Nongeneric J-holomorphic curves and singular inflation

DusA McDuUFF
EMMANUEL OPSHTEIN

This paper investigates the geometry of a symplectic 4-folah{M, w) relative to
a J-holomorphic normal crossing divisdt. Extending work by Biran (innvent.
Math. 1999), we give conditions under which a homology class Hy(M;Z)
with nontrivial Gromov invariant has an embedd&dholomorphic representative
for some S-compatibleJ. This holds for example if the clas& can be rep-
resented by an embedded sphere, or if the componenss afe spheres with
self-intersection-2. We also show that inflation relative s always possible,
a result that allows one to calculate the relative symptemine. It also has im-
portant applications to various embedding problems, fangxe of ellipsoids or
Lagrangian submanifolds.
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1 Introduction

1.1 Overview

Inflation is an important tool for understanding sympleeimbeddings in dimension
4. Combined with Taubes—Seiberg—Witten theory, it providepowerful method to
study these embedding problems, especially in so-calléohed or ruled symplectic
manifolds. Non exhaustive references for ball packings[&te, B99, Mc98]. In
recent years, these results have been extended in severiatis MSc, BH, Mc11],
building on a work of the first author on ellipsoid embeddifigle09i]. Unfortunately,
this paper contains a gap, which we describe briefly now. Tssical inflation method
requires that one finds an embedded symplectic curve in a givmology clas#\, that
intersects some fixed divisor transversally and positivéinen this divisor is regular
in the sense of-holomorphic curve theory — as in the case of ball packindgem it is
an exceptional divisor —, this embedded representativeisffound via Taubes’ work
on pseudo-holomorphic curves in dimension 4. For ellipsoitbeddings however,
these divisors are not regular, so the relevant almost eoogbtuctures are not generic,
and the theory must be adapted, which was not dond@®9i]. This discussion raises
the following general question:

Question 1.1.1 Given a homology clas& € Hy(M) in a symplecticd-manifold, with
embedded -representatives for a generic sethfare there natural conditions that
ensures thah also has an embeddédrepresentative, wherg is now prescribed on
some fixed divisoiS ?
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In fact, as realized by Li-Ushet.J06], a complete answer to this question is not
needed for inflation: non-embedded representatives carbalssed to inflate, and, as
was shown inlic13], this suffices to deal with the main gap ME09i].

Question 1.1.2 To which extent can nodal curves replace embedded ones as far
inflation is concerned ?

The present paper is concerned with these two questionsmaheresults are Theo-
rem1.2.7that gives conditions under which a clas$as an embeddet-holomorphic
representative fos-adapted] and Theoreni.2.12which explains that nodal curves
can be used for inflation in 1-parameter families relativeStdleading to a relative
version of “deformation implies isotopyMc98]).

1.2 Main results

We assume throughout tha¥l(w) is a closed symplectic 4-manifold. We first discuss
the kind of singular set§ we consider, and give a local model for their neighborhoods.
A neighborhoodN (C) of a (2-dimensional) symplectic submanifolel can always
be identified with a neighborhood of the zero section in a malighic line bundle

L over C with Chern class ] - [C]. For a unionS = U CS of submanifolds that
intersect positively and -orthogonally the local model is a plumbing: we identify the
standard neighborhood¥ (CS) with A(CS) at an intersection poing € CS N CS

by preserving the local product structure but interchagdiber and base. Thus each
suchq has a product neighborhoold, and by a local isotopy we can always arrange
that this product structure is compatible with i.e. W|Nq is the sum of the pullbacks
of its restrictions toCS and CS. We call the resulting plumbed structure on the
neighborhoodV (S) = U; N(CS) thelocal fibered structure.

Definition 1.2.1 A singular setS := C3LU- - -UCS of (M, w) is a union of symplecti-
cally embedded curves of gemyS) in classess,, . . . , S; respectively whose pairwise
intersections are transverse anebrthogonal. A componer€S is callednegative if
(S)? < 0 andnonnegativeotherwise, and is calleggular if (§)*> > g— 1. We write
Ssing (resp. Sirreg) for the collection of components that are negative and egular
(resp. notregular), and defiffgng := {i : CS € Ssing} aNdZirreg = {i : CS € Sirreg}-

We say that theymplectic form w is adapted toS if the conditions above are satisfied
and ifw is compatible with the local fiber structure on some neighbod N (S).

Given, a closed fibered neighborhodél of S we say that aw -tamealmost complex
structure J is (S, N)-adaptedif it is integrable inN and if eachCS as well as each
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local projectionN' (CS) — CS s J-holomorphic. We defing’ (S, N) := J(S, N, w)
to be the space of all such almost complex structudresThe space of5-adapted
almost complex structures is the unigh(S) = Uz J(S ,N) with the direct limit

topology.

We suppose throughout th&tsatisfies the conditions of Definitidh2.1, and will call
it the singular set, even though some of its components midyeio any way singular.

Remark 1.2.2 (i) The regularity condition can also be written d&5§) > 0, where
d(S) := c1(S)+(S)? is the Seiberg—Witten degree. B3.1.4), any regular component
CS can be given al-holomorphic parametrization for sondec 7(S) such that the
linearized Cauchy—Riemann operator is surjective. Inrotlueds, the parametrization
is regular in the usual sense fdrholomorphic curves; cf.NIS04, Chapter 3]. On the
other hand, ifCS is not regular, this is impossible. Further, by Remark.9 (ii), if

CS is regular but negative then it is an exceptional sphere.réfoee Ssing CONsists

of spheres with self-intersectiod —2 and higher genus curves with negative self-
intersection.

(i) The orthogonality condition (ii) in Definitionl.2.1is purely technical. If all
intersections are transverse and positively oriented weab@ays isotop the curves in
S so that they intersect orthogonally; cf. Proposit&.3

Example 1.2.3 Suppose that\, w, J) is a toric manifold whose moment polytope has
a connected chain of edgesi = 1,...,s, with Chern numbers-k; < —2. Then the
inverse imageS of this chain of edges under the moment map is a chain of sphetie
respect to the natural complex structureMn Moreover the toric symplectic form is
adapted taS: in particular the sphere8S do intersect orthogonally. Another example
of S is a disjoint union of embedded spheres each with selfgatg#ion< —2.

Write £ C H»(M;Z) for the set of classes that can be represented by excelptiona
spheres, i.e. symplectically embedded spheres with sielfgection—1.

Definition 1.2.4 A nonzero clas#\ € Hy(M; Z) is said to beS-good if:
(i) Gr(A) #0;
(i) if A2 =0 thenA is a primitive class;
(i) A-E >0 foreveryE € E~{A}; and
(iv A-S>0forl<i<s.
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Example 1.2.5 As we explain in more detail in&1, whenM is rational (i.e.S* x &
or a blow up of CP?) the Gromov invariant G¥) is nonzero wheneveA? > 0,
w(A) > 0 and the Seiberg—Witten degrd@?) := A + c1(A) is > 0. Thus condition
(i) above is easy to satisfy. FurtherAf¢ £ satisfies (i) and (iii) themd? > 0.

Here is a more precise version of Questiofh. 1

Question 1.2.6 Suppose thah is S-good. When is there an embedded connected
curveCA in classA that isJ-holomorphic for som@ € J(S) ?

If Ssing= 0, then the answer is “always". Therefore the interesting awhen at least
one component of is not regulat: So far we have not managed to answer this question
by trying to constructC” geometrically? The difficulties with such a direct approach
are explained in 8.1. Nevertheless, in various situations one can obtain aipesit
answer by using numerical arguments. In cases (iii) andé&lgw the clas#\ has genus
g(A) = 0, where, by the adjunction formula.¢.D, g(A) := 1+ %(A2 — c1(A)) is the
genus of any embedded and connecidablomorphic representative @f. Our proof

of (iv) adapts arguments in Li—-ZhangZ12], while that in (v) generalizes BirariBP9,
Lemma 2.2B]. Finally (ii) follows by an easy special casehaf tjeometric construction
that works becaus§ is not very singular.

Theorem 1.2.7 Let (M,w) be a symplectict-manifold with a singular se§, and
suppose thah € Hy(M; Z) is S -good.

 In the following cases there i3 € J(S) such thatA has an embedded-
holomorphic representative:

() Ssing= 0, i.e. the only components &f with negative square are exceptional
spheres;
(i) Ssing consists of a single sphere wi#d = —k where2 < k < 4.
 In the following cases there is a residual suh$gtdS,A) of J(S) such thatA
is represented by an embeddidiolomorphic curveC? for all J € Jemd S, A):
(i) Aeé&;
(iv) 9(A) =1+ (A2 —ci(A)) =0;

! See RemarR.1.9(i) for an explanation of the problem in analytic terms.

2 |n a previous version of this paper, the first author claingechirry out such a construction.
However, the second author pointed out first that the comait inductive argument had a
flaw and, more seriously, that some of the geometric consbnEwere incomplete.
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(v) the components @iweg haveci(§) = 0 andA cannot be writtenas) , 4§
iEIirreg
wheret; > 0.
Moreover, any two elementd, J; € JemdS,A) can be joined by a path,t c
[0,1], in J(S) for which there is a smooth family of embedd&dholomorphic
A-curves.

Remark 1.2.8 (i) Although we do not assume initially thag =1, itis well known
that any 4-manifoldM that has a clasé with Gr(A) # 0 andd(A) > 0 must have
b{ = 1: cf. Fact2.1.8 The same holds ifi(A) = g(A) = 0 andA ¢ &: cf.

Lemma2.1.7. Therefore in almost all cases covered by (iv) and (v) we rhase
by =1.

(i) If c(S) = 0 andg(S) > 0 then §)? > 0 so thatd(S§) > 0, in other wordsCS
is regular. Therefore in (v) the componentsSyeg must be spheres.

(i) As noted in Remarld.1.6below, the condition ork in part (ii) above can almost
surely be improved. We restrict to< 4 to simplify the proof, and because these are
the only cases that have been applied; BLW12, W13].

In general, the issues involved in constructing a singleextdbd representative of a
classA are rather different from those involved in constructing-patameter family
of embeddedl;-holomorphic curves for a generic path € 7(S). In particular, as
we see in Lemma&.1.5 the presence of positive but nonregular components of
can complicate matters. Further, in cases (i) and (ii) ofofém 1.2.7 we have no
independent characterization (e.g. via Fredholm thedri)aseJ € 7(S) that admit
embeddedA-curves, and also cannot guarantee that there is a 1-paafastily of
embedded curves connecting any given pair of embeddedscugven if we managed
to include them as part of the boundary of a 1-manifold of earthey may well not
lie in the same connected component. Hence, without exathgses, it makes very
little sense to try to construct 1-parameter families ohstuarves for fixed symplectic
form w. However, if we add an extra hypothesis (such as (ii) beldwehtwe can
construct such families. We will prove a slightly more gexieesult that applies when
we are given a familyu, t € [0, 1], of S-adapted symplectic forms.

Proposition 1.2.9 Let (M,w) be a blowup of a rational or ruled manifold, and let
wt,t € [0,1], be a smooth family of -adapted symplectic forms. Suppose that

() Ssing is either empty or contains one sphere of self-intersectignwith 2 <
k <4, and
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(i) d(A) > 0 if M is rational, andi(A) > g+ § if M is then-point blow up of a
ruled surface of genug.

Then, possibly after reparametrization with respetttmy pairl, € J(S,wq,A), a0 =
0,1, for which A has an embedded holomorphic representative can be joinagn
J € J(S,w, A) for which there is a smooth family of embeddédholomorphic
A-curves.

Remark 1.2.10 The proof of parts (iii), (iv) and (v) of Theoreth2.7easily extends
to prove a similar statement in these cases, but withoutthggss (ii) onA.

The gap in Mc09i] precisely consisted in the claim that evefygood classA does
have anS-adapted embedded representative, and as explainedyafiféiadvas used to
justify certain inflations and hence the existence of certanbeddings. Even though
we still have not found an answer to Questib2.6 as far as inflation goes one can
avoid it: as explained inMIc13], one can in fact inflate along suitable nodal curves.
Thus the following holds.

Lemma 1.2.11 If A is S-good, A2 >0, andA-S > 0 for all components§ of S,
then there is a family of symplectic forms; a in class[w] + kPD(A), x > 0, that are
nondegenerate of and havevwya = w.

This result (which is reproved in Lemna2.1below) suffices to establish the existence
of the desired embeddings. However to prove their uniguenp$o isotopy one needs
toinflate in 1-parameter families, in other words, we needdhiowing relative version
of the “deformation implies isotopy” result dc98].

Theorem 1.2.12 Let (M,w) be a blow up of a rational or ruleéi-manifold, and let
S C M satisfy the conditions of Definitiof.2.1 Letw’ be any symplectic form on
M such that the following conditions hold:

@ [w]=[w] € H¥(M);

(b) there is a family of possibly noncohomologous symptefdimswy,t € [0, 1],
on M that are nondegenerate 8nand are such thaty = w andw; = w'.

Then there is a familws, s,t € [0, 1], of symplectic forms such that

e wo = wy for all t and[wy],t € [0, 1] is constant;
o wg =w andws = w' forall s;

e wg; IS nondegenerate on each componen$ of
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Moreover, ifw = w' nearS, we can arrange that all the formas;, t € [0, 1], equalw
nears.

Corollary 1.2.13 Under the assumptions of Theoreh®2.12 there is an isotopy
¢, t € [0,1], of M such thatpg = id, ¢7(w') = w and¢(S) = S for all t. Moreover,
if w =’ nearS we may choose this isotopy to be compactly supportéd-inS .

Remark 1.2.14 Li-Liu show in [LLO1, Theorems 2,3] that every manifold with
b{ = 1 has enough nonvanishing Seiberg—Witten invariants teerbany familyw;
with cohomologous endpoints to an isotopy. Itis likely tRabpositionl.2.9and The-
oreml.2.12also extends to this case since the rational/ruled hypistieseeded only
via Lemma2.1.5 which guarantees conditions that 8y 0 in Propositions3.2.3
and5.1.6

The results on inflation can be rephrased in terms ofrétative symplectic cone
Coneg,(M, S). Denote by(2,(M) the connected component containiagf the space
of symplectic forms orM, and by(,,(M, S) its subset consisting of forms that are
nondegenerate of§. Further givena € H?(M) let Q,(M,S,a) be the subset of
Q,(M,S) consisting of forms in clasa. Define

Cong,(M): = {[o] |0 € Q,(M)} C H3(M;R),
Cong,(M,S): = {[o]]o € Q,M,S)} C H¥(M;R).

Note that these cones are connected by definitionMLf) is a blowup of a rational
or ruled manifold, it is well known that

Coneg,(M) = {a € H*(M;R) |a® > 0, a(E) > OVE € £};

see [LO2] and the proof of Propositiori.2.15 given below? In this language,
Lemmal.2.11and Theoreml.2.12can be restated as follows. Note that the case
whensS has a single component (adMlhasb] = 1) was proved in by Dorfmeister—Li

in [DL10, Theorem 2.7].

Proposition 1.2.15 Let (M, w) be a blowup of a rational or ruled manifold asda
singular set. Then:

(i) Cone,(M,S) ={ac Cong,(M) |a(§) >0, 1<i<s}.

(i) Q,(M,S,a) is path connected.

3|t follows easily from Gromov—Witten theory that the set= £/ of all classes represented
by w’-symplectically embeddee 1 spheres is the same for all € ,,(M). Therefore, this
description of Cong(M) makes sense.



