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This paper investigates the geometry of a symplectic 4-manifold (M, ω) relative to
a J-holomorphic normal crossing divisorS . Extending work by Biran (inInvent.
Math. 1999), we give conditions under which a homology classA ∈ H2(M;Z)
with nontrivial Gromov invariant has an embeddedJ-holomorphic representative
for someS -compatibleJ. This holds for example if the classA can be rep-
resented by an embedded sphere, or if the components ofS are spheres with
self-intersection−2. We also show that inflation relative toS is always possible,
a result that allows one to calculate the relative symplectic cone. It also has im-
portant applications to various embedding problems, for example of ellipsoids or
Lagrangian submanifolds.
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1 Introduction

1.1 Overview

Inflation is an important tool for understanding symplecticembeddings in dimension
4. Combined with Taubes–Seiberg–Witten theory, it provides a powerful method to
study these embedding problems, especially in so-called rational or ruled symplectic
manifolds. Non exhaustive references for ball packings are[MP, B99, Mc98]. In
recent years, these results have been extended in several directions [MSc, BH, Mc11],
building on a work of the first author on ellipsoid embeddings[Mc09i]. Unfortunately,
this paper contains a gap, which we describe briefly now. The classical inflation method
requires that one finds an embedded symplectic curve in a given homology classA, that
intersects some fixed divisor transversally and positively. When this divisor is regular
in the sense ofJ-holomorphic curve theory — as in the case of ball packings, where it is
an exceptional divisor —, this embedded representative ofA is found via Taubes’ work
on pseudo-holomorphic curves in dimension 4. For ellipsoidembeddings however,
these divisors are not regular, so the relevant almost complex structures are not generic,
and the theory must be adapted, which was not done in [Mc09i]. This discussion raises
the following general question:

Question 1.1.1 Given a homology classA ∈ H2(M) in a symplectic4-manifold, with
embeddedJ-representatives for a generic set ofJ, are there natural conditions that
ensures thatA also has an embeddedJ-representative, whereJ is now prescribed on
some fixed divisorS ?
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In fact, as realized by Li–Usher [LU06], a complete answer to this question is not
needed for inflation: non-embedded representatives can also be used to inflate, and, as
was shown in [Mc13], this suffices to deal with the main gap in [Mc09i].

Question 1.1.2 To which extent can nodal curves replace embedded ones as faras
inflation is concerned ?

The present paper is concerned with these two questions. Themain results are Theo-
rem1.2.7that gives conditions under which a classA has an embeddedJ-holomorphic
representative forS -adaptedJ and Theorem1.2.12which explains that nodal curves
can be used for inflation in 1-parameter families relative toS (leading to a relative
version of “deformation implies isotopy" [Mc98]).

1.2 Main results

We assume throughout that (M, ω) is a closed symplectic 4-manifold. We first discuss
the kind of singular setsS we consider, and give a local model for their neighborhoods.
A neighborhoodN (C) of a (2-dimensional) symplectic submanifoldC can always
be identified with a neighborhood of the zero section in a holomorphic line bundle
L over C with Chern class [C] · [C]. For a unionS = ∪ CSi of submanifolds that
intersect positively andω -orthogonally the local model is a plumbing: we identify the
standard neighborhoodsN (CSi ) with N (CSj ) at an intersection pointq ∈ CSi ∩ CSj

by preserving the local product structure but interchanging fiber and base. Thus each
suchq has a product neighborhoodNq, and by a local isotopy we can always arrange
that this product structure is compatible withω , i.e. ω|Nq

is the sum of the pullbacks

of its restrictions toCSi and CSj . We call the resulting plumbed structure on the
neighborhoodN (S) = ∪i N (CSi ) the local fibered structure.

Definition 1.2.1 A singular setS := CS1∪· · ·∪CSs of (M, ω) is a union of symplecti-
cally embedded curves of genusg(Si ) in classesS1, . . . ,Ss respectively whose pairwise
intersections are transverse andω -orthogonal. A componentCSi is callednegativeif
(Si)2 < 0 andnonnegativeotherwise, and is calledregular if (Si )2 ≥ g− 1. We write
Ssing (resp. Sirreg ) for the collection of components that are negative and not regular
(resp. not regular), and defineIsing := {i : CSi ∈ Ssing} andIirreg := {i : CSi ∈ Sirreg}.

We say that thesymplectic form ω is adapted toS if the conditions above are satisfied
and if ω is compatible with the local fiber structure on some neighborhoodN (S).

Given, a closed fibered neighborhoodN of S we say that anω -tamealmost complex
structure J is (S,N )-adapted if it is integrable inN and if eachCSi as well as each
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local projectionN (CSi ) → CSi is J-holomorphic. We defineJ (S,N ) := J (S,N , ω)
to be the space of all such almost complex structuresJ. The space ofS -adapted
almost complex structures is the unionJ (S) :=

⋃
N J (S,N ) with the direct limit

topology.

We suppose throughout thatS satisfies the conditions of Definition1.2.1, and will call
it the singular set, even though some of its components may not be in any way singular.

Remark 1.2.2 (i) The regularity condition can also be written asd(Si ) ≥ 0, where
d(Si ) := c1(Si)+(Si)2 is the Seiberg–Witten degree. By (2.1.4), any regular component
CSi can be given aJ-holomorphic parametrization for someJ ∈ J (S) such that the
linearized Cauchy–Riemann operator is surjective. In other words, the parametrization
is regular in the usual sense forJ-holomorphic curves; cf. [MS04, Chapter 3]. On the
other hand, ifCSi is not regular, this is impossible. Further, by Remark2.1.9(ii), if
CSi is regular but negative then it is an exceptional sphere. Therefore Ssing consists
of spheres with self-intersection≤ −2 and higher genus curves with negative self-
intersection.

(ii) The orthogonality condition (ii) in Definition1.2.1 is purely technical. If all
intersections are transverse and positively oriented we can always isotop the curves in
S so that they intersect orthogonally; cf. Proposition3.1.3.

Example 1.2.3 Suppose that (M, ω, J) is a toric manifold whose moment polytope has
a connected chain of edgesǫi , i = 1, . . . , s, with Chern numbers−ki ≤ −2. Then the
inverse imageS of this chain of edges under the moment map is a chain of spheres with
respect to the natural complex structure onM . Moreover the toric symplectic form is
adapted toS : in particular the spheresCSi do intersect orthogonally. Another example
of S is a disjoint union of embedded spheres each with self-intersection≤ −2.

Write E ⊂ H2(M;Z) for the set of classes that can be represented by exceptional
spheres, i.e. symplectically embedded spheres with self-intersection−1.

Definition 1.2.4 A nonzero classA ∈ H2(M;Z) is said to beS -good if:

(i) Gr(A) 6= 0;

(ii) if A2 = 0 thenA is a primitive class;

(iii) A · E ≥ 0 for everyE ∈ Er{A}; and

(iv) A · Si ≥ 0 for 1 ≤ i ≤ s.
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Example 1.2.5 As we explain in more detail in §2.1, whenM is rational (i.e.S2×S2

or a blow up ofCP2) the Gromov invariant Gr(A) is nonzero wheneverA2 > 0,
ω(A) > 0 and the Seiberg–Witten degreed(A) := A2 + c1(A) is ≥ 0. Thus condition
(i) above is easy to satisfy. Further, ifA /∈ E satisfies (i) and (iii) thenA2 ≥ 0.

Here is a more precise version of Question1.1.1.

Question 1.2.6 Suppose thatA is S -good. When is there an embedded connected
curveCA in classA that isJ-holomorphic for someJ ∈ J (S)?

If Ssing = ∅, then the answer is “always". Therefore the interesting case is when at least
one component ofS is not regular.1 So far we have not managed to answer this question
by trying to constructCA geometrically.2 The difficulties with such a direct approach
are explained in §4.1. Nevertheless, in various situations one can obtain a positive
answer by using numerical arguments. In cases (iii) and (iv)below the classA has genus
g(A) = 0, where, by the adjunction formula (2.1.1), g(A) := 1+ 1

2(A2 − c1(A)) is the
genus of any embedded and connectedJ-holomorphic representative ofA. Our proof
of (iv) adapts arguments in Li–Zhang [LZ12], while that in (v) generalizes Biran [B99,
Lemma 2.2B]. Finally (ii) follows by an easy special case of the geometric construction
that works becauseS is not very singular.

Theorem 1.2.7 Let (M, ω) be a symplectic4-manifold with a singular setS , and
suppose thatA ∈ H2(M;Z) is S -good.

• In the following cases there isJ ∈ J (S) such thatA has an embeddedJ-
holomorphic representative:

(i) Ssing = ∅, i.e. the only components ofS with negative square are exceptional
spheres;

(ii) Ssing consists of a single sphere withS2 = −k where2 ≤ k ≤ 4.

• In the following cases there is a residual subsetJemb(S,A) of J (S) such thatA
is represented by an embeddedJ-holomorphic curveCA for all J ∈ Jemb(S,A):

(iii) A ∈ E ;

(iv) g(A) := 1+ 1
2(A2 − c1(A)) = 0;

1 See Remark2.1.9(i) for an explanation of the problem in analytic terms.
2 In a previous version of this paper, the first author claimed to carry out such a construction.

However, the second author pointed out first that the complicated inductive argument had a
flaw and, more seriously, that some of the geometric constructions were incomplete.
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(v) the components ofSirreg havec1(Si ) = 0 andA cannot be written as
∑

i∈Iirreg

ℓiSi

whereℓi ≥ 0.

Moreover, any two elementsJ0, J1 ∈ Jemb(S,A) can be joined by a pathJt, t ∈
[0,1], in J (S) for which there is a smooth family of embeddedJt -holomorphic
A-curves.

Remark 1.2.8 (i) Although we do not assume initially thatb+2 = 1, it is well known
that any 4-manifoldM that has a classA with Gr(A) 6= 0 andd(A) > 0 must have
b+2 = 1: cf. Fact2.1.8. The same holds ifd(A) = g(A) = 0 and A /∈ E : cf.
Lemma2.1.7. Therefore in almost all cases covered by (iv) and (v) we musthave
b+2 = 1.

(ii) If c1(Si) = 0 andg(Si ) > 0 then (Si)2 ≥ 0 so thatd(Si ) ≥ 0, in other words,CSi

is regular. Therefore in (v) the components ofSirreg must be spheres.

(iii) As noted in Remark4.1.6below, the condition onk in part (ii) above can almost
surely be improved. We restrict tok ≤ 4 to simplify the proof, and because these are
the only cases that have been applied; cf. [BLW12, W13].

In general, the issues involved in constructing a single embedded representative of a
classA are rather different from those involved in constructing a 1-parameter family
of embeddedJt -holomorphic curves for a generic pathJt ∈ J (S). In particular, as
we see in Lemma3.1.5, the presence of positive but nonregular components ofS
can complicate matters. Further, in cases (i) and (ii) of Theorem 1.2.7we have no
independent characterization (e.g. via Fredholm theory) of thoseJ ∈ J (S) that admit
embeddedA-curves, and also cannot guarantee that there is a 1-parameter family of
embedded curves connecting any given pair of embedded curves. Even if we managed
to include them as part of the boundary of a 1-manifold of curves, they may well not
lie in the same connected component. Hence, without extra hypotheses, it makes very
little sense to try to construct 1-parameter families of such curves for fixed symplectic
form ω . However, if we add an extra hypothesis (such as (ii) below) then we can
construct such families. We will prove a slightly more general result that applies when
we are given a familyωt, t ∈ [0,1], of S -adapted symplectic forms.

Proposition 1.2.9 Let (M, ω) be a blowup of a rational or ruled manifold, and let
ωt, t ∈ [0,1], be a smooth family ofS -adapted symplectic forms. Suppose that

(i) Ssing is either empty or contains one sphere of self-intersection−k with 2 ≤
k ≤ 4, and
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(ii) d(A) > 0 if M is rational, andd(A) > g+ n
4 if M is the n-point blow up of a

ruled surface of genusg.

Then, possibly after reparametrization with respect tot , any pairJα ∈ J (S, ωα,A), α =

0,1, for which A has an embedded holomorphic representative can be joined bya path
Jt ∈ J (S, ωt,A) for which there is a smooth family of embeddedJt -holomorphic
A-curves.

Remark 1.2.10 The proof of parts (iii), (iv) and (v) of Theorem1.2.7easily extends
to prove a similar statement in these cases, but without hypothesis (ii) onA.

The gap in [Mc09i] precisely consisted in the claim that everyS -good classA does
have anS -adapted embedded representative, and as explained already, this was used to
justify certain inflations and hence the existence of certain embeddings. Even though
we still have not found an answer to Question1.2.6, as far as inflation goes one can
avoid it: as explained in [Mc13], one can in fact inflate along suitable nodal curves.
Thus the following holds.

Lemma 1.2.11 If A is S -good,A2 ≥ 0, andA · Si ≥ 0 for all componentsSi of S ,
then there is a family of symplectic formsωκ,A in class[ω] + κPD(A), κ ≥ 0, that are
nondegenerate onS and haveω0,A = ω .

This result (which is reproved in Lemma5.2.1below) suffices to establish the existence
of the desired embeddings. However to prove their uniqueness up to isotopy one needs
to inflate in 1-parameter families, in other words, we need the following relative version
of the “deformation implies isotopy" result of [Mc98].

Theorem 1.2.12 Let (M, ω) be a blow up of a rational or ruled4-manifold, and let
S ⊂ M satisfy the conditions of Definition1.2.1. Let ω′ be any symplectic form on
M such that the following conditions hold:

(a) [ω′] = [ω] ∈ H2(M);

(b) there is a family of possibly noncohomologous symplectic formsωt, t ∈ [0,1],
on M that are nondegenerate onS and are such thatω0 = ω andω1 = ω′ .

Then there is a familyωst, s, t ∈ [0,1], of symplectic forms such that

• ω0t = ωt for all t and [ω1t], t ∈ [0,1] is constant;

• ωs0 = ω andωs1 = ω′ for all s;

• ωst is nondegenerate on each component ofS .
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Moreover, ifω = ω′ nearS , we can arrange that all the formsω1t, t ∈ [0,1], equalω
nearS .

Corollary 1.2.13 Under the assumptions of Theorem1.2.12, there is an isotopy
φt, t ∈ [0,1], of M such thatφ0 = id, φ∗

1(ω′) = ω andφt(S) = S for all t . Moreover,
if ω = ω′ nearS we may choose this isotopy to be compactly supported inMrS .

Remark 1.2.14 Li–Liu show in [LL01, Theorems 2,3] that every manifold with
b+2 = 1 has enough nonvanishing Seiberg–Witten invariants to convert any familyωt

with cohomologous endpoints to an isotopy. It is likely thatProposition1.2.9and The-
orem1.2.12also extends to this case since the rational/ruled hypothesis is needed only
via Lemma2.1.5, which guarantees conditions that Gr(B) 6= 0 in Propositions3.2.3
and5.1.6.

The results on inflation can be rephrased in terms of therelative symplectic cone
Coneω(M,S). Denote byΩω(M) the connected component containingω of the space
of symplectic forms onM , and byΩω(M,S) its subset consisting of forms that are
nondegenerate onS . Further givena ∈ H2(M) let Ωω(M,S,a) be the subset of
Ωω(M,S) consisting of forms in classa. Define

Coneω(M) : = {[σ] | σ ∈ Ωω(M)} ⊂ H2(M;R),

Coneω(M,S) : = {[σ] | σ ∈ Ωω(M,S)} ⊂ H2(M;R).

Note that these cones are connected by definition. If (M, ω) is a blowup of a rational
or ruled manifold, it is well known that

Coneω(M) = {a ∈ H2(M;R) | a2 > 0, a(E) > 0 ∀E ∈ E};

see [LL02] and the proof of Proposition1.2.15 given below.3 In this language,
Lemma1.2.11and Theorem1.2.12can be restated as follows. Note that the case
whenS has a single component (andM hasb+2 = 1) was proved in by Dorfmeister–Li
in [DL10, Theorem 2.7].

Proposition 1.2.15 Let (M, ω) be a blowup of a rational or ruled manifold andS a
singular set. Then:

(i) Coneω(M,S) = {a ∈ Coneω(M) | a(Si ) > 0, 1 ≤ i ≤ s}.

(ii) Ωω(M,S,a) is path connected.

3It follows easily from Gromov–Witten theory that the setE = E
ω
′ of all classes represented

by ω′ -symplectically embedded−1 spheres is the same for allω′ ∈ Ωω(M). Therefore, this
description of Coneω(M) makes sense.
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Proof In (i) the left hand side is clearly contained in the right hand side. To prove the
reverse inclusion, first notice that the set of classes represented by symplectic forms
that evaluate positively on theSi is open inH2(M,R). Hence, ifa ∈ Cone(M, ω),
satisfiesa(Si ) > 0 ∀i , so doesa′ = a− ε[ω] for ε > 0 sufficiently small. Further, by
perturbingω , we may chooseε so thata′ ∈ H2(M;Q). SinceM is rational or ruled,
the classqPD(a′) is S -good for q sufficiently large (see Corollary2.1.6). Thus, by
Lemma1.2.11, the class [ω] + κqa′ is represented by a symplectic formωκ for all
κ > 0. Takingκ = 1

qε , we therefore obtain a symplectic formεωκ in classa. This
proves (i). Finally, (ii) holds because, by definition ofΩω(M,S), any two symplectic
forms inΩω(M,S,a) are deformation equivalent, thus isotopic by Theorem1.2.12.

Finally, we show that these singular inflation procedures combine with the Donaldson
construction to provide approximate asymptotic answers toQuestion1.2.6.

