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Biological context Motivations Content Context

Our body’s equilibrium is partly ensured by billions of bacteria that form assemblages
called microbiota in different sites.

(a) Microbiota repartition in different
sites (from de Vos et. al.)

(b) Gut microbial strains and negative health out-
comes of gut microbial dysbiosis (from Afzaal et. al.)
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▶ Microbiota plays a crucial role in various aspects of our well-being.
▶ A better understanding of the interactions between bacteria is needed to

understand the role of microbiota in our health.
▶ It is composed of many species of bacteria.

Main objectives: comprehend the interactions between these bacteria, their relationship
with pathogens, and their functions within the ecosystem.
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Motivations
▶ Generalized Lokta-Volterra to model microbial interaction.
▶ From a data set obtained through experiments, we want to estimate the

parameters involved in a model.
▶ In a previous work1, this was done using the Generalized Smoothing Algorithm

with splines as data interpolation.

Disadvantage: data interpolation with splines is the costly part of the estimation
process.
▶ Main objective of the project: neural network to replace the spline smoothing.
▶ As this part tries to fit data points and a differential equation: investigate a

Physics-Informed Neural Network approach.

1B. Laroche et al. “Parameter estimation for dynamical systems using an FDA approach”. In: 11th
International Conference of the ERCIM WG on Computational and Methodological Statistics
(CMStatistics 2018). Pise, Italy, Dec. 2018.
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Modeling biological data
▶ Models are not exact,
▶ Several experiments, different initial values, and conditions,
▶ Sparse and irregular sampling, depending on the experiment,
▶ Noise and missing data.

Notations:
▶ Ns : number of species studied,
▶ Nexp: number of experiments conducted,
▶ Ne

obs: number of observations of the bacterial population of species i at times t(e)
k

for e ∈ J1, NexpK,
▶ U(e)

i ,k data measured for the experiment e, on species i , at time t(e)
k .
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Generalized Lotka–Volterra Model2 (GLV)

▶ For i ∈ J1, NsK, xi(t) represent the quantity of bacteria of population i .
▶ This quantity follows the ODE:

∂

∂t xi(t) = µixi(t) +
Ns∑
j=1

aijxi(t)xj(t), t ∈ [0, tmax]

where:
▶ µi represents the intrinsic growth rate of the bacterial population in the absence of

interaction with other bacterial populations,
▶ aij describes the interaction coefficient representing the direct effect of species j on

the species i .

2V. Volterra and M. Brelot. Leçons sur la théorie mathématique de la lutte pour la vie. eng. Paris :
Gauthier-Villars, 1931.
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Generalized Lotka–Volterra Model2
Setting µ = [µ1, · · · , µNs ]

T , A = (aij)1≤i ,j≤Ns and ui = log(xi), the GLV model can be
written under the matrix form:

∂

∂t

 u1(t)
...

uNs (t)

 = µ + A · exp


 u1(t)

...
uNs (t)


 (GLV)

The elements of µ and A are gathered in a matrix θ of size (Ns , Ns + 1):

θ =

 µ1 a11 . . . a1,Ns
...

... . . . ...
µNs aNs1 . . . aNsNs


2V. Volterra and M. Brelot. Leçons sur la théorie mathématique de la lutte pour la vie. eng. Paris :

Gauthier-Villars, 1931.
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Example with Ns = 3

We set A =

 −2 −5 −0.5
−0.5 −1 −1.2
−1 −0.5 −1

, from an initial population of u0 = [5, 3, 1]T and the

intrinsic growth rate µ = [7.5, 2.6, 2.5]T
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Example with Ns = 10
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Framework of the study

Main objective: determine the optimal parameters aij and µi of (GLV) from
observed data throughout multiple experiments.

Challenge:
▶ bacterial data has a significantly lower sample number than bacterial species
▶ Direct estimation of GLV model parameters, such as maximum likelihood

estimation with smoothing of observation, Bayesian estimation with smoothing of
observation, ..., even genetic algorithm is not easy (local minima, instability of the
system in certain parameter regions).