Nongeneric J-holomorphic curves and singular inflation 9

Proof In (i) the left hand side is clearly contained in the right tiaide. To prove the
reverse inclusion, first notice that the set of classes sepited by symplectic forms
that evaluate positively on th§ is open inH?(M,R). Hence, ifa € ConeM,w),
satisfiesa(§) > 0 Vi, so doesa’ = a — ¢[w] for £ > 0 sufficiently small. Further, by
perturbingw, we may choose so thata’ € H3(M; Q). SinceM is rational or ruled,
the classgPD(@@) is S-good for g sufficiently large (see Corollarg.1.6. Thus, by
Lemmal.2.1] the class J] + xgd is represented by a symplectic forx, for all

k > 0. Takingk = qia we therefore obtain a symplectic forsw,; in classa. This
proves (i). Finally, (ii) holds because, by definition @f,(M, S), any two symplectic
formsin,(M, S, a) are deformation equivalent, thus isotopic by Theoflethl2 O

Finally, we show that these singular inflation procedureslioe with the Donaldson
construction to provide approximate asymptotic answef3uestionl.2.6

Theorem 1.2.16 Let (M* w) be a blow up of a rational or ruled manifold with a
singular setS and anS -good clasA € Hy(M). Then:

() There is a unior]” of transversally and positively intersecting symplectibs
manifoldsC™, ..., C™", orthogonal toS and such thaPD() = >~i_, 4Tj,
where; > 0. Further, we may take < rankH2(M), and, if[w] is rational, we
may taker = 1.

(i) For all positivee, ..., € Q, there are integemsly, kg > 1 such thatNg(A +
> &iTy) isintegral and each clagdo(A+ > & T;),k > ko, is represented by an
embedded -curve for somel € J(SUT).

Corollary 1.2.17 If k closed balls of sizey, ..., a. € Q embed intoCP?, and if S
is any singular set in thie-fold blow-up of CP? with S-(L-> aE) > 0Vj, then
there isN such that the classl(L — ) aE;i) has an embeddedl-representative for
somed € J(S).

1.3 Plan of the paper.

Because this paper deals with nongendrieve must rework standard-holomorphic
curve theory, adding quite a few rather fussy technicalildet&or the convenience of
the reader, we begin in 82, by surveying relevant aspectaolbds—Seiberg—Witten
theory explaining in particular why Questidn2.6has a positive answer wheh= ().
We then describe the modifications needed whé S -adapted.
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The next section 8proves most cases of Theordn2.7. The basic strategy of the proof

is to represent the clags by an embedded. -representative for sufficiently generic
J- and letJ. tend to some) € J(S). By Gromov compactness, we get a nodal
J-representative foA, whose properties are investigated in Lemr@dsland3.1.2

To prove part (i) of Theoren.2.7it then suffices to amalgamate these components
into a single curve, which is always possible for componevita honnegative self-
intersection; cf. Corollaryd.1.4 Since this geometric approach gets considerably
more complicated whe&§§ has negative components, the proof of part (ii) of Theorem
1.2.7is deferred to 8. Propositionl.2.9 which is a 1-parameter version of (i) and
(i), is proved in Corollarie8.2.5and4.1.7. The other parts of Theorefn2.7concern
1-parameter families, and their proof mixes geometric mugyts withJ-holomorphic
curve theory. The main idea is to show that for generic fasill; one can find
corresponding 1-parameter families of embeddecurves. WherA € £ (case (iii) of

the theorem), generic families éf-curves are embedded by positivity of intersections.
For more general, we formulate hypotheses that guarantee the existencetablkeu
embedded families in Propositiéh2.3 In 83.3we then check that these hypotheses
hold in cases (iv) and (v).

Sections & is essentially independent of the rest of the paper. 4rl8ve explain
how one might attempt a geometric construction of embeddedrves. We give an
extended example (Examplel.?, and prove part (ii) of Theorerh.2.7in Proposi-
tion 4.1.5 The asymptotic result Theorein2.16is explained in 8.2 The idea is
that using Donaldson’s construction of curves instead #fe3g-Witten invariants and
degenerations provides a much better control on the pnsfithe curve relative t& .
The smoothing process is then very elementary. Howeverpaye for this by having
less control over the class that has the embedded repridsgesitaNote also that the
proof of Theoreni.2.16depends on the existence of the symplectic forms consttucte
in 85.

Finally 85 deals with inflation, especially its 1-parameter versioat 8 also called
“deformation implies isotopy"”. This section provides egplformulas for the infla-
tion process along singular curves, and gives completefgpiafoLemmal.2.11and
Theoreml.2.12in the absolute and relative cases. It relies on the resu8.l1 and
83.2 but is independent of the rest o8&nd of #.
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0905191 and 1308669. The second author is partially suggbdoy the grant ANR-
116JS01-010-01. We warmly thank Matthew Strom Borman, -Jiam Li and Felix
Schlenk for very helpful comments on earlier drafts of trapgr. We also appreciate
the referee’s careful reading.
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2 Consequences of Taubes—Seiberg—Witten theory

This section first recalls various well known results &holomorphic curve theory
in dimension 4, and then explains the modifications necgsaathe presence of a
singular setS. Throughout, unless specific mention is made to the conftrgy a
curve we mean the image of a smooth map3 — M where} is a connected smooth
Riemann surface. Thus ammersed J-holomorphic curve is the image of a smooth
J-holomorphic immersiom : ¥ — M. In particular, all its double points have positive
intersection number. A curve is callsimple (or somewhere injectivg if it is not
multiply covered; cf. MS04, Chapter 2].

2.1 Review ofJ-holomorphic curve theory

We begin this section by a brief review of Taubes’ work relgtSeiberg—Witten theory

to J-holomorphic curves in order to explain the condition tha(Ap # 0. Here,
Gr(A) is Taubes’ version of the Gromov invariant Af that to a first approximation
counts embedded-holomorphic curvesinMl, w) through%d(A) generic points, where
d(A) := c1(A) + A? is the index of the appropriate Fredholm problem; ¢faJoq.
Thus Gr@) # 0 implies both that(A) > 0 and that.’(A) > 0 for all symplectic forms

«’ that can be joined ta by a deformation (i.e. a path of possibly noncohomologous
symplectic forms). For 4-manifolds with; = 1 (such as blow ups of rational and
ruled manifolds), one shows that @j(# 0 by using the wall crossing formulas in
Kronheimer—-MrowkalkKM94] in the rational case and Li—LilL[95] in the ruled case.

When the intersection form okl?(M;R) has type (IN), the coneP = {a ¢
H?(M) | @ > 0} has two components; |&®* be the component containing]. Then
we have the following useful fact.

Fact2.1.1 Suppose thatj (M) = 1. If a,b € P+~ {0} thena-b > 0 with equality
only if a% = 0 andb is a multiple ofa.

Taubes’ Gromov invariant GA) in [Tau9g counts holomorphic submanifolds and
hence is somewhat different from the “usual” invariant du&tian—Tian that counts

(perturbed)J-holomorphic mapsi : (3,]) — (M, J) with a connected domain of fixed
topological type modulo reparametrization. To explainrélation, we first make the

following definition.

4 Occasionally we allow a curve to be disconnected, but it néxas nodes unless the
adjective “nodal" or “stable" is used.
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Definition 2.1.2 A classA € Hy(M; Z) is said to beeducedif A-E > 0 for all
E € E~{A].

For example, as noted at the beginning &% everyE € £ is reduced. Now recall
that the adjunction formula for a somewhere embeddledrveu : (X,j) — (M, J) in
classA with connected smooth domain of gergs states that

(2.1.1) g < 9(A) =1+ 3(A* — (W),

with equality exactly ifu is an embedding; cf1IS04, Appendix E]. Using this, one
can check that the only reduced clasgesiith A> < 0 andd(A) > 0 are those of
the exceptional spheres € £ (see Remark.1.9(ii)). Taubes showed that A is
reduced and has GX[ # O thenA is represented by a holomorphic submanifold.
Moreover, Wherbzr(M) = 1 andA? > 0, it follows from Fact2.1.1that this manifold

is connected, while iA2 = 0 each component is a sphere or torus; cf. Lenzn2ad

In fact, except in the case of tori of zero self-intersectimhere double covers affect
the count in a very delicate way), the following holds.

Fact 2.1.3 Assume that A is reduced and, ifAy = 1 and A =0, also primitive.
Then for generic J, the invarian&r(A) simply counts (with appropriate signs) the
number of possibly disconnected, embedded J-holomorphies through%d(A)
generic points. Moreover if ;tn(M) = 1 this curve is connected with genugAy.
ThusGr(A) equals the standard J-holomorphic curve invariant thatrdsiconnected
curves with genus(d) through %d(A) generic points.

For example, GE) =1 forallE € £.

Now let us consider a general, not necessarily reduced, dasgh Gr(A) # 0. Then
it is shown in McDuff Mc97, Proposition 3.1] that if we decompogeas

(2.1.2) A=A+ Y |A-E[E, EA)={E|E-A<O}

ECE(A)
thenE-E = 0 for E,E' € £(A) andA' is reduced withv(A') > 0, d(A’) > d(A) >0
andA’ - E = 0 for all E € £(A). Further, for generid the classA is represented by
a main (possibly empty) embedded compon@fit in classA’, together with a finite
number of disjoint curve€E each with multiplicity |A - E| in the classe€ € £(A).
This is proved by considering the structure of-dnolomorphic A-curve (wherel is
generic) through%d/(A) points, where

(2.1.3) d'(A) :=ca(A) + A+ D (IA-EP - |A-El).
EcE
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It follows that d'(A) = d(A). Moreover, Li—Liu show in [L99] that the equivalence
between Seiberg—Witten and Gromov invariants, previoeshablished for reduced
classes, extends to show that the cladsas the same invariant as does its reduction
A’. Thus:

Fact 2.1.4 Let A’ be the reduction oA, and assume tha' is primitive if g(A') =
0, (A)? = 0. ThenGr(A) = Gr(A) counts the number of embeddeicurves through
$d'(A) = 3d(A) generic points. In particular, & = 0 thend'(A) = d(A') = 0.

We next discuss conditions that imply @J(+# 0. The following is a sharper version
of Li—Liu [LLO1, Proposition 4.3]. (Their result applies to more generahifioéds.)

Lemma2.1.5 (i) Let(M,w) beS x S or a blowup of CP?2. If A € Hx(M)
satisfiesA? > 0, w(A) > 0, andd(A) > 0, thenGr(A) # 0.

(i) LetM be thek-point blowup of a ruled surface with base of gergy(§) > 1.
Then a sufficient (but not necessary) condition @A) to be nonzero is that
A€ Pt andd(A) > gM) + X.

(i) Let M be as in (ii) andA € Hy(M) be in the image of the Hurewicz map
m2(M) = Ha(M). Thend(A) > 0 implies thatGr(A) = 0.

Proof We prove (i). Since this can be proved by direct calculatibemM = S x S,
we suppose thai, w) is obtained from the standaf@P? by blowing upN > 0 points.
LetE € Hx(M),i =1,...,N, bethe classes of the corresponding exceptional divisors.
Then the anticanonical clags = —cy1(M) is standard, namelil = —3L + ZiN:l E,
where L = [CPY]. (As usual we identifyH,(M;Z) with H?(M;Z) via Poincaé
duality.) Becausel(A) > 0, it follows from the wall crossing formula irKM94]
that exactly one of GK), Gr(K — A) is nonzero. Sincé\? > 0 andw(A) > 0, the
Poincaé dual ofA lies in P+. Hence Fac?.1.1implies thatw’(A) > 0 for all forms
w' obtained fromw by deformation. On the other hand.if () is sufficiently small
for all i, w'(K — A) < 0. ThereforeK — A has noJ-holomorphic representative for
w’-tameJ, so that GiK — A) must be zero. Hence G¥[ # 0. This proves (i).

To prove (ii), we usel[L0O1, Lemma 3.4] which states that @)(+# 0 if d(A) > 0 and
2A — K € P*. Therefore (ii) will hold provided that ® — K € P*. Suppose that
M = (S x 2(_3,)#k@2 is thek-fold blow up of the trivial bundle, where the exceptional
divisors areEy, ..., Ex. Then

k
K=-2[3g] + 20— D[S+ ) _E

i=1
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so thatk? = —8(g — 1) — k < 0. Hence the nontrivial ruled surface OVEj also has
K2 = —4(g — 1), since its one point blowup is the same as the one pointupafithe
trivial bundle and blowing up reducéé® by 1. Then

(2A — K)? = 4A% — 4A - K + K? = 4d(A) — 4(g — 1) —k > 0,

by our assumption. Therefore eitheA 2 K € P+ or —(2A — K) € P*. But the
displayed inequality also shows that K < A% + 2K? < A? so thatA - (2A — K) =
2A2 — A.K > 0. Hence, becausé& ¢ P*t, Fact2.1.Iimplies that A — K € Pt as
required.

To prove (iii), let us first consider the case whéw, (v) is minimal. ThenA = K[S7],
where 7] is the class of the fiber. Furthdr > 1 sinced(A) = ci(A) > 0. Hence
Gr(A) := Gr(M,A) # 0 by direct calculation. Note that this class takes values in
Z = A°HY(M;Z). We can now use the blow down formula efj01, Lemma 2.8].
This says that ifX, 7) is obtained from X', ') by blowing down the single exceptional
classE, and if Gr(X, B) takes values irZ. = A°H(X; Z), then for all¢ > 0

d(B — (E) > 0 = Gr(X',B — (E) = Gr(X,B) € Z.

Note also thatl(B — (E) = (B— ¢E)?+c1(B) + ¢ = d(B) — /(¢ — 1) < d(B). Therefore
if we start with a class in thé-fold blow up with d(A) > 0, as we blow it down
the degreal(A) increases and we end up with a cl&$s?], k > 0, in the underlying
minimal ruled surface. Hence QY[+ 0. O

Corollary 2.1.6 If M satisfies any of the hypotheses in Leméa.5andA € P,
then there is an integey such thatGr(qA) # 0 forall g > qp.

Proof Since GA)? > 0 grows quadratically wittg while ci(gA) grows linearly, the
sequenceal(gA) is eventually increasing with limit infinity. The resulteh follows
from Lemma2.1.5 ]

The following recognition principle will be useful. It iskan from MS96 Corol-
lary 1.5], but here we explain some extra details in the proof

Lemma?2.1.7 (i) Suppose thatM*, w) admits a symplectically embedded sub-
manifold Z with c1(Z) > 0 that is not an exceptional sphere. THgh, w) is
the blow up of a rational or ruled manifold.

(i)  The same conclusion holds if there id eholomorphic curveu : (2,]) — (M, J)
in a classB with c,(B) > 0, whereB # KE for someE € £,k > 1.



Nongeneric J-holomorphic curves and singular inflation 15

Proof Since 0< c¢1(Z) = 2 — 2g + Z?, whereg is the genus of the submanifold
Z, we must havez? > 0, since otherwis&Zz? = —1 andg = 0 so thatZ is an
exceptional sphere. But wheff > 0 we can use the method of symplectic inflation
from [L94, Mc98] to deform w to a symplectic form in classJi] := [w] + kPDE)

for any x > 0. Therefore ifK is Poincaé dual to—c;(M), thenK - Z < 0 so that
for large k we havew,(K) < 0. But by Taubes’ structure theorems fapi99, this

is impossible wherb > 1. Thusb; = 1. The rest of the proof of (i) now follows
the arguments given irMS96. The crucial ingredient is Liu’'s result that a minimal
manifold with K? < 0 is ruled.

This proves (i). To prove (ii), note first that by replacingoy its underlying simple
curve we may assume that the maps somewhere injective. Since this replaces the
classB by B’ := 1B for somek > 1, we still havecy(B') > 0,B' ¢ £. Then perturb

the image ofu as in Propositior8.1.3below until it is symplectically embedded, and
apply (i). O

We also recall fromTau93 that for general 4-dimensional symplectic manifolds, the
classes with nonvanishing Gromov invariant are rigid:

Fact2.1.8 If by > 1 andGr(A) # 0, thend(A) = 0.

