## Model order reduction for complex ocular simulations inside the human eyeball Séminaire Jeunes Chercheurs de Reims

#### Thomas Saigre<sup>1</sup>, Christophe Prud'homme<sup>1</sup>, Marcela Szopos<sup>2</sup>

<sup>1</sup>Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS <sup>2</sup>Université Paris Cité, CNRS, MAP5, F-75006 Paris, France

#### 1<sup>st</sup> December 2022

| ι | Jniversité  |    |
|---|-------------|----|
|   | de Strasbou | rg |





Thomas Saigre

Model order reduction inside eyeball

| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
| Introductio  | on    |               |            |                      |            |            |

| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |
| Introduc     | tion  |               |            |                      |            |            |

#### Model complexity

- Multiphysics / multiscale problem
- Numerous parameters and scarce real data
- Influence of multiple risk factors or a combination of them

| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |
| Introduc     | tion  |               |            |                      |            |            |



| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |
| Introduc     | tion  |               |            |                      |            |            |



| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |
| Introduc     | tion  |               |            |                      |            |            |



| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |

Table of contents

Introduction

Model

Methodologies

Validation

Sensitivity analysis

#### Conclusion

| Introduction      | Model          | Methodologies             | Validation | Sensitivity analysis | Conclusion | References |
|-------------------|----------------|---------------------------|------------|----------------------|------------|------------|
| Geometrical model | Physical model | Parameter-dependant model |            |                      |            |            |

# Model

| Introduction      | Model          | Methodologies             | Validation | Sensitivity analysis | Conclusion | References |
|-------------------|----------------|---------------------------|------------|----------------------|------------|------------|
| Geometrical model | Physical model | Parameter-dependant model |            |                      |            |            |
|                   |                |                           |            |                      |            |            |

### Geometrical model



| Introduction      | Model          | Methodologies             | Validation | Sensitivity analysis | Conclusion | References |
|-------------------|----------------|---------------------------|------------|----------------------|------------|------------|
| Geometrical model | Physical model | Parameter-dependant model |            |                      |            |            |

#### Geometrical model



| Introduction | Model          | Methodologies             | Validation | Sensitivity analysis | Conclusion | References |
|--------------|----------------|---------------------------|------------|----------------------|------------|------------|
|              | Physical model | Parameter-dependant model |            |                      |            |            |
|              |                |                           |            |                      |            |            |

### Physical model<sup>1</sup>

$$\rho_i C_{p,i} \frac{\partial T_i}{\partial t} + \nabla \cdot (k_i \nabla T_i) = 0 \qquad \text{over } \Omega_i$$
(2.1)

where :

- ▶ *i* is the volume index (Cornea, VitreousHumor...),
- $T_i$  [K] is the temperature in the volume i,
- ▶ t [s] is the time,
- ▶  $k_i$  [W m<sup>-1</sup> $K^{-1}$ ] is the thermal conductivity,  $\rho_i$  [kg m<sup>-3</sup>] is the density and  $C_{p,i}$  [J kg<sup>-1</sup> $K^{-1}$ ] is the specific heat.

<sup>1</sup>J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242; Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: *Computer Methods and Programs in Biomedicine* 82.3 (2006), pp. 268–276.

Thomas Saigre

Introduction Model Methodologies Validation Sensitivity analysis Conclusion References Geometrical model Physical model Parameter-dependant model

Physical model : Boundary conditions

Robin condition :

$$-k\frac{\partial T}{\partial \underline{n}} = h_{\rm bl}(T - T_{\rm bl})$$
(2.2)



Figure 1: Desciption of the boundary conditions of the domain

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Geometrical model
 Physical model
 Parameter-dependant model
 Final control contro control control control contro control control cont

## Physical model : Boundary conditions

Neumann conditions :

$$-k_i \frac{\partial T_i}{\partial \underline{n}} = h_{\text{amb}} (T_i - T_{\text{amb}}) + \sigma \varepsilon (T_i^4 - T_{\text{amb}}^4) + E$$
(2.2)



Figure 1: Desciption of the boundary conditions of the domain

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Geometrical model
 Physical model
 Parameter-dependant model
 Ferences
 <t

#### Physical model : Boundary conditions

$$-k_i \frac{\partial T_i}{\partial \underline{n}} = h_{\text{amb}} (T_i - T_{\text{amb}}) + \sigma \varepsilon (T_i^4 - T_{\text{amb}}^4) + E$$
(2.3)

 $^2$  J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242.