Theorem 1.2.16 Let (M4, ω) be a blow up of a rational or ruled manifold with a
singular setS and anS -good classA ∈ H2(M). Then:

(i) There is a unionT of transversally and positively intersecting symplectic sub-
manifolds CT1, . . . ,CTr , orthogonal toS and such thatPD(ω) =

∑r
j=1 βjTj ,

whereβj > 0. Further, we may taker ≤ rankH2(M), and, if [ω] is rational, we
may taker = 1.

(ii) For all positiveε1, . . . , εr ∈ Q, there are integersN0, k0 ≥ 1 such thatN0(A+∑
εiTi) is integral and each classkN0(A+

∑
εiTi), k ≥ k0, is represented by an

embeddedJ-curve for someJ ∈ J (S ∪ T ).

Corollary 1.2.17 If k closed balls of sizea1, . . . ,ak ∈ Q embed intoCP2, and if S
is any singular set in thek-fold blow-up of CP2 with Sj · (L −∑

aiEi) ≥ 0 ∀j , then
there isN such that the classN(L − ∑

aiEi) has an embeddedJ-representative for
someJ ∈ J (S).

1.3 Plan of the paper.

Because this paper deals with nongenericJ, we must rework standardJ-holomorphic
curve theory, adding quite a few rather fussy technical details. For the convenience of
the reader, we begin in §2, by surveying relevant aspects of Taubes–Seiberg–Witten
theory explaining in particular why Question1.2.6has a positive answer whenS = ∅.
We then describe the modifications needed whenJ is S -adapted.
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The next section §3proves most cases of Theorem1.2.7. The basic strategy of the proof
is to represent the classA by an embeddedJε -representative for sufficiently generic
Jε and let Jε tend to someJ ∈ J (S). By Gromov compactness, we get a nodal
J-representative forA, whose properties are investigated in Lemmas3.1.1and3.1.2.
To prove part (i) of Theorem1.2.7 it then suffices to amalgamate these components
into a single curve, which is always possible for componentswith nonnegative self-
intersection; cf. Corollary3.1.4. Since this geometric approach gets considerably
more complicated whenS has negative components, the proof of part (ii) of Theorem
1.2.7is deferred to §4. Proposition1.2.9, which is a 1-parameter version of (i) and
(ii), is proved in Corollaries3.2.5and4.1.7. The other parts of Theorem1.2.7concern
1-parameter families, and their proof mixes geometric arguments withJ-holomorphic
curve theory. The main idea is to show that for generic families Jt one can find
corresponding 1-parameter families of embeddedA-curves. WhenA ∈ E (case (iii) of
the theorem), generic families ofA-curves are embedded by positivity of intersections.
For more generalA, we formulate hypotheses that guarantee the existence of suitable
embedded families in Proposition3.2.3. In §3.3 we then check that these hypotheses
hold in cases (iv) and (v).

Sections §4 is essentially independent of the rest of the paper. In §4.1 we explain
how one might attempt a geometric construction of embeddedA-curves. We give an
extended example (Example4.1.2), and prove part (ii) of Theorem1.2.7in Proposi-
tion 4.1.5. The asymptotic result Theorem1.2.16is explained in §4.2. The idea is
that using Donaldson’s construction of curves instead of Seiberg-Witten invariants and
degenerations provides a much better control on the position of the curve relative toS .
The smoothing process is then very elementary. However, onepays for this by having
less control over the class that has the embedded representatives. Note also that the
proof of Theorem1.2.16depends on the existence of the symplectic forms constructed
in §5.

Finally §5 deals with inflation, especially its 1-parameter version that is also called
“deformation implies isotopy". This section provides explicit formulas for the infla-
tion process along singular curves, and gives complete proofs of Lemma1.2.11and
Theorem1.2.12in the absolute and relative cases. It relies on the results in §3.1 and
§3.2, but is independent of the rest of §3 and of §4.
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2 Consequences of Taubes–Seiberg–Witten theory

This section first recalls various well known results onJ-holomorphic curve theory
in dimension 4, and then explains the modifications necessary in the presence of a
singular setS . Throughout, unless specific mention is made to the contrary,4 by a
curve we mean the image of a smooth mapu : Σ → M whereΣ is a connected smooth
Riemann surface. Thus animmersed J-holomorphic curve is the image of a smooth
J-holomorphic immersionu : Σ → M . In particular, all its double points have positive
intersection number. A curve is calledsimple (or somewhere injective) if it is not
multiply covered; cf. [MS04, Chapter 2].

2.1 Review ofJ-holomorphic curve theory

We begin this section by a brief review of Taubes’ work relating Seiberg–Witten theory
to J-holomorphic curves in order to explain the condition that Gr(A) 6= 0. Here,
Gr(A) is Taubes’ version of the Gromov invariant ofA, that to a first approximation
counts embeddedJ-holomorphic curves in (M, ω) through1

2d(A) generic points, where
d(A) := c1(A) + A2 is the index of the appropriate Fredholm problem; cf. [Tau96].
Thus Gr(A) 6= 0 implies both thatd(A) ≥ 0 and thatω′(A) > 0 for all symplectic forms
ω′ that can be joined toω by a deformation (i.e. a path of possibly noncohomologous
symplectic forms). For 4-manifolds withb+2 = 1 (such as blow ups of rational and
ruled manifolds), one shows that Gr(A) 6= 0 by using the wall crossing formulas in
Kronheimer–Mrowka [KM94] in the rational case and Li–Liu [LL95] in the ruled case.

When the intersection form onH2(M;R) has type (1,N), the coneP := {a ∈
H2(M) | a2 > 0} has two components; letP+ be the component containing [ω]. Then
we have the following useful fact.

Fact 2.1.1 Suppose thatb+2 (M) = 1. If a,b ∈ P+r{0} thena · b ≥ 0 with equality
only if a2 = 0 andb is a multiple ofa.

Taubes’ Gromov invariant Gr(A) in [Tau96] counts holomorphic submanifolds and
hence is somewhat different from the “usual" invariant due to Ruan–Tian that counts
(perturbed)J-holomorphic mapsu : (Σ, j) → (M, J) with a connected domain of fixed
topological type modulo reparametrization. To explain therelation, we first make the
following definition.

4 Occasionally we allow a curve to be disconnected, but it never has nodes unless the
adjective “nodal" or “stable" is used.



12 Dusa McDuff and Emmanuel Opshtein

Definition 2.1.2 A class A ∈ H2(M;Z) is said to bereduced if A · E ≥ 0 for all
E ∈ Er{A}.

For example, as noted at the beginning of §1.2, everyE ∈ E is reduced. Now recall
that the adjunction formula for a somewhere embeddedJ-curveu : (Σ, j) → (M, J) in
classA with connected smooth domain of genusgΣ states that

(2.1.1) gΣ ≤ g(A) := 1+ 1
2(A2 − c1(A)),

with equality exactly ifu is an embedding; cf [MS04, Appendix E]. Using this, one
can check that the only reduced classesA with A2 < 0 andd(A) ≥ 0 are those of
the exceptional spheresA ∈ E (see Remark2.1.9 (ii)). Taubes showed that ifA is
reduced and has Gr(A) 6= 0 then A is represented by a holomorphic submanifold.
Moreover, whenb+2 (M) = 1 andA2 > 0, it follows from Fact2.1.1that this manifold
is connected, while ifA2 = 0 each component is a sphere or torus; cf. Lemma2.2.4.
In fact, except in the case of tori of zero self-intersection(where double covers affect
the count in a very delicate way), the following holds.

Fact 2.1.3 Assume that A is reduced and, if g(A) = 1 and A2 = 0, also primitive.
Then for generic J , the invariantGr(A) simply counts (with appropriate signs) the
number of possibly disconnected, embedded J-holomorphic curves through 1

2d(A)
generic points. Moreover if b+2 (M) = 1 this curve is connected with genus g(A).
ThusGr(A) equals the standard J-holomorphic curve invariant that counts connected
curves with genus g(A) through 1

2d(A) generic points.

For example, Gr(E) = 1 for all E ∈ E .

Now let us consider a general, not necessarily reduced class, A with Gr(A) 6= 0. Then
it is shown in McDuff [Mc97, Proposition 3.1] that if we decomposeA as

(2.1.2) A = A′
+

∑

E∈E(A)

|A · E|E, E(A) = {E | E · A < 0},

thenE · E′ = 0 for E,E′ ∈ E(A) andA′ is reduced withω(A′) ≥ 0, d(A′) ≥ d(A) ≥ 0
andA′ · E = 0 for all E ∈ E(A). Further, for genericJ the classA is represented by
a main (possibly empty) embedded componentCA′

in classA′ , together with a finite
number of disjoint curvesCE each with multiplicity |A · E| in the classesE ∈ E(A).
This is proved by considering the structure of aJ-holomorphicA-curve (whereJ is
generic) through1

2d′(A) points, where

(2.1.3) d′(A) := c1(A) + A2
+

∑

E∈E

(
|A · E|2 − |A · E|

)
.
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It follows that d′(A) = d(A′). Moreover, Li–Liu show in [LL99] that the equivalence
between Seiberg–Witten and Gromov invariants, previouslyestablished for reduced
classes, extends to show that the classA has the same invariant as does its reduction
A′ . Thus:

Fact 2.1.4 Let A′ be the reduction ofA, and assume thatA′ is primitive if g(A′) =
0, (A′)2 = 0. ThenGr(A) = Gr(A′) counts the number of embeddedA′ -curves through
1
2d′(A) = 1

2d(A′) generic points. In particular, ifA′ = 0 thend′(A) = d(A′) = 0.

We next discuss conditions that imply Gr(A) 6= 0. The following is a sharper version
of Li–Liu [ LL01, Proposition 4.3]. (Their result applies to more general manifolds.)

Lemma 2.1.5 (i) Let (M, ω) be S2 × S2 or a blowup ofCP2. If A ∈ H2(M)
satisfiesA2 ≥ 0, ω(A) > 0, andd(A) ≥ 0, thenGr(A) 6= 0.

(ii) Let M be thek-point blowup of a ruled surface with base of genusg(M) ≥ 1.
Then a sufficient (but not necessary) condition forGr(A) to be nonzero is that
A ∈ P+ andd(A) > g(M) + k

4 .

(iii) Let M be as in (ii) andA ∈ H2(M) be in the image of the Hurewicz map
π2(M) → H2(M). Thend(A) ≥ 0 implies thatGr(A) 6= 0.

Proof We prove (i). Since this can be proved by direct calculation whenM = S2×S2,
we suppose that (M, ω) is obtained from the standardCP2 by blowing upN ≥ 0 points.
Let Ei ∈ H2(M), i = 1, . . . ,N, be the classes of the corresponding exceptional divisors.
Then the anticanonical classK = −c1(M) is standard, namelyK = −3L +

∑N
i=1 Ei ,

where L = [CP1]. (As usual we identifyH2(M;Z) with H2(M;Z) via Poincaŕe
duality.) Becaused(A) ≥ 0, it follows from the wall crossing formula in [KM94]
that exactly one of Gr(A),Gr(K − A) is nonzero. SinceA2 ≥ 0 andω(A) > 0, the
Poincaŕe dual ofA lies in P+ . Hence Fact2.1.1implies thatω′(A) > 0 for all forms
ω′ obtained fromω by deformation. On the other hand ifω′(Ei) is sufficiently small
for all i , ω′(K − A) < 0. ThereforeK − A has noJ-holomorphic representative for
ω′ -tameJ, so that Gr(K − A) must be zero. Hence Gr(A) 6= 0. This proves (i).

To prove (ii), we use [LL01, Lemma 3.4] which states that Gr(A) 6= 0 if d(A) ≥ 0 and
2A − K ∈ P+ . Therefore (ii) will hold provided that 2A − K ∈ P+ . Suppose that

M = (S2×Σg)#kCP
2

is thek-fold blow up of the trivial bundle, where the exceptional
divisors areE1, . . . ,Ek . Then

K = −2[Σg] + 2(g− 1)[S2] +
k∑

i=1

Ei
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so thatK2 = −8(g− 1)− k ≤ 0. Hence the nontrivial ruled surface overΣg also has
K2 = −4(g− 1), since its one point blowup is the same as the one point blowup of the
trivial bundle and blowing up reducesK2 by 1. Then

(2A− K)2
= 4A2 − 4A · K + K2

= 4d(A) − 4(g− 1)− k > 0,

by our assumption. Therefore either 2A − K ∈ P+ or −(2A − K) ∈ P+ . But the
displayed inequality also shows thatA · K ≤ A2 + 1

4K2 ≤ A2 so thatA · (2A− K) =
2A2 − A · K > 0. Hence, becauseA ∈ P+ , Fact2.1.1implies that 2A− K ∈ P+ as
required.

To prove (iii), let us first consider the case when (M, ω) is minimal. ThenA = k[S2],
where [S2] is the class of the fiber. Furtherk ≥ 1 sinced(A) = c1(A) ≥ 0. Hence
Gr(A) := Gr(M,A) 6= 0 by direct calculation. Note that this class takes values in
Z ≡ Λ0H1(M;Z). We can now use the blow down formula of [LL01, Lemma 2.8].
This says that if (X, τ ) is obtained from (X′, τ ′) by blowing down the single exceptional
classE, and if Gr(X,B) takes values inZ ≡ Λ0H1(X;Z), then for allℓ ≥ 0

d(B− ℓE) ≥ 0 =⇒ Gr(X′,B− ℓE) = Gr(X,B) ∈ Z.

Note also thatd(B− ℓE) = (B− ℓE)2+c1(B)+ ℓ = d(B)− ℓ(ℓ−1) ≤ d(B). Therefore
if we start with a class in thek-fold blow up with d(A) ≥ 0, as we blow it down
the degreed(A) increases and we end up with a classk[S2], k > 0, in the underlying
minimal ruled surface. Hence Gr(A) 6= 0.

Corollary 2.1.6 If M satisfies any of the hypotheses in Lemma2.1.5and A ∈ P+ ,
then there is an integerq0 such thatGr(qA) 6= 0 for all q ≥ q0.

Proof Since (qA)2 > 0 grows quadratically withq while c1(qA) grows linearly, the
sequenced(qA) is eventually increasing with limit infinity. The result then follows
from Lemma2.1.5.

The following recognition principle will be useful. It is taken from [MS96, Corol-
lary 1.5], but here we explain some extra details in the proof.

Lemma 2.1.7 (i) Suppose that(M4, ω) admits a symplectically embedded sub-
manifold Z with c1(Z) > 0 that is not an exceptional sphere. Then(M, ω) is
the blow up of a rational or ruled manifold.

(ii) The same conclusion holds if there is aJ-holomorphic curveu : (Σ, j) → (M, J)
in a classB with c1(B) > 0, whereB 6= kE for someE ∈ E , k ≥ 1.
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Proof Since 0< c1(Z) = 2 − 2g + Z2, whereg is the genus of the submanifold
Z, we must haveZ2 ≥ 0, since otherwiseZ2 = −1 and g = 0 so thatZ is an
exceptional sphere. But whenZ2 ≥ 0 we can use the method of symplectic inflation
from [L94, Mc98] to deformω to a symplectic form in class [ωκ] := [ω] + κPD(Z)
for any κ ≥ 0. Therefore ifK is Poincaŕe dual to−c1(M), then K · Z < 0 so that
for large κ we haveωκ(K) < 0. But by Taubes’ structure theorems in [Tau95], this
is impossible whenb+2 > 1. Thusb+2 = 1. The rest of the proof of (i) now follows
the arguments given in [MS96]. The crucial ingredient is Liu’s result that a minimal
manifold with K2 < 0 is ruled.

This proves (i). To prove (ii), note first that by replacingu by its underlying simple
curve we may assume that the mapu is somewhere injective. Since this replaces the
classB by B′ := 1

kB for somek > 1, we still havec1(B′) > 0,B′ /∈ E . Then perturb
the image ofu as in Proposition3.1.3below until it is symplectically embedded, and
apply (i).

We also recall from [Tau95] that for general 4-dimensional symplectic manifolds, the
classes with nonvanishing Gromov invariant are rigid:

Fact 2.1.8 If b+2 > 1 andGr(A) 6= 0, thend(A) = 0.

Finally we remind the reader of the standard theory ofJ-holomorphic curves as devel-
oped in [MS04], for example. An almost complex structureJ is said to beregular for
a J-holomorphic mapu : (Σ, j) → (M, J) if the linearized Cauchy–Riemann operator
Du,J is surjective. We will say thatJ is semiregular for u if dim CokerDu,J ≤ 1.
Here (Σg, jΣ) is a smooth connected Riemann surface, and wheng := genus(Σ) > 0
we allow the complex structurejΣ on Σ to vary, so that the tangent spaceTjΣT at jΣ
to Teichm̈uller spaceT is part of the domain ofDu,J ; cf. [Mc97, Tau96]. Therefore,
if u is a somewhere injective curve in classB the (adjusted) Fredholm index of the
problem in dimension 2n = 4 is

(2.1.4) ind (Du,J) = 2n(1− g) + 6(g− 1)+ 2c1(B) = 2(g+ c1(B) − 1).

This is the virtual dimension of the quotient space ofJ-holomorphic maps modulo
the action of the reparametrization group, where we adjust by quotienting out by the
reparametrization group (for genusgΣ = 0,1) and adding in the 6g− 6 dimensional
tangent space to Teichm̈uller space whengΣ > 1. Thus, if J is regular, the space
Mg,k(M,B, J), of J-holomorphic mapsu : (Σg, j) → (M, J) with k marked points
modulo reparametrizations and withj varying in Teichm̈uller space, is a manifold of
dimension ind (Du,J) + 2k. Hence the evaluation map

(2.1.5) Mg,k(M,B, J) → Mk
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can be locally surjective only if ind (Du,J) + 2k ≥ 4k, i.e. 1
2(ind (Du,J)) ≥ k.

