux coordinates near each pi.

In the case of a closed disc D(A) (which will be the example we will use

later on) one may attempt to prove the proposition as follows: Just define

a first tame Liouville form with residues −ai at pi by λ := αst −
∑
ai dθi,

where θi is the pull-back by the translation of the vector −pi of the stan-

dard angular coordinate in C \ {0}. Then the periods of λ vanish on each

loop of Γ, so we can correct λ by adding the differential of a smooth

function in order to make λ vanish on Γ. Then the Liouville flow of λ
fixes Γ pointwise, and so

(
{(pi, ai)}, λ

)
provides a Liouville polarization

of D(A) whose skeleton contains Γ. Unfortunately, this proof does not

constrain the skeleton enough: it could be strictly bigger than Γ. We there-

fore proceed in a different manner. Recall that Xλ is tangent to ker λ, since

λ(Xλ) = dλ(Xλ, Xλ) = 0. Our strategy is therefore to first construct a

(singular) foliation F to which we wish Xλ to be tangent to. Once this

“vanishing foliation” is constructed, the following lemma will readily pro-

vide the Liouville form itself.

Lemma 3.3. Let γθ : [0, 1] → C, θ ∈ [0, α], be a family of smooth rays em-

anating from the origin of C, and set U := {γθ(t) | θ ∈ [0, α], t ∈ [0, 1]}.

Fix a ∈ R. We assume that

• (t, θ) 7→ γθ(t) is smooth and a diffeomorphism except at t = 0.

Thus the set of curves {im γθ} provides a foliation F of U \ {0}.
• There exists ε > 0 such that γθ(t) = teiθ for t ≤ ε.

Then there exists a unique smooth Liouville form λa on (U \ {0}, ωst)
such that

• ker λa = TF ,
• λa(γθ(t)) = (R− a)dθ for t sufficiently small.

Proof. This follows at once from Stokes’ theorem. �

Proof of Proposition 3.2: We write the proof for the disc D(A). The adap-

tation to a general surface (S, ω) will be clear. We first set some notation.

We write D instead of D(A). For each point pi let Di be the closure in R
2
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of the connected component of pi in D \ Γ (recall that Γ contains ∂D by

assumption). Write Sing(Γ) for the set of non-smooth points of Γ, and

Si := Sing(Γ) ∩ Di

for the set of singularities of Γ in the boundary of Di. For each pi and a

sufficiently small ε the translation (D(pi), pi) → (D(ε), 0) is a Darboux

chart that induces coordinates (R, θ) on D(pi). Similarly, by our assump-

tion on Γ we can consider for each q ∈ Sing(Γ)\∂D symplectic coordinates

φq = (R, θ) : D(q) → D(ε) on a disk around q such that

Γ ∩D(q) =
{
θ =

k

mq
, k ∈ [0, mq − 1]

}
,

wheremq is the number of branches of Γ at q. The sectors inD(q) delimited

by the rays {θ = k
mq

} are denoted by

Si(q) := Di ∩D(q).

Also, when q ∈ Sing(Γ) ∩ ∂D, we have symplectic coordinates (R, θ) on

a neighbourhood D+(q) of q in D, with values in {R < ε, θ ∈ [0, π]} such

that

Γ ∩D+(q) =
{
θ =

k

2mq
, k ∈ [0, mq − 1]

}
,

where mq is the number of branches of Γ at q. The sectors delimited by the

rays θ = k
2mq

are again denoted by

Si(q) := Di ∩D
+(q).

The radial ray that cuts the sector Si(q) into two equal sectors is called a

local separatrix at q and is denoted si(q).
Finally, we fix a symplectic diffeomorphism fi : Di \ Si → D(ai) \ Pi

where Pi is a finite set of points, and set λfi := f ∗
i αst. Then λfi is positive

on ∂Di \ Si. The notations are illustrated on the right part of Figure 3.1.

Step 1: Constructing the vanishing foliation near the pi and Sing(Γ)
(see Figure 3.1)

In D(pi), we fix F to be the radial foliation {θ = const}.

For a point q ∈ Sing(Γ) \ ∂D, let ρq : D(ε) → C be the “ramified cover-

ing”

ρq(R, θ) :=

(
2R

mq

,
mq

2
θ

)
.

Note that ρq is smooth and symplectic on D(ε) \ {0}, but only continuous

at 0. The sectors Si(q) around q are the preimages under ρq ◦φq of {y ≥ 0}
or {y ≤ 0}, and the separatrices si(q) are sent by ρq ◦ φq to {x = 0}. We
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define the foliation in D(q) to be the pull-back by ρq ◦ φq of the vertical

foliation:

F|D(q) := (ρq ◦ φq)
∗{x = c}.

This local foliation has remarkable properties:

(i) The local separatrices emanating from q are leaves of F ; they are

the pull-back by ρq ◦ φq of the curves {x = 0}.

(ii) Since ρq sends concentric circles around the origin to concentric

circles, and since ρq ◦ φq is a diffeomorphism between Si(q) \ {q}
and {y ≥ 0} \ {0} or {y ≤ 0} \ {0}, the leaves {x = c} with

c 6= 0 are pulled back by ρq ◦ φq to smooth curves that intersect Γ
orthogonally (in the chart φq).

(iii) As a result, the foliation F can be extended to a smooth foliation on

Op (Γ)\ Sing(Γ) that is transverse to the regular part of Γ.

Finally, for a point q ∈ Sing(Γ) ∩ ∂D, the model is the same. We leave

it to the reader to complete the picture, cf. Figure 3.2.

D(ε) D(p1)

D(q1)
φq1

ρq1

D1 p1

p2

p3

p4
p5

q1
q2

q6

S3(q1)

S5(q6)

s1(q1)

FIGURE 3.1. Notation, and the foliation on D(ε) for mq1 = 3.

Step 2: Interpolating the separatrices (see Figure 3.2)

Fix i ∈ {1, . . . , m}. (In Figure 3.2, i = 1.) Fix a reference point q0 ∈ Si,

denote q1, . . . , qℓ the points of Si enumerated by going around ∂Di in the

anti-clockwise sense from q0, and let ∂Di(qj → qj+1) be the smooth arc

in Γ joining qj to qj+1 on ∂Di. Now interpolate between the local separatrix
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si(q0) and the ray {θ = 0} in D(pi) by a smoothly embedded curve. Set

βj :=
1

ai

∫

∂Di(qj→qj+1)

λfi , j = 0, . . . , |Si| − 1,

and

θj :=

j−1∑

k=0

βk.

Interpolate now inductively between the local separatrix si(qj) and the ray

{θ = θj} by disjoint smoothly embedded curves (for different j) in Di such

that the area enclosed by the three arcs ∂Di(qj → qj+1), s(pi → qj), and

s(pi → qj+1) is βj ai. Here, s(pi → qj), j = 1, . . . , ℓ, denote the global

separatrices thus constructed. These interpolations can be found because the

total area enclosed by ∂Di is ai. Interpolations s(p1 → q1) and s(p1 → q2)
are drawn in pink in Figure 3.2. We declare the s(pi → qj) to be leaves

of F in Di.

Step 3: Interpolating between the local foliations in Di

The foliation Fi on Di is then taken to be any (singular) foliation in Di that

verifies the following properties:

(1) The points pi and qj ∈ Si are the only singularities of F|Di
, so

F|Di\{pi} is smooth.

(2) The curves s(pi → qj) are leaves.

(3) On the D(pi), D(qj), D
+(qk), and Op (Γ)\ Sing(Γ) the leaves of F

are the ones described in Step 1.

(4) All leaves join pi to ∂Di and are transverse to ∂Di \ Si.

(5) For c ∈ (βj , βj+1) the leaf extending the ray {θ = c} ⊂ D(pi) joins

pi to the unique point q ∈ ∂Di(qj → qj+1) such that
∫

∂Di(qj→qj+1)

λfi = c− βj .

Figure 3.2 shows in black seven curves that belong to leaves of F1 from p1
to ∂D1(q1 → q2). By (3) and (4) we can successively construct foliations

F1,F2, . . . ,Fm such that all non-singular leaves are C∞-smooth.