Finally we remind the reader of the standard theory-¢folomorphic curves as devel-
oped in MS04], for example. An almost complex structudes said to beregular for

a J-holomorphic mapu : (2,j) — (M, J) if the linearized Cauchy—Riemann operator
Dy, is surjective. We will say thafl is semiregular for u if dim CokerD,; < 1.
Here (g, jx) is a smooth connected Riemann surface, and whea genugX) > 0
we allow the complex structurg; on X to vary, so that the tangent spatg 7 at jx

to Teichmiller spaceT is part of the domain oDy j; cf. [Mc97, Tau9q. Therefore,

if uis a somewhere injective curve in claBsthe (adjusted) Fredholm index of the
problem in dimension2= 4 is

(2.1.4) ind Du) = 2n(1 — g) + 6(g — 1) + 2¢1(B) = 2(g + c1(B) — 1).

This is the virtual dimension of the quotient spaceJeholomorphic maps modulo
the action of the reparametrization group, where we adjusiuotienting out by the
reparametrization group (for gengs = 0,1) and adding in the®— 6 dimensional

tangent space to Teichitter space whergs, > 1. Thus, ifJ is regular, the space
Mgk(M, B,J), of J-holomorphic mapsu : (Xg,j) — (M, J) with k marked points

modulo reparametrizations and wighvarying in Teichniiller space, is a manifold of
dimension indDy j) + 2k. Hence the evaluation map

(2.1.5) Mgk(M, B, J) — MK
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can be locally surjective only if indY, j) + 2k > 4Kk, i.e. %(ind (DuJ)) > k.

Now recall that the adjunction inequalit.(.]) states that the genug(u) of the
(connected) domain of any-holomorphic curve in clas8 satisfiesg(u) < g(B),
where the algebraic genugB) = 1 + %(B2 — ¢1(B) is the genus of an embedded
representative oB. Therefore, 2.1.4) gives

indDyy = 2(cy(B) + g(u) — 1) = c1(B) + B® + 2(g(u) — 9(B)).
In other words

(2.1.6) indDy 5 = d(B) + 2(g(u) — 9(B)) < d(B).

Remark 2.1.9 (i) The above inequality2.1.6 implies that whenJ is regular for all
B-curves the evaluation maptg (M, B,J) — MK can be surjective only i§d(B) > k.
Informally, we may say that a connectBdcurve can go through at mo%d(B) generic
points of M. Note that nodaregular curves do worse. 188 is a J-holomorphic
nodal curve in clas® with components in classdgj,j = 1,...,n then positivity of
intersections implies thas; - B; > 0 for all i # j so that) _ d(B;) < d(B), with strict
inequality if anyB; - B; > 0. Hence if all components ofB are regular and some
Bi - B; > 0 (which always happens wherf arises as a Gromov limit of connected
curves), then such a nodal curve goes through at njds} d(B;) < 3d(B) points.
However, if some of the components Bf are not regular (e.g. they lie in the singular
setS, or they are multiply covered exceptional spheres), thaubgs index might be
negative, so others may have larger index, and could go ghrooore points. The
arguments that follow show how to deal with this problem irt@ie special cases.

(i) If A% < 0, the conditiond(A) > 0, combined with the formula

d(A) = 2(A? — g(A) + 1),

shows thatA? = —1, g(A) = 0. Henceg(u) = g(A) = 0, sou is an embedded
exceptional sphere.

2.2 The casel € J(S)

We now suppose thal belongs to the sef/(S) of Definition 1.2.1, where this is
given the direct limit topology. When we considé&holomorphic representatives for
a reduced clas# for suchJ, the situation is rather different from before since the
curves inS are not regular. Thué could decompose a& = >, (S + A’ where

¢ > 0, and we need to consider generic representations of tee&fla But A’ need
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not be reduced, and hence could have a disconnected refatéseas above with some
multiply covered exceptional spheres. We will consider swbsets of7 (S), first a set
(defined carefully below) of regulal, that we call7ieq(S), and secondly a larger path
connected sel/sem(S) wWhose elements retain some of the good properties of negula
J. Specially important will be certain special pathsTgmicalled regular homotopies.

Definition2.2.1 If N is a closed fibered neighborhood®fthe spacefeq(S, N, w, k)
of regular (S, N)-adapted J is the set of almost complex structurgs 7(S) satis-
fying the following conditions:

() Jis S-adapted onV ;

(i) J is regular for all somewhere injective elements (X, jx) — (M, J) in class
B with w(B) < k andimun (M~N) # (.

The spac€Tsem(S,N,w, k) of semiregular S-adapted J consists of all € J(S)
that are semiregular for all mapssatisfying the above conditions. We then define

jreg(S, w, Kl) = U xﬁeg(saﬁv W, ’{)7 jsem(sa W, ’{) = U jsem(‘syﬁv W, ’{)7
N N
and give these spaces the direct limit topology.

Remark 2.2.2 (i) In the case of spheres there is a close connection betdeen
value of the Chern class;(B) and the (semi)regularity of a somewhere injective
holomorphic spherei : (£,j) — (M%,J) in classB. Indeed, ifJ € Jsem(S,w, k)

for somex > w(B) and B is represented by a somewhere injective curve that meets
M~ thency(B) > 0 because inB, j = 2c1(B) — 2. Conversely, ifu is immersed,
then the conditiorc{(B) > 0 implies the surjectivity oD, j by automatic regularity
[HLS97.

(i) If A = {A1,...,A} is a finite set of reduced classég, we define the space
Treg/semdS> W5 A) = Treg/sem( S, w, k(A)) of almost complex structures, whesgA) =
max w(Ay). In practice, these complex structures are (semi)regtleach component
notin S of the stable maps that represent fge

Lemma2.2.3 The subsetliey(S, k) of T (S) is residual in the sense of Baire. Further,
jreg(87 k) C JTsem(S, k).

Proof Let (S, N, k) denote the subset &f-adapted) satisfying Definitior2.2.1(i)
for the given. BecauseZey(S, ) is a (countable) direct limit, it suffices to check
that Jreg(S, NV, k) is residual in7 (S, N, k) for eachA’. When the domairt of u
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has genus zero this follows immediately from standard thasrdeveloped inN1IS04,
Chapter 3.2], since we can vadyfreely somewhere on im. The argument applies
equally in the higher genus case. One main technical ingnéds the version of the
Riemann—Roch theorem iM[S04, Theorem C.1.10]. Since this theorem is stated
for arbitrary genus, one can easily adapt the above proadfjteeh genus curves as in
[Tau9g Mc97]. This proves the first statement. The rest of (i) is then irdiate since
the elements isem(S, k) satisfy fewer conditions than those ifieg(S, ). O

Lemma2.2.4 Letd € Jsem(S, N, A). The following statements hold for somewhere
injective J-holomorphic curves in a classB with w(B) < x(A).

() If B+ S"4S with ¢ > 0, thenimun (M=) # 0.

(i) If imun (M~N) # 0 thend(B) > 0. Moreover,B> > 0 unlessB € &£, and if
B? = 0 thenB is represented by an embeddediolomorphic sphere or torus.

Proof LetJ € J(S) be S-adapted on some fibered neighborhaddS). If u :
(%,j) — WV, J) is J-holomorphic, therB = > ¢S for some/;, because there is a
projection N/ — S. Moreover/; > 0 because we can choose this projection to be
J-holomorphic over some nonempty open subset of each @¥viam S. This proves
().

To prove (i), notice that since the index of a somewhereciinje J-holomorphic curve
with domain of genugy is even and dim CokeB, ;) < 1 whenJ € Jsem(S, A),
we must have indj, ;) > 0. Henced(B) > ind(Dyj) > 0 by equation 2.1.6.
Further, the only simple curves in a claBswith B> < 0 andd(B) > 0 are embedded
exceptional spheres (Rema2kl.9(ii)). Similarly, if B2 = 0 we again have equality
in the adjunction formula , so that the curve is embedded g = O or 1, as
claimed. O

Remark 2.2.5 A path J; € J(S),t € [0, 1], is called an §, N)-regular homotopy

if the derivativediJ; covers the cokernel d j for every mapu : (3, js) — (M, J)
that satisfies condition (i) in Definitiod.2.1 Thus @) is a path inJsem(S, N, w, k)
with the special property that for ea¢tall the relevant cokernels are covered by the
(restriction of the) single elemetdtJ;. The proof of MS04, Theorem 3.1.7] shows
that any two elementdy, J1 € Jreg(S, NV, w, ) may be joined by a regular homotopy
of this kind.

Let us denote byMgx(M~N;B,J) the moduli space of alk-pointed curves as in
(2.1.5 whose image meetsI~ . Then MS04, Theorem 3.1.7] also shows that,
for eachB with w(B) < k, the moduli spacdgjteml] Mg(M~N; B, %) is a smooth
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manifold of the “correct” dimension ind, j + 2k + 1 with boundary at = O, 1.
Hence the corresponding evaluation map goes through at %nmbBb generic points
in M~ ; cf. Remark2.1.9 Note also that ifB # >imS,m > 0, then everyB-
curve meetM~ N by Lemma2.2.4(ii). Therefore, in this casé g (M~N; B, %) =
Mgk(M; B, %).

3 The proof of Theorem1.2.7

We first explain the structure of nodal representatives,@nd then in PropositioB.1.3
show how to build embedded curves from components in claBseith B2 > 0. As
we see in Corollary3.1.4 and Propositior3.1.6 these arguments suffice to prove
Theorem1.2.7in cases (i) and (iii). 8.2 explains how to construct 1-parameter
families of embedded curves, whil88 proves Theorem.2.7in cases (iv) and (v).

3.1 The structure of nodal curves

Throughout this section we assume that the clasis S-good in the sense of of
Definition 1.2.4 For suchA, as explained in 8.1there is for each generic-tameJ

and each sufficiently generic set éﬂ(A) points inM an embedded-holomorphic
curveu: (2,j) — (M,J) of genusg(A) := 1+ %(A2 — ¢1(A)) through these points.
Hence by Gromov compactness, for eventameJ and every set o%d(A) points,
there is a connected but possibly nodal representativeeotldissA through these
points that is the limit of these embedded curves. We denmie sodal curves as”,
reserving the notatio€” for a (smooth, often immersed) curve. This section explains
the structure of these nodal curves. Recall from Definitich1that 7 (S, ) consists

of w-tameJ that are fibered on the neighborhaddof S.

Lemma 3.1.1 For eachl € J(S,N) andS-good classA, there is a connected-
holomorphic nodal curv&” in classA whose components are either multiple covers
of the components af or lie in classed; # >, mS, m; > 0. The homology classes
of these components provide a decomposition

s k
(3.1.1) A=> 4SS+ nB,
i=1 j=1

satisfying

(i) ¢ >0andn >0 forallj;
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(i) B-S>O0forallij;

(iii) each classB; may be represented by a connected sindpleolomorphic curve
CBi that intersectdI~ N .

Further everyd-holomorphic nodal curv&” that is the Gromov limit of embedded
Jn-holomorphicA-curves for some convergent sequedgehas this structure.

Proof Let ¥4 be anyJ-holomorphic nodal curve. As explained above, these exist
because GA) # 0. Then since we may replace every component in some class
Zj mS, m > 0, by a union of copies of th€S, we can suppose that rg) has this
form. ThereforeA does decompose as i8.1.1), and (i) and (ii) hold by positivity of
intersections. To prove (iii), note first that we may tdketo be the class of a simple
curve underlying a possibly multiply covered componentof The curveCB must
intersectM~ N by Lemma2.2.4(i). ]

The following sharpening of this result is useful in provingeorem1.2.7. Order the
classesB; (assumed distinct) so th&f € £ for j < p andB; ¢ £ otherwise, and write
Ej:=Bfor1<j<p,andB:= 3 ,nBj. We then have

p p
312 A=) 4S+) mE+> nB => 4S+> mE+B
i j=1 j=1

i>p i
whereB - (A — B) > 0 if B # 0 because&z” is connected.

Lemma 3.1.2 Suppose thal € Jsem(S,A) and that thel-holomorphic nodal curve
YA is the Gromov limit of embedded curves. Then the componBnis> p, in its
decompositior(3.1.2 also satisfy

o d(B) = )., d(B) = 0;
e B?>0forallj>p.

Moreover, ifB; is represented by &-sphere, we havér(B;) # 0. (This case occurs
only if M is the blow up of a rational or ruled manifold.)

Proof Apply Lemma3.1.1to ¥A. By Lemma3.1.1(iii), we can apply Lemma.2.4(ii)
to curves in clas$; to find d(B;) > O for all j. SinceB; - Bk for all j # k,

dB) = By +ad B) > B +cu(B) =Y dB) >0,

i>p i>p i>p i>p
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which proves the first claim. Sincé(B;) > 0, Remark2.1.9 (ii) shows that either
BJ-2 > 0 or Bj is represented by &-holomorphic—1-sphere. The latter is ruled out by
definition, soBJ-2 is indeed nonnegativej > p. WhenB; is represented by &-sphere
u: () — (M,J), then we saw in RemarR.2.2 (i) that c1(Bj) > 0. Therefore,
becausij2 > 0 we also havel(Bj) > 0. Therefore Lemma.1.7 (ii) implies that
M is the blow up of a rational or ruled manifold. Finally becaube classB; is the
J-holomorphic image of a sphere, we conclude from Len&ria5parts (i) and (iii)
that Gr@;) # 0. O

These lemmas give enough preparation for the proof of parof{iTheorem1.2.7(the
caseA € £). We next prove a general position result that allows us tedit up” a
nodal representation of the clads The result wherS = () is well known. Besides
being the key to the handling of the componentsSiSsing, this lemma will be very
useful when discussing inflation irb8 Note that in distinction to the decomposition
B = > njB;j considered above where by definiti@ # § for anyi, j, we now allow
Tj = § in some cases.

Proposition 3.1.3 Let T = ' nyT; € Hy(M) be such that
() T, # Tk for eachj # k, andn; > 1;

(i) for someJy € J(S), eachT; can be represented by a simple conneclgd
holomorphic curveCT ;

(iii) sz > 0 unlessC"i is an exceptional sphere;

(iv) T-S>O0foralli andT-T; >0 forall j; further,Tj - § > 0 for all i,j unless
T,=S whereCS s an exceptional sphere.

Then, T can also be represented by a (possibly disconnected) eedbeddve that is
orthogonal taS andJ-holomorphic for som@ € 7(S).

Proof Case 1: We assume N=n; = 1. If T = § for somei, then there is the
required embedded representative, nan@%. Therefore, assum& # S for any

i. By hypothesis there is a connected simpieholomorphic curveCT, and our
task is to resolve its singularities to make it embedded. 8yegal theory (see for
example MS04, Appendix E]) CT has at most a finite number of singular points
g = u(z). Suppose first that none lie afi. At each of these it is possible to
perturbC locally to an immersedg-holomorphic curve byNMlc94i, Theorem 4.1.1],
and then patch this new piece of curve to the restbfby the technique ofNIc91,
Lemma 4.3], to obtain a positively immersed symplectic eud/. The curveC’ is
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Jo-holomorphic except close © N Shell, whereShell is the union of spherical shells
Shell(q) := T, () \Ty,(0) centered at the finite number of singular poigtsThus we
can make itJ-holomorphic for some) nearJy that equalsly away fromC’ N Shell
Hence even if some singular poigtis in someCS we can assumé € 7(S).