Now recall that the adjunction inequality (2.1.1) states that the genusg(u) of the
(connected) domain of anyJ-holomorphic curve in classB satisfiesg(u) ≤ g(B),
where the algebraic genusg(B) = 1 + 1

2(B2 − c1(B) is the genus of an embedded
representative ofB. Therefore, (2.1.4) gives

indDu,J = 2
(
c1(B) + g(u) − 1

)
= c1(B) + B2

+ 2(g(u) − g(B)).

In other words

(2.1.6) indDu,J = d(B) + 2(g(u) − g(B)) ≤ d(B).

Remark 2.1.9 (i) The above inequality (2.1.6) implies that whenJ is regular for all
B-curves the evaluation mapMg,k(M,B, J) → Mk can be surjective only if12d(B) ≥ k.
Informally, we may say that a connectedB-curve can go through at most1

2d(B) generic
points of M . Note that nodalregular curves do worse. IfΣB is a J-holomorphic
nodal curve in classB with components in classesBj, j = 1, . . . ,n then positivity of
intersections implies thatBi · Bj ≥ 0 for all i 6= j so that

∑
d(Bj ) ≤ d(B), with strict

inequality if anyBi · Bj > 0. Hence if all components ofΣB are regular and some
Bi · Bj > 0 (which always happens whenΣB arises as a Gromov limit of connected
curves), then such a nodal curve goes through at most1

2

∑
j d(Bj ) < 1

2d(B) points.
However, if some of the components ofΣB are not regular (e.g. they lie in the singular
setS , or they are multiply covered exceptional spheres), their Taubes index might be
negative, so others may have larger index, and could go through more points. The
arguments that follow show how to deal with this problem in certain special cases.

(ii) If A2 < 0, the conditiond(A) ≥ 0, combined with the formula

d(A) = 2(A2 − g(A) + 1),

shows thatA2 = −1, g(A) = 0. Henceg(u) = g(A) = 0, so u is an embedded
exceptional sphere.

2.2 The caseJ ∈ J (S)

We now suppose thatJ belongs to the setJ (S) of Definition 1.2.1, where this is
given the direct limit topology. When we considerJ-holomorphic representatives for
a reduced classA for such J, the situation is rather different from before since the
curves inS are not regular. ThusA could decompose asA =

∑
i ℓiSi + A′ where

ℓi ≥ 0, and we need to consider generic representations of the class A′ . But A′ need
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not be reduced, and hence could have a disconnected representative as above with some
multiply covered exceptional spheres. We will consider twosubsets ofJ (S), first a set
(defined carefully below) of regularJ, that we callJreg(S), and secondly a larger path
connected setJsemi(S) whose elements retain some of the good properties of regular
J. Specially important will be certain special paths inJsemi called regular homotopies.

Definition 2.2.1 If N is a closed fibered neighborhood ofS , the spaceJreg(S,N , ω, κ)
of regular (S,N )-adapted J is the set of almost complex structuresJ ∈ J (S) satis-
fying the following conditions:

(i) J is S -adapted onN ;

(ii) J is regular for all somewhere injective elementsu : (Σ, jΣ) → (M, J) in class
B with ω(B) ≤ κ and im u∩ (MrN ) 6= ∅.

The spaceJsemi(S,N , ω, κ) of semiregular S -adapted J consists of allJ ∈ J (S)
that are semiregular for all mapsu satisfying the above conditions. We then define

Jreg(S, ω, κ) :=
⋃

N

Jreg(S,N , ω, κ), Jsemi(S, ω, κ) :=
⋃

N

Jsemi(S,N , ω, κ),

and give these spaces the direct limit topology.

Remark 2.2.2 (i) In the case of spheres there is a close connection betweenthe
value of the Chern classc1(B) and the (semi)regularity of a somewhere injectiveJ-
holomorphic sphereu : (S2, j) → (M4, J) in classB. Indeed, ifJ ∈ Jsemi(S, ω, κ)
for someκ ≥ ω(B) and B is represented by a somewhere injective curve that meets
MrN , thenc1(B) > 0 because indDu,J = 2c1(B) − 2. Conversely, ifu is immersed,
then the conditionc1(B) > 0 implies the surjectivity ofDu,J by automatic regularity
[HLS97].

(ii) If A = {A1, . . . ,Ak} is a finite set of reduced classesAj , we define the space
J reg/semi(S, ω,A) := J reg/semi(S, ω, κ(A)) of almost complex structures, whereκ(A) =
maxj ω(Aj). In practice, these complex structures are (semi)regularat each component
not in S of the stable maps that represent theAj .

Lemma 2.2.3 The subsetJreg(S, κ) of J (S) is residual in the sense of Baire. Further,
Jreg(S, κ) ⊂ Jsemi(S, κ).

Proof Let J (S,N , κ) denote the subset ofS -adaptedJ satisfying Definition2.2.1(i)
for the givenN . BecauseJreg(S, κ) is a (countable) direct limit, it suffices to check
that Jreg(S,N , κ) is residual inJ (S,N , κ) for eachN . When the domainΣ of u
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has genus zero this follows immediately from standard theory as developed in [MS04,
Chapter 3.2], since we can varyJ freely somewhere on imu. The argument applies
equally in the higher genus case. One main technical ingredient is the version of the
Riemann–Roch theorem in [MS04, Theorem C.1.10]. Since this theorem is stated
for arbitrary genus, one can easily adapt the above proof to higher genus curves as in
[Tau96, Mc97]. This proves the first statement. The rest of (i) is then immediate since
the elements inJsemi(S, κ) satisfy fewer conditions than those inJreg(S, κ).

Lemma 2.2.4 Let J ∈ Jsemi(S,N ,A). The following statements hold for somewhere
injective J-holomorphic curvesu in a classB with ω(B) ≤ κ(A).

(i) If B 6= ∑
ℓiSi with ℓi ≥ 0, then im u∩ (MrN ) 6= ∅.

(ii) If im u∩ (MrN ) 6= ∅ thend(B) ≥ 0. Moreover,B2 ≥ 0 unlessB ∈ E , and if
B2 = 0 thenB is represented by an embeddedJ-holomorphic sphere or torus.

Proof Let J ∈ J (S) be S -adapted on some fibered neighborhoodN (S). If u :
(Σ, j) → (N , J) is J-holomorphic, thenB =

∑
ℓiSi for someℓi , because there is a

projectionN → S . Moreoverℓi ≥ 0 because we can choose this projection to be
J-holomorphic over some nonempty open subset of each curveCSi in S . This proves
(i).

To prove (ii), notice that since the index of a somewhere injective J-holomorphic curve
with domain of genusg is even and dim Coker (Du,J) ≤ 1 when J ∈ Jsemi(S,A),
we must have ind (Du,J) ≥ 0. Henced(B) ≥ ind (Du,J) ≥ 0 by equation (2.1.6).
Further, the only simple curves in a classB with B2 < 0 andd(B) ≥ 0 are embedded
exceptional spheres (Remark2.1.9(ii)). Similarly, if B2 = 0 we again have equality
in the adjunction formula , so that the curve is embedded andg(B) = 0 or 1, as
claimed.

Remark 2.2.5 A path Jt ∈ J (S), t ∈ [0,1], is called an (S,N )-regular homotopy
if the derivative∂tJt covers the cokernel ofDu,Jt for every mapu : (Σ, jΣ) → (M, J)
that satisfies condition (ii) in Definition2.2.1. Thus (Jt) is a path inJsemi(S,N , ω, κ)
with the special property that for eacht all the relevant cokernels are covered by the
(restriction of the) single element∂tJt . The proof of [MS04, Theorem 3.1.7] shows
that any two elementsJ0, J1 ∈ Jreg(S,N , ω, κ) may be joined by a regular homotopy
of this kind.

Let us denote byMg,k(MrN ; B, Jt) the moduli space of allk-pointed curves as in
(2.1.5) whose image meetsMrN . Then [MS04, Theorem 3.1.7] also shows that,
for eachB with ω(B) ≤ κ, the moduli space

⋃
t∈[0,1] Mg,k(MrN ; B, Jt) is a smooth
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manifold of the “correct" dimension indDu,J + 2k + 1 with boundary att = 0,1.
Hence the corresponding evaluation map goes through at most1

2d(B) generic points
in MrN ; cf. Remark2.1.9. Note also that ifB 6= ∑

i miSi ,mi ≥ 0, then everyB-
curve meetsMrN by Lemma2.2.4(ii). Therefore, in this caseMg,k(MrN ; B, Jt) =
Mg,k(M; B, Jt).

3 The proof of Theorem1.2.7

We first explain the structure of nodal representatives ofA, and then in Proposition3.1.3
show how to build embedded curves from components in classesB with B2 ≥ 0. As
we see in Corollary3.1.4 and Proposition3.1.6, these arguments suffice to prove
Theorem1.2.7 in cases (i) and (iii). §3.2 explains how to construct 1-parameter
families of embedded curves, while §3.3proves Theorem1.2.7in cases (iv) and (v).

3.1 The structure of nodal curves

Throughout this section we assume that the classA is S -good in the sense of of
Definition 1.2.4. For suchA, as explained in §2.1 there is for each genericω -tameJ
and each sufficiently generic set of1

2d(A) points in M an embeddedJ-holomorphic
curve u : (Σ, j) → (M, J) of genusg(A) := 1+ 1

2(A2 − c1(A)) through these points.
Hence by Gromov compactness, for everyω -tameJ and every set of12d(A) points,
there is a connected but possibly nodal representative of the classA through these
points that is the limit of these embedded curves. We denote such nodal curves asΣA,
reserving the notationCA for a (smooth, often immersed) curve. This section explains
the structure of these nodal curves. Recall from Definition1.2.1thatJ (S,N ) consists
of ω -tameJ that are fibered on the neighborhoodN of S .

Lemma 3.1.1 For eachJ ∈ J (S,N ) andS -good classA, there is a connectedJ-
holomorphic nodal curveΣA in classA whose components are either multiple covers
of the components ofS or lie in classesBj 6=

∑
i miSi ,mi ≥ 0. The homology classes

of these components provide a decomposition

(3.1.1) A =

s∑

i=1

ℓiSi +

k∑

j=1

njBj,

satisfying

(i) ℓi ≥ 0 andnj > 0 for all j ;
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(ii) Bj · Si ≥ 0 for all i, j ;

(iii) each classBj may be represented by a connected simpleJ-holomorphic curve
CBj that intersectsMrN .

Further everyJ-holomorphic nodal curveΣA that is the Gromov limit of embedded
Jn-holomorphicA-curves for some convergent sequenceJn has this structure.

Proof Let ΣA be anyJ-holomorphic nodal curve. As explained above, these exist
because Gr(A) 6= 0. Then since we may replace every component in some class∑

j miSi ,mi ≥ 0, by a union of copies of theCSi , we can suppose that noBj has this
form. ThereforeA does decompose as in (3.1.1), and (i) and (ii) hold by positivity of
intersections. To prove (iii), note first that we may takeBj to be the class of a simple
curve underlying a possibly multiply covered component ofΣ. The curveCBj must
intersectMrN by Lemma2.2.4(i).

The following sharpening of this result is useful in provingTheorem1.2.7. Order the
classesBj (assumed distinct) so thatBj ∈ E for j ≤ p andBj /∈ E otherwise, and write
Ej := Bj for 1 ≤ j ≤ p, andB :=

∑
j>p njBj . We then have

(3.1.2) A =
∑

i

ℓiSi +

p∑

j=1

mjEj +
∑

j>p

njBj =
∑

i

ℓiSi +

p∑

j=1

mjEj + B.

whereB · (A− B) > 0 if B 6= 0 becauseΣA is connected.

Lemma 3.1.2 Suppose thatJ ∈ Jsemi(S,A) and that theJ-holomorphic nodal curve
ΣA is the Gromov limit of embedded curves. Then the componentsBj, j > p, in its
decomposition(3.1.2) also satisfy

• d(B) ≥ ∑
j>p d(Bj) ≥ 0;

• B2
j ≥ 0 for all j > p.

Moreover, if Bj is represented by aJ-sphere, we haveGr(Bj) 6= 0. (This case occurs
only if M is the blow up of a rational or ruled manifold.)

Proof Apply Lemma3.1.1toΣA. By Lemma3.1.1(iii), we can apply Lemma2.2.4(ii)
to curves in classBj to find d(Bj ) ≥ 0 for all j . SinceBj · Bk for all j 6= k,

d(B) = (
∑

j>p

Bj)
2
+ c1(

∑

j>p

Bj) ≥
∑

j>p

B2
j + c1(Bj) =

∑

j>p

d(Bj ) ≥ 0,



Nongeneric J -holomorphic curves and singular inflation 21

which proves the first claim. Sinced(Bj) ≥ 0, Remark2.1.9 (ii) shows that either
B2

j ≥ 0 or Bj is represented by aJ-holomorphic−1-sphere. The latter is ruled out by
definition, soB2

j is indeed nonnegative∀j > p. WhenBj is represented by aJ-sphere
u : (S2, j) → (M, J), then we saw in Remark2.2.2 (i) that c1(Bj) > 0. Therefore,
becauseB2

j ≥ 0 we also haved(Bj) > 0. Therefore Lemma2.1.7 (ii) implies that
M is the blow up of a rational or ruled manifold. Finally because the classBj is the
J-holomorphic image of a sphere, we conclude from Lemma2.1.5parts (i) and (iii)
that Gr(Bj) 6= 0.

These lemmas give enough preparation for the proof of part (iii) of Theorem1.2.7(the
caseA ∈ E). We next prove a general position result that allows us to “clean up" a
nodal representation of the classA. The result whenS = ∅ is well known. Besides
being the key to the handling of the components inSrSsing, this lemma will be very
useful when discussing inflation in §5. Note that in distinction to the decomposition
B =

∑
njBj considered above where by definitionBj 6= Si for any i, j , we now allow

Tj = Si in some cases.

Proposition 3.1.3 Let T =
∑N

j=1 njTj ∈ H2(M) be such that

(i) Tj 6= Tk for eachj 6= k, andnj ≥ 1;

(ii) for some J0 ∈ J (S), eachTj can be represented by a simple connectedJ0-
holomorphic curveCTj ;

(iii) T2
j ≥ 0 unlessCTj is an exceptional sphere;

(iv) T · Si ≥ 0 for all i andT · Tj ≥ 0 for all j ; further, Tj · Si ≥ 0 for all i, j unless
Tj = Si whereCSi is an exceptional sphere.

Then,T can also be represented by a (possibly disconnected) embedded curve that is
orthogonal toS andJ-holomorphic for someJ ∈ J (S).

Proof Case 1: We assume N= n1 = 1. If T = Si for some i , then there is the
required embedded representative, namelyCSi . Therefore, assumeT 6= Si for any
i . By hypothesis there is a connected simpleJ0-holomorphic curveCT , and our
task is to resolve its singularities to make it embedded. By general theory (see for
example [MS04, Appendix E]) CT has at most a finite number of singular points
qi = u(zi). Suppose first that none lie onS . At each of these it is possible to
perturbCT locally to an immersedJ0-holomorphic curve by [Mc94i, Theorem 4.1.1],
and then patch this new piece of curve to the rest ofCT by the technique of [Mc91,
Lemma 4.3], to obtain a positively immersed symplectic curve C′ . The curveC′ is
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J0-holomorphic except close toCT∩Shell , whereShell is the union of spherical shells
Shell (q) := Tr1(q)rTr2(q) centered at the finite number of singular pointsq. Thus we
can make itJ-holomorphic for someJ nearJ0 that equalsJ0 away fromC′ ∩ Shell.
Hence even if some singular pointq is in someCSi we can assumeJ ∈ J (S).

ThenC′ is immersed, and can be homotoped (keeping it symplectic) sothat it has at
most transverse double points that are disjoint from its intersections with the curvesCSi

in S . Then we deformC′ so that it is vertical near its intersectionsp with eachCSi , in
the sense that it coincides with the fiber of the normal bundleto S at p. (A parametric
version of this maneuver is carried out in more detail in Lemma 3.2.1below). Then
C′ meets each componentCSi of S orthogonally in distinct points. Moreover, by
resolving all its double points (which lie away fromCSi ), we can assume thatC′ is
embedded and stillJ-holomorphic for someJ ∈ J (S). This completes the proof
whenN = n1 = 1. Notice also thatC′ is connected since we assumed that the initial
curveCT is connected.

Case 2: We assume T= nT0 where n> 1 and T0 6= Si for any i. By the above
we can suppose thatCT0 is embedded, orthogonal toS and J-holomorphic for some
J ∈ J (S). Then for suitableJ ∈ J (S) a neighborhoodN (CT0, J) of CT0 can
be identified with a neighborhood of the zero section in a holomorphic line bundle
over CT0 with nonnegative Chern class. (Sincen > 0 condition (iv) implies that
(T0)2 ≥ 0.) Moreover, since the conditionJ ∈ J (S) only affects the complex
structure onN (CT0) near a finite set of points, we may chooseJ so that this bundle has
nonzero holomorphic sections. Hence we may represent the classnT0 by the union of
n genericJ-holomorphic sections of this bundle that intersect transversally. If T2

0 > 0
each pair of these sections intersect, and by choosing generic sections we can assume
that the intersection points do not lie onS . Hence after resolving these intersections
as before, we get an embedded (possibly disconnected) representative ofnT0 that we
finally perturb to be orthogonal toS .