Step 4: Joining the foliations Fi

Since Fi is a smooth foliation on Di \
(
{pi} ∪ Si

)
and by the smooth

fitting of the leaves across the ∂Di(qj → qj+1), the foliation F on D \(
∪{pi}

⋃
Sing(Γ)

)
defined by

F|Di\({pi}∪Si) := Fi
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p1

p3

q1
q2

q3
q0

Γ

FIGURE 3.2. The foliation F on the D(pi), D(qj), and

D+(qk) (blue and green), part of the foliation F1, and

D(p1, p3) (yellow).

is C∞-smooth, and has a unique extension to a singular foliation on the

whole disc D whose singularities are ∪{pi}
⋃
Sing(Γ). The different sep-

aratrices s(pi → q), q ∈ Si, are smooth leaves. The leaves of F that pass

through a point in Γ \ Sing(Γ) that separates between Di and Dj join pi
to pj . Finally, the leaves through a sequence of regular points on Di ∩ Dj

that converge to a singular point q ∈ Sing(Γ) break into the two separatrices

s(pi → q) and s(pj → q).
We denote by D(pi, pj) the closure of the union of leaves joining pi to pj .

Figure 3.2 shows D(p1, p3) in yellow.

Step 5: Fixing the Liouville form itself

By applying Lemma 3.3 to the curves of the foliation F that emanate ei-

ther from (pi, ai) or from (pj , aj), we obtain on the interior
◦

D(pi, pj) two

Liouville forms λi, λj . We claim that they coincide. To see this, we first

check that these forms vanish on Γ. Indeed, let q ∈ Γ ∩
◦

D(pi, pj). Since

λi vanishes along F , we already have λi(q)v = 0 for v ∈ Tqγ, where γ is

the leaf through q. On the other hand, parametrize the leaves through q ∈

Γ∩
◦

D(pi, pj) by curves γ(θ, t), where θ represents the angle of the leaf at pi
and the parameter t verifies γθ(1) ∈ Γ, and put ∂

∂θ
(q) := ∂γ

∂θ
(θ(q), 1) ∈ TqΓ.

Since λi vanishes along F , and by Stokes’ theorem and the second property
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of λi from Lemma 3.3,

(3.1) λi(q)
∂

∂θ
(q) =

dAi

dθ
(θ(q))− ai,

where Ai(θ) is the area of the disc bounded byΓ, γ(θ, [0, 1]), and γ(θ(q), [0, 1]).
By the choice of our foliation (point 5 in Step 3), the right hand side of (3.1)

vanishes, so λi(q) vanishes. Now, since λi and λj coincide on F and on Γ,

Stokes’ theorem shows that they coincide on
◦

D(pi, pj). We therefore define

λ| ◦

D(pi,pj)
:= λi = λj .

Since λi is defined and smooth on
◦

Di \ {pi}, and not only on
◦

D(pi, pj), we

can glue the λi to the smooth Liouville form λ on D \ Sing(Γ). Notice that

for γ(θ, t) as defined above, we have by the same argument

λ(γ(θ, t))
∂

∂θ
< 0 ∀ t < 1.

Hence on
◦

Di \ {pi} we have dλ(Xλ,
∂
∂θ
) = λ( ∂

∂θ
) < 0, which shows that

the coordinate t is (negative) gradient-like for the Liouville flow Xλ of λ,

and so B(pi, λ) ⊃ Di. On the other hand, λ vanishes on Γ, so Γ is invariant

under the Liouville flow of λ. Summarizing, we have therefore proved that

• λ is a smooth Liouville form on D \
(
Sing Γ ∪ {p1, . . . , pm}

)
,

• λ is tame at each pi with residue −ai, in fact λ = (R−ai)dθ near pi,
• Xλ vanishes on Γ\ Sing Γ,
• every trajectory starting in D \ Γ converges to some pi.

Step 6: Smoothening λ at Sing(Γ)

We only treat the case of q ∈ Sing(Γ)\∂D, the other case being similar. We

recall that a neighbourhood D(q) of q, that is identified with D(ε), covers

a neighbourhood of 0 ∈ C via the map ρq(R, θ) = ( 2R
mq
, mq

2
θ), and that in

these coordinates, F is the foliation ρ∗q{x = const}. This foliation is thus

also tangent to the kernel of the local Liouville form λq := ρ∗q(−
1
π
y dx).

Away from q, this form λq also vanishes on ρ∗q{y = 0} = Γ ∩ D(q).
Away from q, both forms λ and λq are thus smooth and vanish along F and

on Γ. Stokes’ theorem therefore guarantees that they coincide onD(q)\{q}.

None of the two forms smoothly extends to q, however, since at (x, y) 6=
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(0, 0),

λq = ρ∗q(−
1
π
ydx)

= ρ∗q
(

1
2π
(xdy − ydx)− 1

2π
(xdy + ydx)

)

= ρ∗q
(
Rdθ − 1

2π
d(xy)

)

= ρ∗q
(
Rdθ − 1

2π
d(R sin(2πθ) cos(2πθ))

)

= Rdθ − 1
4π
ρ∗qd(R sin(4πθ))

= Rdθ − 1
2πmq

d(R sin(2πmqθ))

and the function R sin(2πmqθ) is not smooth at the origin for mq ≥ 2. We

thus alter λq in D(q) so as to make it smooth at q.

The function rmq sin(2πmqθ) is smooth on R2, since it is the imaginary

part of z 7→ zmq . Let χ : [0, 2ε] → R≥0 be a function that coincides with rmq

near 0 and with R on [ε, 2ε], is positive and smooth except at 0, and meets

χ(R) < R on (0, ε). Define the smooth 1-form λ′ on D by λ′ = λ on D \
∪q∈Sing ΓD(q) and

λ′ = Rdθ −
1

2πmq

d
(
χ(R) sin(2πmqθ)

)
on D(q).

Then λ′ is a smooth Liouville form on D \ {p1, . . . , pm}, tame at pi with

residue −ai. We claim that the skeleton of λ′ is Γ, as required. To see this,

notice that Xλ′ = Xλ on D \ ∪q∈Sing ΓD(q), and

Xλ′ = (R− χ(R) cos(2πmqθ))
∂

∂R
+

1

2πmq
χ′(R) sin(2πmqθ)

∂

∂θ

on D(q). We first look at the ∂
∂θ

-component of Xλ′ . Since

Γ = {sin(πmqθ) = 0} ⊂ {sin(2πmqθ) = 0},

Xλ′ is radial on Γ ∩D(q) (hence its flow preserves Γ), and the trajectories

of the points in D(q) \ Γ flow away from Γ. From the ∂
∂R

-component, and

from Γ ⊃ {cos(2πmqθ) = 1} and χ(R) < R on (0, ε), we infer that the

trajectories of the points in D(q) \Γ all leave D(q), and hence reach the set

{λ = λ′} \ Γ (since Γ is invariant). It follows that Skel(λ′) = Γ. �

The following easy result will be needed in the next subsection.

Lemma 3.4. Let (S, ω) be a compact symplectic surface with or without

boundary. Let
(
P := {(pi, ai), i = 1, . . . , n}, λ

)
with pi ∈ S \ ∂S be a

polarization of S (where λ is a tame Liouville form with residues ai at pi
and with flow tangent to ∂S), and set Γ := Skel(S,P, λ).

For k ≤ n and any collection {(a1i , a
2
i ), i = 1, . . . , k} of pairs of positive

real numbers with ai = a1i + a2i there exist:
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• a collection of open embedded discsDi around pi, in any prescribed

neighbourhood of pi
• for i ≤ k: points p1i , p

2
i ∈ Di

• and a tame Liouville form λ′ with residues a1i at p1i and a2i at p2i for

i ≤ k and ai at pi for i ∈ {k + 1, . . . , n}

such that

B(Di, λ
′) :=

{
x ∈ S | ∃ t > 0 such that φt

λ′(x) ∈ Di

}
= B(pi, λ).

Proof. Since λ is tame at pi, its dual vector field points towards pi on a

neighbourhood of pi, so there exist arbitrarily small disjoint open discsDi ⊂
S \ (∂S ∪ Γ) around pi with

B(Di, λ) = B(pi, λ).