Here we present the Generalised Smoothing PINN algorithm: a mixture algorithm
between PINN and Generalised Smoothing Algorithm.

Javan H., Lucas P., Thomas S. Estimating microbial interactions with NN 12 October 2023 9 / 33
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Generalized Smoothing Algorithm

▶ Introduced by Ramsay and co-authors3

▶ Method to estimate parameters θ in a nonlinear differential equation of the form

∂tu(t) = f (u, t; θ).

▶ Previously used for the GLV model4

3J. O. Ramsay et al. “Parameter estimation for differential equations: a generalized smoothing
approach”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69.5 (2007),
pp. 741–796.

4B. Laroche et al. “Parameter estimation for dynamical systems using an FDA approach”. In: 11th
International Conference of the ERCIM WG on Computational and Methodological Statistics
(CMStatistics 2018). Pise, Italy, Dec. 2018.
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Generalized Smoothing Algorithm - Least Squares (GSA-LS)

Step 0 Spline smoothing of the data. The coefficients of the spline function
fitting the data are stored in a matrix C .

Step 1 Estimate of θ with the proximal gradient descent technique.

Step 2 New coefficients of the spline C basis are computed using a least squares
minimization approach.
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Generalized Smoothing Algorithm - Least Squares (GSA-LS)

Step 0: Spline smoothing

Step 1: Update θ

Step 2: Update C
loop

Estimated parameters θ̂
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Generalized Smoothing Algorithm - Least Squares (GSA-LS)

Step 0: Spline smoothing

Step 1: Update θ

Step 2: Update C
loop

Estimated parameters θ̂

θ[n+1] ← arg min
θ

J2(C [n], θ)︸ ︷︷ ︸
model

+λ1 J3(θ)︸ ︷︷ ︸
pen.



C [n+1] ← arg min
C

J1(C)︸ ︷︷ ︸
data

+λLS
2 J2(C , θ[n+1])︸ ︷︷ ︸

model
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▶ Data: we want to fit the data points

J1(C) =
Nexp∑
e=1

N(e)
obs∑

k=1

Ns∑
i=1

∣∣∣û(e)
i (t(e)

k )−U(e)
i ,k

∣∣∣2
where û(e)

i (t) = C (e)Φ(t) is the spline reconstructed solution for the species i , and
the experiment e.

▶ Model: we want to fit the dynamic

J2(C , θ) =
Nexp∑
e=1

1
Nf

Nf∑
j=1

∥∥∥∂t û(e)(tj)− f
(
û(e)(tj), tj , θ

)∥∥∥2

2

where (tj)Nf
j=1 is a familly of collocation points, equi-distribued over [0, 1].

▶ Penalization on θ: we want our parameters matrix to be sparse
J3(θ) = Pen(θ) = ∥θ∥1
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i (t) = C (e)Φ(t) is the spline reconstructed solution for the species i , and
the experiment e.

▶ Model: we want to fit the dynamic

J2(C , θ) =
Nexp∑
e=1

1
Nf

Nf∑
j=1
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∥∥∥∂t û(e)(tj)− f
(
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Advantages of GSA

▶ Flexibility: can handle functional data with complex structures,
▶ Nonparametric: no assumptions about the underlying distribution,
▶ Effective for denoising and recovering underlying patterns in data,
▶ Provides interpretable and smooth estimates,
▶ Widely applicable in diverse fields for analyzing complex functional data.
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Neural Networks

▶ Neural Network: NN : x ∈ Rp 7→ y ∈ Rq

▶ NN(x) = fp ◦ σ ◦ fp−1 ◦ σ ◦ · · · ◦ f1(x), where:
▶ fi are affine functions fi(x) = Wix + bi
▶ σ is a non-linear activation function (e.g. sigmoid, ReLu... ).

▶ Θ = (W1, b1, . . . , Wp, bp).

