Model Order Reduction for Complex Ocular Simulations Inside the Human Eyeball

Thomas Saigre¹, Christophe Prud'homme¹, Marcela Szopos²

¹Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS ²Université Paris Cité, CNRS, MAP5, F-75006 Paris, France

> SIAM CSE23 28th February 2023

Thomas Saigre

Model order reduction inside eyeball

SIAM CSE23 – 28th February 2023 1 / 33

- Need to understand ocular physiology and pathology,
- Heat transfer has an impact on the distribution of drugs in the eye ^a,
- Complexity to perform measurements on a human subject ^b, only on surface ^c.

^aBhandari et al., J. Control Release (2020) ^bRosenbluth et al., Exp. Eye Res. (1977) ^cPurslow et al., Eye Contact Lens (2005)

Introduction	Contents	Models	Methods		Conclusion	References

Introduction

Model complexity

- Monophysics-Multiphysics problem
- Numerous parameters and scarce experimental data
- Influence of multiple risk factors or a combination of them

Table of contents

section in toc

Contents	Models	Methods		Conclusion	References

Models

Geometrical model¹

¹Lorenzo Sala. "Mathematical modelling and simulation of ocular blood flows and their interactions". PhD Theses. Université de Strasbourg, Sept. 2019.

Thomas Saigre

Model order reduction inside eyeball

 Introduction
 Contents
 Models
 Methods
 Verification and validation
 Sensitivity analysis
 Conclusion
 References

 Geometrical model
 Biophysical model
 Parameter-dependant model
 Sensitivity analysis
 Conclusion
 References

Biophysical model²

$$\rho_i C_{p,i} \frac{\partial T_i}{\partial t} + \nabla \cdot (k_i \nabla T_i) = 0 \quad \text{over } \Omega_i$$

where :

- *i* is the region index (Cornea, Aqueous Humor, Vitreous Humor, Sclera, Iris, Lens, Choroid, Lamina, Retine, Optic Nerve),
- \succ T_i [K] is the temperature in the volume *i*,
- t [s] is the time,
- ▶ k_i [W m⁻¹ K^{-1}] is the thermal conductivity, ρ_i [kg m⁻³] is the density and $C_{p,i}$ [J kg⁻¹ K^{-1}] is the specific heat.

²J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242; Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: *Computer Methods and Programs in Biomedicine* 82.3 (2006), pp. 268–276.

Figure 1: Description of the boundary and interface conditions of the domain

 Introduction
 Contents
 Models
 Methods
 Verification and validation
 Sensitivity analysis
 Conclusion
 References

 Geometrical model
 Biophysical model
 Parameter-dependant model
 Conclusion
 References

Biophysical model

Robin condition on
$$\Gamma_N$$
: $-k \frac{\partial T}{\partial n} = h_{\rm bl}(T - T_{\rm bl})$

Figure 1: Description of the boundary and interface conditions of the domain

Biophysical model

Linearized Neumann condition^a on Γ_N : $-k_i \frac{\partial T_i}{\partial n} = h_{amb}(T_i - T_{amb}) + h_r(T_i - T_{amb}) + E$

Figure 1: Description of the boundary and interface conditions of the domain

Contents	Models	Methods		Conclusion	References
	Parameter-de	ependant model			[ref.]

Parameter dependant model

Symbol	Name	Dimension	baseline value
T_{amb}	Ambient temperature	[K]	298
${\mathcal T}_{bl}$	Blood temperature	[K]	310
$h_{ m amb}$	Ambiant air convection coefficient	$[W m^{-2} K^{-1}]$	10
$h_{ m bl}$	Blood convection coefficient	$[W m^{-2} K^{-1}]$	65
E	Evaporation rate	$[W m^{-2}]$	40
k_{lens}	Lens conductivity	$[{\sf W}{\sf m}^{-1}{\sf K}^{-1}]$	0.4
$k_{ m cornea}$	Cornea conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.58
$k_{ m sclera}$	Sclera conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	1.0042
k _{AqueousHumor}	Aqueous humor conductivity	$[W m^{-1} K^{-1}]$	0.28
$k_{\rm VitreousHumor}$	Vitreous humor conductivity	$[W m^{-1} K^{-1}]$	0.603
ε	Emissivity of the cornea	[-]	0.975

Table 1: Parameters involved in the model

Geometrical parameters may be involved, but we will not consider them in this work.