For i ≤ k take any pair of points pji ∈ Di, j = 1, 2, and a Hamiltonian

diffeomorphisms φj
i with compact support in Di such that φj

i (p
j
i ) = pi.

Define

λ′(x) :=

{
λ(x) if x ∈ S \

⋃k
i=1Di,

a1i
ai
φ1∗
i λ(x) +

a2i
ai
φ2∗
i λ(x) if x ∈ Di for some i ∈ {1, . . . , k}.

Then λ′ is a Liouville form tame at pji with residue aji . Since it coincides

with λ on Γ∪∂S, its flow preserves bothΓ and ∂S, so
(
P ′ :=

{
(pji , a

j
i )
}
, λ′

)

is a Liouville polarization of S. Since λ′ coincides with λ outside the

discs Di,

B(Di, λ
′) = B(Di, λ) = B(pi, λ).

The lemma follows. �

3.2. Bidiscs. As before we denote by D(A) the closed disc of area A, and

by D(A) its interior.

Lemma 3.5. Let Γ1 ⊂ D(A) and Γ2 ⊂ D(B) be two regular grids contain-

ing ∂D(A), ∂D(B) whose complements are a union of discs of area ai, bj
on which we choose points pi, qj , respectively. Then

Σ :=
{(
pi ×D(B), ai

)
,
(
D(A)× qj , bj

)}

is an extendable Liouville polarization ofD(A)×D(B), and there is a tame

Liouville form λ whose skeleton is Γ1 × Γ2.

Proof. By Proposition 3.2 there exist Liouville forms λ1, λ2 onD(A), D(B)
that are tame along the pi, qj , with residues ai, bj and skeleton Γ1,Γ2, re-

spectively. Then the restriction of the form λ := π∗
1λ1 × π∗

2λ2 to Σ is a

Liouville form tame along Σ with the correct residues. Since the associated
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Liouville flow is simply the product of the flows in each factor, it clearly

preserves

∂
(
D(A)×D(B)

)
=

(
∂D(A)

)
×D(B) ∪D(A)×

(
∂D(B)

)
.

Moreover, for x /∈ Γ1 × Γ2, we have π1(x) ∈ D(A) \ Γ1 or π2(x) ∈
D(B) \ Γ2, so the trajectory of π1(x) or π2(x) under the Liouville flow

of λ1 or λ2 is forward attracted by one of the pi or qj , which shows that

the complement of Γ1 × Γ2 in D(A) × D(B) is forward attracted by Σ,

whence Skel(Σ, λ) ⊂ Γ1 × Γ2. Finally, for a point in Γ1 × Γ2, both

components remain in Γ1,Γ2, so Γ1 × Γ2 is invariant under the Liouville

flow and Skel(Σ, λ) ⊃ Γ1 × Γ2. The extendability is obvious: take Ω̂ :=

D(A+ ε)×D(B + ε) and Σ̂ := {pi ×D(B + ε), D(A+ ε)× qj}. �

Combining Lemma 3.4 and Lemma 3.5 we obtain:

Lemma 3.6. Let
(
{(pi, ai)}i=1,...,m , λA

)
and

(
{(qj, bj)}j=1,...,n , λB

)
be Li-

ouville polarizations of D(A) and D(B) (so
∑
ai = A and

∑
bj = B)

with skeleton ΓA and ΓB , respectively. Let m′ ≤ m, n′ ≤ n, and assume

that for i ≤ m′ and j ≤ n′ we are given decompositions

ai = a1i + a2i and bj = b1j + b2j , with aℓi , b
ℓ
j > 0.

Then there exist:

• open discs DA
i , DB

j for i ≤ m, j ≤ n around pi, qj , which lie in any

prescribed neighbourhood of pi, qj

• for i ≤ m′, j ≤ n′: points p1i , p
2
i ∈ DA

i and q1j , q
2
j ∈ DB

j

• and a tame Liouville form λ′ on the complement of

Σ
′ :=

{(
pℓi ×D(B), aℓi

)ℓ=1,2

i≤m′
,
(
D(A)× qℓj, b

ℓ
j

)ℓ=1,2

j≤n′
,

(
pi ×D(B), ai

)
i>m′

,
(
D(A)× qj , bj

)
j>n′

}

that makes (Σ′, λ′) a Liouville polarization of D(A)×D(B)

such that

B
(
∪iD

A
i ×D(B)

⋃
∪jD(A)×DB

j , λ
′
)

=
(
D(A)×D(B)

)
\ (ΓA×ΓB).

Proof. Take small open discs DA
i around pi, for i ≤ m′ take points p1i , p

2
i ∈

DA
i , and let λ′A be the tame Liouville form on

D(A) \
(
{pℓi}

ℓ=1,2
i≤m′ ∪ {pi}i>m′

)

provided by Lemma 3.4, with residues aℓi at pℓi for i ≤ m′ and ai at pi for

i > m′, and such that

B
(
∪iD

A
i , λ

′
A

)
= D(A)\ΓA.
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Construct similarly λB on

D(B) \
(
{qℓj}

ℓ=1,2
i≤n′ ∪ {qj}j>n′

)
.

As we have seen in the proof of Lemma 3.5, the 1-form λ′ := λ′A ⊕ λ′B is

tame along Σ
′, and

B
(
∪iD

A
i ×D(B)

⋃
∪jD(A)×DB

j , λ
′
)

=
(
D(A)×D(B)

)
\ (ΓA×ΓB).

The lemma is proved. �

3.3. Surgery on Liouville polarizations. The aim of this section is Propo-

sition 3.8 that allows to glue certain components of a Liouville polarization,

to obtain a “smoother” Liouville polarization. We will need the following

rather obvious statement.

Lemma 3.7. Let Σ ⊂ B4(1) be a smooth symplectic curve that near the

boundary ofB4(1) agrees with a collection of complex lines (1-dimensional

complex vector spaces). Let µ ∈ R. Then there exists a Liouville form λ on

B4(1)\Σ, tame along Σ, with residue µ. (We do not claim that (B4(1),Σ, λ)
is a Liouville polarization.)

Proof. Since Σ coincides with a union of complex lines near ∂B4(1),
compactifying B4(1) into CP2(1) provides a smooth symplectic curve Σ′

in CP2. This is a polarization, so by Proposition 2.5 (i) there exists a

Liouville form λ′ on CP2 \Σ′ that is tame along Σ′. Restricting λ′ to

B4(1) ⊂ CP2(1) provides a Liouville form λ on B4(1)\Σ tame along Σ. It

has a well-defined residue which is a constant ν because Σ is assumed to be

smooth. Then the form

λst +
µ

ν
(λ− λst)

is a Liouville form on B4(1)\Σ, tame along Σ because it coincides with a

multiple of λ up to a smooth form, with residue µ. �

Proposition 3.8. Let (M,ω,Σ, λ) be a polarized symplectic manifold, ei-

ther closed or Liouville polarized. Assume that the weights µi, µj of two

components Σi,Σj of Σ coincide. Then for any neighbourhoodU of Σi∩Σj

there exist:

• A smooth symplectic curve Σij that coincides with Σi ∪ Σj in the

complement of U . We then define

Σ
′ := {(Σk, µ

′
k = µk)k 6=i,j, (Σij, µ

′
ij = µi = µj)}.
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• A Liouville form λ′ onM\Σ′ tame alongΣ′ with residues µ′
k that co-

incides with λ on the complement ofU and is such that (M,ω,Σ′, λ′)
is again a (Liouville) polarized symplectic manifold.

Proof. We first consider a model in R4. Let Σ1 = {z2 = 0} and Σ2 =
{z1 = 0} be the complex coordinate lines in C2. For ε > 0 let χ : [0, 2ε] →
[0, 1] be a smooth function that is 1 near 0 and vanishes on [ε, 2ε]. For δ > 0
define the smooth cylinder

Zδ := {z1z2 = δχ(R)}.

Note that Zδ = Σ1 ∪ Σ2 outside B4(ε), see Figure 3.3. As is well known,

Zδ is symplectic for δ = δ(ε) small enough.

ε 2ε
Σ1

Σ2

FIGURE 3.3. From Σ1 ∪ Σ2 to Zδ, schematically.