Density of neural networks5

The space of neural newtorks funcitons with 1 hidden layer (p = 1) is dense in the space
of continuous functions on a compact set, for the norm ∥ · ∥∞.

x1

y1

y2

5G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics of
Control, Signals and Systems 2.4 (Dec. 1989), pp. 303–314
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Neural Networks: supervised learning

The Neural Network is trained with a set of labeled data.

(c) Cats (d) Dogs
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Neural Networks: unsupervised learning
We have unlabeled data, and we want to find a structure in it.
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Neural Networks: training

▶ Set of data: D = {(xj , yj)}Nj=1

▶ Loss function: Loss(Θ) =
∑

(x,y)∈D
|NNΘ(x)− y |2

▶ Optimization: look for Θ⋆ = arg min
Θ

Loss(Θ)

▶ Least square theorem: The solution exists. It is unique if the data is linearly
independent.

▶ To « find » the solution, we use an optimizer like Adam.
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Physics-Informed Neural Networks6

▶ Combines both unsupervised and
supervised learning.

▶ Trained to solve learning tasks while
respecting a law given here by the
ODE / PDE and provided data.

▶ « Loss = Lossmodel + Lossdata »

t

Input size = 3 size = 5 size = 5

u1

u2

u3

Output

6M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations”. In:
Journal of Computational Physics 378 (2019), pp. 686–707.
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PINN to solve the GLV model for a given parameter and initial condition
We ultimately want to replace the previous Step 2 with a Physics-Informed Neural
Network, as it minimises proximity to data and proximity to the model.

Let us consider a normalized version of (GLV) written as

∂

∂t u(t) = tmax
(
µ + A · exp(u(t))

)
for t ∈ [0, 1]. (GLV-norm)

Objective: construct a neural network approximation û(t) of the solution u(t) of
(GLV-norm) given some parameters µ and A (and some data points).
We will have û : [0, 1]→ RNs , meaning one neural network for each experiment.
Let L be the residual of the prediction û(t) defined as:

L(t) := ∂t û(t)− tmax (µ + A exp(û(t)) ∀t ∈ [0, 1].
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Loss function
We introduce 2 types of errors:
▶ The mean squared misfit by the data:

MSEdata
(
t(e)

)
= 1

NsNe
obs

Ns∑
i=1

Ne
obs∑

k=1

∥∥∥û i(t(e)
k )−U(e)

i ,k

∥∥∥2

▶ The mean squared residual, with collocation points t(col) = {tj}Nf
j=1 ⊂ [0, 1]:

MSEL(t(col)) = 1
NsNf

Ns∑
i=1

Nf∑
j=1
∥Li(tj)∥2

Target loss to be minimized, involving hyper-parameters λPINN
2 > 0:

Loss = MSEdata(t(e)) + λPINN
2 MSEL(tr )
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PINN prediction
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Figure 1: Prediction of the PINN with various numbers of points used for the training set.
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Normalisation of the time
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Tuning the hyperparameters
Hyperparameters of interest:
▶ λPINN

2
▶ architecture (number of layers, size of layers)

Tuning with Optuna: an open source hyperparameter optimization framework, with
the objective of minimizing:

EPINN = 1
Ns

Ns∑
j=1

∥ûj − uj
truth∥2L2([0,tmax])

∥uj
truth∥2L2([0,tmax])

▶ λPINN
2 = 10−3

▶ best architecture is [1, Ns , 7 · Ns , 7 · Ns , Ns ]
Regarding the architecture:
▶ compromise between speed of training and precision
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GSA with a PINN
Step 0: u[0] ← spline smoothing of data
+ « loop 0 »: First training of the PINN

Step 1: θ[n+1] ← arg min
θ

(
J2(u[n], θ) + λ1J3(θ)

)

Step 2: Fine tuning of the PINNθ[n] with θ[n+1]

u[n+1] ← PINNθ[n+1] prediction

loop

Estimated parameters θ̂
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Epoch management

How many epochs should we do for the PINN?
We have to do a trade-off between precision and computation time.
Hyperparameters tuning methods no so helpful as they appeared to be very problem
dependent.