ThenC' is immersed, and can be homotoped (keeping it symplectithatdt has at
most transverse double points that are disjoint from iersgctions with the curvesS

in S. Then we defornC’ so that it is vertical near its intersectiopswith eachCS , in

the sense that it coincides with the fiber of the normal buta!® at p. (A parametric
version of this maneuver is carried out in more detail in Lea812.1below). Then

C' meets each compone@> of S orthogonally in distinct points. Moreover, by
resolving all its double points (which lie away fro@%), we can assume th&’ is
embedded and still-holomorphic for somel € 7(S). This completes the proof
whenN = n; = 1. Notice also thaC’ is connected since we assumed that the initial
curve CT is connected.

Case 2: We assume E nTp where n> 1 and Ty # § for any i. By the above
we can suppose th&' is embedded, orthogonal t and J-holomorphic for some
J € J(S). Then for suitableJ € J(S) a neighborhood\/(CT™,J) of CTo can
be identified with a neighborhood of the zero section in a malighic line bundle
over CTo with nonnegative Chern class. (Sinoe> 0 condition (iv) implies that
(To)> > 0.) Moreover, since the conditiod € 7(S) only affects the complex
structure on\V(CT™) near a finite set of points, we may choakso that this bundle has
nonzero holomorphic sections. Hence we may representadkercly by the union of

n genericJ-holomorphic sections of this bundle that intersect transaly. Ing >0
each pair of these sections intersect, and by choosing igessmtions we can assume
that the intersection points do not lie éh Hence after resolving these intersections
as before, we get an embedded (possibly disconnectedsegpative ofnTy that we
finally perturb to be orthogonal t§.

Case 3: We assume & nTg where n> 1 and Ty = § for some i. This is much
as Case 2: we just need to pidke J(S) so that the normal bundle 6™ = CS
has holomorphic sections that intersect the zero set teasaNy in a finite number of
points. This is possible because by condition (iv) we have&s = n(Tp)? > 0.

Case 4:We assume M- 1 and 'IJT2 > 0 for all j. We first resolve all singularities, so
that each simple curv€’i is embedded and meets all the other cur@s and CS
transversally and positively in double points. Beca‘lujéez 0, evenifT; = § we may
replaceC”i by a suitable section of its normal bundle that is transvey€@S . Next,
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we perturb all double points to be orthogonal. Sin'qez(z 0 by assumption, we may
represent every classT; by embedded curves as in Cases 2 and 3 above. Finally, we
patch all double points to get an embedded curve in class

Case 5:The general caseBecauseT - T; > 0 for all j, each exceptional clagg must
intersect some other componentTn If two different exceptional sphereg™, CT
intersect, then we may form a symplectically embedded c@vehat is transverse to
S by patching together two meromorphic and nonvanishingiaesiof their normal
bundles each with their pole at one of the intersection pairith the other curve. (See
Lemmad4.1.1below for further discussion of patching meromorphic sewi) Then
by perturbingC’ further we can suppose that itdsholomorphic for somé € 7(S).
Therefore we can replace these two compong&pt$, of T with the single component
T' = Tx+T,. If T/ # Tj, for anyjo, then the decompositioh = T’ +- > n{T;, where
nj/ =n — 1 forj = k,¢ and = n; otherwise, satisfies all the conditions (i) through
(iv). In particular, by constructio; - T = 0 = Ty - T'. Otherwise we can write
T = > nT wherenf = nj — 1 for j = k£, andn{ = nj; + 1, which clearly also
satisfies the required conditions. Because the meromaospht®ons do not vanish, this
procedure works equally well if one or both sphe@’s, C™ are inS. It also works
if an exceptional spher€'« intersects some nonnegative componerit ofl herefore,
after a finite number of steps of this kind, we arrive at a dguosition T = ) nj’Tj’
with no exceptional spheres, and hence the conclusionaisllty Case 4. O

Corollary 3.1.4 Part (i) of Theorend.2.7holds.

Proof Suppose thaf = SyegUShonneg letJ € Jsem(S), and choose a-holomorphic
nodal representativE” of A as in LemmaB.1.2 Then write A = Zszl nTj where

T; is one of the classe§, Ej, Bj occurring in 8.1.2. By assumption, the class&
either have §)? > 0 or are represented by an embedded c@Vethat is Fredholm
regular and hence must be an exceptional sphere by R&rfaéii). If A € £ then
we might be in the casd = 1 = n; with A = Ez, in which caseA has the embedded
representativie®: . Otherwise, becaus is reduced we must have- Ej > O forallj,
andA-§ > 0 forall i becauseéA is S-good. Therefore in this case the result follows
from Proposition3.1.3 O

For the next result, denote ey, respectivelyZnonneg the classes withg)? < 0,
respectively §)? > 0. Recall from Remarl.2.2that the elements iffineg are either
represented by exceptional spheres or argsigy.
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Lemma 3.1.5 Suppose thah is S-good. Then we may write

q
(3.1.3) A= > 4S+> mE+B, >0 m>0,
ieIneg k:l

where

(i) if ¢; >0 andCS is an exceptional sphere, th&n- B = 0;

(i) eachEy for k < q satisfiesEx - Ej = 0,] # Kk, Ex-§ > 0for1 <j <sand
Ex-B=0;

(i) B has anembedded representafdfethat intersect8/~.S and isJ-holomorphic
for somed € J(S);

(iv) ifall § with § > 0 are regular, thed(B) > 0.

Proof Consideradecomposition®f= )", (S +ZJP:1 mEj+B asin @.1.2 given by

a J-holomorphic nodal curve whetke Jsem(S). As in the proof of Propositio3.1.3

we may incorporate all nonnegative componeh& into B.° If Ej - Ex > 0, then, as

in the proof of Case 5 of Propositidh1.3 we may reduce each afy, m¢ by 1 and
add a component in clag§ + Ex to B. Similarly, if Ej- By > 0, orif ;- § > 0 or

Bj - S > 0 for somei for which CS is an exceptional sphere, we may incorporate one
copy of the exceptional clas$ or E;j into theB;. Repeating this process, we arrive at a
situation in which (i) and (ii) hold, an@® (if nonzero) has an embedded representative
CB that intersectdI~.S and isJ-holomorphic for suitable) € 7(S).

To prove (iv), notice that if there are no irregular nonnagatomponentsgd(B) cannot
decrease as we incorporate the various compon@htsand CE into the B-curve.
Because we begin witd(B) > 0 by Lemma3.1.2 this proves (iv). O

We end this section by proving case (iii) of Theorér.7.

Proposition 3.1.6 Theorem1.2.7 holds whenA € £. Moreover, we may choose
jemt{SaA) D) jsem(S7A)-

Proof We first show that wheld € Jsem(S,A) eachA € £ has an embedded-
holomorphic representative. Suppose, to the contrary, tthie does not hold for

® Since these components need not be Fredholm regular andiltaxgd(S) < 0, we may
lose control ofd(B) at this step.
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someS-good A € £ and somel € Jsem(S,A). Consider theJ-holomorphic nodal
representatives” with decomposition

p
A=> 6S+> mE+> nB
i =1 i>p

as in B.1.2. Since XA is the Gromov limit of spheres, each componentf
is represented by a sphere. If there is just one componéstitist be somewhere
injective since the clas& is primitive, and hence by the adjunction formu2al(. 1) must
be embedded. Therefore, we can assume Yfahas several components. Because
A-A= —-1andA-S§ > 0 foralli, the classA must have negative intersection with one
of the Ej or Bj. But because this decomposition is nontrivia(F;) < w(A) for eachj,
sothatA # Ej. Hence, becausk, Ej € £, we must havé\-E; > 0 for allj. Therefore,
there isj > p such thatA - B; < 0. Next, notice that GE;) # 0 by Lemma3.1.2
Therefore, by Fac.1.3for generic € [J7(M) the classA has an embedded -
holomorphic representative while, by the discussion dfek.2, B; (which need not
be reduced) can be represented by an embedidedlomorphic curve in some reduced
class BJ-’ together with possibly multiply covered exceptional sgisein classe£), .
But E;, # A sincew(E,,) < w(B;) < w(A). HenceA- E, > 0, and alscA - Bj > 0.
ThereforeA - B; > 0, which contradicts the choice &. We conclude that the class
A must have an embeddeldholomorphic representative for eadhe Jsem(S, A).
Further, A can have no other noddl-holomorphic representative, since if it did
would have nonnegative intersection with each of its conepts) and hence witA
itself, which is impossible becaugec £.

Next define 7emd S, A) to be the set ofl € J(S) for which A has an embedded
representative. This set is residual Ji(S), because it containgsem(S, A), which

is residual by Lemm&.2.3 Further, it is open since embedded curves in classe
regular by automatic regularity (cf. Remazk?2.2 and hence deform to nearby em-
bedded curves whehdeforms. It remains to check thatmyS, A) is path connected.
But this holds because any two elemedisl; € Jemd S, A) can be slightly perturbed
to J5,J; € JemdS, A) N Treg(S,A), and then by RemarR.2.5 joined by a regular
homotopy iNTsem(S,A) C TemdS,A). ]

Remark 3.1.7 Of course, classeB € £ do degenerate, for example & E') + E’
whereE’ € £. But such degenerations (a) happenJan a set of codimension at least
2, and (b) have the property that the intersectioiz afith the class of the nonregular
component(s) (in this cade— E’) is negative The argument above shows the presence
of nonregular components in classgsvith E - § > 0 does not affect the situation.
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3.2 One parameter families

We begin with a useful geometric result.

Lemma3.2.1 LetJ,t € [0, 1], be a path in7(S) and suppose given a smooth family
¥4 of J;-holomorphic representatives Afall with the same decomposition

s p
A= Zfis +Zﬁ'§Ej +anBj
i=1 j=1 i>p
as in(3.1.2. Suppose further that the componentsS¥ in classest; andB; are
embedded (though possibly disconnected). Then, afteunbémnty J; in 7(S), we can
assume in addition that for eathhat all intersections of these components with each
other as well as witls arew;-orthogonal.

Proof We first arrange that all intersections are transverse whiplossible because
such tangencies happen in codimension at least 2. Thenitiiesgections occur at a
finite number of pointgy; that vary smoothly with the parameterFix i, and denote
by C!,C} the two branches of U X that meet afi, labelled putting the branch
that lies inS first. ThusC!,C}, are smoothly varying (local) curves, and, using a
1-parameter version of Darboux’s theorem, we may choosethtyosarying Darboux
chartspy; € Uy 2 B%(e) such that

elUrNCY) =B*e)N{z =0}, (:(0))(J) = o,

whereJ is the standard complex structure Bf{c) c C2. Moreover, ifC! c S, we

may arrange thap takes the fiber ap;; of the normal bundle t& to the axisz, = 0.

By shrinkinge > 0 (which we assume small, but fixed) we can also assume that the
imagei(Ch) N B%(¢) is the grapte, = fi(z;) of some function such thd(0) = 0 and
df;(0) is complex linear. Ifdf,(0) = 0, the proof is complete. So we suppose below
that df;(0) # 0.

An obvious 1-parameter perturbation ©§ nearp; provides us with curve€; which
coincide withC}, outside of some small ball and with the graphdé{0) near the origin
(in the coordinates given by;). Since this perturbation can be mad&-small, C;
remains symplectic. In other words, we can assume that ithé€re: § < ¢ such that

¢t(C5) N BY() = graphdf(0) N B*(5) = {(z & - 2), ze C} NBY),
wherea;- denotes the multiplication by the non-vanishing complexhbara; ~ df;(0).

Let nowp : [0,d] — [0, 1] be a non-decreasing cut-off function that equals 0 near 0
and 1 nears, and consider the curveS!’ := {(z p(|z))a:2)} N B*®). These curves
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are embedded, coincide wiflz, = 0} near 0, withy(Ch) = {(z, a2)} neardB*(s),
and they are symplectic because (ae+ p(|zZ)a:z) = p'(|2])|a]|Zl > O (in polar
coordinates,p(|z])a;z is the map (,6) — (o(r)|a, 0 + arga;)). We may therefore
replaceCh N ¢ LB40)) by ¢ 1(C{’). This is symplectically embedded (and hence
J-holomorphic for somes-tameJ), andw-orthogonal tcC} atpy;. Finally, if C} ¢ S

we need to check that the ne@, is J-holomorphic for somel € 7(S). But this
holds because we construct€} to coincide with the normal fiber t6 at py,. O

A family of nodal curvesy; that satisfies the conclusions of the above lemma for a
fixed w will be called S-adapted. In particular this means that the corresponding ho-
mological decomposition oA is fixed, as is the intersection pattern of its components.
The next result gives conditions under whighs represented by a family of embedded
curves.

Lemma 3.2.2 Let S be any singular set an#l be S -good. Suppose that for every
J € Jsem(S, A) and every decompositiai3.1.2) given by al-holomorphic stable map
YA that is a limit of embedded curves we hai(8) < d(A) with equality only ifB = A
(so that the decomposition is trivial). Then:

(i) foreachd € Jsem(S,A) there is an embeddeddholomorphicA-curve of genus
g(A) through a generié—zld(A) -tuple of points inM

(i) any two elementsly, J1 € Jreg(S,A) can be joined by a path,t < [0, 1], in
Jsem(S,A) for which there is a smooth family of embeddédholomorphic
A-curves.

Proof Let us first suppose that(A) > 0. Then by FacR.1.8we are in the case
b{ = 1. By definition of Gr@) (cf. Fact2.1.3, there is for each generio-tame

J and each sufficiently generic sgtof %d(A) > 1 points inM an embedded-
holomorphic curveu : (3,)) — (M, J) that goes through these points, whe¥gjj is
some smooth Riemann surface of gem(@8). Hence by Gromov compactness, for
everyw-tameJ and every set ogd(A) points, there is a possibly nodal representative
of the classA through these points. We show below that WREE Jsem(S,A) a
generic seik does not lie on a nonsmooth nodaholomorphic representative fé.
Hence, as above, it must lie on an embedded representative.

Consider aJ-holomorphic representativ&”® of A with nontrivial decomposition
(3.1.2. If we remove the rigid components in the clasées and mE; from YA we
are left with a stable map in the classB = Y, nB;. SinceBJ-2 > 0 by Lemma3.1.2
we can resolve all singularities and double points of the maments ofB as in Case
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4 for the proof of Propositior3.1.3 obtaining an embedded representa@® of the
classB. Moreover because] = 1 the curveC® is connected unlesB? = 0, and

in which case it hagn components in clasBg, whereBg is primitive andB = mBy
(Fact2.1.7) In the latter casel(B) = c1(B) = mdBp), and in either casd(B) < d(A)

by hypothesis. But ifCB is connected, then we conclude from equatidri @ that

the Fredholm index of a simple connected curve in cBss at mostd(B). Because

J is semiregular, eacB-curve is an element in a moduli space of dimension at most
d(B) + 1. Hence it cannot go through more théﬂ(B) < %d(A) generic points. Simi-
larly, if B = mBy, thend(B) = md(Bp) < d(A). As above, &p-curve can go through

at most%d(Bo) points, so that 8-curve goes through at mo§id(Bo) = 1d(B) points.
This shows that no simple representativeBojoes through a generic set However,

as explained in Remark.1.9(i), the nodal representatives involved by the decompo-
sition 3.1.2are even more constrained, because their component&yﬁ%is_f 0 and

CB N (M~N) # 0 by Lemma3.1.1 Hence there is nd-holomorphic representative
of B throughx. This completes the proof of (i).