Thomas Saigre

Model order reduction inside eyeball

Present work : focus on parameteric analysis

Parameter	Minimal value	Maximal value	Baseline value	Dimension
$T_{ m amb}$	283.15	303.15	298	[K]
Т _ы	308.3	312	310	[K]
$h_{ m amb}$	8	100	10	$[W m^{-2} K^{-1}]$
h _{bl}	50	110	65	$[W m^{-2} K^{-1}]$
E	20	320	40	$[W m^{-2}]$
k_{lens}	0.21	0.544	0.4	$[W m^{-1} K^{-1}]$

Table 2: Range of values for the parameters

▶ We set
$$\mu = (T_{amb}, T_{bl}, h_{amb}, h_{bl}, E, k_{lens}) \in D^{\mu} \subset \mathbb{R}^{6}$$
.

• $\bar{\mu} \in D^{\mu}$ is the baseline value of the parameters.

Contents	Models	Methods		Conclusion	References

Methods

High fidelity resolution

- Standard Galerkin continuous finite element method, P₁ and P₂ piecewise polynomials,
- Mesh caracteristics :

h	$nDof\;\mathbb{P}_1$	$\textbf{nDof} \ \mathbb{P}_2$
0.47	$2.08\cdot 10^5$	$1.58\cdot 10^{6}$

Usage of the open-source library Feel++³ to run simulations

³Christophe Prud'homme et al. *feelpp/feelpp: Feel++ V110.2 Released*. Version v0.110.2. Nov. 2022, source code : github.com/feelpp/feelpp.

Model Order Reduction

- ▶ **Goal :** replicate input-output behavior of the high fidelity model \mathcal{E}_{lin} with a reduced order model \mathcal{E}_{RBM} ,
- With a procedure stable and efficient.

Model Order Reduction

- ▶ Goal : replicate input-output behavior of the high fidelity model \mathcal{E}_{lin} with a reduced order model \mathcal{E}_{RBM} ,
- With a procedure stable and efficient.

▶ \mathcal{E}_{lin} : given $\mu \in D^{\mu}$, evaluate $s(\mu) = \underline{L}(\mu)^T \underline{u}(\mu)$ where $\underline{u}(\mu) \in X^{\mathcal{N}}$ satisfies the equation :

⁴Alfio Quarteroni et al. *Reduced Basis Methods for Partial Differential Equations*. Springer International Publishing, 2016.

▶ \mathcal{E}_{lin} : given $\mu \in D^{\mu}$, evaluate $s(\mu) = \underline{L}(\mu)^T \underline{u}(\mu)$ where $\underline{u}(\mu) \in X^N$ satisfies the equation :

⁴Alfio Quarteroni et al. *Reduced Basis Methods for Partial Differential Equations*. Springer International Publishing, 2016.

▶ \mathcal{E}_{lin} : given $\mu \in D^{\mu}$, evaluate $s(\mu) = \underline{L}(\mu)^T \underline{u}(\mu)$ where $\underline{u}(\mu) \in X^N$ satisfies the equation :

⁴Alfio Quarteroni et al. *Reduced Basis Methods for Partial Differential Equations*. Springer International Publishing, 2016.

▶ \mathcal{E}_{lin} : given $\mu \in D^{\mu}$, evaluate $s(\mu) = \underline{L}(\mu)^T \underline{u}(\mu)$ where $\underline{u}(\mu) \in X^N$ satisfies the equation :

 $A(\mu)u(\mu) = F(\mu)$ Snapshots $\mathcal{T}^{\text{fem}}(\mu_i)$ $\mathcal{M} = \{ T^{\text{fem}}(\mu) \, | \, \mu \in D^{\mu} \}$ FE Space V_h

⁴Alfio Quarteroni et al. *Reduced Basis Methods for Partial Differential Equations*. Springer International Publishing, 2016.