Thomas Saigre

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Geometrical model
 Physical model
 Parameter-dependant model
 Ferences
 <t

#### Physical model : Boundary conditions

$$-k_i \frac{\partial T_i}{\partial \underline{n}} = h_{\text{amb}} (T_i - T_{\text{amb}}) + h_r (T_i - T_{\text{amb}}) + E$$
(2.3)

with  $h_r = 6 \text{ W} \text{m}^{-2} \text{K}^{-1}$ , from<sup>2</sup>

 $^2$  J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242.

Thomas Saigre

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Geometrical model
 Physical model
 Parameter-dependant model

Physical model : interface conditions

$$\begin{cases} T_i = T_j \\ k_i(\nabla T_i \cdot \underline{n}_i) = -k_j(\nabla T_j \cdot \underline{n}_j) \end{cases} \text{ over } \partial \Omega_i \cap \partial \Omega_j \qquad (2.4)$$

### Parameter-dependant model

| Symbol            | Name                               | Dimension             | baseline value |
|-------------------|------------------------------------|-----------------------|----------------|
| $T_{amb}$         | Ambiant temperature                | [K]                   | 298            |
| $T_{\rm bl}$      | Blood temperature                  | [K]                   | 310            |
| h <sub>amb</sub>  | Ambiant air convection coefficient | $[W m^{-2} K^{-1}]$   | 10             |
| h <sub>bl</sub>   | Blood convection coefficient       | $[W m^{-2} K^{-1}]$   | 65             |
| E                 | Evaporation rate                   | $[{ m W}{ m m}^{-2}]$ | 40             |
| k <sub>lens</sub> | Lens conductivity                  | $[Wm^{-1}K^{-1}]$     | 0.4            |

Table 1: Parameters involved in the model

| Introduction             | Model          | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------------------|----------------|-----------------------|------------|----------------------|------------|------------|
| Variationnal formulation | Finite element | Model Order Reduction |            |                      |            |            |

# Methodologies

| Introduction             | Model | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------------------|-------|-----------------------|------------|----------------------|------------|------------|
| Variationnal formulation |       | Model Order Reduction |            |                      |            | 19         |

$$\sum_{i} k_{i} \int_{\Omega_{i}} \nabla T_{i} \cdot \nabla v + \int_{\Gamma_{N}} [h_{amb}(T - T_{amb}) + h_{r}(T - T_{amb}) + E] v$$
$$+ \int_{\Gamma_{R}} [h_{bl}(T - T_{bl})] v = 0$$

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Variationnal formulation
 Finite element
 Model Order Reduction
 19

Variationnal formulation

$$\sum_{i} k_{i} \int_{\Omega_{i}} \nabla T_{i} \cdot \nabla v + \int_{\Gamma_{N}} [h_{amb}(T - T_{amb}) + h_{r}(T - T_{amb}) + E] v$$
$$+ \int_{\Gamma_{R}} [h_{bl}(T - T_{bl})] v = 0$$

$$\sum_{i} k_{i} \int_{\Omega_{i}} \nabla T_{i} \cdot \nabla v + \int_{\Gamma_{N}} [h_{amb} T + h_{r} T] v + \int_{\Gamma_{R}} h_{bl} Tv = \int_{\Gamma_{N}} [h_{amb} T_{amb} + h_{r} T_{amb} + E] v + \int_{\Gamma_{R}} h_{bl} T_{bl} v$$

IntroductionModelMethodologiesValidationSensitivity analysisConclusionReferencesVariationnal formulationFinite elementModel Order Reduction19

Variationnal formulation

$$\sum_{i} k_{i} \int_{\Omega_{i}} \nabla T_{i} \cdot \nabla v + \int_{\Gamma_{N}} [h_{amb}(T - T_{amb}) + h_{r}(T - T_{amb}) + E] v$$
$$+ \int_{\Gamma_{R}} [h_{bl}(T - T_{bl})] v = 0$$

$$\sum_{i} k_{i} \int_{\Omega_{i}} \nabla T_{i} \cdot \nabla v + \int_{\Gamma_{N}} [h_{amb} T + h_{r} T] v + \int_{\Gamma_{R}} h_{bl} Tv = \int_{\Gamma_{N}} [h_{amb} T_{amb} + h_{r} T_{amb} + E] v + \int_{\Gamma_{R}} h_{bl} T_{bl} v$$

$$a(T, v; \mu) = f(T; \mu)$$

where  $\mu \in D^{\mu} \subset \mathbb{R}^{d}$ .