To prove (ii), givenJo,J1 € Jreg(S,A), join them by a regular homotopy; <
Jsem(S,A) as in Remark.2.5 Then the space dB-curves that are);-holomorphic
for somet and intersecM~ N forms a manifold of dimensiod(B) + 1. Hence again
we may choose tuple of %d(A) points inM~\ that does not lie on any sud@rcurve.
Therefore the space of embeddaeturves throughx is a compact 1-manifold with
boundary atn = 0, 1. But because\ is S-good, Gr@) # 0. Hence there is at least
one component of this manifold with one boundaryvat 0 and the other at = 1.
Thus for some continuous functian : [0, 1] — [0, 1] with ¢(0) = 0 and¢(1) = 1
there is a family of embedded);t) -holomorphicA-curves. This proves (ii).

Whend(A) = 0 the argument is similar. In this case the hypothesis médetisihless
A = B we haved(B) < 0. Sinced(B) is even, this means thai(B) < —2. But
then dim CokeD, ; > 2 for every B-curve u. Hence given any regular homotopy
J € J(S), the classB has noJ;-holomorphic representatives for ahyso that all
representatives ok must be embedded. Therefore the previous argument applies.

The next proposition applies in the situation of Propositlo2.9where the manifold
is rational or ruled and we have a smooth famityof S-adapted symplectic forms.

Proposition 3.2.3 Let M be a rational or ruled symplectic manifold, andAean S -
good class witld(A) > 0. Suppose further tha{A) > g+ ;‘} if M is thek-point blow
up of aruled surface of gengs LetJ; € J(S,wt, A),t € [0, 1] be a smooth path with
endpoints inJweg(S,A) Then, possibly after reparametrization with respect, tthe
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path(3i)icpo,1) can be perturbed to a smodthadapted pathi); € Jsem(S, wi, A)), cl0.1]
such that there is a smooth famif\,t € [0, 1], of J{-holomorphic ands -adapted
nodal curves in clash. Moreover the corresponding decomposition

S
A=> 4S+> mE+B E=-1,
i=1 j
of (3.1.2 hasGr(B) # 0.

Proof Step 1: Preliminaries. Because we are in dimension 4M (w) is semi-
positive in the sense 0MS04. Hence by the results oM S04, Chapter 6] we may
join Jo, J1 by a regular homotopy; € J(S,wt, A). As in Remark2.2.5 this means
that 0iJ; covers the cokernel oD j for every relevant map, so that the moduli
spaceédte[o,l] M(M~N,B, ) are smooth manifolds with boundary of the “correct”
dimension. In particular each € Jsem(S, wt, A).

Given suchl;, consider the following compact space of stable maps:

X:= [ M(®A L.
te[0,1]

This space is stratified according to the topological typef the domains of the stable
maps, where]” keeps track both of the structure of the domain and the hagyolo
classes of the corresponding curves. These siatare ordered by the relation that
T’ < T if a stable curve with domain of typ# can degenerate into one of tyf€.
Since J; ranges in a compact set there are a finite humber of such desitiops
A=>.4S+ Zj mE; + B as in B.1.2. Let dnax be the maximum of the numbers
d(B), whereB occurs in such a decomposition for some [0,1]. We claim that
dmax > d(A). For otherwise Lemma.2.2implies that for each there are embedded
Ji-holomorphicA-curves. Since this is one of the decompositions considier¢e
definition of dmax, We must havalnax > d(A).

Next, consider a decomposition
S e
(3.2.1) A=> 4S+> mE+B
i=1 j=1

of the given type withd(B) = dnax and with maximal multiplicities 4), in the sense
that there is no other representative’ofvith decompositior;_; /S +Zje':1 n{E/+B’
whered(B') = dmax, ¢ > ¢ for all i and ¢} > ¢; for somei.

Step 2: In this situation,we havésr(B) # 0. If M is rational, this follows from
Lemma2.1.5(i) since B2 > 0, w(B) > 0 by construction, andi(B) > d(A) > 0.
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So suppose thal is the blowup of a ruled surface. B2 = 0 then we may write

B = mBy, wherem > 1 andBqy is represented by an embedded curve. This must be
a sphere or torus, since in all other cases the Fredholm ioflthe class is< —2,

so that by definition of7sem; they are not represented. In the case of a sphere we
have GrB) = 1, since for generid there is a uniqué3-curve through each set of
generic points. On the other hand, in the case of a tdfBg) = d(B) = 0. Since
d(B) = dmax > d(A) > g+ ;‘} >> 0 by hypothesis this case does not occur. Therefore,
it remains to consider the case whBf > 0. Sincew(B) > 0 by construction, this
means thaB € P*. Therefore GiB) # 0 by Lemma2.1.5(ii) applied to the clas8.

Step 3: Completion of the proof.

Since the classeg;, B in (3.2.1) have nontrivial Gromov invariant, they are always
represented in some form for eadh By Proposition3.1.6the classes; are in
fact always represented by embedded cur(ZeEé whenJ € Jsem(S,wt, A) since
J € Jsem(S,wt, A) C Jsem(S,wt, Ej) becausew(A) > w(Ej). We next check that
we can choose the regular homotaffye Jsem(S,wt, A) so that the clas8 does not
decompose. As in the proof of Lemn3a2.2 this will follow if we can show that
for each decompositioB = 3, B] of the B-curve, the sum of the Fredholm indices
of its nonrigid components is strictly less than the Freghaidex d(B) of the class
B. If the components of th®& curve are all transverse 8, then this calculation is
standard; cf. Remark.1.9(i). On the other hand, if for som& the decomposition is
a stable mapXg)’ that involves some components &fwith others in clas®’, then
the maximality of the paid(B) = dmax and ¢;) implies thatd(B') < d(B), and since
d(B) is always even, we actually haeB’) < d(B) — 2. Therefore in a regular path
J{, the dimension of the moduli space of these stable maps i®std(B) — 1, and
hence those curves cannot go throdgh= %d(B) generic point§. Thus, the space
of embedded-curves that are) -holomorphic for some and go throughtk generic
points is a compact 1-manifold with boundary. Moreover,duse GiiB) # O there
is at least one connected component of this 1-manifold withend at = 0 and the
other att = 1. Taking such a component, and reparametrizing with rédpeicas
necessary, we therefore have a fan@§ of embedded), -holomorphic curves in class
B. O

® Strictly speaking, we can only control the dimension of thaily of curves that go through
some point inM~. . However, sincal(A) > 0 we only need consider curves that go through
at least one fixed point that we can choose far fi®m
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Remark 3.2.4 The above proposition constructs 1-parameter familie®dahcurves
whose components are covers of embedded curves. Lenhizhows that if we start
with a family of nodal curves whose components are embeddednmersed) we
can perturb them so that they intersegtorthogonally. The patching arguments in
Proposition3.1.3that resolve double points and amalgamate transversadlysecting
components in classés B’ with B2, (B')2 > —1 also work for 1-parameter families.
Therefore, we can apply Propositighl.3to these 1-parameter families of nodal
curves. (The only part of this proposition that might faibiri -parameter family is the
initial resolution of singularities.)

Corollary 3.2.5 Propositionl.2.9holds whenSsing = 0.

Proof This holds by applying the 1-parameter version of Propmsi8.1.3 as in
Remark3.2.4to obtain the required family of embedded curves. O

3.3 Numerical arguments

This section proves Theorein2.7under hypotheses (iv) and (v) by showing in both
cases that the hypotheses in LenBr2are satisfied. First we discuss the genus zero
situation, using an argument adapted from Li—ZhdngiR, Lemma 4.9}

Lemma 3.3.1 LetS be any singular set. Then the hypothesis of Len812a2holds
for every S -good A such that

g(A) =1+ 3(A° —ca(A) =0,  dA) :=A*+ci(A) >0,
and everyd € JsemlS,A).

Proof Note first that we must be in the situatidy = 1, since by Fac2.1.8
Gr(A) # 0 can only be consistent witt(A) > O in this case. Consider a nontrivial
decompositioA = ) S+ mE+B asin Lemma.1.2 given by aJ-holomorphic
stable map2A with J € Jsem(S, A) that, by construction, is the limit of embedded
A-curves. We must check thd{B) < d(A).

Let us suppose first thaB has a connected, smooth and somewhere injective
holomorphic representative : (33,j) — (M,J). Then the adjunction formul&(1.1)

’Instead of requiringl to be in some way generic, they use the hypothesisAhat)-NEF,
which also implies tha# - B; > 0 for all j.
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implies thatg(B) > gs; > 0.2 so that
1d(B) =1+B?—g(B) < 1+ B

Thus 3d(B) < 1+ B? while our hypotheses imply tha}d(A) = 1 + A2. Thus it
suffices to show thaB? < A?. But

A-B=(A+B)-(A-B) = A- (D 4S+> nE)+B (A-B)
> B-(A—B) >0,

where the first inequality holds becauaés S-good, and the second (strict) inequality
holds because, as we noted abav8,is connected ané # B.

By Fact2.1.3 this completes the proof unle§&s= nBy whereBy is a primitive class
with B% = 0. Sinceg(By) = 0 by construction, Lemma.2.4 (ii) implies that each
Bo-curve is an embedded sphere. Her%«:ténBo) = n. Thus we need to show that
%d(A) —= 1+ A? > n. But this holds because, by the above calculation

A>=A?_-B’>>B-(A—B)>n,

where the last inequality holds becalBdasn disjoint components. O

We next extend an argument from BiraB99]. Recall thatSsing consists of all the
negative components df that are not exceptional spheres.

Lemma3.3.2 LetS be any singular set such tha(S) = 0 for all i with CS ¢ Sirreg -
Then the hypothesis of Lemn#8&2.2holds for everyS -good classA ¢ £ such that

A% Y ics, iS and everyd € Jsem(S,A).

Proof Starting with a nodal curvec” with decomposition withd(B) > 0 as in
Lemma3.1.2 add toB all regular component€S and all exceptional spheres that
intersectB as in Lemma3.1.5 As we remarked in the proof of Lemn3al.5(iv), d(B)
does not decrease when we do this. By hypothesis all irregataponents ofS are
negative because they hael¢S) = S + ¢,(S) < 0. Therefore it suffices to show that
in any decomposition

A= > 6S+)y mE-+B

i€Sneg k

we haved(B) < d(A). Rewrite this decomposition as

A= > 4S+) nE+B,

iE€Ssing j

®Although we know eacty(Bj) = 0, it is a priori possible thag(B) > 0. Li-Zhang's
argument shows that in fact this does not happen. Howevedpwmst need to use this.
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where we have grouped the su@eesneg\sirreg 4§ and) ", m¢Ei into a single sum over
classes| € £. We writeZ := 7, Sang 1S, @nd note that by hypothesig(Z) =

First suppose thd® = 0 sothatA = Z+Zj nj Ej’. We must show thad(A) > 0 = d(B).
By assumptiorA # Z. Further,

d(A) = A*+ci(Z+ ) nE) =A*+> n>0
i

unlessA € £ and)_n; = 1. But we excluded the cask € £. Hence wherB = 0
we haved(A) > 0 as required.

Now suppose thaB # 0. By Lemma3.1.5 we may assume th& E{ = 0 = E/-E; for
all j # k. Further A—B)-B > 0 since the classes— B andB are both represented by
J-nodal curves with no common component, and their unionassa is connected.
Hence

d(A) —d(B) = (Z+ ) nE+B)-A-B*+ci(Z+ > nE)
= (Z+) nE)-A+B-(A-B)+ > nc(E) +c(2)
> Z-A+) n >0

where the strict inequality uses the fact th&at (A — B) > 0. This completes the
proof. O

Corollary 3.3.3 Parts (iv) and (v) of Theorerh.2.7hold.

Proof If A € & the result follows from PropositioB.1.6. Therefore we will assume
A ¢ £. To prove Theoreni.2.7 (iv) notice thatd(A) > 0 becauseA is S-good.
Moreover wherg(A) = 0, the equalityd(A) = 0 implies thatA? = —1, sothatA € &£,
contrary to hypothesis. ThuA) > 0. But then Lemm&.3.1combined with Lemma
3.2.2shows thatA has an embedded-representative fod € Jsem(S,A). Since
Jseml(S, A) is residual by Lemma.2.3(ii), this proves part (iii) of Theorert.2.7. Part
(v), again with 7emd S, A) = Jsem(S, A), follows similarly using Lemmas.3.2and
3.2.2 O

Remark 3.3.4 Biran actually assumed the weaker conditin§ + c1(§) > 0 for
all i, but worked with disjoint curve€s.
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4 Constructions

In 84.1we explain some geometric constructions for embedded suavel then prove
part (i) of Theoreml.2.7and the second case of Propositib2.9 The asymptotic
result Theoreni..2.16is proved in §.2

4.1 Building embedded curves by hand

The naive strategy for answering QuestibA.6is to take the nodal curvE, and try
to piece its components together. A basic tool on which tinetesgy builds on is the
following easy patching lemma.

Lemma 4.1.1 Suppose that the integefsm > 0 have no common divisor- 1.
Given two nonvanishing and holomorphic functidnsh, in a neighborhood dd € C
ande > 0 small enough, there is an embedded symplectic submanifold

Cr = {f(zw) = 0} c C>~{zw=0}

which coincides with{w* = ch;1(2z ™} on |z < 1 and with{Z" = chy(W)w—‘} on
|z > e2, and is disjoint from the axes.

Note that when/ = m = 1 we are patching the graph of a meromorphic section
w = az ! over thez-axis to the graph of a meromorphic sectibe= bw~! over the
w-axis via the cylinderC;. Similarly, one can patch two transversally intersecting
curves, and also a simple pole (the grapwof= az 1) to the transverse axis= 0.

In the latter case, for exampl€; would coincide with the graph of = az* for |Z|
large and with the axig = 0 for |w| large. We will not prove this lemma here (or state
it very precisely) since we do not use it in any serious wayis paper. However, we
describe some applications in Exampgld.2below. Note that Li-UsherlJU0O6] also
use this idea of patching curves via meromorphic sections.

The way this lemma would ideally apply is the following. To fdeas, consider the
case where th& are spheres of self-intersectierk; < —2. For the decomposition
A = Y 4S + Y. mE; + B associated to a nodal map®*, the numerical condition
A-§ > 0 implies that

(%) 6k <> 4S-§+> mE-S+B-S.

j#i
We consider a holomorphic cove; L> S of degree/;, totally ramified at the
intersections betwee@S and eachCS and CE. We pull back the normal bundlé;
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to CS by f;, and consider a smooth section of f*L; that is holomorphic near its
zeros and poles, has poles of ordgmy at each (unique) preimage of the intersections
of CS with CS and C5, respectively, as well as one additional simple pole at some
preimage of each intersection 6F with CB, and no other poles. Since the pullback
bundlef;*Z; has degree-/;k;, the condition £) precisely means that the existence of
such smooth sections is not homologically obstructed. Wiaesame folC5 and for

CB (for the latter we do not need to consider a covering). Nowpiirsh-forward of
these sections td; provide multi-sections with singularities modelled wfi = z~*
(orwhi = z™ or wli = z 1) near each intersection. For example, at an intersection
q € CS N CS let us use the coordinatealong CS andw along CS. Then the two
branched covering maps are

(Z,w) ~ (@) = zw), (zW) =~ (zW)5 = w).
Hence the sections = a(Z) %, z= b(w)~* push forward to the curves
wi=alzh, A =piwh

Thus Lemma4.1.1limplies that for sufficiently smalt the sections:fi.o; and &fj.o;
can be patched together to give a curve that does not@teeCS near the intersection
point g. More generally, all these (rescaled) multi-sections campétched together
in the neighborhood of the intersections to form a sympdectirve in classA that is
transverse ta&.