Consider the Liouville form

λ0 = λst − µ(dθ1 + dθ2)

on R4 \ (Σ1 ∪ Σ2), tame along Σ1 ∪ Σ2 with residue −µ. Since Zδ =
Σ1 ∪ Σ2 on B4(2ε) \B4(ε), Lemma 3.7 provides a tame Liouville form λδ
on B4(2ε) \ Zδ with residue −µ. Consider the shell

V = {R ∈ (ε, 2ε)} = B4(2ε) \B4(ε).

Then λ0 and λδ are Liouville forms on V \ Zδ, tame along Zδ, with equal

residue −µ. By Proposition 2.5 (ii) there exist a smooth bounded closed

1-form ϑ on V \Zδ such that

λδ = λ0 + ϑ.

Since H1(V \Zδ) is generated by two small loops around Zδ on which ϑ
integrates to 0, ϑ is the derivative of a smooth function f : V \Zδ → R.

Since ϑ is bounded, f extends to a Lipschitz function on V . Let now
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ρ : [ε, 2ε] → [0, 1] be a smooth function that equals 1 near ε and vanishes

near 2ε, and define the smooth Liouville form λ′ on B4(2ε) \ Zδ by
{
λ′|{R≤ε} := λδ

λ′|{ε≤R≤2ε} := λ0 + d(ρ(R)f).

Since ρ(R)f is a Lipschitz function, smooth on V \Zδ, λ
′ is tame on V \Zδ

with residue −µ, and the same holds on {R ≤ ε}. Moreover, λ′ = λ0 near

the boundary of B4(2ε). This finishes the construction of the interpolating

model
(
Zδ ∩ B

4(2ε), λ′
)
.

Now take two components Σi,Σj of (Σ, λ) with equal weights µi =
µj as in the proposition. Since Σ has normal crossings and λ is tame

along Σ by assumption, there exists for each p ∈ Σi ∩ Σj a Darboux chart

φp : B
4(3εp) → (M,ω) centered at p such that

φ−1
p (Σ) = φ−1

p (Σi ∪ Σj) = {z1z2 = 0},

φ∗
pλ = λst − (µidθ1 + µjdθ2) = λst − µi(dθ1 + dθ2).

Now choose the εp so small that the Darboux balls φp(B
4(3εp)) are disjoint,

and apply to each ball B4(2εp) the above model interpolation. When trans-

planted to M , this yields a Liouville form λ′ on M \Σ′, tame along Σ′, with

correct residues. Also notice that in the open case the Liouville flow of λ′

is backward complete, because λ′ = λ outside
⋃

p φp(B
4(2ε)). �

4. SYMPLECTIC EMBEDDINGS

In this section we prove the symplectic embedding results Theorems 1,

2, 3, and 6. The proofs are all based on the same principle, stated in Theo-

rem 2.20, which reduces the proofs to finding convenient polarizations. We

first prove Theorem 6. While Theorem 1 is a direct corollary, Theorem 2

deals with an unbounded domain, whence the proof needs some adjust-

ments. We finally prove Theorem 3, using explicit smooth polarizations of

the ball.

4.1. The main embedding result (Theorem 6). We first prove a special

“monotone” case of Theorem 6, and then reduce the general case to this

monotone case.

4.1.1. The monotone case.

Proposition 4.1. Let Γ1 and Γ2 be two regular grids inD(A) andD(B), re-

spectively, that cutD(A) intom topological discs of equal area a andD(B)
into n topological discs of equal area b. Then there exists an (αst, αst)-exact

symplectic embedding
(
D(A)×D(B)

)
\ (Γ1 × Γ2) → Z4(a + b).
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Proof. Let P = {p1, . . . , pm}, Q = {q1, . . . , qn},

Σ :=
{(

P ×D(B), a
)
,
(
D(A)×Q, b

)}
,

and let λ be the Liouville form on
(
D(A)×D(B)

)
\Σ provided by Lemma 3.5

so that (Σ, λ) is an extendable Liouville polarization of D(A)×D(B) with

skeleton Γ1 × Γ2.

We now construct a Liouville polarization of Ω′ := D(a + b) × D(Kb)
for K large enough, to be fixed later in the proof. We refer to Figure 4.1

for an illustration of the construction. Take a regular grid (a smooth line) in

D(a + b) that divides D(a + b) into topological discs of area a and b, and

take a point p′1 in the disc of area a and p′2 in the disc of area b. For a large

integer K (to be chosen later), take a regular grid in D(Kb) that divides

D(Kb) into K topological discs of area b, and choose a point q′j in each

disc. Lemma 3.5 yields a Liouville polarization
({(

D(a+ b)× {q′j}, b
)
,
(
{p′1} ×D(Kb), a

)
,
(
{p′2} ×D(Kb), b

)}
, λ′

)

of Ω′ = D(a+ b)×D(Kb), consisting of K + 2 discs.

Define now Σ′
1 :=

{
{p′1} ×D(Kb)

}
and let Σ′

2 be the symplectic curve

obtained by resolving all the intersection points (p′2, q
′
j) of the K + 1 re-

maining discs. We can assume that the smoothening takes place in balls

around these points that are disjoint and do not intersect ∂Ω′. Since λ′ has

residue b along each component used to define Σ′
2, Proposition 3.8 shows

that it can be modified in this union of balls to a Liouville form λ′′, tame

along Σ′
1 ∪ Σ′

2, with residue a along Σ′
1 and b along Σ′

2. Since λ′′ coincides

with λ′ near ∂Ω′, its Liouville flow is also tangent to ∂Ω′. In other terms,
(
Σ

′ := {(Σ′
1, a), (Σ

′
2, b)}, λ

′′
)

is a Liouville polarization of Ω′. Now Σ′
1 has area Kb, Σ′

2 has area K(a +
2b), and #(Σ′

1 ∩ Σ′
2) = K. For K large enough we therefore find m dis-

joint topological discs Di
1 of area strictly larger than B in Σ′

1 and n disjoint

topological discs Dj
2 of area strictly larger than A in Σ′

2 such that each Di
1

intersects each Dj
2 exactly once. Hence there exists a symplectic morphism

φ : Σ̂ → Σ
′. Since the first cohomology of a disc vanishes, φ is (αst, αst)-

exact. Theorem 2.20 now guarantees an exact symplectic embedding of(
D(A)×D(B)

)
\ (Γ1 × Γ2) into D(a+ b)×D(Kb) ⊂ Z4(a+ b). �

4.1.2. Reduction to the monotone setting.

Proposition 4.2. Let Γ1 ⊂ D(A) and Γ2 ⊂ D(B) be regular grids whose

complements are a union of m topological discs of area ai ≤ a and of

n topological discs of area bj ≤ b, respectively.
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q′1

q′2

q′3

q′4

p′1 p′2

Σ′
1 Σ′

2

FIGURE 4.1. Σ′
1 and Σ′

2 in Ω′ = D(a+ b)×D(Kb) for K = 4.

Then there exists a regular grid Γ′
1 ⊂ D(ma) that cuts D(ma) into

m topological discs of area a and a regular grid Γ′
2 ⊂ D(nb) that cuts

D(nb) into n topological discs of area b, and an (αst, αst)-exact symplectic

embedding
(
D(A)×D(B)

)
\
(
Γ1 × Γ2

)
→

(
D(ma)×D(nb)

)
\
(
Γ′
1 × Γ′

2

)
.

Proof. If ai = a and bj = b for all i, j, then there is nothing to prove. So

after switching the factors and re-indexing we can assume that ai < a for

1 ≤ i ≤ m′ ≤ m and ai = a for i ≥ m′ + 1. Define n′ ≤ n for the bi in the

same way, where however n′ = 0 if bi = b for all i.
Write P := {p1, . . . , pm} ⊂ D(A), Q := {q1, . . . , qn} ⊂ D(B), and let

(
Σ :=

{
(pi ×D(B), ai), (D(A)× qj , bj)

}
, λ

)

be the extendable Liouville polarization of D(A) × D(B) with skeleton

Γ1 × Γ2 provided by Lemma 3.5. We recall that in this case, an extension
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is obtained by taking somewhat larger discs, so Σ is just the closure of Σ
in C2, i.e. the closed discs. Similarly, let P ′ := {p′1, . . . , p

′
m} ⊂ D(ma),

Q′ := {q′1, . . . , q
′
n} ⊂ D(nb), and let

(
Σ

′ :=
{
(P ′ ×D(nb), a), (D(ma)×Q′, b)

}
, λ′

)

be the Liouville polarization of D(ma) × D(nb) with skeleton Γ′
1 × Γ′

2.