Thomas Saigre

| Introduction             | Model          | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------------------|----------------|-----------------------|------------|----------------------|------------|------------|
| Variationnal formulation | Finite element | Model Order Reduction |            |                      |            |            |

#### Lax Milgram thoerem.

Let V be a Hilbert space and a a bilinear form on  $V \times V$  which is

• continuous :  $\forall u, v \in V, |a(u, v)| \leq C ||u||_V ||v||_V$ ,

• coercive : 
$$\forall u \in V, a(u, u) \ge \alpha ||u||_{V}^2$$

Let f be a continuous linear form on V. There exist a unique  $u \in X$  such that

a(u,v) = f(v) for all  $v \in V$ 

| Introduction             | Model          | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------------------|----------------|-----------------------|------------|----------------------|------------|------------|
| Variationnal formulation | Finite element | Model Order Reduction |            |                      |            |            |

#### Lax Milgram thoerem.

Let V be a Hilbert space and a a bilinear form on  $V \times V$  which is

• continuous :  $\forall u, v \in V, |a(u, v)| \leq C ||u||_V ||v||_V$ ,

• coercive : 
$$\forall u \in V, a(u, u) \ge \alpha ||u||_{V}^2$$

Let f be a continuous linear form on V. There exist a unique  $u \in X$  such that

$$a(u,v) = f(v)$$
 for all  $v \in V$ 

#### Definition

The solution *u* of the variational problem is called *weak solution*.

#### Lax Milgram thoerem.

Let V be a Hilbert space and a a bilinear form on  $V \times V$  which is

• continuous :  $\forall u, v \in V, |a(u, v)| \leq C ||u||_V ||v||_V$ ,

• coercive : 
$$\forall u \in V, a(u, u) \ge \alpha ||u||_{V}^2$$

Let f be a continuous linear form on V. There exist a unique  $u \in X$  such that

$$a(u,v) = f(v)$$
 for all  $v \in V$ 

#### Definition

The solution *u* of the variational problem is called *weak solution*.

Using an argument of density, we show that u is a solution of the original PDE problem, almost everywhere.

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Variationnal formulation
 Finite element
 Model Order Reduction
 Finite element
 References

#### Ritz-Galerkine method

$$a(u, v) = f(v)$$
 for all  $v \in X \Leftrightarrow AU = F$  (3.1)

| Introduction | Model          | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------|----------------|-----------------------|------------|----------------------|------------|------------|
|              | Finite element | Model Order Reduction |            |                      |            |            |
|              |                |                       |            |                      |            |            |

#### Finite element method



| Introduction | Model          | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------|----------------|-----------------------|------------|----------------------|------------|------------|
|              | Finite element | Model Order Reduction |            |                      |            |            |
|              |                |                       |            |                      |            |            |

#### Finite element method



Introduction Model **Methodologies** Validation Sensitivity analysis Conclusion References Variationnal formulation **Finite element** Model Order Reduction

#### Finite element method

The space  $V_h$  is the space of piecewise linear functions on the mesh.



« We » can construct the basis associated to the space  $V_h$ , and therefore the matrices A and F, from the problem.

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Variationnal formulation
 Finite element
 Model Order Reduction
 Finite element
 References

#### Model Order Reduction

Example of execution of the 3D model :

|                   | $\mathbb{P}_1$ | $\mathbb{P}_2$ |
|-------------------|----------------|----------------|
| $\mathcal{N}$     | 207 845        | 1 580 932      |
| $t_{\text{exec}}$ | 21.221s        | 123.92s        |

Introduction Model Methodologies Validation Sensitivity analysis Conclusion References Variationnal formulation Finite element Model Order Reduction

#### Model Order Reduction : Reduced basis

For  $\mu \in D^{\mu}$ , we want to solve  $\nabla \cdot (k_i \nabla T(\mu)) = 0$  (+BC). We introduce an *output* quantity :  $s(\mu) = \ell(T(\mu); \mu)$ 

Variational formulation : Find  $T(\mu)$  such that  $a(T(\mu), \nu; \mu) = f(T(\mu); \mu), \forall \nu \in H$ .