Now this curve may have self-intersections coming from thidifg of the sectiory;
when we push it forward td;. Wheng; is holomorphic, these self-intersections are
positive, so they can be resolved and the procedure givasbedded symplectic curve
in classA that intersects the& transversally and positively. However, the criteria for
the existence of such a holomorphic section is not of topctdgature but of analytical
one (it is given by the Riemann-Roch Theorem). Hence theme guarantee that one
can find suitable sections,. The next example illustrates these difficulties, which in
this case arise from a multiply covered exceptional cu@¥e It also suggests some
ways around them.

Example 4.1.2 Suppose thaS consists of a single sphe@® in classSwith S- S=
—k, thatE is the class of an exceptional divis6F with E - S= m and thatB satisfies
B-S=1,B-E=0. ThenA:= S+ mE+ B has
A-E=0, A-S=nm’—k+1,
d(A) = d(S+ mE) + d(B) + 2S-B =4 — 2k + m? + m+d(B) > 0.
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Becaused(B) can be arbitrarily large, the conditiai(A) > 0 gives no information.
Therefore, the only numerical information we havelois thatk < m? + 1. Note also
that if k < n?, then A’ := S+ mE satisfiesA’ - S = 0, and we can try to form an
embedded curve in clags = S+ mE and then join it to theB curve to get the final
embeddedA curve. The virtue of this approach is that it gives us bettefeustanding
of the genus sincg(A) is a function ofm only. In fact, becausé&’ - B = 1, we have

g(A' + B) = g(A) + g(B), andg(A) = 1+ 3((A)? — cy(A)) = m(m— 1).

Therefore ifm = 4 andk < 16, we should be able to construct an embedded curve in
classA’ = S+ 4E of genus 6 and hence a curve in clads®f genus 6+ g(B). We
show below that the embeddéd-curve exists whek < 13, but may not exist when

14 < k< 16.

The casek < 4: In this case it is very easy to construct such a curve. We nRynas

that CF intersectsCS transversally at 4 distinct poings, . . ., ps, and then choose a
small meromorphic sectiors of the normal bundle tCS with simple poles at the
four pointspy,...,ps and 4— k zeros. Then take 4 different small nonvanishing
meromorphic sectiong, . .., p4 of the normal bundle t&€F, wherep; has a simple
pole atp;. Note that these sections are inverse to holomorphic sectidthe bundle
over & with Chern class 1 and so each pair intersects once traadlyefdext patchp;

to os atp;. (This is possible because the graphgefand p; satisfy an equation of the
form zw = const nearp; and so we can cut out small discs from each of these graphs
and replace it by a cylinder. One needs to check that thisagtican be chosen to be
disjoint from the other sectiong;; but this holds becausg is relatively much larger
than thep;,j # i nearp; since it has a pole there.) This process gives an immersed
curve of genus 0 with 6 positive self-intersections, onedach (unordered) pair
i,j,i #j.2 Therefore we obtain the desired embedded curve of genus ésbyving
these intersections.

The case4 < k < 10: We can refine the above argument by choosing the sections
o1, - - -, pa to have different orders of magnitude, with > p> > p3 > ps. Thus

p1 has a simple pole g, and and its graph intersec@® at pointspy,i = 2,3,4
moderately neap;. We match these zeroes and poles with 4 polessofif p, is much
smaller tharp1, then we can construets to have another pole @b that matches with

° These intersection points occur at the places where théagafp, p; intersect, far away
from the poles. Note that although the graph of eacimeetsCS at 3 points, one near each
p;,j # i, these intersections disappear after gluing since theop&@% nearpj is cut out during
the gluing withp; .
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p2, together with two more poles @i, i = 3,4 that are much closer fg. (Note that
the point of intersection of the graph pf with CS that is nearp; is cut out of CS

by the first patching process, and so we cannot put anothertipete.) Similarly, we
can chooses so that it patches with 2 poles et and then can takg, = 0 to patch
with one further pole. This procedure accommodates up todl€sp Moreover, it is
not hard to check that the corresponding embedded curveems . For example
if kis 10 we have patched five spheres together-at34+ 2 + 1 = 10 points and so
get a possibly immersed curve of genus 6. As before, the brpoints would come
from intersections of; with p; for i # j. But these are all cut out during the patching
process: for example, becausge << p1 the intersection point of these sections lies
near the pole op, and so is cut out when this pole is patched to the polesdt p, .

The casel0 < k < 16: Itis possible to refine this argument by using using branched
coverings as suggested at the beginning of this sectione thiat near a point where
os has a pole of orden its graph satisfies an equation of the fowd' = const where

z is the coordinate alon@S andw is the normal coordinate. It is not hard to check
that this pole may be patched to the pushforward of a segtivith a simple pole
p(W) = ¢/wW by a branched covering mag — (w)" := w: indeed the graph op
satisfiezw = &, which givesz(w)" = £", so that its pushforward satisfigsv = £".
SinceA containsk with multiplicity 4, we can in principle take ang < m= 4 and
hence accommodate up to 16 polesogf We now investigate this construction in
more detail.

The casek > 10: Our initial strategy for constructing a curve in cla&'s= S+ 4E
whenk > 4 is the following:

(a) take a meromorphic sectiarg of the normal bundle t&€* with poles of order

4 at each poinpy, ..., ps and 16— k zeros;

(b) take a branched covdr: ¥ — S of CF of order 4 that is totally ramified
at each of the pointg; := f~1(p)),i = 1,...,4 (and hence has local model
W (W)*);

(c) choose a meromorphic sectipg, over X of the pullback byf of the normal
bundle toCE with simple poles at the branch poirds, . . ., 04;

(d) patch the multisectiofi, (graphpy;) to the graph ofrs obtaining an immersed
curve with only positive intersections with itself and wigh

Step (d) gives an immersed curve which is made by patchingremersed curve
of genusg(>) with 4 punctures to a sphere with 4 punctures. Hence it hasge
g(X) + 3+ a, wherea is the number of self-intersection points b(graphpg) . By
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the Riemann-Hurwitz formula, the Euler characteristi&) equals 4(S%)—12 = —4,
where 12= 4 x 3 is the number of “missing vertices". Therefa@€) = 3. Hence
if this process worked we would hawwe= 0. Thus the curve in (d) would actually
be embedded. It is not hard to see that all the above stepsecashieved except
(possibly) for (c). The problem here is that becaidsés not a sphere there is no
guarantee that we can find a meromorphic section with polé®agiven points. Here
are some ways to try to get around this problem.

» Relax the condition on the section in (c), simply choosing section with these
poles. Butthen there is no guarantee that the pushforwaltiseutionf, (graphps,)
has only positive self-intersections. In fact, in casesrelvee have tried this, we
have managed only to construct sections with simple pokegat that push forward
to multisections with both positive and negative selfiséetions; and it is not clear
that these can be made to cancel.

Change the cover in (b) so thgfX) is smaller, since then we can prescribe the
positions of 4— g(3) poles of py,. Suppose for example thathas three branch
pointsq, ..., qz of ordersh; = 4,i = 1,2 andbs = 3. Then the Riemann-Hurwitz
formula gives

3
2-29(%) = x(Z) =4x(S) - Y _ (b —1)=0,
i=1
so thatg(X) = 1. Moreover there is a cover with this branching because ther
three elementsy, . .., y3 in the symmetric grouis, on 4 letters such that

- ~i has ordefb;, for all i;
- m2ys =id.

(Take~, 2 to be cycles of order 4 whose product fixes just one point andéis a
cycle of order 3.) Choose a meromorphic secfenwith simple poles at the branch
pointsqs, Oz, gz and at one other arbitrary poimi. Then alterf by postcomposing
with a diffeomorphismg : & — CE so that¢ o f : ¥ — CE maps the four points
01, ...,Va Whereps has poles to the intersection poir{isy, . .., ps} = CSn CE.
Then one can check that the pushforwarggfby ¢ of can be patched to a section
os with poles of order 4 ap1, p2, of order 3 atps and of order 1 ap,, a total of
12 poles. Since the other branch pointsfglust push forward to smooth points,
the result is an immersed curve with gemy(&) + 3 = 6 which in fact must be
embedded.

It is not hard to check that this is best one can easily do withdpproach: adding

more branching increasag>.) and hence decreases the number of points where
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one can allowog to have higher order poles. However, in this case it is ptessib
to accommodate one more pole, because there happens toéda Spfold cover

f : T2 — < totally ramified over three points, say, ps, p4: see Remarl.1.3
We may therefore take a largish sectipn of the normal bundle t& with a pole

at p1 whose graph intersecS at three points close 10, ps, pa, and a very small
pushforward multisectiom, (o7) that patches to poles of order 3@t ps3, ps. This
patches 13 poles. However, it is not clear how to deal withctses 14< k < 16.

Remark 4.1.3 We now briefly describe the special 3-fold branched cévef? — .

It has three totally ramified branch pointg, gy, gz such that the pullback bundle
has a meromorphic section with its three poles preciselyy Afly, g3. Consider the
torus To given by the Fermat curve® + y® + 22 = 0 in CP?, with deformations
T, := x4+ y® + 22 = exyz There is a natural degree 9 cover

F:(CP? To) — (CP?,CPY, [x:y:Zdw[C:y:7,
which quotients out by the action of the grodg x Z3 on Tg by
[X:y:7 — [F'x:7y: 4, i,j€Zs.
The action of the subgrouBsee := {(j, —j),j € Z3} has no fixed points, in fact acting
on all the tori T. by a translation of order 3. Therefore the map: To — CP*!

descends to

On the other hand the grougriy := (j, 0),] € Zsz fixes the three points
[0:1:-1],[0:7:—7%],[0:7%: —7],

acting on the tangent space of each by a rotation througt8 2 These points form
one orbit undeGsee. Hence this gives one totally ramified pointfoin X. Similarly,
Giree permutes the three points [1=1 : 0],[r : —72 : 0],[r? : —7 : 0] and the
corresponding set of points with 0 in the second place. Agsinh of these gives rise
to one totally ramified point in the quotient covier Note thatF has 9 branch points,
each of order 3, lying in three distinct fibers of the quoti@aip Ty — > := To/Gyree-

One can see the section as follows. The normal bufigléo Tg in CP? is the pullback
by F of the normal bundle of the line+y+ z= 0. The 9 branch points d¥ lie on

all the curvesT.. Define a sectiorY, of Ly by first embedding a neighbourhood of
the zero section in the normal bundle®§ into CP? using the exponential map with
respect to the standardaller metric, and then defining. so that exp(Y.(2)) € T.
for all z € Tyg. Then its derivatived.Y.|.—o is a holomorphic section of the normal
bundle. Thus this is a holomorphic section& with precisely 9 simple zeros at the
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branch points of~. To get the bundle and section we are looking for, it remains t
quotient out byGyee, Which acts on the curveB. and also by isometries oBiP?.

Remark 4.1.4 1t is not clear how special the section in Remdtk.3really is. Are
there cases in which there are no meromorphic sections hathequired zeros, but
there are symplectic sections with these zeros whose pugnit has positive self-
intersection? If so, the local structure of symplectic nodaves would be significantly
different from that of holomorphic ones.

Proposition 4.1.5 Theorem1.2.7(ii) holds.

Proof By assumptionS has one clas$ with § < —1, some classes labelled by
i € Zg with CS an exceptional sphere, and clasSewith (§)? > 0. By Lemma3.1.5
we may assume tha has a connected nodal representaifewith decomposition

(4.1.1) A=(S+Y 6S+ ) mE+B,
icle i
as in equation3.1.3, where

() A-S>0,A-E>0,A-§ > 0foralli,j with nonzero coefficients;
(I S-E=S-B=E-B=0foralli,j with nonzero coefficients;

(Il B (if nonzero) has an embedded representa@fethat is J-holomorphic for
somed € J(S).

Step 1: If / = 1in (4.1.0 then A has an embedded representative that intersgcts
and the & orthogonally.

Proof We use the constructions and notations of Example2 Let us first suppose
that B = 0 and that there is a single curi in classk so thatA = S+ mE. Then,
with a:=S-E,and 2< k:= —S- S< 4, we must have

E-A=a-m>0, S-A=-k+ma>0 — k<ma<a’

If m= 1 then we can construct the desired curve as in thekcasé in Example4.1.2
If m> 2 thena > 2. We takeX = &, andf : ¥ — & = CE an m-fold cover
branched at two of the intersection points@f with CS. Becausey(X) = 0 we can
put the poles opy; at the two branch points and hence can accommodate up te R
poles.
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Now suppose that all coefficients in (4.1.1) vanish. Becausg&; - E; = 0,i # j and
B-E = 0,Vi, we must have

a:=E-S>m, B#A0=—=h:=B-S>0,
k<) am+h

Sincek < 4, if > & + h > 4, the claim holds because one can use sections of the
normal bundle to th&€F and toCB with simple poles at each intersection point with
CS to accommodate the four poles of a section of the normal leuiedLS. The claim

is also true whem\ = S+ mE, as we saw above. Therefore, we need only consider the
situation where) " a + h < 3 and eitherB # 0 (so thath > 1) or there are at least
two E;. This is possible only if alg; < 2. But becausen; < g this means that again
we only need consider two-fold covers. Therefore the argumeceeds as before.

The general case, in which some coefficiefitare nonzero, is similar. Indeed, since
the construction yields a representative that is ortholgtuntne exceptional curves it
makes no difference whether these lieSror are other curve€F . D

Step 2: Completion of the proof. Suppose inductively that the results holds for
all ¢ < ¢y and considerA with a decomposition4.1.1) with ¢/ = /o > 1. We
aim to show that there are nonnegative integ@rs_: 4, m < m such thatA’ :=
S+ > ez, 4§ + >-mE + B satisfies condition (1) in4.1.]. Then, because (ll),
(111) are automatically true, we may apply Step 1 to concltite A’ has an embedded
representative. Therefore, the decomposition

A=(lo—1S+ > (-6 +> (M —mE +A,
j€Ze i
also has the properties of.@.1) but with ¢ < /5. Hence it has an embedded represen-
tative by the inductive hypothesis.

Therefore it remains to find suitabl@l}, m{. For simplicity, let us first suppose that
¢i =0foralli. Asin Step 1, defing ;= E; - S, andh := B - Sso that
() E-A=leg—m >0, (x) S-A=—lk+> am+h>0
Here are some situations in which we can check that therdass& = S+>_ n{E;+B
that satisfies the numeric conditions (1).
(@ Ifh+>a > 4>k, then we may také = S+ )" E; + B;
(b) ifall m =1 we are in the previous case, and may tAke- S+ > E; + B;

(c) if g =1forallithenm < ¢y forall i so thatg‘—0 <1 =g forall i, so that
(k) givesk < > ’?—0 + z% < Y ia + hand we are again in case (a);
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(d) if there isi with my > 2 anda, > 2, thenk < 4 < 2a so that we can take
A = S+ 2Ei;

(e) ifthereis only one curvg;, then we may take := [%1 ,andA’ = S+ nE+B.
Note in this case thdE - A’ = a — n > 0 sincea is an integer> z%

If none of these cases occur then there are at least two cEngs wherea; >
1,my=1andm, > 1,a = 1. Further sincér+ > ; a < k— 1 we must havk = 4,
h=0, a; = 2, and no otheE;. But thennp < ¢ by (x) and 4y < 2+ my, by (xx),
which is impossible. Hence in all cases there is a suitallesél .

Since the above argument is purely algebraic, it works é&guell if some of the
exceptional spheres i (1.1 lie in S. This completes the inductive step and hence
the proof. O

Remark 4.1.6 By using the special 3-fold cover in RematKlL.3one should be able
to extend this argument to larger valueskof

Corollary 4.1.7 Propositionl.2.9holds for thisS .