Case 3: We assume T= nT0 where n> 1 and T0 = Si for some i. This is much
as Case 2: we just need to pickJ ∈ J (S) so that the normal bundle toCT0 = CSi

has holomorphic sections that intersect the zero set transversally in a finite number of
points. This is possible because by condition (iv) we haveT · Si = n(T0)2 ≥ 0.

Case 4:We assume N> 1 and T2
j ≥ 0 for all j. We first resolve all singularities, so

that each simple curveCTj is embedded and meets all the other curvesCTk and CSi

transversally and positively in double points. BecauseT2
j ≥ 0, even ifTj = Si we may

replaceCTj by a suitable section of its normal bundle that is transverseto CSi . Next,
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we perturb all double points to be orthogonal. Since (Tj)2 ≥ 0 by assumption, we may
represent every classnjTj by embedded curves as in Cases 2 and 3 above. Finally, we
patch all double points to get an embedded curve in classT .

Case 5:The general case.BecauseT ·Tj ≥ 0 for all j , each exceptional classTj must
intersect some other component inT . If two different exceptional spheresCTk,CTℓ

intersect, then we may form a symplectically embedded curveC′ that is transverse to
S by patching together two meromorphic and nonvanishing sections of their normal
bundles each with their pole at one of the intersection points with the other curve. (See
Lemma4.1.1below for further discussion of patching meromorphic sections.) Then
by perturbingC′ further we can suppose that it isJ-holomorphic for someJ ∈ J (S).
Therefore we can replace these two componentsTk,Tℓ of T with the single component
T′ := Tk+Tℓ . If T′ 6= Tj0 for any j0 , then the decompositionT = T′+

∑
n′jTj , where

n′j = nj − 1 for j = k, ℓ and= nj otherwise, satisfies all the conditions (i) through
(iv). In particular, by constructionTj · T′ = 0 = Tk · T′ . Otherwise we can write
T =

∑
n′jTj wheren′j = nj − 1 for j = k, ℓ, and n′j0 = nj0 + 1, which clearly also

satisfies the required conditions. Because the meromorphicsections do not vanish, this
procedure works equally well if one or both spheresCTk,CTℓ are inS . It also works
if an exceptional sphereCTk intersects some nonnegative component ofT . Therefore,
after a finite number of steps of this kind, we arrive at a decomposition T =

∑
n′jT

′
j

with no exceptional spheres, and hence the conclusion follows by Case 4.

Corollary 3.1.4 Part (i) of Theorem1.2.7holds.

Proof Suppose thatS = Sreg∪Snonneg, let J ∈ Jsemi(S), and choose aJ-holomorphic
nodal representativeΣA of A as in Lemma3.1.2. Then writeA =

∑N
j=1 njTj where

Tj is one of the classesSi ,Ej,Bj occurring in (3.1.2). By assumption, the classesSi

either have (Si)2 ≥ 0 or are represented by an embedded curveCSi that is Fredholm
regular and hence must be an exceptional sphere by Remark2.1.9(ii). If A ∈ E then
we might be in the caseN = 1 = n1 with A = E1, in which caseA has the embedded
representativeCE1 . Otherwise, becauseA is reduced we must haveA ·Ej ≥ 0 for all j ,
andA · Si ≥ 0 for all i becauseA is S -good. Therefore in this case the result follows
from Proposition3.1.3.

For the next result, denote byIneg, respectivelyInonneg, the classes with (Si )2 < 0,
respectively (Si)2 ≥ 0. Recall from Remark1.2.2that the elements inIneg are either
represented by exceptional spheres or are inIsing.
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Lemma 3.1.5 Suppose thatA is S -good. Then we may write

(3.1.3) A =
∑

i∈Ineg

ℓiSi +

q∑

k=1

mkEk + B, ℓi ≥ 0, mk > 0,

where

(i) if ℓi > 0 andCSi is an exceptional sphere, thenSi · B = 0;

(ii) each Ek for k ≤ q satisfiesEk · Ej = 0, j 6= k, Ek · Sj ≥ 0 for 1 ≤ j ≤ s and
Ek · B = 0;

(iii) B has an embedded representativeCB that intersectsMrS and isJ-holomorphic
for someJ ∈ J (S);

(iv) if all Si with S2
i ≥ 0 are regular, thend(B) ≥ 0.

Proof Consider a decomposition ofA =
∑

i ℓiSi+
∑p

j=1 mjEj+B as in (3.1.2) given by
a J-holomorphic nodal curve whereJ ∈ Jsemi(S). As in the proof of Proposition3.1.3
we may incorporate all nonnegative componentsℓiSi into B.5 If Ej · Ek > 0, then, as
in the proof of Case 5 of Proposition3.1.3, we may reduce each ofmj,mk by 1 and
add a component in classEj + Ek to B. Similarly, if Ej · Bk > 0, or if Ej · Si > 0 or
Bj · Si > 0 for somei for which CSi is an exceptional sphere, we may incorporate one
copy of the exceptional classSi or Ej into theBj . Repeating this process, we arrive at a
situation in which (i) and (ii) hold, andB (if nonzero) has an embedded representative
CB that intersectsMrS and isJ-holomorphic for suitableJ ∈ J (S).

To prove (iv), notice that if there are no irregular nonnegative components,d(B) cannot
decrease as we incorporate the various componentsCSi , and CEj into the B-curve.
Because we begin withd(B) ≥ 0 by Lemma3.1.2, this proves (iv).

We end this section by proving case (iii) of Theorem1.2.7.

Proposition 3.1.6 Theorem1.2.7 holds whenA ∈ E . Moreover, we may choose
Jemb(S,A) ⊃ Jsemi(S,A).

Proof We first show that whenJ ∈ Jsemi(S,A) eachA ∈ E has an embeddedJ-
holomorphic representative. Suppose, to the contrary, that this does not hold for

5 Since these components need not be Fredholm regular and could haved(Si) < 0, we may
lose control ofd(B) at this step.
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someS -good A ∈ E and someJ ∈ Jsemi(S,A). Consider theJ-holomorphic nodal
representativeΣA with decomposition

A =
∑

i

ℓiSi +

p∑

j=1

mjEj +
∑

j>p

njBj

as in (3.1.2). Since ΣA is the Gromov limit of spheres, each component ofΣA

is represented by a sphere. If there is just one component, this must be somewhere
injective since the classA is primitive, and hence by the adjunction formula (2.1.1) must
be embedded. Therefore, we can assume thatΣA has several components. Because
A·A = −1 andA·Si ≥ 0 for all i , the classA must have negative intersection with one
of theEj or Bj . But because this decomposition is nontrivial,ω(Ej) < ω(A) for eachj ,
so thatA 6= Ej . Hence, becauseA,Ej ∈ E , we must haveA·Ej ≥ 0 for all j . Therefore,
there isj > p such thatA · Bj < 0. Next, notice that Gr(Bj) 6= 0 by Lemma3.1.2.
Therefore, by Fact2.1.3 for generic J′ ∈ J (M) the classA has an embeddedJ′ -
holomorphic representative while, by the discussion after(2.1.2), Bj (which need not
be reduced) can be represented by an embeddedJ′ -holomorphic curve in some reduced
classB′

j together with possibly multiply covered exceptional spheres in classesE′
α .

But E′
α 6= A sinceω(E′

α) ≤ ω(Bj) < ω(A). HenceA · E′
α ≥ 0, and alsoA · B′

j ≥ 0.
ThereforeA · Bj ≥ 0, which contradicts the choice ofBj . We conclude that the class
A must have an embeddedJ-holomorphic representative for eachJ ∈ Jsemi(S,A).
Further, A can have no other nodalJ-holomorphic representative, since if it didA
would have nonnegative intersection with each of its components, and hence withA
itself, which is impossible becauseA ∈ E .

Next defineJemb(S,A) to be the set ofJ ∈ J (S) for which A has an embedded
representative. This set is residual inJ (S), because it containsJsemi(S,A), which
is residual by Lemma2.2.3. Further, it is open since embedded curves in classA are
regular by automatic regularity (cf. Remark2.2.2) and hence deform to nearby em-
bedded curves whenJ deforms. It remains to check thatJemb(S,A) is path connected.
But this holds because any two elementsJ0, J1 ∈ Jemb(S,A) can be slightly perturbed
to J′0, J

′
1 ∈ Jemb(S,A) ∩ Jreg(S,A), and then by Remark2.2.5, joined by a regular

homotopy inJsemi(S,A) ⊂ Jemb(S,A).

Remark 3.1.7 Of course, classesE ∈ E do degenerate, for example as (E−E′)+E′

whereE′ ∈ E . But such degenerations (a) happen forJ in a set of codimension at least
2, and (b) have the property that the intersection ofE with the class of the nonregular
component(s) (in this caseE−E′ ) isnegative. The argument above shows the presence
of nonregular components in classesSi with E · Si ≥ 0 does not affect the situation.
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3.2 One parameter families

We begin with a useful geometric result.

Lemma 3.2.1 Let Jt, t ∈ [0,1], be a path inJ (S) and suppose given a smooth family
ΣA

t of Jt -holomorphic representatives ofA all with the same decomposition

A =

s∑

i=1

ℓiSi +

p∑

j=1

mjEj +
∑

j>p

njBj

as in (3.1.2). Suppose further that the components ofΣA
t in classesEj and Bj are

embedded (though possibly disconnected). Then, after perturbing Jt in J (S), we can
assume in addition that for eacht that all intersections of these components with each
other as well as withS areωt -orthogonal.

Proof We first arrange that all intersections are transverse whichis possible because
such tangencies happen in codimension at least 2. Then theseintersections occur at a
finite number of pointspt,i that vary smoothly with the parametert . Fix i , and denote
by Ct

1,C
t
2 the two branches ofS ∪ ΣA

t that meet atpi,t , labelled putting the branch
that lies inS first. ThusCt

1,C
t
2 are smoothly varying (local) curves, and, using a

1-parameter version of Darboux’s theorem, we may choose smoothly varying Darboux
chartspt,i ∈ Ut

ϕt−→ B4(ε) such that

ϕt(Ut ∩ Ct
1) = B4(ε) ∩ {z1 = 0}, (ϕt(0))∗(Jt) = J0,

whereJ0 is the standard complex structure onB4(ε) ⊂ C2. Moreover, ifCt
1 ⊂ S , we

may arrange thatϕt takes the fiber atpt,i of the normal bundle toS to the axisz2 = 0.
By shrinking ε > 0 (which we assume small, but fixed) we can also assume that the
imageϕt(Ct

2)∩B4(ε) is the graphz2 = ft(z1) of some function such thatft(0) = 0 and
dft(0) is complex linear. Ifdft(0) = 0, the proof is complete. So we suppose below
that dft(0) 6= 0.

An obvious 1-parameter perturbation ofCt
2 nearpt provides us with curvesC′

t which
coincide withCt

2 outside of some small ball and with the graph ofdft(0) near the origin
(in the coordinates given byφt ). Since this perturbation can be madeC1-small, C′

t

remains symplectic. In other words, we can assume that thereis 0< δ < ε such that

ϕt(C
t
2) ∩ B4(δ) = graphdft(0)∩ B4(δ) = {(z,at · z), z∈ C} ∩ B4(δ),

whereat· denotes the multiplication by the non-vanishing complex numberat ≈ dft(0).

Let now ρ : [0, δ] → [0,1] be a non-decreasing cut-off function that equals 0 near 0
and 1 nearδ , and consider the curvesC′′

t := {(z, ρ(|z|)atz)} ∩ B4(δ). These curves
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are embedded, coincide with{z2 = 0} near 0, withϕt(Ct
2) = {(z,atz)} near∂B4(δ),

and they are symplectic because Jac
(
z 7→ ρ(|z|)atz

)
= ρ′(|z|)|at||z| ≥ 0 (in polar

coordinates,ρ(|z|)atz is the map (r, θ) 7→ (ρ(r)|at|, θ + argat)). We may therefore
replaceCt

2 ∩ ϕ−1
t (B4(δ)) by ϕ−1

t (C′′
t ). This is symplectically embedded (and hence

J-holomorphic for someω -tameJ), andω -orthogonal toCt
1 at pt,i . Finally, if Ct

1 ⊂ S
we need to check that the newCt

2 is J-holomorphic for someJ ∈ J (S). But this
holds because we constructedCt

2 to coincide with the normal fiber toS at pt,i .

A family of nodal curvesΣt that satisfies the conclusions of the above lemma for a
fixed ω will be calledS -adapted. In particular this means that the corresponding ho-
mological decomposition ofA is fixed, as is the intersection pattern of its components.
The next result gives conditions under whichA is represented by a family of embedded
curves.

Lemma 3.2.2 Let S be any singular set andA be S -good. Suppose that for every
J ∈ Jsemi(S,A) and every decomposition(3.1.2) given by aJ-holomorphic stable map
ΣA that is a limit of embedded curves we haved(B) ≤ d(A) with equality only ifB = A
(so that the decomposition is trivial). Then:

(i) for eachJ ∈ Jsemi(S,A) there is an embeddedJ-holomorphicA-curve of genus
g(A) through a generic12d(A)-tuple of points inM

(ii) any two elementsJ0, J1 ∈ Jreg(S,A) can be joined by a pathJt, t ∈ [0,1], in
Jsemi(S,A) for which there is a smooth family of embeddedJt -holomorphic
A-curves.

Proof Let us first suppose thatd(A) > 0. Then by Fact2.1.8 we are in the case
b+2 = 1. By definition of Gr(A) (cf. Fact2.1.3), there is for each genericω -tame
J and each sufficiently generic setx of 1

2d(A) ≥ 1 points in M an embeddedJ-
holomorphic curveu : (Σ, j) → (M, J) that goes through these points, where (Σ, j) is
some smooth Riemann surface of genusg(A). Hence by Gromov compactness, for
everyω -tameJ and every set of12d(A) points, there is a possibly nodal representative
of the classA through these points. We show below that whenJ ∈ Jsemi(S,A) a
generic setx does not lie on a nonsmooth nodalJ-holomorphic representative forA.
Hence, as above, it must lie on an embedded representative.

Consider aJ-holomorphic representativeΣA of A with nontrivial decomposition
(3.1.2). If we remove the rigid components in the classesℓiSi and mjEj from ΣA we
are left with a stable mapΣ in the classB =

∑
j njBj . SinceB2

j ≥ 0 by Lemma3.1.2,
we can resolve all singularities and double points of the components ofB as in Case
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4 for the proof of Proposition3.1.3, obtaining an embedded representativeCB of the
classB. Moreover becauseb+2 = 1 the curveCB is connected unlessB2 = 0, and
in which case it hasm components in classB0, whereB0 is primitive andB = mB0

(Fact2.1.1) In the latter cased(B) = c1(B) = md(B0), and in either cased(B) < d(A)
by hypothesis. But ifCB is connected, then we conclude from equation (2.1.6) that
the Fredholm index of a simple connected curve in classB is at mostd(B). Because
J is semiregular, eachB-curve is an element in a moduli space of dimension at most
d(B)+ 1. Hence it cannot go through more than1

2d(B) < 1
2d(A) generic points. Simi-

larly, if B = mB0, thend(B) = md(B0) < d(A). As above, aB0-curve can go through
at most1

2d(B0) points, so that aB-curve goes through at mostm
2 d(B0) = 1

2d(B) points.
This shows that no simple representative ofB goes through a generic setx. However,
as explained in Remark2.1.9(i), the nodal representatives involved by the decompo-
sition 3.1.2are even more constrained, because their components satisfy B2

j ≥ 0 and
CBj ∩ (MrN ) 6= 0 by Lemma3.1.1. Hence there is noJ-holomorphic representative
of B throughx. This completes the proof of (i).

To prove (ii), given J0, J1 ∈ Jreg(S,A), join them by a regular homotopyJt ∈
Jsemi(S,A) as in Remark2.2.5. Then the space ofB-curves that areJt -holomorphic
for somet and intersectMrN forms a manifold of dimensiond(B)+ 1. Hence again
we may choose tuplex of 1

2d(A) points inMrN that does not lie on any suchB-curve.
Therefore the space of embeddedA-curves throughx is a compact 1-manifold with
boundary atα = 0,1. But becauseA is S -good, Gr(A) 6= 0. Hence there is at least
one component of this manifold with one boundary atα = 0 and the other atα = 1.
Thus for some continuous functionφ : [0,1] → [0,1] with φ(0) = 0 andφ(1) = 1
there is a family of embeddedJφ(t) -holomorphicA-curves. This proves (ii).

Whend(A) = 0 the argument is similar. In this case the hypothesis means that unless
A = B we haved(B) < 0. Sinced(B) is even, this means thatd(B) ≤ −2. But
then dim CokerDu,J ≥ 2 for every B-curve u. Hence given any regular homotopy
Jt ∈ J (S), the classB has noJt -holomorphic representatives for anyt , so that all
representatives ofA must be embedded. Therefore the previous argument applies.

The next proposition applies in the situation of Proposition 1.2.9where the manifold
is rational or ruled and we have a smooth familyωt of S -adapted symplectic forms.

Proposition 3.2.3 Let M be a rational or ruled symplectic manifold, and letA anS -
good class withd(A) > 0. Suppose further thatd(A) > g+ k

4 if M is thek-point blow
up of a ruled surface of genusg. Let Jt ∈ J (S, ωt,A), t ∈ [0,1] be a smooth path with
endpoints inJreg(S,A) Then, possibly after reparametrization with respect tot , the
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path(Jt)t∈[0,1] can be perturbed to a smoothS -adapted path
(
J′t ∈ Jsemi(S, ωt,A)

)
t∈[0,1]

such that there is a smooth familyΣA
t , t ∈ [0,1], of J′t -holomorphic andS -adapted

nodal curves in classA. Moreover the corresponding decomposition

A =

s∑

i=1

ℓiSi +
∑

j

mjEj + B, E2
j = −1,

of (3.1.2) hasGr(B) 6= 0.