Introduction Model Methodologies Validation Sensitivity analysis Conclusion References Variationnal formulation Finite element Model Order Reduction

#### Model Order Reduction : Reduced basis

Variational formulation : Find  $T(\mu)$  such that  $a(T(\mu), v; \mu) = f(T(\mu); \mu), \forall v \in H$ . Problem to solve :  $A(\mu)T(\mu) = F(\mu)$ , the output is  $s_N(\mu) = L(\mu)^T T(\mu)$ 



 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Variationnal formulation
 Finite element
 Model Order Reduction
 Finite element
 References

#### Model Order Reduction : Reduced basis

Variational formulation : Find  $T(\mu)$  such that  $a(T(\mu), v; \mu) = f(T(\mu); \mu), \forall v \in H$ . Reduced problem :  $A_N(\mu)T_N(\mu) = F_N(\mu)$ , with  $\mathcal{N} \gg N$ , the output is  $s_N(\mu) = L_N(\mu)^T T_N(\mu)$ 



Introduction Model Methodologies Validation Sensitivity analysis Conclusion References
Variationnal formulation Finite element Model Order Reduction

#### Reduced basis

To generate the basis, we take snapshots for different values of  $\mu$  :  $\mu_1, \cdots, \mu_N$ , and define the matrix

$$\mathbb{Z}_{N} = [\xi_{1}, \cdots, \xi_{N}] \in \mathbb{R}^{\mathcal{N}, N}$$
(3.2)

where  $\xi_i$  is the solution of  $A(\mu_i)\xi_i = F(\mu_i)$ .  $\mathbb{Z}_N$  is orthonormalized.

Introduction Model Methodologies Validation Sensitivity analysis Conclusion References
Variationnal formulation Finite element Model Order Reduction

#### Reduced basis

To generate the basis, we take snapshots for different values of  $\mu$  :  $\mu_1, \dots, \mu_N$ , and define the matrix

$$\mathbb{Z}_{N} = [\xi_{1}, \cdots, \xi_{N}] \in \mathbb{R}^{\mathcal{N}, N}$$
(3.2)

where  $\xi_i$  is the solution of  $A(\mu_i)\xi_i = F(\mu_i)$ .  $\mathbb{Z}_N$  is orthonormalized. Then,  $u(\mu) \approx \sum_{i=1}^N u_{N,i}(\mu)\xi_i = \mathbb{Z}_N u_N$ , so the reduced problem is  $\underbrace{\mathbb{Z}_N^T A(\mu)\mathbb{Z}_N}_{:=A_N(\mu)\in\mathbb{R}^{N\times N}} u_N(\mu) = \underbrace{\mathbb{Z}_N^T(\mu)F(\mu)}_{:=F_N(\mu)\in\mathbb{R}^N}$   $s_N(\mu) = \underbrace{L^T(\mu)\mathbb{Z}_N}_{:=L_N^T(\mu)\in\mathbb{R}^N} u_N(\mu)$ (3.4)

| Introduction | Model | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|-----------------------|------------|----------------------|------------|------------|
|              |       | Model Order Reduction |            |                      |            | 12         |
|              |       |                       |            |                      |            |            |

#### Affine decomposition

Issue : compute efficiently  $A_N(\mu) = \mathbb{Z}_N^T A(\mu) \mathbb{Z}_N$ . Solution : decompose  $A(\mu) \approx \sum_{q=1}^{Q_A} \beta_A^q(\mu) A^q$ , with  $A^q$  independant of  $\mu$  Introduction Model Methodologies Validation Sensitivity analysis Conclusion References Variationnal formulation Finite element Model Order Reduction 12