Proof Under the given assumptions for the classProposition3.2.3 constructs a
1-parameter family ofS-adapted nodah-curves. The above proof that amalgamates
these into a single embeddédcurve uses patching procedures that are only slightly
more complicated than those in Propositi®i.3 Hence, as in RemarR.2.4 they
may be carried out for a 1-parameter family, giving the resghifamily of embedded
curves. O

4.2 The asymptotic problem

We now prove Theorem.2.16and Corollaryl.2.17 using the patching procedures
described in 8.1, as well as the inflation results explained iB.8Since the latter
results are established only whéh is rational/ruled we work under this hypothesis
here, although the arguments below apply more widely.

Proof of Theorem1.2.16 Here we assume thal(w, S, J) is a rational/ruled mani-
fold with singular setS, J € 7(S) and ¥ is a nodalJ-representative of some class
A € Hy(M). If w is arational class, a classical refinement of Donaldsomistcoction
produces a symplectic cun@' for T = PD(Nw), N > 1, which intersectsS, =4
transversally and positivelyD96]. The first statement of the theorem is a further
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refinement explained ind17: whateverw, for somer < rankH?(M), there is a
decomposition

r
[w] = 5 PD(T), 5 >0,
i=1
whereT; are represented by embedded symplectic cu@eswhich again intersect
S U XA positively and transversally. At this point, we therefoevé aJ-nodal curve
SUXAUT (whereT = UCT), for somel € J(w). As will be explained in section
5 (cf. Lemmab.1.4, we can perform a small inflation alon@ in order to get a
symplectic formw’ = >~; 5/ PD(T;) in a rational class, close to, still J-compatible.

On the other hand, Propositi@nl.2guarantees the existence o a&compatible sym-
plectic formw’. in class PDA) + f%l for arbitrary largex. Given theg;, choose
k € Q so thatej — %/ > 0 and then choosblp so thatNosi, Nos//x € Z for all i.

Again by Donaldson’s construction, fér>> 1 there is an embedded cur¥ethat is
approximatelyJ-holomorphic (hences-symplectic) and in class

=1 =kt (A 22 ) (a2

K

As before, > can be required to interse®, 7 transversely and positively, meaning
that 3 is J'-holomorphic for somel’ € [7(S,w). Then the given clasENoA. =
KNo(A+ > &iT;) is represented by the nodal curve

8

K

S U JkNo(si — =H)CT.

(Note that by construction eadiy(sj — %') is a positive integer.) SincE has only
transverse and positive intersections with we can smooth this nodal curve to an
embedded one as in Lemmdl.1(with £ = m = 0). O

Proof of Corollary 1.2.17 Consider thek-fold blow-up @E of CP? endowed with a
symplectic formw, a singular sef, and aclas®\ = L — > uiE;. Slightly perturbw if
necessary so that] = ¢ — >_ «jg is rational. Since the union of closed ball8(;)
embeds intaCP?, there is a symplectic form in clags- 3~ yig, and hence in nearby
classed — > (ui+di)e. Itfollows that for sufficiently smal|di|, chosen so that; + 6

is rational, every integral class of the foh = q(L — > (i + §)E;) € Hz((/JI\P’ﬁ) where
g > 0, is reduced and has nonvanishing Gromov invariant. Apglyiiheoren.2.16
with r = 1 and to such a clas&’, we get an integral clasE = PD(Now) and, for alll
positivee € Q, a symplectically embedded curve positively transvers8 to a class
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of the form
N'(A +eT) = N/(L— > (ui +6)E +eNo(L — > aiEy))
— N ((1 +eNo)L — (i + 6 + ENoai)Ei)

/ i + 6 + eNooy
N (1+5N0)< Sy ATAT TN Tree E,).
Note that the choice oNp is independent of that of; and e, though N’ depends
on the latter choices. For sufficiently small (rationat )> 0 we may choose; =
eNo(ui — i), so that the clas®l/(A’ + T) is a multiple of A = L — > uiEi. We
conclude as claimed that for soethe clasaNA is represented by &-curve for some
Je J(S,w). O

5 Symplectic inflation

We assume throughout this section thit, {) is a blow up of a rational or ruled
manifold so that the calculation of GX)is given by Lemm&.1.5 For short, we simply
say thatM is rational/ruled. We begin in§1 by explaining the inflation process and
proving Theoremi.2.12modulo some technical results. Even in the absolute case, th
details here are new: we explain a streamlined version atdhstruction that is easy
to generalize to the relative case. The proofs of the teehmésults are deferred to
§5.2 In particular, Lemm&.2.1is a more detailed version of Lemma2.11

5.1 The main construction

In this section we work relative to a collectighof surfacesC’i, 1 < j < L, that may
contain some or all of the components®fand satisfies the following conditions.

Condition 5.1.1 (a) EachC'"i is w-symplectically embedded, and lies in a class
Ty with Ty - Tj = nj € Z;

(b) Each surfac&€’ is w-orthogonal to all the componen&® of S~.C as well as
to the otherC™« k £ j.

In this situation we say that is (S,w)-adapted, or simply S-adapted, and that the
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form w is C U S-adapted® A componentC"i is calledpositive (resp. negative)

if n > 0 (resp. nj < 0). We say that is J-holomorphic if the tangent space to
each of its components ig-invariant. Similarly, we say that a nodal cur¥® is
(S UC)-adaptedif the collection of its components satisfies the above dandh with
respect taS U C.

In applications, we will represent the clagsalong which we want to inflate by a
nodal curveX* whose components give a decompositin= > 4S + > nBj as
in (3.1.0), and then take® to contain the curves in the singular sgttogether with
suitable embedded representatives of the claBgesbtained via Propositio3.1.3
Thus we can writéA = > myT; for some integersn, > 0, whereT; are the classes of
the components of . Here, as always, we take the clasgo be integral. However
it is just as easy, and convenient specially in the relatasecto inflate along classes
Y € Ha(M;R) of the formY := >~ A\iT; where \; > 0 are real numbers. As will
become clear, the important point is not whetlYeis integral but that the classd$
are represented by the submanifold€in

We begin by stating a version of the basic inflation result. s{apler version was
proved in Mc13] using the pairwise sum as ibJ06].)

Proposition 5.1.2 With C as above, lelf = ZiLzl ATy where \j > 0 and define
Amax := mMax \;. Then there are constart8, k* > 0, depending oY, w andC and a
smooth family of symplectic forms,. v, x € [—x%, k1], onM such that the following
holds for alls.

() [wky] = [wo] + kPD(Y), wherePD(Y) denotes the Poincardual ofY .
(i) wky is (S UC)-adapted.
(iii) If Y -Tj = O for somej the restrictions of,.y andw to CTi are equal.

(iv) The constants® depends on geometric information, namelyC and Amax,
while k' depends only ofiw], Amax, and the homology class@s. Moreover,
if Y-T; >0 forall i thenx® can be arbitrarily large.

For short we will say these forms, y are constructed by -adapted inflation. We
will see in the proof (given in 8.2) that the curves along which we inflate are part of
C.

10 This amounts to requiring that satisfy the conditions in Definitioh.2.1with respect to
the collectionSUC. Forwe always assume thatis compatible with the given fibered structure
nearS, and because of the orthogonality condition (b) we can adweoose a compatible
fibered structure neat.




46 Dusa McDuff and Emmanuel Opshtein

Note also thatin this result we allowto be slightly negative. We will call a deformation
from wo to w_. anegative inflation. However, just as “inflation” along a claSswith
& < 0 decreases(S), negative inflation along such a class increas€§). The next
example shows why we cannot always taketo be arbitrarily large.

Example 5.1.3 If T = E is the class of an exceptional divis@F, then negative
inflation alongY = E by —« changes] to [w] — x PD(E), increasing the size ot
to w(E) + k. On the other hand, positive inflation lyto [w] + x PD(E) decreases it
to w(E) — x and so is possible only i < w(E).

The same argument works in 1-parameter families. More gebgithe following
holds.

Lemma 5.1.4 Let wi,t € [0,1], be a smooth family of symplectic forms advi
andC,t € [0,1], be a smooth family ofS, w)-adapted submanifolds in the classes
T, 1<i<L. LetY;:= ZiL:l A(D)T; with Ai(t) > 0. Then the following holds.

(i) There are constants®, x* > 0 and a2-parameter family of symplectic forms
wiry,t € [0,1], =% < k < k! that for eacht satisfies the conditions (i) —
(iv) of Proposition5.1.2with respect toC; andY;. In particular, [w . y] =
[wi] + kPD(Y,) forall t € [0,1], k € [—x°, &1].

(i) One can construct this family, .. v, t € [0,1], —x° < k < k%, so that it extends
any given paths for= 0, 1 that are constructed l§4- (or C1 -) adapted inflation.

In order to apply Lemm&.1.4to prove Theoreni.2.12we need first to find suitable
classesA along which to inflate, and then construct the familigs The following
argument that deals with the caSe= () is adapted from§Ic98]. For simplicity, we
explain it only whenM is a blow up ofCP?.

Lemma 5.1.5 Let M be a blow up ofCP?, and suppose given a smooth family of
symplectic formsw,t € [0,1], on M with [wo] = [w1]. Then there is a family of
symplectic formsus;, 0 < st < 1, such that

wg = wo andws1 = w1, Vs,  wor = wt and[wsy] = [wo] Vi.
Proof Write L,Ej,j = 1,...,K, for the homology classes of the line and the obvious
exceptional divisors, and then defife= PD(L), § = PD(E) so thatg(gj) = —1.

Case 1:[wq] is rational.

We claim that for sufficiently large integét the following conditions hold, wher@™
is the positive cone as in Fa2tl.l
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e N[wo] £ € P* forallj,

o the classA’” = PD(N[wo] + §) is reduced, i.eA" -E > O forallE€ £ .

By the openness of the space of symplectic forms, there iyan 0 such that the
classesdyo] +cg have symplectic representativesfor all |¢| < 9. TakingN < 1/,
the first claim obviously holds. Moreove[wo] & g must evaluate positively on each
exceptional clas& € £(w+1/). The claim follows by deformation invariance 6t

Next, with A= = PD(N[wo] + §), Corollary2.1.6implies that Gr¢A”) # 0 for suf-
ficiently largeq. It follows that for any deformatiomr, given a generic 1-parameter
family J; of o¢-tame almost complex structures, there is (after posségarametriza-
tion with respect td) a family of embedded connectdg-holomorphic submanifolds
Ci; in classgA™. If we do this for each of the classes), A;,Af,... in turn,
possibly reparametrizing at each step, we may supposehtbi ts a familyC; of
Ji-holomorphic submanifolds in these classes. We can finaiyupb them to get a
family C/*,t € [0, 1], composed of.;-orthogonally intersecting curves for eath
Observe that the homological intersectioﬁ% - A are all nonnegative when# j
(as well as forAr - A~) because the classes araepresented; alsoAf)? > 0 by
hypothesis A* € P*). Hence every clasy’ )\jA]-i , With ); > 0O intersects every com-
ponent ofC;* positively for allt, and so can be used for arbitrary positive inflations by
Lemmab.1.4

The family wgt is constructed in three stages. The first stagesfoi0, ;] implements
the reparametrization. The second stage is the inflation.

Each class{y] has a unique decomposition as

[w] = clwal + D> Ag— Y Ng, ), A1) >0,

JETH() j€eI-@®

where Z(t), Z~(t) are suitable disjoint subsets éf.,...,K} for eacht, and the
functionsc(t), Aj(t) are smooth. Define the class

Y; ::ﬁ( > TONOA + D A,-(t)Aj+>.

Srag(y jeZ= (Y

Note that here we paijre Z(t) with A = PD(N[wo] — §). It follows that inflation
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along Y; gives a smooth family of symplectic formsy, s € [$1, S], in class

sl = Lo+ —— (3 NOPDE)+ > AOPDRH)
23 Z+(0) -
_ S—S1\~ _s—=sy,
= (1+ NS S A(0) wol +§(4‘0<1 — Sl)A,(t)Ga
S—§
— 1- UL
Iz(:t)( S — 51> )

For s = s, the classesu,] are proportional toyo]. The third stage consists of a
rescaling, which givesuii] = [wo]. Observe thatYy = Y1 = 0 so that this whole
process does not modityy andws .

Case 2:[wo] is irrational.

In this simple situation§ = (), it is well-known that the “deformation to isotopy"
statement is equivalent to the claim that the space of sytiplkembeddings of disjoint
closed balls of a fixed size int@P? is path connected. But if this holds for balls of
rational size, it is obviously also true for balls of irrated size since we can always
extend an embedding of irrational balls to slightly largatianal balls, isotop this as
required, and then restrict the isotopy to the originalshallve now give the formal
proof that keeps track of this argument, because it will atathe situationS # 0.

Rescale so thatg(L) = 1 and write o] = PD(L) — _; \j§, where); > 0. ** For

t = 0, 1 choose a generi¢;-tame almost complex structude. Then there are disjoint
embeddedJ;-holomorphic curves(:tEj in the classes;,1 < j < K, fort = 0, 1.
Choosex?® > 0 so that we can negatively inflate along these curves fer0, 1 and
for —x% < k < 0, and then choose rational numbgys= \; + & with ¢ < x°. Then,
by negatively inflating along the curv@gj, ClEj, construct families of formsy; for

t € [-1,0] andt € [1, 2] so that jv_1] = [w7] is rational:

[wo1] = [ws] =PDL) = > g, 1 €Q.
j

Because the endpoints of the path—1 < t < 2 are now equal and rational, as before
we may homotop this deformation to an isotopyt € [—1, 2], with p; = w; att =
—1,2. Note that the set of classé$ = N[w_1] g along which we must now inflate
depends ond_1]. Hence the familyCy*,t € [—1, 2], does as well. Further, because

UThis is the only step in the argument that fails whdnis ruled. In this case, one should
replaceL by the class of some section of the ruling that has nontr8r@mov invariant, and
add the class of the fibé¥ (which is always represented) to the exceptional classes.
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the classed = PD(g) € £ are represented by uniquk-holomorphic embedded
spheres for all generic 1-parameter pathwe may simply add representatives of the
classest; to the family C?, and then straighten out the components of the curves in
¢} using LemmaB.2.1to obtain a family ¢/1)’,t € [—1,2] of curves with pairwise
orthogonal intersections, that contains embedded replmiaﬂesCtEj of each clas€

as well as the components 6f*. Moreover, we can supposetat= —1, 2 that these
curves equal the previously chosen onds-at0, 1 respectively. Then by Lemnfal.4

the isotopypi, t € [—1, 2], consists of forms that are nondegenerate orﬂﬁe

More precisely, in the three stages defined above, we getoloes0< 53 < 1 a
2-dimensional familyws; of symplectic formst € [—1,2],s € [0, s3] that homotops
we (for s=0) to py = weyt, Where fug,] = [w_1] = [wo] — > ¢j§. By construction,
the curves(:tEj arews; -symplectic, with area larger thai, so the last stage consists in
performing a positive inflation of sizg along the curveé:tEj , and a reparametrization
in t, in order to straightems,,t € [—1,2], to wy, t € [0,1], in class {vo]. Note that
at the endpoints this last step reverses the original negatilation ofwg to w_1 and
w1 to wo. Therefore the final isotopy1,t € [0, 1], starts atwy and ends atvy, as
required. O

In order to carry out this proof in the case of isotopies edatio S, one needs to find
suitable representatives of all the classes involved inattm/e proof, theAjjE when

[wo] Is rational, and also suitable substitutes for Egén the general case. In order to
deal with the latter we will need to work relative to a smodthadapted family that

for eacht contains representatives of the classes corresponditig & t Here is the
main result about the existence of such representativete dlso that the condition on
d(A)) comes from Lemma&.1.5 and is needed to ensure some Gromov invariant does
not vanish.