Model Order Reduction

To compute the reduced basis, we take *snapshots* for different μ -values μ_1, \dots, μ_N , and define the matrix :

$$\mathbb{Z}_{N} = [\xi_{1}, \cdots, \xi_{N}] \in \mathbb{R}^{\mathcal{N} \times N}$$

where $\xi_i = u(\mu_i)$, is orthonormalized. • Then, $u(\mu) \approx \sum_{i=1}^{N} \underline{u}_{N,i}(\mu)\xi_i = \mathbb{Z}_N \underline{u}_N$, so the reduced problem is :

$$\underbrace{\mathbb{Z}_{N\underline{\underline{A}}}^{T}\underline{\underline{A}}(\mu)\mathbb{Z}_{N}}_{:=\underline{\underline{A}_{N}}(\mu)\in\mathbb{R}^{N\times N}} \underline{\underline{u}}_{N}(\mu) = \underbrace{\mathbb{Z}_{N}^{T}\underline{\underline{F}}(\mu)}_{:=\underline{\underline{F}}_{N}(\mu)\in\mathbb{R}^{N}}$$
$$s_{N}(\mu) = \underbrace{\underline{L}_{N}^{T}(\mu)\mathbb{Z}_{N}}_{:=\underline{\underline{L}}_{N}^{T}(\mu)\in\mathbb{R}^{N}} \underline{\underline{u}}_{N}$$

Introduction Contents Models Methods Verification and validation Sensitivity analysis Conclusion References High fidelity resolution Model Order Reduction

Offline / Online decomposition

Offline stage

• We want to write
$$\underline{\underline{A}}(\mu) \approx \sum_{q=1}^{Q_a} \theta_A^q(\mu) \underline{\underline{A}}^q$$
,
and $\underline{\underline{F}}(\mu) \approx \sum_{q=1}^{Q_f} \theta_F^q(\mu) \underline{\underline{F}}^q$.
• Compute and store
 $\underline{\underline{A}}_N^q = \underbrace{\mathbb{Z}}_N^T \underline{\underline{A}}^q \mathbb{Z}_N$ and $\underline{\underline{F}}_N^q = \mathbb{Z}_N^T \underline{\underline{F}}^q$.
independent of μ

- Obtained through EIM decomposition
- We have $Q_a = 3$ and $Q_f = 2$.

Offline / Online decomposition

Offline stage

• We want to write
$$\underline{\underline{A}}(\mu) \approx \sum_{q=1}^{Q_a} \theta_A^q(\mu) \underline{\underline{A}}^q$$
,
and $\underline{\underline{F}}(\mu) \approx \sum_{q=1}^{Q_f} \theta_F^q(\mu) \underline{\underline{F}}^q$.
• Compute and store
 $\underline{\underline{A}}_N^q = \underbrace{\mathbb{Z}}_N^T \underline{\underline{\underline{A}}}^q \mathbb{Z}_N$ and $\underline{\underline{F}}_N^q = \mathbb{Z}_N^T \underline{\underline{F}}^q$.

- independent of µ
 ▶ Obtained through EIM decomposition
- We have $Q_a = 3$ and $Q_f = 2$.

Online stage

 Independent of finite element dimension,

$$\begin{split} \bullet \ \underline{\underline{A}}_{N}(\mu) &= \sum_{q=1}^{Q_{a}} \theta_{A}^{q}(\mu) \underline{\underline{A}}_{N}^{q} \in \mathbb{R}^{N \times N} \\ \bullet \ \underline{\underline{F}}_{N}(\mu) &= \sum_{q=1}^{Q_{f}} \theta_{F}^{q}(\mu) \underline{\underline{F}}_{N}^{q} \in \mathbb{R}^{N} \end{split}$$

Contents	Models	Methods		Conclusion	References
olution Model Ord	er Reduction				

Time of execution

Using the parameter $\mu = \bar{\mu}$ (baseline values) :

	\mathbb{P}_1	\mathbb{P}_2	Online
\mathcal{N}	207 845	1 580 932	N = 10
$t_{ m exec}$	21.221s	123.92s	0.14 s
relative time	5.84	1	885.1

In the following, \mathbb{P}_2 discretization is used for high fidelity resolution.