### Affine decomposition

Issue : compute efficiently  $A_N(\mu) = \mathbb{Z}_N^T A(\mu) \mathbb{Z}_N$ . Solution : decompose  $A(\mu) \approx \sum_{q=1}^{Q_A} \beta_A^q(\mu) A^q$ , with  $A^q$  independant of  $\mu$  $A_N(\mu) = \mathbb{Z}_N^T A(\mu) \mathbb{Z}_N = \sum_{q=1}^{Q_A} \beta_A^q(\mu) \underbrace{\mathbb{Z}_N^T A^q \mathbb{Z}_N}_{:=A_N^q}$ 

Terms that can be computed only once (offline stage) Idem for  $F(\mu) = \sum_{p=1}^{Q_f} \beta_F^q(\mu) F^p$  (3.5)

| Introduction | Model | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|-----------------------|------------|----------------------|------------|------------|
|              |       | Model Order Reduction |            |                      |            |            |
|              |       |                       |            |                      |            |            |

### Affine decomposition

$$a(T, v; \mu) = \sum_{q=1}^{3} \beta_{A}^{q}(\mu) a^{q}(T, v)$$
(3.5)

#### with

$$\begin{split} \beta_{A}^{1}(\mu) &= k_{\text{lens}} & a^{1}(T, v) = \int_{\Omega_{\text{lens}}} \nabla T \cdot \nabla v \\ \beta_{A}^{2}(\mu) &= h_{\text{amb}} + h_{\text{bl}} & a^{2}(T, v) = \int_{\partial \Omega} Tv \\ \beta_{A}^{3}(\mu) &= 1 & a^{3}(T, v) = \int_{\Gamma_{N}} h_{r} Tv + \sum_{i \neq \text{lens}} \int_{\Omega_{i}} k_{i} \nabla T \nabla v \end{split}$$

| Introduction             | Model          | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------------------|----------------|-----------------------|------------|----------------------|------------|------------|
| Variationnal formulation | Finite element | Model Order Reduction |            |                      |            |            |
|                          |                |                       |            |                      |            |            |

### Affine decomposition

$$f(\mathbf{v};\mu) = \sum_{p=1}^{2} \beta_{F}^{p}(\mu) f^{p}(\mathbf{v})$$

#### with

$$\beta_F^1(\mu) = h_{\text{amb}} T_{\text{amb}} + h_r T_{\text{amb}} + E \qquad f^1(\nu) = \int_{\Gamma_N} \nu$$
$$\beta_F^2(\mu) = h_{\text{bl}} T_{\text{bl}} \qquad f^2(\nu) = \int_{\Gamma_R} \nu$$

### How to choose the snapshots ?

#### Residual error

Let  $\mu \in D^{\mu}$ . We set  $u(\mu)$  the FEM solution, and  $u_N(\mu)$  the reduced solution. We define the residual error as  $e(\mu) = u(\mu) - u_N(\mu)$  that satisfies

 $(e(\mu), v)_V = f(v) - a(u_N(\mu), v; \mu) \qquad \forall v \in V$ 

### How to choose the snapshots ?

#### Residual error

Let  $\mu \in D^{\mu}$ . We set  $u(\mu)$  the FEM solution, and  $u_N(\mu)$  the reduced solution. We define the residual error as  $e(\mu) = u(\mu) - u_N(\mu)$  that satisfies

 $(e(\mu), v)_V = f(v) - a(u_N(\mu), v; \mu) \qquad \forall v \in V$ 

$$\widehat{e}(\mu) = \sum_{p} \beta_{F}^{p}(\mu) \mathcal{S}^{p} + \sum_{q} \sum_{n} \beta_{A}^{q}(\mu) u_{N}^{n}(\mu) \mathcal{L}^{n,q}$$
(3.5)

with :

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Variationnal formulation
 Finite element
 Model Order Reduction
 Finite element
 Finite element