Proof Step 1: Preliminaries. Because we are in dimension 4, (M, ωt) is semi-
positive in the sense of [MS04]. Hence by the results of [MS04, Chapter 6] we may
join J0, J1 by a regular homotopyJt ∈ J (S, ωt,A). As in Remark2.2.5, this means
that ∂tJt covers the cokernel ofDu,Jt for every relevant mapu, so that the moduli
spaces

⋃
t∈[0,1] M(MrN ,B, Jt) are smooth manifolds with boundary of the “correct"

dimension. In particular eachJt ∈ Jsemi(S, ωt,A).

Given suchJt , consider the following compact space of stable maps:

X :=
⋃

t∈[0,1]

M(A, Jt).

This space is stratified according to the topological typeT of the domains of the stable
maps, whereT keeps track both of the structure of the domain and the homology
classes of the corresponding curves. These strataXT are ordered by the relation that
T ′ ≤ T if a stable curve with domain of typeT can degenerate into one of typeT ′ .
Since Jt ranges in a compact set there are a finite number of such decompositions
A =

∑
i ℓiSi +

∑
j mjEj + B as in (3.1.2). Let dmax be the maximum of the numbers

d(B), whereB occurs in such a decomposition for somet ∈ [0,1]. We claim that
dmax ≥ d(A). For otherwise Lemma3.2.2implies that for eacht there are embedded
Jt -holomorphicA-curves. Since this is one of the decompositions consideredin the
definition of dmax, we must havedmax ≥ d(A).

Next, consider a decomposition

(3.2.1) A =

s∑

i=1

ℓiSi +

e∑

j=1

mjEj + B

of the given type withd(B) = dmax and with maximal multiplicities (ℓi), in the sense
that there is no other representative ofA with decomposition

∑s
i=1 ℓ

′
iSi+

∑e′

j=1 m′
jE

′
j+B′

whered(B′) = dmax, ℓ′i ≥ ℓi for all i andℓ′i > ℓi for somei .

Step 2: In this situation,we haveGr(B) 6= 0. If M is rational, this follows from
Lemma2.1.5 (i) since B2 ≥ 0, ω(B) > 0 by construction, andd(B) ≥ d(A) ≥ 0.
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So suppose thatM is the blowup of a ruled surface. IfB2 = 0 then we may write
B = mB0 wherem ≥ 1 andB0 is represented by an embedded curve. This must be
a sphere or torus, since in all other cases the Fredholm indexof the class is≤ −2,
so that by definition ofJsemi they are not represented. In the case of a sphere we
have Gr(B) = 1, since for genericJ there is a uniqueB-curve through each set ofm
generic points. On the other hand, in the case of a torusd(B0) = d(B) = 0. Since
d(B) = dmax ≥ d(A) > g+ k

4 >> 0 by hypothesis this case does not occur. Therefore,
it remains to consider the case whenB2 > 0. Sinceω(B) > 0 by construction, this
means thatB ∈ P+ . Therefore Gr(B) 6= 0 by Lemma2.1.5(ii) applied to the classB.

Step 3: Completion of the proof.

Since the classesEj ,B in (3.2.1) have nontrivial Gromov invariant, they are always
represented in some form for eachJt . By Proposition3.1.6 the classesEj are in

fact always represented by embedded curvesC
Ej
t when J ∈ Jsemi(S, ωt,A) since

J ∈ Jsemi(S, ωt,A) ⊂ Jsemi(S, ωt,Ej) becauseω(A) ≥ ω(Ej). We next check that
we can choose the regular homotopyJ′t ∈ Jsemi(S, ωt,A) so that the classB does not
decompose. As in the proof of Lemma3.2.2, this will follow if we can show that
for each decompositionB =

∑
j B′

j of the B-curve, the sum of the Fredholm indices
of its nonrigid components is strictly less than the Fredholm index d(B) of the class
B. If the components of theB curve are all transverse toS , then this calculation is
standard; cf. Remark2.1.9(i). On the other hand, if for someJ′t the decomposition is
a stable map (ΣB)′ that involves some components ofS with others in classB′ , then
the maximality of the paird(B) = dmax and (ℓi) implies thatd(B′) < d(B), and since
d(B′) is always even, we actually haved(B′) ≤ d(B) − 2. Therefore in a regular path
J′t , the dimension of the moduli space of these stable maps is at most d(B) − 1, and
hence those curves cannot go throughk := 1

2d(B) generic points.6 Thus, the space
of embeddedB-curves that areJ′t -holomorphic for somet and go throughk generic
points is a compact 1-manifold with boundary. Moreover, because Gr(B) 6= 0 there
is at least one connected component of this 1-manifold with one end att = 0 and the
other att = 1. Taking such a component, and reparametrizing with respect to t as
necessary, we therefore have a familyCB

t of embeddedJ′t -holomorphic curves in class
B.

6 Strictly speaking, we can only control the dimension of the family of curves that go through
some point inMrN . However, sinced(A) > 0 we only need consider curves that go through
at least one fixed point that we can choose far fromS .
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Remark 3.2.4 The above proposition constructs 1-parameter families of nodal curves
whose components are covers of embedded curves. Lemma3.2.1shows that if we start
with a family of nodal curves whose components are embedded (or immersed) we
can perturb them so that they intersectωt -orthogonally. The patching arguments in
Proposition3.1.3that resolve double points and amalgamate transversally intersecting
components in classesB,B′ with B2, (B′)2 ≥ −1 also work for 1-parameter families.
Therefore, we can apply Proposition3.1.3 to these 1-parameter families of nodal
curves. (The only part of this proposition that might fail ina 1-parameter family is the
initial resolution of singularities.)

Corollary 3.2.5 Proposition1.2.9holds whenSsing = ∅.

Proof This holds by applying the 1-parameter version of Proposition 3.1.3 as in
Remark3.2.4to obtain the required family of embedded curves.

3.3 Numerical arguments

This section proves Theorem1.2.7under hypotheses (iv) and (v) by showing in both
cases that the hypotheses in Lemma3.2.2are satisfied. First we discuss the genus zero
situation, using an argument adapted from Li–Zhang [LZ12, Lemma 4.9].7

Lemma 3.3.1 Let S be any singular set. Then the hypothesis of Lemma3.2.2holds
for everyS -goodA such that

g(A) := 1+ 1
2(A2 − c1(A)) = 0, d(A) := A2

+ c1(A) > 0,

and everyJ ∈ Jsemi(S,A).

Proof Note first that we must be in the situationb+2 = 1, since by Fact2.1.8,
Gr(A) 6= 0 can only be consistent withd(A) > 0 in this case. Consider a nontrivial
decompositionA =

∑
ℓiSi+

∑
mjEj+B as in Lemma3.1.2, given by aJ-holomorphic

stable mapΣA with J ∈ Jsemi(S,A) that, by construction, is the limit of embedded
A-curves. We must check thatd(B) < d(A).

Let us suppose first thatB has a connected, smooth and somewhere injectiveJ-
holomorphic representativeu : (Σ, j) → (M, J). Then the adjunction formula (2.1.1)

7Instead of requiringJ to be in some way generic, they use the hypothesis thatA is J-NEF,
which also implies thatA · Bj ≥ 0 for all j .
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implies thatg(B) ≥ gΣ ≥ 0,8 so that
1
2d(B) = 1+ B2 − g(B) ≤ 1+ B2.

Thus 1
2d(B) ≤ 1 + B2 while our hypotheses imply that12d(A) = 1 + A2. Thus it

suffices to show thatB2 < A2. But

A2 − B2
= (A+ B) · (A− B) = A ·

(∑
ℓiSi +

∑
njEj

)
+ B · (A− B)

≥ B · (A− B) > 0,

where the first inequality holds becauseA is S -good, and the second (strict) inequality
holds because, as we noted above,ΣA is connected andA 6= B.

By Fact2.1.3, this completes the proof unlessB = nB0 whereB0 is a primitive class
with B2

0 = 0. Sinceg(B0) = 0 by construction, Lemma2.2.4(ii) implies that each
B0-curve is an embedded sphere. Hence1

2d(nB0) = n. Thus we need to show that
1
2d(A) = 1+ A2 > n. But this holds because, by the above calculation

A2
= A2 − B2 ≥ B · (A− B) ≥ n,

where the last inequality holds becauseB hasn disjoint components.

We next extend an argument from Biran [B99]. Recall thatSsing consists of all the
negative components ofS that are not exceptional spheres.

Lemma 3.3.2 Let S be any singular set such thatc1(Si ) = 0 for all i with CSi ∈ Sirreg .
Then the hypothesis of Lemma3.2.2holds for everyS -good classA /∈ E such that
A 6= ∑

i∈Ssing
ℓiSi and everyJ ∈ Jsemi(S,A).

Proof Starting with a nodal curveΣA with decomposition withd(B) ≥ 0 as in
Lemma3.1.2, add toB all regular componentsCSj and all exceptional spheres that
intersectB as in Lemma3.1.5. As we remarked in the proof of Lemma3.1.5(iv), d(B)
does not decrease when we do this. By hypothesis all irregular components ofS are
negative because they haved(S) = S2 + c1(S) < 0. Therefore it suffices to show that
in any decomposition

A =
∑

i∈Sneg

ℓiSi +
∑

k

mkEk + B

we haved(B) < d(A). Rewrite this decomposition as

A =
∑

i∈Ssing

ℓiSi +
∑

j

njE
′
j + B,

8Although we know eachg(Bj) = 0, it is a priori possible thatg(B) > 0. Li–Zhang’s
argument shows that in fact this does not happen. However, wedo not need to use this.
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where we have grouped the sums
∑

i∈SnegrSirreg
ℓiSi and

∑
k mkEk into a single sum over

classesE′
j ∈ E . We writeZ :=

∑
i∈Ssing

ℓiSi , and note that by hypothesisc1(Z) = 0.

First suppose thatB = 0 so thatA = Z+
∑

j njE′
j . We must show thatd(A) > 0 = d(B).

By assumptionA 6= Z. Further,

d(A) = A2
+ c1

(
Z +

∑

j

njE
′
j

)
= A2

+
∑

nj > 0

unlessA ∈ E and
∑

nj = 1. But we excluded the caseA ∈ E . Hence whenB = 0
we haved(A) > 0 as required.

Now suppose thatB 6= 0. By Lemma3.1.5, we may assume thatB·E′
j = 0 = E′

j ·E′
k for

all j 6= k. Further (A−B) ·B > 0 since the classesA−B andB are both represented by
J-nodal curves with no common component, and their union in classA is connected.
Hence

d(A) − d(B) =
(
Z +

∑
njE

′
j + B

)
· A− B2

+ c1(Z +
∑

njE
′
j )

=
(
Z +

∑
njE

′
j

)
· A+ B · (A− B) +

∑
njc1(E′

j ) + c1(Z)

> Z · A+
∑

nj ≥ 0,

where the strict inequality uses the fact thatB · (A − B) > 0. This completes the
proof.

Corollary 3.3.3 Parts (iv) and (v) of Theorem1.2.7hold.

Proof If A ∈ E the result follows from Proposition3.1.6. Therefore we will assume
A /∈ E . To prove Theorem1.2.7 (iv) notice thatd(A) ≥ 0 becauseA is S -good.
Moreover wheng(A) = 0, the equalityd(A) = 0 implies thatA2 = −1, so thatA ∈ E ,
contrary to hypothesis. Thusd(A) > 0. But then Lemma3.3.1combined with Lemma
3.2.2 shows thatA has an embeddedJ-representative forJ ∈ Jsemi(S,A). Since
Jsemi(S,A) is residual by Lemma2.2.3(ii), this proves part (iii) of Theorem1.2.7. Part
(v), again withJemb(S,A) = Jsemi(S,A), follows similarly using Lemmas3.3.2and
3.2.2.

Remark 3.3.4 Biran actually assumed the weaker conditionA · Si + c1(Si ) ≥ 0 for
all i , but worked with disjoint curvesCSi .
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4 Constructions

In §4.1we explain some geometric constructions for embedded curves, and then prove
part (ii) of Theorem1.2.7and the second case of Proposition1.2.9. The asymptotic
result Theorem1.2.16is proved in §4.2.

4.1 Building embedded curves by hand

The naive strategy for answering Question1.2.6is to take the nodal curveΣA and try
to piece its components together. A basic tool on which this strategy builds on is the
following easy patching lemma.

Lemma 4.1.1 Suppose that the integersℓ,m > 0 have no common divisor> 1.
Given two nonvanishing and holomorphic functionsh1,h2 in a neighborhood of0 ∈ C

andε > 0 small enough, there is an embedded symplectic submanifold

Cf := {f (z,w) = 0} ⊂ C2r{zw= 0}
which coincides with{wℓ = εh1(z)z−m} on |z| < ε1 and with{zm = εh2(w)w−ℓ} on
|z| > ε2, and is disjoint from the axes.

Note that whenℓ = m = 1 we are patching the graph of a meromorphic section
w = az−1 over thez-axis to the graph of a meromorphic sectionz = bw−1 over the
w-axis via the cylinderCf . Similarly, one can patch two transversally intersecting
curves, and also a simple pole (the graph ofw = az−1) to the transverse axisz = 0.
In the latter case, for example,Cf would coincide with the graph ofw = az−1 for |z|
large and with the axisz= 0 for |w| large. We will not prove this lemma here (or state
it very precisely) since we do not use it in any serious way in this paper. However, we
describe some applications in Example4.1.2below. Note that Li–Usher [LU06] also
use this idea of patching curves via meromorphic sections.

The way this lemma would ideally apply is the following. To fixideas, consider the
case where theSi are spheres of self-intersection−ki ≤ −2. For the decomposition
A =

∑
ℓiSi +

∑
miEi + B associated to a nodal mapΣA, the numerical condition

A · Si ≥ 0 implies that

(∗) ℓiki ≤
∑

j 6=i

ℓjSi · Sj +
∑

mjEj · Si + B · Si .

We consider a holomorphic coverΣi
fi−→ Si of degreeℓi , totally ramified at the

intersections betweenCSi and eachCSj andCEj . We pull back the normal bundleLi
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to CSi by fi , and consider a smooth sectionσi of f ∗i Li that is holomorphic near its
zeros and poles, has poles of orderℓj ,mj at each (unique) preimage of the intersections
of CSi with CSj and CEj , respectively, as well as one additional simple pole at some
preimage of each intersection ofCSi with CB, and no other poles. Since the pullback
bundle f ∗i Li has degree−ℓiki , the condition (∗) precisely means that the existence of
such smooth sections is not homologically obstructed. We dothe same forCEi and for
CB (for the latter we do not need to consider a covering). Now thepush-forward of
these sections toLi provide multi-sections with singularities modelled onwℓi = z−ℓj

(or wℓi = z−mj or wℓi = z−1) near each intersection. For example, at an intersection
q ∈ CSi ∩ CSj let us use the coordinatez along CSi and w along CSj . Then the two
branched covering maps are

(
z′,w

)
7→

(
(z′)ℓi = z,w

)
,

(
z,w′) 7→

(
z, (w′)ℓj = w

)
.

Hence the sectionsw = a (z′)−ℓj , z= b (w′)−ℓi push forward to the curves

wℓi = aℓi z−ℓj , zℓj = bℓi w−ℓi .

Thus Lemma4.1.1implies that for sufficiently smallε the sectionsεfi∗σi and εfj∗σj

can be patched together to give a curve that does not meetCSi ∪CSj near the intersection
point q. More generally, all these (rescaled) multi-sections can be patched together
in the neighborhood of the intersections to form a symplectic curve in classA that is
transverse toS .

Now this curve may have self-intersections coming from the folding of the sectionσi

when we push it forward toLi . Whenσi is holomorphic, these self-intersections are
positive, so they can be resolved and the procedure gives an embedded symplectic curve
in classA that intersects theS transversally and positively. However, the criteria for
the existence of such a holomorphic section is not of topological nature but of analytical
one (it is given by the Riemann-Roch Theorem). Hence there isno guarantee that one
can find suitable sectionsσi . The next example illustrates these difficulties, which in
this case arise from a multiply covered exceptional curveCE . It also suggests some
ways around them.

Example 4.1.2 Suppose thatS consists of a single sphereCS in classS with S· S=

−k, thatE is the class of an exceptional divisorCE with E ·S= m and thatB satisfies
B · S= 1,B · E = 0. ThenA := S+ mE+ B has

A · E = 0, A · S= m2 − k+ 1,

d(A) = d(S+ mE) + d(B) + 2S· B = 4− 2k+ m2
+ m+ d(B) ≥ 0.
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Becaused(B) can be arbitrarily large, the conditiond(A) ≥ 0 gives no information.
Therefore, the only numerical information we have onk is thatk ≤ m2 + 1. Note also
that if k ≤ m2, then A′ := S+ mE satisfiesA′ · S = 0, and we can try to form an
embedded curve in classA′ = S+ mE and then join it to theB curve to get the final
embeddedA curve. The virtue of this approach is that it gives us better understanding
of the genus sinceg(A′) is a function ofm only. In fact, becauseA′ · B = 1, we have

g(A′
+ B) = g(A′) + g(B), andg(A′) = 1+ 1

2((A′)2 − c1(A′)) = 1
2m(m− 1).

Therefore ifm= 4 andk ≤ 16, we should be able to construct an embedded curve in
classA′ = S+ 4E of genus 6 and hence a curve in classA of genus 6+ g(B). We
show below that the embeddedA′ -curve exists whenk ≤ 13, but may not exist when
14≤ k ≤ 16.