Content	s Mo	odels	Methods	Verificat	ion and validation	on	Co	References

Verification and validation

Introduction Contents Models Methods Verification and validation Sensitivity analysis Conclusion References Execution of the model \mathcal{E}_{lin} Validation Comparison with experimental values Verification of reduced model

Comparaison with previous numerical studies

[Sco88] : J.A. Scott. "A finite element model of heat transport in the human eye". In:

Physics in Medicine and Biology 33.2 (1988),

pp. 227–242

Figure 2: Temperature over an horizontal line

Introduction Contents Models Methods Verification and validation Sensitivity analysis Conclusion References Execution of the model \mathcal{E}_{iin} Validation Comparison with experimental values Verification of reduced model

Comparison with experimental values

Figure 3: Temperature over the GCC

Introduction Contents Models Methods Verification and validation Sensitivity analysis Conclusion References Execution of the model \mathcal{E}_{lin} Validation Comparison with experimental values Verification of reduced model

Verification of reduced model, maximal difference : 0.0024 K

Figure 4: FEM vs RBM output, tested with 100 parameters

Thomas Saigre

Model order reduction inside eyeball

Contents	Models	Methods	Sensitivity analysis	Conclusion	References

Sensitivity analysis

Outputs of interest

Figure 5: Featured geometrical locations for the outputs of interest (temperature)

Deterministic sensitivity analysis

- ▶ We choose one parameter among the 6 parameters of the model,
- We fix the other ones to their baseline value,
- We make the selected parameter vary to study the impact of this single parameter on the output of the model.

Deterministic sensitivity analysis

Figure 6: Effect of h_{amb} at point O

IntroductionContentsModelsMethodsVerification and validationSensitivity analysisConclusionReferencesOutputs of interestDeterministic sensitivity analysisStochastic sensitivity analysis→

Deterministic sensitivity analysis

0.3 0.4

(d) k_{lens}

k.... (Wm⁻¹K⁻¹)

Figure 6: Point O (Feel++ model, [Ng 06], [Sco88], [Li+10])

(e) T_{amb}

10 20 T_{amb} (°C) 30

37 38

T₁₄ (°C)

(f) $T_{\rm bl}$

IntroductionContentsModelsMethodsVerification and validationSensitivity analysisConclusionReferencesOutputs of interestDeterministic sensitivity analysisStochastic sensitivity analysis→

Sobol indices

▶
$$\mu = (\mu_1, \dots, \mu_n) \in D^\mu$$
,

• $\mu_i \sim X_i$ where $(X_i)_i$ is a familly of *independent* random variables,

• Output
$$s_N(\mu) \sim Y = f(X_1, \ldots, X_n)$$
,

Distributions selected from data available in the literature.

Sobol indices

$$S_{j} = \frac{\operatorname{Var}\left(\mathbb{E}\left[Y|X_{j}\right]\right)}{\operatorname{Var}(Y)}$$
(6.1)

► Total-order indices:

$$S_{j}^{\text{tot}} = \frac{\text{Var}\left(\mathbb{E}\left[Y|X_{(-j)}\right]\right)}{\text{Var}(Y)}$$
where $X_{(-j)} = (X_{1}, \dots, X_{j-1}, X_{j+1}, \dots, X_{n}).$

(6.2)

⁵chakir_non-baudin_openturns_2016.

Introduction Contents Models Methods Verification and validation Sensitivity analysis Conclusion References Outputs of interest Deterministic sensitivity analysis Stochastic sensitivity analysis

Stochastic sensitivity analysis

⁵chakir_non-baudin_openturns_2016.

IntroductionContentsModelsMethodsVerification and validationSensitivity analysisConclusionReferencesOutputs of interestDeterministic sensitivity analysisStochastic sensitivity analysis→

Stochastic sensitivity analysis

Figure 7: Sobol indices for the SSA : temperature at point O

IntroductionContentsModelsMethodsVerification and validationSensitivity analysisConclusionReferencesOutputs of interestDeterministic sensitivity analysisStochastic sensitivity analysis→

Stochastic sensitivity analysis

Figure 7: Temperature at point G

Conclusion and outlooks

Heat transport model in the human eye : FEM simulations, validation against experimental data, and model order reduction,

Sensitivity analysis :

- **Deterministic** approach : literature comparaison, confirm significant impact of E, h_{amb} , T_{amb} on T_O
- **Stochastic** approach : computation of Sobol indices thanks to MOR, highlight of the impact of T_{amb} and h_{amb} on T_O . k_{lens} has not impact on any output an can be removed from the parameteric model.