#### Norm of the residual error

$$\begin{aligned} \|\widehat{\mathbf{e}}(\mu)\|_{X}^{2} &= (\widehat{\mathbf{e}}(\mu), \widehat{\mathbf{e}}(\mu))_{X} \\ &= \left(\sum_{p} \beta_{F}^{p} S^{p} + \sum_{q} \sum_{n} \beta_{A}^{q} u_{N}^{n} \mathcal{L}^{n,q}, \sum_{p} \beta_{F}^{p} S^{p} + \sum_{q} \sum_{n} \beta_{A}^{q} u_{N}^{n} \mathcal{L}^{n,q}\right)_{X} \end{aligned}$$

$$\begin{aligned} \|\widehat{e}(\mu)\|_{X}^{2} &= \sum_{p} \sum_{p'} \beta_{F}^{p} \beta_{F}^{p'} (\mathcal{S}^{p}, \mathcal{S}^{p'})_{X} + 2 \sum_{p} \sum_{q} \sum_{n} \beta_{F}^{p} \beta_{A}^{q} u_{N}^{n} (\mathcal{S}^{p}, \mathcal{L}^{n,q})_{X} \\ &+ \sum_{q} \sum_{n} \sum_{q'} \sum_{n'} \beta_{A}^{q} \beta_{A}^{q'} u_{N}^{n} u_{N}^{n'} (\mathcal{L}^{n',q'}, \mathcal{L}^{n,q})_{X} \end{aligned}$$

| Introduction | Model | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|-----------------------|------------|----------------------|------------|------------|
|              |       | Model Order Reduction |            |                      |            |            |
|              |       |                       |            |                      |            |            |

### Greedy algorithm

Algorithm 1: Greedy algorithm

Input:  $\mu_0 \in D^{\mu}$  and  $\Xi_{\text{train}} \subset D^{\mu}$   $S \leftarrow [\mu_0]$ while  $\Delta_N^{max} > \varepsilon$  do  $\downarrow \mu^* \leftarrow \arg \max_{\mu \in \Xi_{\text{train}}} \|\widehat{e}(\mu)\|_V^2$  (and  $\Delta_N^{\max} \leftarrow \max_{\mu \in \Xi_{\text{train}}} \|\widehat{e}(\mu)\|_V^2$ ) Append  $\mu^*$  to S  $u(\mu^*) \leftarrow \text{FE solution, using } S$  as generating sample  $\mathbb{Z}_N \leftarrow \{\xi = u(\mu^*)\} \cup \mathbb{Z}_{N-1}$ end

**Output:** sample *S*, reduced basis  $\mathbb{Z}_N$ 

| Introduction             | Model          | Methodologies         | Validation | Sensitivity analysis | Conclusion | References |
|--------------------------|----------------|-----------------------|------------|----------------------|------------|------------|
| Variationnal formulation | Finite element | Model Order Reduction |            |                      |            |            |

#### Time of execution

|                  | $\mathbb{P}_1$ | $\mathbb{P}_2$ | Online    |
|------------------|----------------|----------------|-----------|
| $\mathcal{N}$    | 207 845        | 1 580 932      | N = 10    |
| $t_{e 	imes ec}$ | 21.221s        | 123.92s        | 0.140 60s |

| Introduction            | Model               | Methodologies          | Validation | Sensitivity analysis | Conclusion | References |
|-------------------------|---------------------|------------------------|------------|----------------------|------------|------------|
| Execution of the full i | model Linearization | Convergence Validation |            |                      |            |            |

## Validation

Introduction Model Methodologies Validation Sensitivity analysis Conclusion References Execution of the full model Linearization Convergence Validation

### Execution of the full model



Figure 2: Temperature of the eye (in °C)



### Execution of the full model



Figure 2: Temperature over an horizontal line

| Introduction             | Model             | Methodologies          | Validation | Sensitivity analysis | Conclusion | References |
|--------------------------|-------------------|------------------------|------------|----------------------|------------|------------|
| Execution of the full mo | del Linearization | Convergence Validation |            |                      |            |            |
|                          |                   |                        |            |                      |            |            |

### Linearization



٨Y



### Convergence



Figure 4: Temperature on the center of the cornea depending on the fineness of the mesh



Figure 5: Temperature on the GCC

| Introduction   | Model                        | Methodologies               | Validation | Sensitivity analysis | Conclusion | References |
|----------------|------------------------------|-----------------------------|------------|----------------------|------------|------------|
| Outputs Determ | inistic sensitivity analysis | Probabilistic sensitivity a | nalysis    |                      |            |            |

# Sensitivity analysis

| Introduction          | Model                | Methodologies                | Validation | Sensitivity analysis | Conclusion | References |
|-----------------------|----------------------|------------------------------|------------|----------------------|------------|------------|
| Outputs Deterministic | sensitivity analysis | Probabilistic sensitivity an | alysis     |                      |            |            |

### Output of interest



#### Figure 6: Featured geometrical locations for the output of interest (temperature)

### Deterministic sensitivity analysis

- ▶ We choose one parameter among the 6 parameters of the model,
- We fix the other one to their nominal value,
- We make the selected parameter vary to study the impact of this single parameter on the output of the model.