The casek ≤ 4: In this case it is very easy to construct such a curve. We may assume
that CE intersectsCS transversally at 4 distinct pointsp1, . . . ,p4, and then choose a
small meromorphic sectionσS of the normal bundle toCS with simple poles at the
four points p1, . . . ,p4 and 4− k zeros. Then take 4 different small nonvanishing
meromorphic sectionsρ1, . . . , ρ4 of the normal bundle toCE , whereρi has a simple
pole atpi . Note that these sections are inverse to holomorphic sections of the bundle
overS2 with Chern class 1 and so each pair intersects once transversally. Next patchρi

to σS at pi . (This is possible because the graphs ofσS andρi satisfy an equation of the
form zw= const. nearpi and so we can cut out small discs from each of these graphs
and replace it by a cylinder. One needs to check that this cylinder can be chosen to be
disjoint from the other sectionsρj ; but this holds becauseρi is relatively much larger
than theρj, j 6= i nearpi since it has a pole there.) This process gives an immersed
curve of genus 0 with 6 positive self-intersections, one foreach (unordered) pair
i, j, i 6= j .9 Therefore we obtain the desired embedded curve of genus 6 by resolving
these intersections.

The case4 < k ≤ 10: We can refine the above argument by choosing the sections
ρ1, . . . , ρ4 to have different orders of magnitude, withρ1 ≫ ρ2 ≫ ρ3 ≫ ρ4. Thus
ρ1 has a simple pole atp1 and and its graph intersectsCS at pointsp1i , i = 2,3,4
moderately nearpi . We match these zeroes and poles with 4 poles ofσS. If ρ2 is much
smaller thanρ1, then we can constructσS to have another pole atp2 that matches with

9 These intersection points occur at the places where the graphs ofρi , ρj intersect, far away
from the poles. Note that although the graph of eachρi meetsCS at 3 points, one near each
pj , j 6= i , these intersections disappear after gluing since the partof CS nearpj is cut out during
the gluing withρj .
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ρ2, together with two more poles atp2i , i = 3,4 that are much closer topi . (Note that
the point of intersection of the graph ofρ2 with CS that is nearp1 is cut out ofCS

by the first patching process, and so we cannot put another pole there.) Similarly, we
can chooseρ3 so that it patches with 2 poles ofσS and then can takeρ4 = 0 to patch
with one further pole. This procedure accommodates up to 10 poles. Moreover, it is
not hard to check that the corresponding embedded curve has genus 6. For example
if k is 10 we have patched five spheres together at 4+ 3+ 2+ 1 = 10 points and so
get a possibly immersed curve of genus 6. As before, the branch points would come
from intersections ofρi with ρj for i 6= j . But these are all cut out during the patching
process: for example, becauseρ2 << ρ1 the intersection point of these sections lies
near the pole onρ2 and so is cut out when this pole is patched to the pole ofσS at p2 .

The case10< k ≤ 16: It is possible to refine this argument by using using branched
coverings as suggested at the beginning of this section. Note that near a point where
σS has a pole of ordern its graph satisfies an equation of the formwzn = const, where
z is the coordinate alongCS and w is the normal coordinate. It is not hard to check
that this pole may be patched to the pushforward of a sectionρ with a simple pole
ρ(w′) = ε/w′ by a branched covering mapw′ 7→ (w′)n := w: indeed the graph ofρ
satisfieszw′ = ε, which giveszn(w′)n = εn , so that its pushforward satisfiesznw = εn.
SinceA containsE with multiplicity 4, we can in principle take anyn ≤ m = 4 and
hence accommodate up to 16 poles ofσS. We now investigate this construction in
more detail.

The casek > 10: Our initial strategy for constructing a curve in classA′ = S+ 4E
whenk > 4 is the following:

(a) take a meromorphic sectionσS of the normal bundle toCS with poles of order
4 at each pointp1, . . . ,p4 and 16− k zeros;

(b) take a branched coverf : Σ → S2 of CE of order 4 that is totally ramified
at each of the pointsqi := f−1(pi), i = 1, . . . ,4 (and hence has local model
w′ 7→ (w′)4);

(c) choose a meromorphic sectionρΣ over Σ of the pullback byf of the normal
bundle toCE with simple poles at the branch pointsq1, . . . ,q4 ;

(d) patch the multisectionf∗
(
graphρΣ

)
to the graph ofσS obtaining an immersed

curve with only positive intersections with itself and withS .

Step (d) gives an immersed curve which is made by patching an immersed curve
of genusg(Σ) with 4 punctures to a sphere with 4 punctures. Hence it has genus
g(Σ) + 3+ a, wherea is the number of self-intersection points off∗

(
graphρΣ

)
. By
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the Riemann-Hurwitz formula, the Euler characteristicχ(Σ) equals 4χ(S2)−12= −4,
where 12= 4× 3 is the number of “missing vertices". Thereforeg(Σ) = 3. Hence
if this process worked we would havea = 0. Thus the curve in (d) would actually
be embedded. It is not hard to see that all the above steps can be achieved except
(possibly) for (c). The problem here is that becauseΣ is not a sphere there is no
guarantee that we can find a meromorphic section with poles atthe given points. Here
are some ways to try to get around this problem.

• Relax the condition on the section in (c), simply choosing any section with these
poles. But then there is no guarantee that the pushforward multisectionf∗

(
graphρΣ

)

has only positive self-intersections. In fact, in cases where we have tried this, we
have managed only to construct sections with simple poles attheqi that push forward
to multisections with both positive and negative self-intersections; and it is not clear
that these can be made to cancel.

• Change the cover in (b) so thatg(Σ) is smaller, since then we can prescribe the
positions of 4− g(Σ) poles ofρΣ . Suppose for example thatf has three branch
pointsq1, . . . ,q3 of ordersbi = 4, i = 1,2 andb3 = 3. Then the Riemann-Hurwitz
formula gives

2− 2g(Σ) = χ(Σ) = 4χ(S2) −
3∑

i=1

(bi − 1) = 0,

so thatg(Σ) = 1. Moreover there is a cover with this branching because there are
three elementsγ1, . . . , γ3 in the symmetric groupS4 on 4 letters such that

- γi has orderbi , for all i ;

- γ1γ2γ3 = id.

(Takeγ1, γ2 to be cycles of order 4 whose product fixes just one point and hence is a
cycle of order 3.) Choose a meromorphic sectionρΣ with simple poles at the branch
pointsq1,q2,q3 and at one other arbitrary pointv4 . Then alterf by postcomposing
with a diffeomorphismφ : S2 → CE so thatφ ◦ f : Σ → CE maps the four points
q1, . . . , v4 whereρΣ has poles to the intersection points{p1, . . . ,p4} = CS∩ CE .
Then one can check that the pushforward ofρΣ by φ ◦ f can be patched to a section
σS with poles of order 4 atp1,p2 , of order 3 atp3 and of order 1 atp4 , a total of
12 poles. Since the other branch points off just push forward to smooth points,
the result is an immersed curve with genusg(Σ) + 3 = 6 which in fact must be
embedded.
It is not hard to check that this is best one can easily do with this approach: adding
more branching increasesg(Σ) and hence decreases the number of points where
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one can allowσS to have higher order poles. However, in this case it is possible
to accommodate one more pole, because there happens to be a special 3-fold cover
f : T2 → S2 totally ramified over three points, sayp2,p3,p4 : see Remark4.1.3.
We may therefore take a largish sectionρ1 of the normal bundle toE with a pole
at p1 whose graph intersectsCS at three points close top2,p3,p4 , and a very small
pushforward multisectionf∗(σT) that patches to poles of order 3 atp2,p3,p4 . This
patches 13 poles. However, it is not clear how to deal with thecases 14≤ k ≤ 16.

Remark 4.1.3 We now briefly describe the special 3-fold branched coverf : T2 → S2.
It has three totally ramified branch pointsq1,q2,q3 such that the pullback bundle
has a meromorphic section with its three poles precisely atq1,q2,q3 . Consider the
torus T0 given by the Fermat curvex3 + y3 + z3 = 0 in CP2, with deformations
Tε := x3 + y3 + z3 = εxyz. There is a natural degree 9 cover

F : (CP2,T0) → (CP2,CP1), [x : y : z] 7→ [x3 : y3 : z3],

which quotients out by the action of the groupZ3 × Z3 on T0 by

[x : y : z] 7→ [τ ix : τ jy : z], i, j ∈ Z3.

The action of the subgroupGfree := {(j,−j), j ∈ Z3} has no fixed points, in fact acting
on all the toriTε by a translation of order 3. Therefore the mapF : T0 → CP1

descends to
f : Σ := T0/Gfree → CP1.

On the other hand the groupGfix := (j,0), j ∈ Z3 fixes the three points

[0 : 1 : −1], [0 : τ : −τ2], [0 : τ2 : −τ ],

acting on the tangent space of each by a rotation through 2π/3. These points form
one orbit underGfree. Hence this gives one totally ramified point off in Σ. Similarly,
Gfree permutes the three points [1 :−1 : 0], [τ : −τ2 : 0], [τ2 : −τ : 0] and the
corresponding set of points with 0 in the second place. Again, each of these gives rise
to one totally ramified point in the quotient coverf . Note thatF has 9 branch points,
each of order 3, lying in three distinct fibers of the quotientmapT0 → Σ := T0/Gfree.

One can see the section as follows. The normal bundleLN to T0 in CP2 is the pullback
by F of the normal bundle of the linex+ y+ z= 0. The 9 branch points ofF lie on
all the curvesTε . Define a sectionYε of LN by first embedding a neighbourhood of
the zero section in the normal bundle ofT0 into CP2 using the exponential map with
respect to the standard Kähler metric, and then definingYε so that expz(Yε(z)) ∈ Tε

for all z ∈ T0. Then its derivative∂εYε|ε=0 is a holomorphic section of the normal
bundle. Thus this is a holomorphic section ofLN with precisely 9 simple zeros at the
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branch points ofF . To get the bundle and section we are looking for, it remains to
quotient out byGfree, which acts on the curvesTε and also by isometries onCP2.

Remark 4.1.4 It is not clear how special the section in Remark4.1.3really is. Are
there cases in which there are no meromorphic sections with the required zeros, but
there are symplectic sections with these zeros whose pushforward has positive self-
intersection? If so, the local structure of symplectic nodal curves would be significantly
different from that of holomorphic ones.

Proposition 4.1.5 Theorem1.2.7(ii) holds.

Proof By assumptionS has one classS with S2 < −1, some classes labelled by
i ∈ IE with CSi an exceptional sphere, and classesSi with (Si)2 ≥ 0. By Lemma3.1.5
we may assume thatA has a connected nodal representativeΣA with decomposition

(4.1.1) A = ℓS+
∑

i∈IE

ℓiSi +
∑

j

mjEj + B,

as in equation (3.1.3), where

(I) A · S≥ 0, A · Ej ≥ 0, A · Si ≥ 0 for all i, j with nonzero coefficients;

(II) Si · Ej = Si · B = Ej · B = 0 for all i, j with nonzero coefficients;

(III) B (if nonzero) has an embedded representativeCB that is J-holomorphic for
someJ ∈ J (S).

Step 1: If ℓ = 1 in (4.1.1) then A has an embedded representative that intersectsS
and the CEi orthogonally.

Proof We use the constructions and notations of Example4.1.2. Let us first suppose
that B = 0 and that there is a single curveEi in classE so thatA = S+ mE. Then,
with a := S· E, and 2≤ k := −S· S≤ 4, we must have

E · A = a− m≥ 0, S· A = −k+ ma≥ 0 =⇒ k ≤ ma≤ a2.

If m= 1 then we can construct the desired curve as in the casek ≤ 5 in Example4.1.2.
If m ≥ 2 then a ≥ 2. We takeΣ = S2, and f : Σ → S2 = CE an m-fold cover
branched at two of the intersection points ofCE with CS. Becauseg(Σ) = 0 we can
put the poles ofρΣ at the two branch points and hence can accommodate up to 2m≥ k
poles.
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Now suppose that all coefficientsℓi in (4.1.1) vanish. BecauseEi · Ej = 0, i 6= j and
B · Ei = 0,∀i , we must have

ai := Ei · S≥ mi, B 6= 0 =⇒ h := B · S> 0,

k ≤
∑

aimi + h.

Sincek ≤ 4, if
∑

ai + h ≥ 4, the claim holds because one can use sections of the
normal bundle to theCEi and toCB with simple poles at each intersection point with
CS to accommodate the four poles of a section of the normal bundle to CS. The claim
is also true whenA = S+mE, as we saw above. Therefore, we need only consider the
situation where

∑
ai + h ≤ 3 and eitherB 6= 0 (so thath ≥ 1) or there are at least

two Ei . This is possible only if allai ≤ 2. But becausemi ≤ ai this means that again
we only need consider two-fold covers. Therefore the argument proceeds as before.

The general case, in which some coefficientsℓi are nonzero, is similar. Indeed, since
the construction yields a representative that is orthogonal to the exceptional curves it
makes no difference whether these lie inS or are other curvesCEi .

Step 2: Completion of the proof. Suppose inductively that the results holds for
all ℓ < ℓ0 and considerA with a decomposition (4.1.1) with ℓ = ℓ0 > 1. We
aim to show that there are nonnegative integersℓ′j ≤ ℓj ,m′

i ≤ mi such thatA′ :=
S+

∑
j∈IE

ℓ′jSj +
∑

m′
iEi + B satisfies condition (I) in (4.1.1). Then, because (II),

(III) are automatically true, we may apply Step 1 to concludethat A′ has an embedded
representative. Therefore, the decomposition

A = (ℓ0 − 1)S+
∑

j∈IE

(ℓj − ℓ′j)Sj +
∑

i

(mi − m′
i)Ei + A′,

also has the properties of (4.1.1) but with ℓ < ℓ0. Hence it has an embedded represen-
tative by the inductive hypothesis.

Therefore it remains to find suitableℓ′j ,m
′
i . For simplicity, let us first suppose that

ℓi = 0 for all i . As in Step 1, defineai := Ei · S, andh := B · S so that

(∗) Ei · A = ℓ0ai − mi ≥ 0, (∗∗) S· A = −ℓ0k+
∑

aimi + h ≥ 0.

Here are some situations in which we can check that there is a classA′ = S+
∑

m′
iEi+B

that satisfies the numeric conditions (I).

(a) If h+
∑

i ai ≥ 4 ≥ k, then we may takeA′ = S+
∑

Ei + B;

(b) if all mi = 1 we are in the previous case, and may takeA′ = S+
∑

Ei + B;

(c) if ai = 1 for all i then mi ≤ ℓ0 for all i so that mi
ℓ0

≤ 1 = ai for all i , so that

(∗∗) givesk ≤ ∑ mi
ℓ0

+ h
ℓ0

≤ ∑
i ai + h and we are again in case (a);
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(d) if there is i with mi ≥ 2 andai ≥ 2, thenk ≤ 4 ≤ 2ai so that we can take
A′ = S+ 2Ei ;

(e) if there is only one curveEi , then we may taken := ⌈m
ℓ0
⌉, andA′ = S+nE+B.

Note in this case thatE · A′ = a− n ≥ 0 sincea is an integer≥ m
ℓ0

.

If none of these cases occur then there are at least two curvesE1,E2 where a1 >

1,m1 = 1 andm2 > 1,a2 = 1. Further sinceh+
∑

i ai ≤ k− 1 we must havek = 4,
h = 0, a1 = 2, and no otherEi . But thenm2 ≤ ℓ0 by (∗) and 4ℓ0 ≤ 2+ m2 by (∗∗),
which is impossible. Hence in all cases there is a suitable classA′ .

Since the above argument is purely algebraic, it works equally well if some of the
exceptional spheres in (4.1.1) lie in S . This completes the inductive step and hence
the proof.

Remark 4.1.6 By using the special 3-fold cover in Remark4.1.3one should be able
to extend this argument to larger values ofk.

Corollary 4.1.7 Proposition1.2.9holds for thisS .

Proof Under the given assumptions for the classA, Proposition3.2.3constructs a
1-parameter family ofS -adapted nodalA-curves. The above proof that amalgamates
these into a single embeddedA-curve uses patching procedures that are only slightly
more complicated than those in Proposition3.1.3. Hence, as in Remark3.2.4, they
may be carried out for a 1-parameter family, giving the required family of embedded
curves.

4.2 The asymptotic problem

We now prove Theorem1.2.16and Corollary1.2.17, using the patching procedures
described in §4.1, as well as the inflation results explained in §5. Since the latter
results are established only whenM is rational/ruled we work under this hypothesis
here, although the arguments below apply more widely.

Proof of Theorem 1.2.16 Here we assume that (M, ω,S, J) is a rational/ruled mani-
fold with singular setS , J ∈ J (S) andΣA is a nodalJ-representative of some class
A ∈ H2(M). If ω is a rational class, a classical refinement of Donaldson’s construction
produces a symplectic curveCT for T = PD(Nω), N ≫ 1, which intersectsS,ΣA

transversally and positively [D96]. The first statement of the theorem is a further
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refinement explained in [O12]: whateverω , for somer ≤ rankH2(M), there is a
decomposition

[ω] =
r∑

i=1

βi PD(Ti), βi > 0,

whereTi are represented by embedded symplectic curvesCTi , which again intersect
S ∪ ΣA positively and transversally. At this point, we therefore have aJ-nodal curve
S ∪ ΣA ∪ T (whereT = ∪CTi ), for someJ ∈ J (ω). As will be explained in section
5 (cf. Lemma5.1.4), we can perform a small inflation alongT in order to get a
symplectic formω′ =

∑
i β

′
i PD(Ti) in a rational class, close toω , still J-compatible.