Conclusion and outlooks

Next steps :

- Derive *a posteriori* error estimator for the reduced model in the case of the 4th order polynomial nonlinearity,
- Model : couple thermal effect with aqueous humor dynamics in the anterior chamber,
- **Application** : robust framework to simulate drug delivery in the eye.

Conclusion and outlooks

Next steps :

- Derive *a posteriori* error estimator for the reduced model in the case of the 4th order polynomial nonlinearity,
- Model : couple thermal effect with aqueous humor dynamics in the anterior chamber,
- **Application** : robust framework to simulate drug delivery in the eye.

Introduction Contents Models Methods Verification and validation Sensitivity analysis Conclusion References

- [BBS20] Ajay Bhandari, Ankit Bansal, and Niraj Sinha. "Effect of aging on heat transfer, fluid flow and drug transport in anterior human eye: A computational study". In: *Journal of Controlled Release* 328 (2020), pp. 286–303.
- [EYB89] Nathan Efron, Graeme Young, and Noel A Brennan. "Ocular surface temperature.". In: *Current eye research* 8 9 (1989), pp. 901–6.
- [Li+10] Eric Li et al. "Modeling and simulation of bioheat transfer in the human eye using the 3D alpha finite element method (α FEM)". In: *International Journal* for Numerical Methods in Biomedical Engineering 26.8 (2010), pp. 955–976.
- [Ng 06] Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: Computer Methods and Programs in Biomedicine 82.3 (2006), pp. 268–276.

Introduction	Contents	Models	Methods	Verification and validation	Sensitivity analysis	Conclusion	References
Referen	ces II						

- [NO07] E.Y.K. Ng and E.H. Ooi. "Ocular surface temperature: A 3D FEM prediction using bioheat equation". In: Computers in Biology and Medicine 37.6 (2007), pp. 829–835.
- [Pru+22] Christophe Prud'homme et al. *feelpp/feelpp: Feel++ V110.2 Released*. Version v0.110.2. Nov. 2022.
- [PW05] Christine Purslow and James S Wolffsohn. "Ocular surface temperature: a review". en. In: Eye Contact Lens 31.3 (May 2005), pp. 117–123.
- [QMN16] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced Basis Methods for Partial Differential Equations. Springer International Publishing, 2016.
- [RF77] Robert F. Rosenbluth and Irving Fatt. "Temperature measurements in the eye". In: *Experimental Eye Research* 25.4 (1977), pp. 325–341.

References III

[Sal19] Lorenzo Sala. "Mathematical modelling and simulation of ocular blood flows and their interactions". PhD Theses. Université de Strasbourg, Sept. 2019. [Sco88] J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242.

Contents	Models	Methods		Conclusion	References

Thanks for your attention !

Parameter dependant model

Values of the parameters from the litterature :

- J.A. Scott. "A finite element model of heat transport in the human eye". In: Physics in Medicine and Biology 33.2 (1988), pp. 227–242
- Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: Computer Methods and Programs in Biomedicine 82.3 (2006), pp. 268–276
- E.Y.K. Ng et al. "Ocular surface temperature: A 3D FEM prediction using bioheat equation". In: Computers in Biology and Medicine 37.6 (2007), pp. 829–835
- Eric Li et al. "Modeling and simulation of bioheat transfer in the human eye using the 3D alpha finite element method (αFEM)". In: International Journal for Numerical Methods in Biomedical Engineering 26.8 (2010), pp. 955–976

Linearization

How to choose the snapshots ?

Residual error

Let $\mu \in D^{\mu}$. We set $u(\mu)$ the FEM solution, and $u_N(\mu)$ the reduced solution. We define the residual error as $e(\mu) = u(\mu) - u_N(\mu)$ that satisfies

 $(e(\mu), v)_V = f(v) - a(u_N(\mu), v; \mu) \qquad \forall v \in V$

How to choose the snapshots ?