Proposition 5.1.6 Let wi,t € [0,1], be a path of symplectic forms as in Theo-
rem 1.2.12 and C; be a smooth(S,wi)-adapted family of surfaces in the classes
Ti1,...,TL. Suppose given a finite set = {A4, ..., Ac} of S-good classes such that

- A-Tj>0forall1<j<L,and
- d(A) > O forall j. Moreover,d(A)) > g+ t—i, if M is thek-point blow up of a
ruled surface of genug.

Choose a smooth path € J(S,wt, A),t € [0, 1] of (C;, wt) -adapted almost complex
structures. Then, possibly after reparametrization vapect td, the path(Ji)ic(o,1]

can be perturbed to a smod(ifk, w) -adapted path{d; € Jsem(S,wr, A)), cpo.1] Such
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that for eachl < j < K there is a smooth famiIEf",t € [0,1], of J-holomorphic
and(S UG, wy) -adapted nodal curves in cla&s Moreover the corresponding decom-
positions

A=) 6iS+> miEi+B, Ef=-1,
of (3.1.2 have the property th&br(B;) # O for all j.

Proof The proof when there is only one cladsand whenC; = S is essentially the
same as that of Propositidh2.3 The argument works just as well @ is strictly
larger thanS. Since by hypothesid(B) > d(A) > 0, we can always choose the set of
k:= %d(B) points so that at least one does not lie in the three-dimnaakisetUC; .
Hence we are free to pertud) near some point on thB-curve which means that the
genericity arguments work as before.

Finally, if N > 1 we argue by induction olN. Note that at each stage we may have
to reparametrize. Further, to finish tlth stage we should apply the straightening
argument in Lemma&.2.1to make the components of tg-nodal curve orthogonal
to C; and all components for the previously constructed nodalasEf“',j <i. Then
atthe {+ 1)st stage, we repeat the argument with this enlarged fathily O

Proof of Theorem 1.2.12 Recall the statementM is a blow-up of CP? or a ruled
surface, we have a family of symplectic formg, t € [0, 1] with [wg] = [w1] and, as
in the previous lemma, we want to find a homotopy of sympldaiims wg; between
wy (for s = 0) and an isotopywy; (meaning that ;] is constant) with fixed ends:
wg = wp, wg1 = w1 for all s. This time, the situation igelative to S, meaning that
we assume that the formg are nondegenerate &, and we want our homotopys;
to have the same property.

Case 1:[w] is rational

In order to adapt the proof of Lemntal.5we first choose an analog of the basis
L,E for Hy(M). We takeL to be any class with nonzero Gromov invariant, so that
wi(L) > O for all t and then choose integral classgs. . . , dx that together with PI)()
form a basis oH?(M; Q). Define the classesjjE := PD(Nwo £ d;) as before, using the
openness of the space of symplectic forms to find a suitalble e N for which these
classes are alb-good and also satisfy the enhanced conditiondply) when M is
ruled. This is possible by Corolla3.1.6 We then use Propositidh1.6with C; = S
and A = {A]-jE : 1 <j < K} to get a smooth family of§, wi)-adapted nodal curves
% in classesA’™. Straighten out their components using LemBn2 1to obtain an
(S,w)-adapted familyCy* that containssS.
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We next claim that each clasztlift has nonnegative intersection with the classes of the
components ofy*. To see this, consider the decomposition

A= 6iS+) mMiE +Bf, Ef=-1 Gr@) #0

associated via Propositidh1.6to the nodal curve&;;. We chose the classds" to

be S-good. Therefore they have nonnegative intersection vaghcomponents of

as well as all exceptional cIassEﬁ. Further they have nonnegative intersection with
the B" because both th&;~ andB;" have nontrivial Gromov invariant and hence are
represented by embedded curves for genéri¢dence Lemmd.1.4allows inflation
along any nonnegative linear combination of mﬁ and these inflations provide
symplectic forms which are nondegenerate&n

The family wg; is then constructed in the same three stages as in the psewioof:
reparametrization, inflation along the classes
Ye= D0 NOAT+ Y NOA
T+t (1)
(where [u] = c(t)[wo] + > 7+ Aj(t)d — > -7 Aj(t)d;), and rescaling. The result at
s= lisanisotopyvi,t € [0, 1], consisting of symplectic forms that restrict 6o a

possibly varying family of forms that ax8-adapted and all lie in the same cohomology
class'?

Finally, if w = &’ nearS thenw;p = w11 = w nearS by construction, and we can
arrange that the final isotopy;; is constant neaf by an easy application of a Moser’s
type argument. Details are left to the reader.

Case 2:[w] is irrational

When L] is irrational, we reduce to the rational case by first doirgyell “negative
inflation" along suitable classegy, ..., Fx, whereK = k+ 1 or k + 2 depending
on whetherM is a k-fold blow-up of CP? or of a ruled surface. These classes are
obtained as follows. Choose integral clasags .., ax that are multiples of classes

close to ] =[], so that
K
[w] = i,
i=1

for some;; € RT. By the openness of the space of symplectic forms, we may
assume that the classashave symplectic representatives and take positive valnes o

2Note that we cannot invoke part (iii) of Propositi@l.2to claim that the forms are
constant or§ throughout the deformation because some of the clagsegyht have nontrivial
intersection withS.
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the components§ of S. Then, the classeB; := PD(g;) satisfy all the conditions
needed to b&-good except that GF() could vanish. Therefore, by replacing the
by suitable multiples as in Corolla.1.6 we can assume that eath:= PD(g) is
S-good, and, if relevant, had(F;) > g+ ;‘i as in Propositiorb.1.6 By applying this
proposition withC; = S, we can find a smooth patfd{ € Jsem(S, wr, A))te[(m such
that for each 1< i < K there is a smooth famil;EtFi,t € [0,1], of J/-holomorphic
and (S, wi)-adapted nodal curves in clabg. Straighten out their components using

Lemma3.2.1to obtain an &, w;)-adapted familyC{" .

As in the proof of Case 1, each claBshas nonnegative intersection with the classes
of the components of;". Hence Propositio.1.2allows negativeCj (resp. C7 )-
adapted inflation along any cla¥§ := 3" uiFi, ui € [0, 1] by —« for all x less than
somekg (recall thatxo depends only onimax, w, F, but not on the clasy itself).
Stated differently,C;” -adapted negative inflation along clasSesuiFi, i € [0, ko)

are possible for alk < 1.

Now choose small constands € [0, k[ so that

K
[wls = (ui — d)ai,
i=1
is rational. Definew,t € [—1,0], (resp.t € [1, 2]) to be the family of forms obtained
from w = wp (resp.w’ = wy) by negativeS U C§ - (resp. S U C7 -) adapted inflation
inclassYg := > 6iF;i.

Then fv_;1] = [w2] = [w]s is rational. Hence we may apply the argument of Case
1 to the extended deformatian;,t € [—1,2], that has rational and cohomologous
endpoints. The only new point is that we construct the nodm&sztjj in classesﬁsjjE

to be S U ¢/ -adapted rather tha§-adapted. This means that, in the notation of the
proof of Lemmab.1.5 the isotopyp;, t € [—1, 2], from w_1 to w» consists of forms
that areSUC{ -adapted. Hence this isotopy can be positively inflated 8§ eadapted
inflation in classYg := >_ 6iF; to an isotopy that joins the original form to w’. This
completes the proof. O

5.2 Proof of technical results
It remains to prove Propositions.1.2and Lemmab.1.4 These use entirely soft
methods.

Before embarking on the details of the proof of Propositioh2 we recall the basic
inflation process; cf. NIc98, LU06, B11]. Given a symplectically embedded surface
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C with C- C = n € Z we normalizew in some neighborhood/” of C as follows. If
r is a radial coordinate in the bundte: ' — C whereN = {g < e}, we write

w=m"(wlc) + 3d(r?a), re[0,V2e),
wherea is a connection 1-form with
da = —ﬁﬂ*(w\c).

We then choose a nonincreasing compactly supported funttigo, ) — [0, 1] that
is 1 nears = 0, and define

p = —d(F(3)a).
Consider the family of forms
G2lw+rp: = 7 wlc)+ 3d(r?a) — x d(f(5)a)
- <1+ ﬁ(nf(g) - g)) T (wlc) + (1 + &[f'|)rdr A c.

By construction, this form lies in the class][+ xPD(C). If n > 0 itis nondegenerate
for all x > 0, and is also nondegenerate in some interval < k < 0, where the
bounds orx° come from both terms: in particular, because we needs1f’| > 0 the
boundx° depends on the size efand hence of the neighborhodd. If n < 0 the
first term also presents a significant obstruction, and weoodyninflate forx < 't
where|n|x! < w(C).

In the situation of Lemm&.1.4 we assume thaf;,t € [0,1], is a smooth family
of symplectic submanifolds satisfying Conditi&nl.1with respect to the formsy,
with an associated family of local fibered structutgson a neighborhoodV(C;) as
described just after Definitioh 2.1 In particular, each intersection poigtof CtTi with
CtTj has a neighborhoadl/y, , which is a connected componentdf(C; i)m\/(CtT") with
product structure given by the projections@& and CtTj . We fix corresponding polar
coordinatesj, 64, Ij, 0y in the fibers ofL; and Ly that vary smoothly wittt. We
assume that these neighborhoodg have disjoint closures fagy € Ui(C;' N CtTj),
and then extend each radial function) smoothly overN(C;'). (This amounts to
choosing a restriction of the structural group4f to St.) We assume that for suitable
constants; > 0

(5.2.2) N(ECTY) = {xe L ri() < 25}
We also define

(5.2.3) wy = wtlgn-
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Finally, we shrink the neighborhoods as necessary so thaE@BtiveCtTi we have
(5.2.4) > /T wp < %/T wy.
qecingljzi L0 “

Lemma5.2.1 ForeachC{" € C; there are constants, st > 0 and a family of forms
pt,i with the following properties:

o [pti] = PD(Ti),
e i Is supported in the fibered neighborhaddC/") for eacht,i;

e i Is compatible with the product structure, namely of the faﬂfm(%) ANdbj,
on the product neighborhoods, of eachp € C{' N (C\qTi);

o wi+ kpyi is symplectic ands U Ci-adapted for-x? < k < ki and allt.

Moreover,x} can be arbitrarily large ifi ;== T; - T; > 0 and otherwise depends only
on cohomological data, namety andw:(T;) := fQTi th i. Moreover, itis an increasing
function of w(T;).

Proof Step 1:We may assume that there are connectlsforms oy on the bundles
i : Lyj — C{' such that

(5.2.5) W ey = mil) + 3driay), 1<i<L,

where §; is the radial coordinate in the fiber of;; described above.

After possibly shrinking the neighborhood$(C,"), this can be achieved by a standard
Moser type argument. U
Next, denote byg;; : QT‘ — R the curvature function ofy ;: thus

(5.2.6) dagj = —nim (Quiwy;), 1<i<N.

Note thatg;; = O in each product neighborhood becauges a product there.

Step 2: We may assume that;¢x) > 0 for all x € C™, and satisfy the following
pointwise upper bound on the negative curves (those with @):

5.2.7 i(xX) < .
Again this follows by a standard Moser argument. Note thaictueve this bound we
must use condition5(2.4) becausefqn doyi = —n; is fixed, whilegi; = 0 in each

product neighborhood. O
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Step 3: Completion of the proof.

Choose a family of smooth compactly supported functilpns [0, v/2¢i) — R (where
g isasin 6.2.9) that equal 1 near = 0. With pj; = d(fm(%) o), we have

WA rpie = ) + Sd(rPar) — rd(fui(F)a)
= (14 na @) (+hi(5) = 5) ) 7 ) + (L4 Kl rdr Ao

As before, whem; > 0 these forms are nondegenerate foxalt 0 and forx > —nio,
where ﬁio depends only on the sizg of A;;. Whenn; < 0 we have similar limits
for k0, but now must only considex < «!, where the size of! is determined by
the requirement that the form; + xpi ¢ restrict positively toC;' = {r = 0}. Since
fi(0) = 1 and g, satisfies $.2.7) this depends only om; and w¢(T;). The other
properties of these forms are clear. O

Proof of Proposition 5.1.2 This proposition states the following.

.« Let Y := Y, AT where \j > 0. Then there are constants®, x* > 0,
depending on Y and, and a smooth family of symplectic formagy on M such
that the following holds for alk € [—x°, x1].

(i) [wk,y] = [wo] + kPD(Y), wherePD(Y) denotes the Poincardual of Y .
(i) wg,y is S UC-adapted.
(i) IfY -T; = 0 for some j the restrictions ab, y andw to a neighborhood of
CTi are equal.
(iv) The constant:° depends on geometric information, nametyC and Amax.
while x* depends only ofiw] and the homology classes, Y. Moreover, if
Y - T, > Oforall i then ! can be arbitrarily large.

We use the notation of Lemn®s2.1lomitting t since for the moment we are considering
single forms. First consider the forms

L
Wiy =W+ Z AiKpi-
i=1

Because the supports of two forms pj,i # j, intersect only in the neighborhoods
Ny in which the p; are products, the forn:v;,Y is nondegenerate provided that each
form w + Ajkp; is nondegenerate. Therefore, if these forms are nondegfentar
—r0 < K < ki, we may take the lower boundx° to be max—«?/); and the upper
bound to bes! := min; k'/);. This form satisfies (i) and (ii). Also, as explained
in Step 3 of the proof of Lemm&.2.1the bound onx® depends on the size of the
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neighborhoodsV; of the curvesCT, and hence on geometric information abGuand
w.

If Y-T; > 0, for eachi the quantitywjﬁY(Ti) is a nondecreasing function af. But
notice that as< increases the area @' is redistributed so thats(2.4 eventually
ceases to hold. Thus when= <! we isotop the formu! := wls y nearC pushing area
out of the product neighborhoods to make2(4 valid again. We saw in Lemna2.1
that the upper limitx{ for positive inflation byp; increases as;,’{vY(Ti) increases.
Therefore, we may now repeat this process, starting witland inflating by adding a
suitable form in class:PD(Y) for « € [0,%], wheree? > <. After a finite number
of such steps, we arrive at a form in clasg][+ «PD(Y) for arbitrarily larger. If
Y- Ti <0, for somei, thenw;, (Ti) decreases and it follows from Lemrbe2.1that
the bound ons! depends on cohomological data, nam¥lyT; andw(T;).

This gives a family of formswv,, v that satisfies (ii) and (iv), and nearly satisfies (i):
the problem here is that we paused the inflatiom at ', e + <2 and so on, while
we readjusted the area distribution. However, one canyeasiinbine these two
deformations and then reparametrize with respegt$o as to satisfy (i). Finally, note
that whenY - Tj = 0O the total area of the cunv@’i is constant throughout the isotopy,
although the distribution of area changes with Hence to achieve (iii) we alter the
isotopy near each such compon@it so that it is constant near that component. Again
this is a standard Moser type argument: one should begin jogtatdy the forms near
each intersection poir€' N CT, keeping the product structure, and then adjust near
the rest ofC. O

Proof of Lemma5.1.4 The proof of part (i) is similar, and will be left to the reader
It uses the full force of Lemm&.2.1 Moreover part (ii) holds because at each step of
the construction in Lemm&.2.1the set of possible choices (for example, of the size of
the neighborhoods/(CT™) or of the precise normal form chosen foras in 6.2.9) is
contractible. Further, if one constructs two paths, s = 0, 1, using the same fibered
structure (choice of projections;, radial coordinates, and neighborhoodsa/(C/))
then the linear isotopy

(1 - S)wfi,o + &UH,L 0 <s< 17
between them consists of nondegenerate forms. O
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