Since we are free to choose Γ′
1 and Γ′

2, and since D(A) ⊂ D(ma) and

D(B) ⊂ D(nb), we may as well assume that p′i = pi and q′j = qj . This is

not an important assumption but will simplify the proof at some point. We

will nevertheless keep the primes in order to distinguish the source and the

target. Lemma 3.6 provides disjoint open discs DA
i in D(ma) \ Γ1, disjoint

open discs DB
j in D(nb) \Γ2, points p′1i , p

′2
i ∈ DA

i for i ≤ m′, q′1j , q
′2
j ∈ DB

j

for j ≤ n′, and a Liouville polarization (Σ′′, λ′′) of D(ma)×D(nb) with

Σ
′′ :=

{ (
p′1i ×D(nb), ai

)
i≤m′

,
(
p′2i ×D(nb), a− ai

)
i≤m′

,
(
D(ma)× q′1j , bj

)
j≤n′

,
(
D(ma)× q′2j , b− bj

)
j≤n′

,
(
p′i ×D(nb), a

)
i≥m′+1

,
(
D(ma)× q′j , b

)
j≥n′+1

}

and such that

B
(
∪iD

A
i ×D(nb)

⋃
∪jD(ma)×DB

j , λ
′′
)

(4.1)

⊂
(
D(ma)×D(nb)

)
\ (Γ′

1 × Γ′
2).

As is clear from the proof of Lemma 3.6 we can chose p′1i = p′i and q′1i = q′i.
We can find ε > 0 and two area preserving embeddings

σ : D(B) → D(nb)

τ : D(A+ ε) → D(ma)

such that σ(qj) = q′j = qj for all j ≤ n and the image im σ avoids all

the q′2j , and such that τ(pi) = p′i for all i ≤ m and im τ avoids all the p′2i .

This is obvious for τ because A < ma by assumption. It is also true for σ
because ifB < nbwe can even extend σ to σ̂ : D(B+ε) → D(nb) with the

required properties, and if B = nb then bj = b for all j, so there is no q′2j to

avoid, and σ can be taken to be the identity. The two maps σ and τ induce

an embedding φ : Σ → Σ′′ defined by

φ|pi×D(B) = p′i × σ

φ|D(A)×qj = τ × q′j .

There are now two cases.

Case B < nb: As already noticed, in this case σ can be extended to an area

preserving embedding σ̂ : D(B + ε) → D(nb), so φ can be extended to a
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smooth area preserving embedding Σ̂ → Σ′′ which is a symplectic mor-

phism between our polarizations. It is (αst, αst)-exact because all compo-

nents of Σ are discs. Theorem 2.20 now implies that

(4.2)
(
D(A)×D(B)

)
\ (Γ1 × Γ2) = B(Σ, λ) ֒

αst−−→ B(Σ′′, λ′′).

Moreover, since

Σ
′′ ⊂ ∪iD

A
i ×D(nb)

⋃
D(ma)× ∪jD

B
j ,

we obtain together with (4.1) the inclusion

B(Σ′′, λ′′) ⊂ B
(
∪iD

A
i ×D(nb)

⋃
D(ma)× ∪jD

B
j

)
(4.3)

⊂
(
D(ma)×D(nb)

)
\ (Γ′

1 × Γ′
2).

Composing (4.1) with (4.3) we obtain the asserted exact symplectic embed-

ding.

Case B = nb: In this case, σ = id does not extend to a larger disc with

image still in D(nb), so formally the above argument does not apply. We

solve this difficulty by revisiting the proof of Theorem 2.20 in this particular

case: Although φ does not extend to an extended polarization Σ̂ as before,

the product map ψ := τ × id extends φ to a small neighbourhood of Σ
in D(A) × D(b), still with image in D(ma) × D(nb). The forms λ on

D(A)×D(B) and λ′′ on D(ma)×D(nb) are both split:

λ = λ1 ⊕ λ2, λ′′ = λ′′1 ⊕ λ′′2,

where λ1, λ2 are defined on D(A)\{pi}, D(B)\{qj} and λ′′1, λ
′′
2 are defined

on D(ma)\{p′i, p
′2
i }, D(mb)\{q′j}. Since B = mb and qj = q′j we can take

λ2 = λ′′2 , and since λ1 and λ′′1 have the same residues at pi and p′i = pi, we

can make them coincide on a small neighbourhood of the pi. Since τ can

clearly be taken to be the identity on a neighbourhood of the points pi, the

map ψ = τ × id (defined on a neighbourhood of Σ) then pulls back λ′′ to λ.

Thus the basic conjugacy procedure described in the proof of Theorem 2.20

to embed B(Σ, λ) into B(Σ′′, λ′′) applies, and now the argument in the pre-

vious case applies. �

4.1.3. Proof of Theorem 6. Let Γ1 ⊂ D(A) and Γ2 ⊂ D(B) be two reg-

ular grids that cut the discs into topological discs of area ≤ a and ≤ b,
respectively. By Proposition 4.2,

(
D(A)×D(B)

)
\ (Γ1 × Γ2) ֒

αst−−→
(
D(ma)×D(nb)

)
\ (Γa × Γb)
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where Γa and Γb cut D(ma) and D(nb) into topological discs of area a
and b, respectively. By Proposition 4.1, we also have

(
D(ma)×D(nb)

)
\ (Γa × Γb) ֒

αst−−→ Z4(a + b).

Composing these two maps we obtain the searched exact symplectic em-

bedding

f :
(
D(A)×D(B)

)
\ (Γ1 × Γ2) ֒

αst−−→ Z4(a + b).

�

4.2. Proof of Theorem 2. Let Γ := Γ1 × Γ1 ⊂ R
4, where Γ1 ⊂ R

2 is the

regular grid

Γ1 :=
⋃

(n,m)∈Z2

{n} × R ∪ R× {m}.

Let also

Σ :=
⋃

(n,m)∈Z2

{
(n+ 1

2
, m+ 1

2
)
}
× C ∪ C×

{
(n+ 1

2
, m+ 1

2
)
}
.

Lemma 4.3. There exists a Liouville form λ on R4\Σ with the following

properties:

• λ has residue 1 along Σ.

• For each p ∈ C2\Σ, the Liouville trajectory Φt
Xλ

(p) is defined for

t ∈ ] − ∞, t+(p)[, where t+(p) ∈ ]0,+∞]. If t+(p) < +∞, then

limt→t+(p) Φ
t
Xλ

(p) exists and belong to Σ.

• Γ is the skeleton of (Σ, λ):

Γ = {p | t+(p) = +∞} = R
4\B(Σ, λ).

• Xλ is tangent to the hyperplanes {x1 ∈ Z}, {x2 ∈ Z}, {y1 ∈ Z},

{y2 ∈ Z}.

Proof. Again, the form λ is a product:

λ(z,w)(u, v) = λz(u) + λw(v),

where λz = λw is a Liouville form on R2\
(
Z2+(1

2
, 1
2
)
)
, with Γ1 as skeleton.

We construct this Liouville form exactly as in Section 3.1, where compact-

ness plays no role. Alternatively, we can do the construction in the proof of

Proposition 3.2 on [−2, 2]2 in a Z2-periodic way. We then obtain a smooth

Liouville form on [0, 1]2 that extends to a smooth Z2-periodic Liouville

form on R2\
(
Z2 + (1

2
, 1
2
)
)

with skeleton Γ1. �

From Lemma 4.3 we obtain the following two facts:
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• For N ∈ N define

ΣN := Σ∩ ]−N,N [4 and ΓN := Γ× ]−N,N [4.

Then
(
(ΣN , 1), λ

)
is an extendable Liouville polarization of ] −

N,N [4 whose skeleton is ΓN . Notice that ΣN ⊂ ΣN+1.