On the other hand, Proposition5.1.2guarantees the existence of aJ-compatible sym-
plectic form ω′

κ in class PD(A) + [ω′]
κ , for arbitrary largeκ. Given theεi , choose

κ ∈ Q so thatεi − β′
i
κ ≥ 0 and then chooseN0 so thatN0εi ,N0β

′
i /κ ∈ Z for all i .

Again by Donaldson’s construction, fork ≫ 1 there is an embedded curveΣ that is
approximatelyJ-holomorphic (henceω -symplectic) and in class

[Σ] = kN0

(
A+

PD[ω′]
κ

)
= kN0

(
A+

∑ β′
i

κ
Ti
)
,

As before,Σ can be required to intersectS,T transversely and positively, meaning
that Σ is J′ -holomorphic for someJ′ ∈ J (S, ω). Then the given classkN0Aε :=
kN0(A+

∑
εiTi) is represented by the nodal curve

Σ ∪
⋃

kN0(εi −
β′

i

κ
)CTi .

(Note that by construction eachN0(εi − β′
i
κ ) is a positive integer.) SinceΣ has only

transverse and positive intersections withT , we can smooth this nodal curve to an
embedded one as in Lemma4.1.1(with ℓ = m= 0).

Proof of Corollary 1.2.17 Consider thek-fold blow-up ĈP2
k of CP2 endowed with a

symplectic formω , a singular setS , and a classA = L−∑
µiEi . Slightly perturbω if

necessary so that [ω] = ℓ−∑
αiei is rational. Since the union of closed balls⊔B(µi)

embeds intoCP2, there is a symplectic form in classℓ−∑
µiei , and hence in nearby

classesℓ−∑
(µi +δi)ei . It follows that for sufficiently small|δi |, chosen so thatµi +δi

is rational, every integral class of the formA′ = q(L−∑
(µi +δi)Ei) ∈ H2(ĈP2

k) where
q > 0, is reduced and has nonvanishing Gromov invariant. Applying Theorem1.2.16
with r = 1 and to such a classA′ , we get an integral classT = PD(N0ω) and, for all
positiveε ∈ Q, a symplectically embedded curve positively transverse toS in a class
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of the form

N′(A′ + εT) = N′
(
L −∑

(µi + δi)Ei + εN0(L −∑
αiEi)

)

= N′
(

(1+ εN0)L −∑
(µi + δi + εN0αi)Ei

)

= N′(1+ εN0)
(

L −
∑ µi + δi + εN0αi

1+ εN0
Ei

)
.

Note that the choice ofN0 is independent of that ofδi and ε, though N′ depends
on the latter choices. For sufficiently small (rational )ε > 0 we may chooseδi :=
εN0(µi − αi), so that the classN′(A′ + εT) is a multiple of A = L − ∑

µiEi . We
conclude as claimed that for someN the classNA is represented by aJ-curve for some
J ∈ J (S, ω).

5 Symplectic inflation

We assume throughout this section that (M, ω) is a blow up of a rational or ruled
manifold so that the calculation of Gr(A) is given by Lemma2.1.5. For short, we simply
say thatM is rational/ruled. We begin in §5.1by explaining the inflation process and
proving Theorem1.2.12modulo some technical results. Even in the absolute case, the
details here are new: we explain a streamlined version of theconstruction that is easy
to generalize to the relative case. The proofs of the technical results are deferred to
§5.2. In particular, Lemma5.2.1is a more detailed version of Lemma1.2.11.

5.1 The main construction

In this section we work relative to a collectionC of surfacesCTj ,1 ≤ j ≤ L, that may
contain some or all of the components ofS and satisfies the following conditions.

Condition 5.1.1 (a) EachCTj is ω -symplectically embedded, and lies in a class
Tj with Tj · Tj = nj ∈ Z;

(b) Each surfaceCTj is ω -orthogonal to all the componentsCSi of SrC as well as
to the otherCTk, k 6= j .

In this situation we say thatC is (S, ω)-adapted, or simplyS -adapted, and that the
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form ω is C ∪ S -adapted.10 A componentCTi is calledpositive (resp. negative)
if ni ≥ 0 (resp. ni < 0). We say thatC is J-holomorphic if the tangent space to
each of its components isJ-invariant. Similarly, we say that a nodal curveΣA is
(S ∪C)-adaptedif the collection of its components satisfies the above conditions with
respect toS ∪ C .

In applications, we will represent the classA along which we want to inflate by a
nodal curveΣA whose components give a decompositionA =

∑
ℓiSi +

∑
njBj as

in (3.1.1), and then takeC to contain the curves in the singular setS together with
suitable embedded representatives of the classesBj obtained via Proposition3.1.3.
Thus we can writeA =

∑
mjTj for some integersmj ≥ 0, whereTj are the classes of

the components ofC . Here, as always, we take the classA to be integral. However
it is just as easy, and convenient specially in the relative case, to inflate along classes
Y ∈ H2(M;R) of the form Y :=

∑
λiTi whereλi ≥ 0 are real numbers. As will

become clear, the important point is not whetherY is integral but that the classesTi

are represented by the submanifolds inC .

We begin by stating a version of the basic inflation result. (Asimpler version was
proved in [Mc13] using the pairwise sum as in [LU06].)

Proposition 5.1.2 With C as above, letY :=
∑L

i=1 λiTi whereλi ≥ 0 and define
λmax := maxi λi . Then there are constantsκ0, κ1 > 0, depending onY, ω andC and a
smooth family of symplectic formsωκ,Y, κ ∈ [−κ0, κ1], on M such that the following
holds for allκ.

(i) [ωκ,Y] = [ω0] + κPD(Y), wherePD(Y) denotes the Poincaré dual ofY.

(ii) ωκ,Y is (S ∪ C)-adapted.

(iii) If Y · Tj = 0 for somej the restrictions ofωκ,Y andω to CTj are equal.

(iv) The constantκ0 depends on geometric information, namelyω, C and λmax,
while κ1 depends only on[ω] , λmax, and the homology classesTi . Moreover,
if Y · Ti ≥ 0 for all i thenκ1 can be arbitrarily large.

For short we will say these formsωκ,Y are constructed byC -adapted inflation. We
will see in the proof (given in §5.2) that the curves along which we inflate are part of
C .

10 This amounts to requiring thatω satisfy the conditions in Definition1.2.1with respect to
the collectionS∪C . For we always assume thatω is compatible with the given fibered structure
nearS , and because of the orthogonality condition (b) we can always choose a compatible
fibered structure nearC .



46 Dusa McDuff and Emmanuel Opshtein

Note also that in this result we allowκ to be slightly negative. We will call a deformation
from ω0 to ω−ε anegative inflation. However, just as “inflation" along a classSwith
S2 < 0 decreasesω(S), negative inflation along such a class increasesω(S). The next
example shows why we cannot always takeκ1 to be arbitrarily large.

Example 5.1.3 If T = E is the class of an exceptional divisorCE , then negative
inflation alongY = E by −κ changes [ω] to [ω] −κPD(E), increasing the size ofCE

to ω(E) + κ. On the other hand, positive inflation byκ to [ω] + κPD(E) decreases it
to ω(E) − κ and so is possible only ifκ < ω(E).

The same argument works in 1-parameter families. More precisely, the following
holds.

Lemma 5.1.4 Let ωt, t ∈ [0,1], be a smooth family of symplectic forms onM
andCt, t ∈ [0,1], be a smooth family of(S, ωt)-adapted submanifolds in the classes
Ti,1 ≤ i ≤ L. Let Yt :=

∑L
i=1 λi(t)Ti with λi(t) ≥ 0. Then the following holds.

(i) There are constantsκ0, κ1 > 0 and a2-parameter family of symplectic forms
ωt,κ,Y, t ∈ [0,1],−κ0 ≤ κ ≤ κ1 that for eacht satisfies the conditions (i) –
(iv) of Proposition5.1.2 with respect toCt and Yt . In particular, [ωt,κ,Y] =

[ωt] + κPD(Yt) for all t ∈ [0,1], κ ∈ [−κ0, κ1] .

(ii) One can construct this familyωt,κ,Y, t ∈ [0,1],−κ0 ≤ κ ≤ κ1, so that it extends
any given paths fort = 0,1 that are constructed byC0- (or C1-) adapted inflation.

In order to apply Lemma5.1.4to prove Theorem1.2.12we need first to find suitable
classesA along which to inflate, and then construct the familiesCt . The following
argument that deals with the caseS = ∅ is adapted from [Mc98]. For simplicity, we
explain it only whenM is a blow up ofCP2.

Lemma 5.1.5 Let M be a blow up ofCP2, and suppose given a smooth family of
symplectic formsωt, t ∈ [0,1], on M with [ω0] = [ω1] . Then there is a family of
symplectic formsωst,0 ≤ s, t ≤ 1, such that

ωs0 = ω0 andωs1 = ω1,∀s, ω0t = ωt and[ω1t] = [ω0] ∀t.

Proof Write L,Ej, j = 1, . . . ,K, for the homology classes of the line and the obvious
exceptional divisors, and then defineℓ := PD(L),ej = PD(Ej) so thatej(Ej) = −1.

Case 1: [ω0] is rational.

We claim that for sufficiently large integerN the following conditions hold, whereP+

is the positive cone as in Fact2.1.1:
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• N[ω0] ± ej ∈ P+ for all j ,

• the classA±
j = PD(N[ω0] ± ej) is reduced, i.e.A±

j · E ≥ 0 for all E ∈ E .

By the openness of the space of symplectic forms, there is anε0 > 0 such that the
classes [ω0]+εej have symplectic representativesωε for all |ε| < ε0 . TakingN < 1/ε0 ,
the first claim obviously holds. Moreover,N[ω0] ±ej must evaluate positively on each
exceptional classE ∈ E(ω±1/N). The claim follows by deformation invariance ofE .

Next, with A±
j = PD(N[ω0] ± ej), Corollary2.1.6implies that Gr(qA±

j ) 6= 0 for suf-
ficiently largeq. It follows that for any deformationσt , given a generic 1-parameter
family Jt of σt -tame almost complex structures, there is (after possible reparametriza-
tion with respect tot) a family of embedded connectedJt -holomorphic submanifolds
C±

t,j in class qA±
j . If we do this for each of the classesA+

1 ,A
−
1 ,A

+

2 , . . . in turn,
possibly reparametrizing at each step, we may suppose that there is a familyCJ

t of
Jt -holomorphic submanifolds in these classes. We can finally perturb them to get a
family CA

t , t ∈ [0,1], composed ofωt -orthogonally intersecting curves for eacht .
Observe that the homological intersectionsA±

j · A±
i are all nonnegative wheni 6= j

(as well as forA+
i · A−

i ) because the classes areJ-represented; also (A±
i )2 > 0 by

hypothesis (A±
i ∈ P+ ). Hence every class

∑
λjA

±
j , with λj ≥ 0 intersects every com-

ponent ofCA
t positively for all t , and so can be used for arbitrary positive inflations by

Lemma5.1.4.

The familyωst is constructed in three stages. The first stage fors∈ [0, s1] implements
the reparametrization. The second stage is the inflation.

Each class [ωt] has a unique decomposition as

[ωt] = c(t)[ω0] +
∑

j∈I+(t)

λj(t)ej −
∑

j∈I−(t)

λj(t)ej , c(t), λj (t) > 0,

where I+(t),I−(t) are suitable disjoint subsets of{1, . . . ,K} for each t , and the
functionsc(t), λj(t) are smooth. Define the class

Yt :=
1

s2 − s1

( ∑

j∈I+(t)

λj(t)A
−
j +

∑

j∈I−(t)

λj(t)A
+
j

)
.

Note that here we pairj ∈ I+(t) with A−
j = PD(N[ω0] − ej). It follows that inflation
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alongYt gives a smooth family of symplectic formsωst, s∈ [s1, s2], in class

[ωst] = [ωt] +
s− s1

s2 − s1

(∑

I+(t)

λj(t)PD(A−
j ) +

∑

I−(t)

λj(t)PD(A+
j )
)

=

(
1+ N

s− s1

s2 − s1

∑
λj(t)

)
[ω0] +

∑

I+(t)

(
1− s− s1

s2 − s1

)
λj(t)ej

−
∑

I−(t)

(
1− s− s1

s2 − s1

)
λj(t)ej .

For s = s2 , the classes [ωs2t] are proportional to [ω0]. The third stage consists of a
rescaling, which gives [ω1t] = [ω0]. Observe thatY0 = Y1 = 0 so that this whole
process does not modifyω0 andω1.

Case 2: [ω0] is irrational.

In this simple situation (S = ∅), it is well-known that the “deformation to isotopy"
statement is equivalent to the claim that the space of symplectic embeddings of disjoint
closed balls of a fixed size intoCP2 is path connected. But if this holds for balls of
rational size, it is obviously also true for balls of irrational size since we can always
extend an embedding of irrational balls to slightly larger rational balls, isotop this as
required, and then restrict the isotopy to the original balls. We now give the formal
proof that keeps track of this argument, because it will adapt to the situationS 6= ∅.

Rescale so thatω0(L) = 1 and write [ω0] = PD(L) −∑
j λjej , whereλj > 0. 11 For

t = 0,1 choose a genericωt -tame almost complex structureJt . Then there are disjoint
embeddedJt -holomorphic curvesCEj

t in the classesEj ,1 ≤ j ≤ K, for t = 0,1.
Chooseκ0 > 0 so that we can negatively inflate along these curves fort = 0,1 and
for −κ0 ≤ κ ≤ 0, and then choose rational numbersµj = λj + δj with δj < κ0 . Then,

by negatively inflating along the curvesC
Ej

0 ,C
Ej

1 , construct families of formsωt for
t ∈ [−1,0] and t ∈ [1,2] so that [ω−1] = [ω2] is rational:

[ω−1] = [ω2] = PD(L) −
∑

j

µjej , µj ∈ Q.

Because the endpoints of the pathωt,−1 ≤ t ≤ 2 are now equal and rational, as before
we may homotop this deformation to an isotopyρt, t ∈ [−1,2], with ρt = ωt at t =
−1,2. Note that the set of classesA±

j = N[ω−1] ±ej along which we must now inflate
depends on [ω−1]. Hence the familyCA

t , t ∈ [−1,2], does as well. Further, because

11This is the only step in the argument that fails whenM is ruled. In this case, one should
replaceL by the class of some section of the ruling that has nontrivialGromov invariant, and
add the class of the fiberF (which is always represented) to the exceptional classes.
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the classesEj = PD(ej) ∈ E are represented by uniqueJt -holomorphic embedded
spheres for all generic 1-parameter pathJt , we may simply add representatives of the
classesEj to the family CJ

t , and then straighten out the components of the curves in
CJ

t using Lemma3.2.1to obtain a family (CA
t )′, t ∈ [−1,2] of curves with pairwise

orthogonal intersections, that contains embedded representativesC
Ej
t of each classEj

as well as the components ofCA
t . Moreover, we can suppose att = −1,2 that these

curves equal the previously chosen ones att = 0,1 respectively. Then by Lemma5.1.4,
the isotopyρt, t ∈ [−1,2], consists of forms that are nondegenerate on theCEj

t .

More precisely, in the three stages defined above, we get for some 0< s3 < 1 a
2-dimensional familyωst of symplectic forms,t ∈ [−1,2], s ∈ [0, s3] that homotops
ωt (for s= 0) to ρt = ωs3t , where [ωs3t] ≡ [ω−1] = [ω0] −∑

δjej . By construction,

the curvesCEj
t areωs3t -symplectic, with area larger thanδj , so the last stage consists in

performing a positive inflation of sizeδj along the curvesC
Ej
t , and a reparametrization

in t , in order to straightenωs3t, t ∈ [−1,2], to ω1t, t ∈ [0,1], in class [ω0]. Note that
at the endpoints this last step reverses the original negative inflation ofω0 to ω−1 and
ω1 to ω2. Therefore the final isotopyω1t, t ∈ [0,1], starts atω0 and ends atω1, as
required.

In order to carry out this proof in the case of isotopies relative to S , one needs to find
suitable representatives of all the classes involved in theabove proof, theA±

j when
[ω0] is rational, and also suitable substitutes for theEj in the general case. In order to
deal with the latter we will need to work relative to a smoothS -adapted family that
for eacht contains representatives of the classes corresponding to the Ej . Here is the
main result about the existence of such representatives. Note also that the condition on
d(Aj) comes from Lemma2.1.5, and is needed to ensure some Gromov invariant does
not vanish.

Proposition 5.1.6 Let ωt, t ∈ [0,1], be a path of symplectic forms as in Theo-
rem 1.2.12, and Ct be a smooth(S, ωt)-adapted family of surfaces in the classes
T1, . . . ,TL . Suppose given a finite setA = {A1, . . . ,AK} of S -good classes such that

- Ai · Tj ≥ 0 for all 1 ≤ j ≤ L, and

- d(Aj) > 0 for all j . Moreover,d(Aj ) ≥ g+ k
4 , if M is thek-point blow up of a

ruled surface of genusg.

Choose a smooth pathJt ∈ J (S, ωt,A), t ∈ [0,1] of (Ct, ωt)-adapted almost complex
structures. Then, possibly after reparametrization with respect tot , the path(Jt)t∈[0,1]

can be perturbed to a smooth(Ct, ωt)-adapted path
(
J′t ∈ Jsemi(S, ωt,A)

)
t∈[0,1] such
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that for each1 ≤ j ≤ K there is a smooth familyΣAj
t , t ∈ [0,1], of J′t -holomorphic

and(S ∪Ct, ωt)-adapted nodal curves in classAj . Moreover the corresponding decom-
positions

Aj =
∑

ℓji Si +
∑

mji Eji + Bj, E2
ji = −1,

of (3.1.2) have the property thatGr(Bj) 6= 0 for all j .