Deterministic sensitivity analysis



Figure 7: Effect of  $h_{amb}$  at point O

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Outputs
 Deterministic sensitivity analysis
 Probabilistic sensitivity analysis
 Conclusion
 References

#### Deterministic sensitivity analysis



Figure 7: Effect of  $k_{\text{lens}}$  at point O

 Introduction
 Model
 Methodologies
 Validation
 Sensitivity analysis
 Conclusion
 References

 Outputs
 Deterministic sensitivity analysis
 Probabilistic sensitivity analysis
 Probabilistic sensitivity analysis
 Probabilistic sensitivity analysis

#### Deterministic sensitivity analysis



Figure 7: Point O (Feel++ model, [Ng 06], [Sco88], [Li+10])

#### Deterministic sensitivity analysis



Figure 7: Point G (Feel++ model, [Ng 06], [Sco88], [Li+10])

#### Deterministic sensitivity analysis



Figure 7: Point G (Feel++ model, [Ng 06], [Sco88], [Li+10])

| Introduction          | Model | Methodologies                     | Validation | Sensitivity analysis | Conclusion | References |
|-----------------------|-------|-----------------------------------|------------|----------------------|------------|------------|
| Outputs Deterministic |       | Probabilistic sensitivity analyse | sis        |                      |            |            |
|                       |       |                                   |            |                      |            |            |
| Schol india           | 00    |                                   |            |                      |            |            |

#### Sobol indices

• 
$$\mu = (\mu_1, \ldots, \mu_n) \in D^{\mu}$$
,

•  $\mu_i \sim X_i$  where  $(X_i)_i$  is a familly of independent random variables,

• Output 
$$s_N(\mu) \sim Y = f(X_1, \ldots, X_n)$$
,

#### Sobol indices

First-order indices:  $S_{j} = \frac{\operatorname{Var}\left(\mathbb{E}\left[Y|X_{j}\right]\right)}{\operatorname{Var}(Y)} \quad (5.1)$ Total-order indices:  $S_{j}^{\operatorname{tot}} = \frac{\operatorname{Var}\left(\mathbb{E}\left[Y|X_{(-j)}\right]\right)}{\operatorname{Var}(Y)} \quad (5.2)$ where  $X_{(-j)} = (X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{n}).$ 



### Sobol indices



Figure 8: Sobol indices for the output on point *O*.

| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |
| Conclusio    | on    |               |            |                      |            |            |

- Thanks the RBM, we can run quickly a big number of simulations to run sensitivity analysis,
- ▶ In the model, some parameter have a greater impact on some outputs

| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |
| Conclusio    | on    |               |            |                      |            |            |

- Thanks the RBM, we can run quickly a big number of simulations to run sensitivity analysis,
- ▶ In the model, some parameter have a greater impact on some outputs

Next steps :

- ▶ Use the reduced model method on more complex models :
  - Account aqueous humor flow (for heat transfer model),
  - Darcy coupled problem (3D + 0D)

| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |
| Reference    | es    |               |            |                      |            |            |

- [EYB89] Nathan Efron, Graeme Young, and Noel A Brennan. "Ocular surface temperature.". In: *Current eye research* 8 9 (1989), pp. 901–6.
- [Li+10] Eric Li et al. "Modeling and simulation of bioheat transfer in the human eye using the 3D alpha finite element method (αFEM)". In: International Journal for Numerical Methods in Biomedical Engineering 26.8 (2010), pp. 955–976.
- [Ng 06] Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: Computer Methods and Programs in Biomedicine 82.3 (2006), pp. 268–276.
- [Sco88] J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242.

| Introduction | Model | Methodologies | Validation | Sensitivity analysis | Conclusion | References |
|--------------|-------|---------------|------------|----------------------|------------|------------|
|              |       |               |            |                      |            |            |
|              |       |               |            |                      |            |            |

## Thanks for your attention !