• Define

Z(2) := ]− 1, 1[× ]0, 1[×R
2 and ΣZ := Σ ∩ Z(2).

Then
(
(ΣZ , 1), λ

)
is a Liouville polarization of Z(2).

Now ΣZ is made of two planes {(±1
2
, 1
2
)} × R2 and infinitely many discs

Dn,m := ]− 1, 1[× ]0, 1[×
{
(n+ 1

2
, m+ 1

2
)
}
, n,m ∈ Z.

As in the proof of Proposition 4.1, we keep Σ′
1 :=

{
(−1

2
, 1
2
)
}
×R2 and glue

all other components together to form a symplectic curve Σ′
2, which is dif-

feomorphic to a plane with infinitely many punctures arranged on a lattice.

Each puncture corresponds to a boundary component of action 2 (see Fig-

ure 4.2). Since λ has residue 1 along each component of ΣZ , Proposition 3.8

(applied with U the union of small balls around the singular points of Σ′
2)

yields a Liouville form λ′ on Z(2)\(Σ′
1 ∪ Σ′

2) tame along Σ′ := Σ′
1 ∪ Σ′

2

with residue 1 and equal to λ near ∂Z(2). In other terms,
(
{(Σ′

1, 1), (Σ
′
2, 1)}, λ

′
)

is a Liouville polarization of Z(2).

Lemma 4.4. For eachN there exists a symplectic morphism φN : Σ̂N → Σ′

such that

φN+1|Σ̂N
= φN .

Proof. For describing the construction of φN it is convenient to redescribe

the components Σ′
1 and Σ′

2 of Σ′:

• Σ′
1 = {(−1

2
, 1
2
)} × R2 is symplectic with standard area form on the

R2-factor. Its intersections with Σ′
2 are the points

In,m := (−1
2
, 1
2
, n+ 1

2
, m+ 1

2
), (n,m) ∈ Z

2.

• Σ′
2 is obtained by gluing (1

2
, 1
2
) × R2 with the topological discs

Dn,m, (n,m) ∈ Z2. This can be done by replacing each round disc

(1
2
, 1
2
)×D

(
(n+ 1

2
, m+ 1

2
), ε

)
by its gluing with the discDn,m. These

gluings can be parameterized by Z2-translations of a punctured disc

D(0, ε)\{(0, ε
2
} with an area form ωε whose total area is 2 + ε, and

that is standard near the boundary S1(ε). Each point In,m is again

parameterized by (n + 1
2
, m+ 1

2
).
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We also define Σ′
1(N) := {(−1

2
, 1
2
)} × [−N,N ]2 and Σ′

2(N) ⊂ Σ′
2 the

part of Σ′
2 parameterized by [−N,N ]2\(Z2+(1

2
, 1
2
+ ε

2
)), and notice that they

correspond exactly to the intersections of these curves withZ(2)∩[−N,N ]4

(see Figure 4.2).

1

2

1

2

1

1

FIGURE 4.2. The parametrization of the curve Σ′
2. Each

depicted disc D(ε) has area ε on the picture, but carries the

symplectic form ωε of area 2 + ε. The black points are the
punctures, and the red crosses are the intersection points

with Σ′
1.

Now divide ΣN into its 4N2 horizontal components

ΣH
N(n,m) := ]−N,N [2×

{
(n+ 1

2
, m+ 1

2
)
}
, (n,m) ∈ [−N,N − 1]2

and its 4N2 vertical components

ΣV
N (n,m) :=

{
(n+ 1

2
, m+ 1

2
)
}
× ]−N,N [2, (n,m) ∈ [−N,N − 1]2.

Each such component is a disc of area 4N2, the horizontal and vertical com-

ponents do not intersect pairwise, but each horizontal component intersects

each vertical component exactly once, thus each component passes through

4N2 singular points of ΣN .

We construct φN by sending a slightly larger disc around the closure of

each ΣV
N (n,m) into Σ′

1(2N
2 + 1), and by sending a slightly larger disc

around the closure of each ΣH
N (n,m) into Σ′

2(2N
2 + 1). The areas of these

surfaces are

A(Σ′
1(2N

2 + 1)) = (2(2N2 + 1))2 > 16N4 = A(ΣV
N)

A(Σ′
2(2N

2 + 1)) = (2(2N2 + 1))2 + 2(2N2 + 1)2 > 16N4 = A(ΣH
N),
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where ΣH
N :=

∐
ΣH

N(n,m) and ΣV
N :=

∐
ΣV

N(n,m), and

#
(
Σ′

1(2N
2+1)∩Σ′

2(2N
2+1)

)
= (2(2N2+1))2 > 16N4 = #(ΣV

N ∩ΣH
N ).

We can therefore define φN by its restrictions to ΣV
1 and ΣH

1 as illustrated

in Figures 4.3 and 4.4, where φN is explained in blue and φN+1 in yellow

forN = 1. These are area preserving embeddings that take the points at the

red crosses to points at the red crosses. This defines symplectic morphisms

φN : Σ̂N → Σ′, and we can clearly choose φN+1 such that φN+1|Σ̂N
= φN .

�

Proof of Theorem 2. We can now proceed as in the proof of Theorem 2.20.

First we extend each φN from Lemma 4.4 to a symplectic embedding

ψN : VN → Op
(
Σ′, Z(2)

)

of an open neighbourhood VN of Σ̂N . Set UN := VN ∩ [−N,N ]4. Since

φN+1|Σ̂N
= φN , Moser’s method shows that the maps ψN can be chosen

such that

UN+1 ⊃ UN and ψN+1|UN
= ψN |UN

.

We can therefore define the C∞-smooth symplectic embedding

ψ :
(
U,Σ

)
→

(
Z(2),Σ′

)

on U :=
⋃
UN by ψ|UN

:= ψN |UN
.

In the construction of the maps φN of Lemma 4.4 we can assume that

their images avoid a whole neighbourhood of the punctures. After choos-

ing U smaller, if necessary, the closure of ψ(U) is then disjoint from the

boundary of Z(2). Using Lemma 2.18 as in the proof of Theorem 2.20 we

correct ψ to a C1-smooth symplectic embedding

Φ:
(
Û ,Σ

)
→

(
Z(2),Σ′

)

defined on a neighourhood Û of Σ such that Φ(Û) ⊂ ψ(U), whence the clo-

sure of Φ(Û) is also disjoint from ∂Z(2). Choosing Û smaller if necessary,

we can also assume that Û retracts onto Σ, whose components are topo-

logical discs. We therefore find a Liouville form λ′′ on Z(2) that coincides

with Φ∗λ on Φ(Û) and with λ′ near ∂Z(2). Then the map

Ψ1 : B(Σ, λ) −→ Z(2)

p 7−→ φ
−t+(p)+ε(p)
Xλ′′

◦ Φ ◦ φ
t+(p)−ε(p)
Xλ

,

defined for any small enough positive function ε(p), is a C1-smooth sym-

plectic embedding.
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3

3

9

9

ΣV
1 (0, 0): area 4, 4 copies

ΣV
2 (0, 0): area 16, 16 copies

area 182 > 162

FIGURE 4.3. The restriction of φ1 to ΣV
1 and of φ2 to ΣV

2 .

Each band has height slightly less than 1, so that we can con-

struct a larger band of height less than 1 in the next step N +
1.

Since the components of Σ are discs, the φN are (αst|ΣN
, αst|Σ′)-exact,

and so Ψ1 is (αst, αst)-exact. The asserted (αst, αst)-exact symplectic em-

bedding Ψ: B(Σ, λ) = R
4 \ Γ → Z(2) is now obtained from Lemma 2.21.
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3

3

9

9

ΣV
1 (0, 0): area 4, 4 copies

ΣV
2 (0, 0): area 16, 16 copies

area 182 > 162

FIGURE 4.4. The restriction of φ1 to ΣH
1 and of φ2 to ΣH

2 .

These are almost the same embeddings as in the previous

figure, except that they avoid the punctures. Note that the

area 2 + ε of the discs is not even used since for ε > 0 small

enough the area of Σ′
2(2N

2 + 1) without the discs is already

larger than the area of ΣH
N .