Residual error

Let $\mu \in D^{\mu}$. We set $u(\mu)$ the FEM solution, and $u_N(\mu)$ the reduced solution. We define the residual error as $e(\mu) = u(\mu) - u_N(\mu)$ that satisfies

 $(e(\mu), v)_V = f(v) - a(u_N(\mu), v; \mu) \qquad \forall v \in V$

$$\widehat{e}(\mu) = \sum_{p} \theta_{F}^{p}(\mu) \mathcal{S}^{p} + \sum_{q} \sum_{n} \theta_{A}^{q}(\mu) u_{N}^{n}(\mu) \mathcal{L}^{n,q}$$
(8.1)

with :

$$\begin{aligned} (\mathcal{S}^{p}, \mathbf{v}) &= f^{p}(\mathbf{v}) & \forall \mathbf{v} \in X, \forall p \in \llbracket 1, Q_{F} \rrbracket \\ (\mathcal{L}^{n,q}, \mathbf{v}) &= -a^{q}(\xi^{n}, \mathbf{v}) & \forall \mathbf{v} \in X, \forall n \in \llbracket 1, N \rrbracket, \forall q \in \llbracket 1, Q_{A} \rrbracket \end{aligned}$$

$$(8.2)$$

Norm of the residual error

$$\begin{aligned} \|\widehat{e}(\mu)\|_X^2 &= (\widehat{e}(\mu), \widehat{e}(\mu))_X \\ &= \left(\sum_p \theta_F^p S^p + \sum_q \sum_n \theta_A^q u_N^n \mathcal{L}^{n,q}, \sum_p \theta_F^p S^p + \sum_q \sum_n \theta_A^q u_N^n \mathcal{L}^{n,q}\right)_X \end{aligned}$$

$$\begin{aligned} \|\widehat{e}(\mu)\|_{X}^{2} &= \sum_{p} \sum_{p'} \theta_{F}^{p} \theta_{F}^{p'} (\mathcal{S}^{p}, \mathcal{S}^{p'})_{X} + 2 \sum_{p} \sum_{q} \sum_{n} \theta_{F}^{p} \theta_{A}^{q} u_{N}^{n} (\mathcal{S}^{p}, \mathcal{L}^{n,q})_{X} \\ &+ \sum_{q} \sum_{n} \sum_{q'} \sum_{n'} \theta_{A}^{q} \theta_{A}^{q'} u_{N}^{n} u_{N}^{n'} (\mathcal{L}^{n',q'}, \mathcal{L}^{n,q})_{X} \end{aligned}$$

Greedy algorithm

Algorithm 1: Greedy algorithm

Input: $\mu_0 \in D^{\mu}$ and $\Xi_{\text{train}} \subset D^{\mu}$ $S \leftarrow [\mu_0]$ while $\Delta_N^{max} > \varepsilon$ do $\downarrow \mu^* \leftarrow \arg \max_{\mu \in \Xi_{\text{train}}} \|\hat{e}(\mu)\|_V^2$ (and $\Delta_N^{\max} \leftarrow \max_{\mu \in \Xi_{\text{train}}} \|\hat{e}(\mu)\|_V^2$) Append μ^* to S $u(\mu^*) \leftarrow \text{FE solution, using } S$ as generating sample $\mathbb{Z}_N \leftarrow \{\xi = u(\mu^*)\} \cup \mathbb{Z}_{N-1}$ end

Output: sample *S*, reduced basis \mathbb{Z}_N

Deterministic sensitivity analysis (more results)

Figure 9: Effect of k_{lens} at point O

Deterministic sensitivity analysis (more results)

(a) *E*

(b) h_{amb}

Figure 9: Point G (Feel++ model, [Ng 06], [Sco88], [Li+10])

Distributions

40 / 33

Distributions

Figure 11: Sobol indices for cornea

Model order reduction inside eyeball

Figure 11: Sobol indices for B1

Figure 11: Sobol indices for C

Figure 11: Sobol indices for D1

Figure 11: Sobol indices for G