Proof The proof when there is only one classA and whenCt = S is essentially the
same as that of Proposition3.2.3. The argument works just as well ifCt is strictly
larger thanS . Since by hypothesisd(B) ≥ d(A) > 0, we can always choose the set of
k := 1

2d(B) points so that at least one does not lie in the three-dimensional set∪tCt .
Hence we are free to perturbJ′t near some point on theB-curve which means that the
genericity arguments work as before.

Finally, if N > 1 we argue by induction onN. Note that at each stage we may have
to reparametrize. Further, to finish thei th stage we should apply the straightening
argument in Lemma3.2.1to make the components of theAi -nodal curve orthogonal
to Ct and all components for the previously constructed nodal curvesΣAj

t , j < i . Then
at the (i + 1)st stage, we repeat the argument with this enlarged familyC′

t .

Proof of Theorem 1.2.12 Recall the statement:M is a blow-up ofCP2 or a ruled
surface, we have a family of symplectic formsωt , t ∈ [0,1] with [ω0] = [ω1] and, as
in the previous lemma, we want to find a homotopy of symplecticforms ωst between
ωt (for s = 0) and an isotopyω1t (meaning that [ω1t] is constant) with fixed ends:
ωs0 = ω0, ωs1 = ω1 for all s. This time, the situation isrelative toS , meaning that
we assume that the formsωt are nondegenerate onS , and we want our homotopyωst

to have the same property.

Case 1: [ω] is rational

In order to adapt the proof of Lemma5.1.5 we first choose an analog of the basis
L,Ej for H2(M). We takeL to be any class with nonzero Gromov invariant, so that
ωt(L) > 0 for all t and then choose integral classesd1, . . . ,dK that together with PD(L)
form a basis ofH2(M;Q). Define the classesA±

j := PD(Nω0±dj) as before, using the
openness of the space of symplectic forms to find a suitable value of N for which these
classes are allS -good and also satisfy the enhanced condition ond(Aj ) when M is
ruled. This is possible by Corollary2.1.6. We then use Proposition5.1.6with Ct = S
andA = {A±

j : 1 ≤ j ≤ K} to get a smooth family of (S, ωt)-adapted nodal curves
Σ
±
t,j in classesA±

j . Straighten out their components using Lemma3.2.1to obtain an
(S, ωt)-adapted familyCA

t that containsS .
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We next claim that each classA±
j has nonnegative intersection with the classes of the

components ofCA
t . To see this, consider the decomposition

A±
j =

∑
ℓ±ji Si +

∑
m±

ji Eji + B±
j , E2

ji = −1, Gr(B±
j ) 6= 0

associated via Proposition5.1.6to the nodal curvesΣ±
t,j . We chose the classesA±

j to
be S -good. Therefore they have nonnegative intersection with the components ofS
as well as all exceptional classesE±

j . Further they have nonnegative intersection with
the B±

j because both theA±
j andB±

k have nontrivial Gromov invariant and hence are
represented by embedded curves for genericJ. Hence Lemma5.1.4allows inflation
along any nonnegative linear combination of theA±

j , and these inflations provide
symplectic forms which are nondegenerate onS .

The family ωst is then constructed in the same three stages as in the previous proof:
reparametrization, inflation along the classes

Yt =
∑

I+(t)

λj(t)A
−
j +

∑

I−(t)

λj(t)A
+
j

(where [ωt] = c(t)[ω0] +
∑

I+ λj(t)dj −
∑

I− λj(t)dj ), and rescaling. The result at
s= 1 is an isotopyω1t, t ∈ [0,1], consisting of symplectic forms that restrict onS to a
possibly varying family of forms that areS -adapted and all lie in the same cohomology
class.12

Finally, if ω = ω′ nearS thenω10 = ω11 = ω nearS by construction, and we can
arrange that the final isotopyω1t is constant nearS by an easy application of a Moser’s
type argument. Details are left to the reader.

Case 2: [ω] is irrational

When [ω] is irrational, we reduce to the rational case by first doing asmall “negative
inflation" along suitable classes,F1, . . . ,FK , whereK = k + 1 or k + 2 depending
on whetherM is a k-fold blow-up of CP2 or of a ruled surface. These classes are
obtained as follows. Choose integral classesa1, . . . ,aK that are multiples of classes
close to [ω] = [ω′], so that

[ω] =
K∑

i=1

µiai ,

for someµi ∈ R+ . By the openness of the space of symplectic forms, we may
assume that the classesai have symplectic representatives and take positive values on

12Note that we cannot invoke part (iii) of Proposition5.1.2 to claim that the forms are
constant onS throughout the deformation because some of the classesYt might have nontrivial
intersection withS .
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the componentsSi of S . Then, the classesFi := PD(ai ) satisfy all the conditions
needed to beS -good except that Gr(Fi) could vanish. Therefore, by replacing theai

by suitable multiples as in Corollary2.1.6, we can assume that eachFi := PD(ai) is
S -good, and, if relevant, hasd(Fi) ≥ g+ k

4 as in Proposition5.1.6. By applying this
proposition withCt = S , we can find a smooth path

(
J′t ∈ Jsemi(S, ωt,A)

)
t∈[0,1] such

that for each 1≤ i ≤ K there is a smooth familyΣFi
t , t ∈ [0,1], of J′t -holomorphic

and (S, ωt)-adapted nodal curves in classFi . Straighten out their components using
Lemma3.2.1to obtain an (S, ωt)-adapted familyCF

t .

As in the proof of Case 1, each classFi has nonnegative intersection with the classes
of the components ofCF

t . Hence Proposition5.1.2allows negativeCF
0 (resp. CF

1 )-
adapted inflation along any classYµ :=

∑
µiFi , µi ∈ [0,1] by −κ for all κ less than

someκ0 (recall thatκ0 depends only onµmax, ω,F , but not on the classY itself).
Stated differently,CF

t -adapted negative inflation along classes
∑

µiFi , µi ∈ [0, κ0]
are possible for allκ < 1.

Now choose small constantsδi ∈ [0, κ0[ so that

[ω]δ =
K∑

i=1

(µi − δi)ai ,

is rational. Defineωt, t ∈ [−1,0], (resp. t ∈ [1,2]) to be the family of forms obtained
from ω = ω0 (resp.ω′ = ω1) by negativeS ∪ CF

0 - (resp.S ∪ CF
1 -) adapted inflation

in classYF :=
∑

δiFi .

Then [ω−1] = [ω2] = [ω]δ is rational. Hence we may apply the argument of Case
1 to the extended deformationωt, t ∈ [−1,2], that has rational and cohomologous
endpoints. The only new point is that we construct the nodal curvesΣ±

t,j in classesA±
j

to beS ∪ CF
t -adapted rather thanS -adapted. This means that, in the notation of the

proof of Lemma5.1.5, the isotopyρt, t ∈ [−1,2], from ω−1 to ω2 consists of forms
that areS∪CF

t -adapted. Hence this isotopy can be positively inflated by aCF
t -adapted

inflation in classYF :=
∑

δiFi to an isotopy that joins the original formω to ω′ . This
completes the proof.

5.2 Proof of technical results

It remains to prove Propositions5.1.2 and Lemma5.1.4. These use entirely soft
methods.

Before embarking on the details of the proof of Proposition5.1.2, we recall the basic
inflation process; cf. [Mc98, LU06, B11]. Given a symplectically embedded surface
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C with C · C = n ∈ Z we normalizeω in some neighborhoodN of C as follows. If
r is a radial coordinate in the bundleπ : N → C whereN = { r2

2 < ε}, we write

ω = π∗(ω|C) + 1
2d(r2α), r ∈ [0,

√
2ε),

whereα is a connection 1-form with

dα = − n
ω(C)π

∗(ω|C).

We then choose a nonincreasing compactly supported function f : [0, ε) → [0,1] that
is 1 nears= 0, and define

ρ := −d(f ( r2

2 )α).

Consider the family of forms

ω + κρ : = π∗(ω|C) + 1
2d(r2α) − κ d(f ( r2

2 )α)(5.2.1)

=

(
1+ n

ω(C)

(
κf ( r2

2 ) − r2

2

))
π∗(ω|C) +

(
1+ κ|f ′|

)
rdr ∧ α.

By construction, this form lies in the class [ω] +κPD(C). If n ≥ 0 it is nondegenerate
for all κ ≥ 0, and is also nondegenerate in some interval−κ0 ≤ κ < 0, where the
bounds onκ0 come from both terms: in particular, because we need 1+ κ|f ′| > 0 the
boundκ0 depends on the size ofε and hence of the neighborhoodN . If n < 0 the
first term also presents a significant obstruction, and we canonly inflate forκ < κ1

where|n|κ1 < ω(C).

In the situation of Lemma5.1.4, we assume thatCt, t ∈ [0,1], is a smooth family
of symplectic submanifolds satisfying Condition5.1.1with respect to the formsωt ,
with an associated family of local fibered structuresFt on a neighborhoodN (Ct) as
described just after Definition1.2.1. In particular, each intersection pointqt of CTi

t with
C

Tj
t has a neighborhoodNqt , which is a connected component ofN (CTi

t )∩N (C
Tj
t ) with

product structure given by the projections toCTi
t andC

Tj
t . We fix corresponding polar

coordinatesrt,i , θt,i , rt,j , θt,j in the fibers ofLt,i andLt,j that vary smoothly witht . We

assume that these neighborhoodsNqt have disjoint closures forqt ∈ ∪i 6=j(C
Ti
t ∩ C

Tj
t ),

and then extend each radial functionrt,i smoothly overN (CTi
t ). (This amounts to

choosing a restriction of the structural group ofLt,i to S1.) We assume that for suitable
constantsεi > 0

(5.2.2) N (CTi
t ) = {x ∈ Li : rt,i(x) ≤

√
2εi}.

We also define

(5.2.3) ωTi
t := ωt|CTi

t
.
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Finally, we shrink the neighborhoods as necessary so that for negativeCTi
t we have

(5.2.4)
∑

qt∈CTi
t ∩C

Tj
t ,j 6=i

∫

CTi
t ∩Nqt

ωTi
t ≤ 1

2

∫

CTi
t

ωTi
t .

Lemma 5.2.1 For eachCTi
t ∈ Ct there are constantsκ0

i , κ
1
i > 0 and a family of forms

ρt,i with the following properties:

• [ρt,i ] = PD(Ti);

• ρt,i is supported in the fibered neighborhoodN (CTi
t ) for eacht, i ;

• ρt,i is compatible with the product structure, namely of the formdft,i(
r2
t,i

2 )∧dθt,i ,
on the product neighborhoodsNp of eachp ∈ CTi

t ∩
(
CrCTi

t

)
;

• ωt + κρt,i is symplectic andS ∪ Ct -adapted for−κ0
i ≤ κ < κ1

i and all t .

Moreover,κ1
i can be arbitrarily large ifni := Ti · Ti ≥ 0 and otherwise depends only

on cohomological data, namelyni andωt(Ti) :=
∫

CTi
t
ωT

t,i . Moreover, it is an increasing
function ofωt(Ti).

Proof Step 1:We may assume that there are connection1-formsαt,i on the bundles
πt,i : Lt,i → CTi

t such that

(5.2.5) ωt|N (CTi
t ) = π∗

t,i(ω
Ti
t ) + 1

2d(r2
t,iαt,i), 1 ≤ i ≤ L,

where rt,i is the radial coordinate in the fiber ofLt,i described above.

After possibly shrinking the neighborhoodsN (CTi
t ), this can be achieved by a standard

Moser type argument. �

Next, denote bygt,i : CTi
t → R the curvature function ofαt,i : thus

(5.2.6) dαt,i = −niπ
∗
i (gt,iω

T
t,i), 1 ≤ i ≤ N.

Note thatgt,i = 0 in each product neighborhood becauseωt is a product there.

Step 2: We may assume that gt,i(x) ≥ 0 for all x ∈ CTi , and satisfy the following
pointwise upper bound on the negative curves (those with ni < 0):

(5.2.7) gt,i (x) ≤ 2
ωt(Ti)

.

Again this follows by a standard Moser argument. Note that toachieve this bound we
must use condition (5.2.4) because

∫
CTi

t
dαt,i = −ni is fixed, while gt,i = 0 in each

product neighborhood. �
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Step 3:Completion of the proof.

Choose a family of smooth compactly supported functionsft,i : [0,
√

2εi) → R (where

εi is as in (5.2.2)) that equal 1 nearr = 0. With ρi,t := d
(
ft,i( r2

2 ) αt,i
)
, we have

ωt + κρi,t = π∗
i (ωT

t,i) +
1
2d(r2αt,i ) − κd(ft,i ( r2

2 )αt,i )

=

(
1+ niπ

∗
i (gt,i )

(
κft,i( r2

2 ) − r2

2

))
π∗

i (ωT
t,i) +

(
1+ κ|f ′t,i |

)
rdr ∧ αt,i .

As before, whenni ≥ 0 these forms are nondegenerate for allκ ≥ 0 and forκ > −κ0
i ,

whereκ0
i depends only on the sizeεi of Nt,i . Whenni < 0 we have similar limits

for κ0, but now must only considerκ < κ1
i , where the size ofκ1

i is determined by
the requirement that the formωt + κρi,t restrict positively toCTi

t = {r = 0}. Since
ft,i(0) = 1 and gt,i satisfies (5.2.7) this depends only onni and ωt(Ti). The other
properties of these forms are clear.

Proof of Proposition 5.1.2 This proposition states the following.

• Let Y :=
∑L

i=1 λiTi where λi ≥ 0. Then there are constantsκ0, κ1 > 0,
depending on Y andC , and a smooth family of symplectic formsωκ,Y on M such
that the following holds for allκ ∈ [−κ0, κ1] .

(i) [ωκ,Y] = [ω0] + κPD(Y), wherePD(Y) denotes the Poincaré dual of Y .

(ii) ωκ,Y is S ∪ C -adapted.

(iii) If Y · Tj = 0 for some j the restrictions ofωκ,Y and ω to a neighborhood of
CTj are equal.

(iv) The constantκ0 depends on geometric information, namelyω, C and λmax,
while κ1 depends only on[ω] and the homology classes Ti,Y . Moreover, if
Y · Ti ≥ 0 for all i then κ1 can be arbitrarily large.

We use the notation of Lemma5.2.1omitting t since for the moment we are considering
single forms. First consider the forms

ω′
κ,Y := ω +

L∑

i=1

λiκρi .

Because the supports of two formsρi, ρj , i 6= j, intersect only in the neighborhoods
Np in which theρi are products, the formω′

κ,Y is nondegenerate provided that each
form ω + λiκρi is nondegenerate. Therefore, if these forms are nondegenerate for
−κ0

i ≤ κ ≤ κ1
i , we may take the lower bound−κ0 to be maxi −κ0

i /λi and the upper
bound to beε1 := mini κ

1
i /λi . This form satisfies (i) and (ii). Also, as explained

in Step 3 of the proof of Lemma5.2.1 the bound onκ0 depends on the size of the
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neighborhoodsNi of the curvesCTi , and hence on geometric information aboutC and
ω .

If Y · Ti ≥ 0, for eachi the quantityω′
κ,Y(Ti) is a nondecreasing function ofκ. But

notice that asκ increases the area ofCTi is redistributed so that (5.2.4) eventually
ceases to hold. Thus whenκ = ε1 we isotop the formω1 := ω′

ε1,Y nearC pushing area
out of the product neighborhoods to make (5.2.4) valid again. We saw in Lemma5.2.1
that the upper limitκ1

i for positive inflation byρi increases asω′
κ,Y(Ti) increases.

Therefore, we may now repeat this process, starting withω1 and inflating by adding a
suitable form in classκPD(Y) for κ ∈ [0, ε2], whereε2 ≥ ε1. After a finite number
of such steps, we arrive at a form in class [ω0] + κPD(Y) for arbitrarily largeκ. If
Y · Ti < 0, for somei , thenω′

κ,Y(Ti) decreases and it follows from Lemma5.2.1that
the bound onκ1 depends on cohomological data, namelyY · Ti andω(Ti).

This gives a family of formsωκ,Y that satisfies (ii) and (iv), and nearly satisfies (i):
the problem here is that we paused the inflation atκ = ε1, ε1 + ε2 and so on, while
we readjusted the area distribution. However, one can easily combine these two
deformations and then reparametrize with respect toκ so as to satisfy (i). Finally, note
that whenY · Tj = 0 the total area of the curveCTj is constant throughout the isotopy,
although the distribution of area changes withκ. Hence to achieve (iii) we alter the
isotopy near each such componentCTj so that it is constant near that component. Again
this is a standard Moser type argument: one should begin by adjusting the forms near
each intersection pointCTi ∩ CTj , keeping the product structure, and then adjust near
the rest ofC .

Proof of Lemma 5.1.4 The proof of part (i) is similar, and will be left to the reader.
It uses the full force of Lemma5.2.1. Moreover part (ii) holds because at each step of
the construction in Lemma5.2.1the set of possible choices (for example, of the size of
the neighborhoodsN (CTi ) or of the precise normal form chosen forωt as in (5.2.5)) is
contractible. Further, if one constructs two pathsωκs, s= 0,1, using the same fibered
structure (choice of projectionsπi , radial coordinatesr , and neighborhoodsN (CTi

t ))
then the linear isotopy

(1− s)ωκ,0 + sωκ,1, 0 ≤ s≤ 1,

between them consists of nondegenerate forms.
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