�



LIOUVILLE POLARIZATIONS 47

4.3. Proof of Theorem 3. In this subsection we first give another proof of

Theorem 6 for the ball as domain, that does not use a singular polarization

but Biran’s smooth polarization. We then use this result to prove Theorem 3.

We start with a lemma that is useful if the polarization of the source is

smooth.

Lemma 4.5. Let (Σ, dα) and (Σ′, dα′) be compact connected symplectic

surfaces of genus g and g′, respectively. Let b be the number of boundary

components of Σ. Assume that

areaΣ < areaΣ′ and g + b− 1 ≤ g′.

Then there exists an (α, α′)-exact symplectic embedding ϕ : Σ →
◦

Σ′.

Proof. A basis of H1(Σ,Z) is given by oriented closed curves γ1, . . . , γ2g
around the g holes and b−1 oriented boundary components γ2g+1, . . . , γ2g+b−1,

see the red curves in Figure 4.5. Since g + b − 1 ≤ g′, there exists an em-

bedding f : Σ →
◦

Σ′ as shown in Figure 4.5.

Σ Σ′

f

FIGURE 4.5. The embedding f : Σ →
◦

Σ′ (in the figure it is

the inclusion).

Notice that f∗ : H1(Σ) → H1(Σ
′, ∂Σ′) is injective, over Z and hence

over R. In our context of oriented surfaces, the de Rham isomorphism gives

H1(Σ;R)
∗ = H1(Σ) and H1(Σ

′, ∂Σ′;R)∗ = H1
c (

◦

Σ′), where both spaces on

the right are the de Rham cohomology groups. Thus, f ∗ : H1
c (

◦

Σ′) → H1(Σ)
is surjective.

Since the area of Σ′ is larger than the area of Σ, Moser’s theorem allows

to further assume that f is area-preserving: f ∗dα′ = dα. Write γ′i = f(γi).
Since the classes [γi] are linearly independent in H1(Σ) and since f ∗ is
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surjective, there exists a compactly supported closed 1-form ϑ on Σ′ with

periods
∫

γ′

i

ϑ =

∫

γi

α−

∫

γ′

i

α′, i = 1, . . . , 2g + b− 1.

Let φt
ϑ be the flow associated to the vector field Xϑ defined by dα′(Xϑ, ·) =

ϑ. This flow is complete because ϑ is compactly supported, and it is sym-

plectic because ϑ is closed. A classical computation for the flux shows that
∫

φt
ϑ
(γ′

i)

α′ =

∫

γ′

i

α′ + t

∫

γ′

i

ϑ, i = 1, . . . , 2g + b− 1,

see e.g. [21, § 10.2]. Thus φ1
ϑ ◦ f is a (α, α′)-exact symplectic embedding

of Σ into Σ′. The proof of the proposition is complete. �

Theorem 4.6. B4(1)\∆k ֒
αst−−→ Z4

(
2
k

)
.

Proof. The polarization of CP2 of degree k in Example 2.8 restricts to

a tame Liouville polarization (Σk, λk) of the ball whose skeleton is ∆k ∩
B4(1), so

B4(1)\∆k = B
(
Σk, λk

)
.

One readily checks that this Liouville polarization is extendable. Moreover,

the area, genus, and number of punctures of Σk are well-known and given

by

Aω(Σk) = k, g(Σk) =
(k − 1)(k − 2)

2
, b(Σk) = k.

On the other side, proceeding as in the proof of Proposition 4.1, we take

for any A ∈ N two points pi in D( 2
k
) and kA points qj in D(A), all with

weight 1
k
, and consider the union of the discs D( 2

k
) × qj and pi × D(A).

Using Lemma 3.5 and resolving all the 2kA intersections as in Proposi-

tion 3.8, we obtain a smooth Liouville polarization Σ′
k of D( 2

k
) × D(A)

with residue 1
k
. Then

Aω(Σ
′
k) = 4A and g(Σ′

k) = kA− 1.

When A ≥ k
2
, we have Aω(Σ

′
k) > Aω(Σk) and g(Σ′

k) ≥ g(Σk)+ b(Σk)− 1
since k ≥ 2, so by Lemma 4.5 there exists an (αst|Σk

, αst|Σ′

k
)-exact sym-

plectic embedding of Σ̂k into Σ′
k, and by Theorem 2.20 there exists an

(αst, αst)-exact symplectic embedding of B
(
Σk, λk

)
= B4(1)\∆k intoZ4( 2

k
).

�
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Remark 4.7. When k = 2 we can get a better estimate and symplectically

embedB4(1)\∆2 = B4(1)\R2 into the ellipsoidE(1
2
, 2+ε), like [29]. This

is because Σ2 is a sphere with two punctures, hence has no genus. Thus a

cylindrical extension of Σ2 symplectically embeds into a disc of area 2+ ε.
Since by Example 2.14, (D(2+ε), 1

2
) is a polarization of SDB(D(2+ε), 1

2
),

Theorem 2.20 shows that B4(1)\∆2 embeds into SDB(2 + ε, 1
2
). And by

[23, Lemma 2.1], SDB(D(2+ ε), 1
2
) is symplectomorphic to E(2+ ε, 1

2
). ⋄

Recall that the open ellipsoid E(a, b) is defined as

E(a, b) =

{
(z, w) ∈ C

2

∣∣∣∣
|z|2

a
+

|w|2

b
< 1

}
.

Proposition 4.8. For d,N ∈ N coprime there exists for every m ∈ N with

m ≥ d and (m, d,N) 6= (2, 2, 1) a symplectic embedding

B4(1) \∆mNd ֒
αst−−→ E

(
1
d
, d+ 1

N

)
.

Proof. As above, consider the extendable Liouville polarization (ΣmNd, λmNd)
ofB4(1) of degreemNd, whose skeleton is∆mNd. We have thatAω(ΣmNd) =
mNd,

g(ΣmNd) =
1

2
(mNd − 1)(mNd− 2) and b(ΣmNd) = mNd.

In order to produce the required Liouville polarization of the target ellip-

soid, consider the symplectic ramified covering

Φ : B4(N(Nd2 + d)) −→ E(N,Nd2 + d)
(R1, θ1, R2, θ2) 7−→

(
R1

Nd2+d
, (Nd2 + d)θ1,

R2

N
, Nθ2

)
.

One checks without difficulty that the Liouville polarization (Σm, λm) of

B4(N(Nd2 + d)) of degree m projects under Φ to a smooth Liouville po-

larization of degree m of E(N,Nd2 + d) (smoothness requires that N and

Nd2 + d are coprime, which is equivalent to our assumption that N and d
are coprime). This polarization can therefore be seen as a Liouville polar-

ization (Σ′, λ′) of degreemNd of E(1
d
, d+ 1

N
). The polarizing curve Σ′ has

area

Aω(Σ
′) = m(Nd + 1) > Aω(ΣmNd),

and by the Riemann–Hurwitz formula its genus is

g(Σ′) =
1

2

(
(mN − 1)(mNd2 +md − 1)−m+ 1

)

which is ≥ g
(
ΣmNd

)
+ b

(
ΣmNd

)
− 1 by our assumption on (m, d,N). By

Lemma 4.5, there exists an (αst|ΣmNd
, αst|Σ′)-exact symplectic embedding

of Σ̂mNd into Σ′, and by Theorem 2.20 an (αst, αst)-exact symplectic em-

bedding of B(ΣmNd, λmNd) = B4(1)\∆mNd into E(1
d
, d+ 1

N
). �
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Proof of Theorem 3. It is shown in [30, § 6.2] that for every ε > 0 there

exists s0 ∈ R such that for every s ≥ s0 the ellipsoid λsE(
1
s
, s) of volume

B4(a − ε
2
) symplectically embeds into (M,ω). The claim now follows by

precomposing this embedding with a scaling of a suitable embedding from

Proposition 4.8. �

The above proof gives no upper bound for k. However, if (M,ω) is a

rational symplectic manifold, or an affine part M \ Σ therein, then by [23]

there exists an explicit volume filling ellipsoid in M that can be chosen to

lie in the complement of Σ. Together with Proposition 4.8 one obtains an

upper bound for k.