Chose an adaptative method: do fewer epochs if there is a smaller change in the
estimated parameters.

▶ do k epochs, with k = min
{

1 +
⌊

103 · ∥θ
[n] − θ[n+1]∥F
∥θ[n]∥F

⌋
, 200

}
▶ stop if Loss ≤ 10−3
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Stop criterion

▶ We use a relative error between two consecutive iterations to stop the algorithm:

err [n] =
∥u[n] − u[n+1]∥L2[0,tmax]

∥u[n]∥L2[0,tmax]
+ ∥θ

[n] − θ[n+1]∥F
∥θ[n]∥F

▶ We stop when err [n] reaches a given tolerance errMax,
▶ We also stop if the number of iterations reaches a maximal number of iterations

maxIter.

▶ But err [n] decreasing really slowly,
▶ Adaptative stop criterion: every 30 steps, if we have not improved the minimal

error, we multiply the tolerance by 10.
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Stop criterion
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Figure 2: Evolution of the error in the GSA-PINN algorithm, test case with 3 populations.
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First comparison: 10 experiments for 10 species are performed

We use data manually generated from a known set of parameters.
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(a) Data without noise
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First comparison: comparison between the two algorithms

▶ Errθ,1 := ∥θ̂ − θtruth∥F
∥θtruth∥F

,

▶ Errθ,2 defined as the number of coefficients where θ̂ and θtruth have the same sign,
divided by the number of coefficients of the matrices.

▶ Erru,1 := 1
NsNexp

Ns∑
i=1

Nexp∑
e=1

∥û(e)
j − u(e)

j (θtruth)∥22
∥u(e)

j (θtruth)∥22
,

▶ Erru,2 := 1
NsNexp

Ns∑
i=1

Nexp∑
e=1

∥u(e)
j (θ̂)− u(e)

j (θtruth)∥22
∥u(e)

j (θtruth)∥22
,
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Comparison between Matlab original code and our Python code

Uniformly distributed data (non-random), 10 data, 10 species, 1 experiment, no noise

Algo. Mean Errθ,1 Mean Errθ,2 Mean Erru,1 Mean Erru,2 Elapsed time

GSA-LS 1.02 0.69 4.73 · 10−2 4.94 · 10−2 5.54 sec
GSA-PINN 1.06 0.6 1.62 · 10−2 2.2 · 10−2 4.46 sec
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Comparison between Matlab original code and our Python code

Uniformly distributed data (non-random), 10 data, 20 species, 1 experiment, no noise

Algo. Mean Errθ,1 Mean Errθ,2 Mean Erru,1 Mean Erru,2 Elapsed time

GSA-LS 1.09 0.8 3.4 · 10−2 3.53 · 10−2 8.75 sec
GSA-PINN 0.98 0.74 1.35 · 10−2 1.92 · 10−2 10.48 sec
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Comparison between Matlab original code and our Python code

Uniformly distributed data (non-random), 10 data, 10 species, 10 experiments, no noise

Algo. Mean Errθ,1 Mean Errθ,2 Mean Erru,1 Mean Erru,2 Elapsed time

GSA-LS 0.19 0.21 0.32 0.26 16.81 sec
GSA-PINN 0.22 0.18 1.5 · 10−2 2.18 · 10−2 35.53 sec
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Bacterial population in mice guts
7 experiments were performed, to measure 6 various species
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Results of the GSA algorithms
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Conclusion and outlooks
▶ Inferring interaction coefficients from noisy data for the GLV model is a difficult

question.
▶ Our approach gives similar results as the previous one, but it can be quicker in

certain cases.

Outlooks:
▶ Other approaches of the Machine-Learning:

▶ Have a unique PINN for all experiments (⋆)
▶ (⋆) + trained offline so it only has to predict during the alternate minimization
▶ Study a PINN for the first step or « Last-step PINN »

▶ Tests on « almost real » simulated data

Thanks for your attention!
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