5. LAGRANGIAN RIGIDITY

Proof of Theorem 4. Let ι : L →֒ D(A)×D(B) be a Lagrangian embed-

ding of a closed surface. Assume that there exists a Hamiltonian diffeomor-

phism φ of R4 such that

φ(L) ⊂
(
D(A)×D(B)

)
\
(
Γ≤a× Γ≤b

)

Since φ(L) is compact and disjoint from
(
Γ≤a ∪ ∂D(A)

)
×
(
Γ≤b ∪ ∂D(B)

)
,

we can modify Γ≤a and Γ≤b near the vertices of their closure to regular

grids Γ′
≤a and Γ′

≤b that still divide D(A) and D(B) into topological discs of

area ≤ a and ≤ b, and such that still

φ(L) ⊂
(
D(A)×D(B)

)
\
(
Γ′
≤a × Γ′

≤b

)
.

By Theorem 6 there exists an exact symplectic embedding

ψ :
(
D(A)×D(B)

)
\
(
Γ′
≤a × Γ′

≤b

)
→ Z4(a+ b).

Then ψ ◦ φ ◦ ι : L → L′ ⊂ Z4(a + b) is a Lagragian embedding. Since φ
and ψ are exact, the action classes ι∗[αst] and (ψ ◦ φ ◦ ι)∗[αst] in H1(L;R)
coincide. Since by Stokes’ theorem the minimal area (1.1) is also the mini-

mal action

Amin(L) = inf

{∫

γ

αst | [γ] ∈ π1(L),

∫

γ

αst > 0

}
,

we obtain that

Amin(L
′) = Amin(L).

And since L′ ⊂ Z4(a + b), its displacement energy e(L) in C2 is < a + b,
so by Chekanov’s result from [8], Amin(L

′) ≤ e(L) < a + b. Altogether,

Amin(L) < a+ b, as we wished to prove. �
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6. LEGENDRIAN BARRIERS

Theorem 5 on the existence of short Reeb chords between Legendrian

curves is obtained from the Lagrangian rigidity result of the previous para-

graph via a construction of Mohnke [22], that associates to the Reeb trajec-

tory of a Legendrian knot a Lagrangian torus. We first review this construc-

tion.

Lemma 6.1. Let (M3, ξ, α) be a contact manifold,
(
SM =M×R>0, d(Rα)

)

its symplectization, Λ ⊂ M a Legendrian knot, and X ⊂ M any subset.

Assume that there is no Reeb chord of length ≤ T from Λ to Λ ∪X .

Then there exists a Lagrangian torus L in (M\X) × (0, 1] ⊂ SM with

Amin(L, SM) = T .

Proof. Consider the map

ι : Λ× (0, 1]× [0,∞) → SM, (p, τ, t) 7→
(
Φt

α(p), τ
)
,

where Φt
α is the Reeb-flow on (M,α). The restriction of ι to every band

{p} × (0, 1] × [0,∞), p ∈ Λ, is symplectic for the the forms dτ ∧ dt
and d(Rα) on the domain and the target, respectively. Since there is no

Reeb chord of length ≤ T from Λ to Λ ∪X , we find ε > 0 such that ι is an

embedding of Λ× (0, 1]× [0, T + ε) into

V := (M\X)× (0, 1] ⊂ SM.

Take a closed disc Dγ in (0, 1]× [0, T + ε] of area T and smooth oriented

boundary γ. Then ι(Λ × γ) is an embedded Lagrangian torus in V . The

actions of the generators [Λ] and [γ] of π1(L) are
∫
Λ
α = 0 and

∫
γ
α = T ,

so Amin(L, SM) = T . Moreover, the symplectic disc ι(Dγ) lies in V , has

boundary on L, and has area T . �

Returning to the setting of Theorem 5, we notice that when S is the

smooth boundary of a starshaped domain U ⊂ R4, with contact form

λS = αst|S, then the exact symplectomorphism
(
S × R>0, RλS

)
−→

(
R4\{0}, αst

)

(s, R) 7−→ Rs

identifies S × (0, 1] with U\{0} and X × (0, 1] with the part in U\{0} of

the cone over X centered at the origin of R4.

Proof of Theorem 5: Let S be the smooth boundary of a starshaped domain

U ⊂ C4(1) ⊂ R4. Arguing by contradiction, assume that Λ is a Legendrian

knot in S with no Reeb chord of length ≤ δ1 + δ2 from Λ to Λ ∪ Λδ, where

Λδ = (Γδ1× Γδ2) ∩ S. Since Γδ1 and Γδ2 are radial, Γδ1× Γδ2 lies in the cone
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over Λδ. Hence Lemma 6.1 provides a Lagrangian torus

L ⊂ U \ (Γδ1× Γδ2) ⊂ C4(1) \ (Γδ1× Γδ2)

with Amin(L) = δ1 + δ2. This is a contradiction to Theorem 4. �

An illustration. To get a feeling for the phenomenon of Legendrian barri-

ers, we explictely work out the case where S is the round sphere S3(1) =
∂B4(1) and δ1 = δ2 =

1
k
. Recall that

∆k =
⋃

0≤i,j≤k−1

ξiR≥0 × ξjR≥0

where ξ is the k th root of unity e2πi/k. Hence the Legendrian graph Λk :=
∆k ∩ S

3(1) is the union of the k2 Legendrian quarter-circles

Qi,j :=
(
ξiR≥0 × ξjR≥0

)
∩ S3(1).

Note that Qi,j and Qi′,j′ are disjoint if i 6= i′ and j 6= j′, and intersect at one

end-point if either i 6= i′ or j 6= j′. We group these k2 quarter-circles in k
sets

Qj :=

k−1∐

i=0

Qi,i+j.

Since the Reeb flow on S3(1) is the Hopf flow

Φt
R(z1, z2) = e2πit(z1, z2) =

(
e2πitz1, e

2πitz2
)
,

we have Φ
i
k

R(Q0,j) = ξiQ0,j = Qi,i+j , that is, Φ
1

k

R cyclically acts on the

components of Qj .

The full sweep out of Q0,j under the (backward) Reeb flow is the La-

grangian surface

Lj :=
⋃

t∈R

e−2πitQ0,j =
⋃

t∈[0,1]

e−2πitQ0,j =
⋃

t∈[0, 1
k
]

e−2πitQj .

Therefore, if π : S3 → S2 denotes the Hopf fibration (whose fibers are the

Reeb trajectories), then

Lj = π−1(hj), where hj = π(Q0,j) = π(Qj).

A computation shows that hj is a half-great circle joining the north pole to

the south pole of S2. Since the area of the reduced space S2 is 1, it follows

that the pairs (hj , hj+1) each bound an open disc Dj of area 1
k
. It is also not

hard to see that there exists a diffeomorphism π−1(Dj) → D( 1
k
) × S1 that

takes λS3(1) to αst ⊕ dt. Altogether, we see that

L :=
⋃

j

Lj =
⋃

t∈[0, 1
k
]

Φ−t
R (Λk)
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cuts S3(1) into k connected components, each of which can be identified

with
(
D( 1

k
)× S1, αst + dt

)
, where S1 = R/Z.

Now take a Legendrian knot Λ in S3(1) such that there is no Reeb chord

of length≤ 1
k

from Λ to Λk. Equivalently,Λ is disjoint from
⋃

t∈[0, 1
k
]Φ

−t
R (Λk),

which is L. So Λ lies in one of the connected components of S3(1)\L and

can be seen as a Legendrian knot in
(
D( 1

k
) × S1, αst + dt

)
. But a very

classical and elementary argument (see e.g. [1, p. 192]) shows that such a

knot has a Reeb chord of length ≤ 1
k

(in fact, of length < 1
2k

).

Summing up this discussion, in the case of the round sphere S = S3(1),
where the Reeb flow is explicit, the barrier property of Λk directly follows

from the fact that the 1
k
-negative Reeb chords starting at Λk disconnect S

into pieces all of whose Legendrian knots have small Reeb chords. There is

no reason, however, that this disconnectedness property remain true when

the Reeb flow is modified by taking the contact form on an arbitrary star-

shaped domain in C4(1). It is therefore remarkable that the Legendrian

rigidity result holds true.
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