Réduction de modèles et analyse de sensibilité appliqué à un modèle biophysique dans l'œil humain

Thomas Saigre

Séminaire doctorant IRMA 15th June 2023

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References
Introduction Geometrical model				

- Need to understand ocular physiology and pathology,
- Heat transfer has an impact on the distribution of drugs in the eye ^a,
- Complexity to perform measurements on a human subject ^b, only on surface ^c.

^aBhandari et al., J. Control Release (2020) ^bRosenbluth et al., Exp. Eye Res. (1977) ^cPurslow et al., Eye Contact Lens (2005)

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References
Introduction Geometrical model	Biophysical model Parameter-dependan	it model		

Model complexity

- Monophysics-Multiphysics problem
- Numerous parameters and scarce experimental data
- Influence of multiple risk factors or a combination of them

Geometrical model¹

¹Lorenzo Sala. "Mathematical modelling and simulation of ocular blood flows and their interactions". PhD Theses. Université de Strasbourg, Sept. 2019.

Thomas Saigre

 General Framework
 Reduced Basis Method
 Sensitivity analysis
 Conclusion
 References

 Introduction
 Geometrical model
 Biophysical model
 Parameter-dependant model
 References
 References

Biophysical model²

$$\rho_i C_{p,i} \frac{\partial T_i}{\partial t} + \nabla \cdot (k_i \nabla T_i) = 0 \qquad \text{over } \Omega_i$$

where :

- ▶ i is the region index (Cornea, Aqueous Humor, Vitreous Humor, Sclera, Iris, Lens, Choroid, Lamina, Retine, Optic Nerve),
- T_i [K] is the temperature in the volume *i*,
- ▶ t [s] is the time,
- ▶ k_i [W m⁻¹ K^{-1}] is the thermal conductivity, ρ_i [kg m⁻³] is the density and $C_{p,i}$ [J kg⁻¹ K^{-1}] is the specific heat.

²J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242; Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: *Computer Methods and Programs in Biomedicine* 82.3 (2006), pp. 268–276.

Figure 1: Description of the boundary and interface conditions of the domain

 General Framework
 Reduced Basis Method
 Sensitivity analysis
 Conclusion
 References

 Introduction
 Geometrical model
 Biophysical model
 Parameter-dependant model
 Parameter-dependa

Biophysical model

Robin condition on
$$\Gamma_{body}$$
: $-k \frac{\partial T}{\partial n} = h_{bl}(T - T_{bl})$

Figure 1: Description of the boundary and interface conditions of the domain

Figure 1: Description of the boundary and interface conditions of the domain

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References
Introduction Geometrical mode	Biophysical model Parameter-depend	dant model		[ref.]

Parameter dependant model

Symbol	Name	Dimension	baseline value
T_{amb}	Ambient temperature	[K]	298
${\mathcal T}_{bl}$	Blood temperature	[K]	310
$h_{ m amb}$	Ambiant air convection coefficient	$[W m^{-2} K^{-1}]$	10
$h_{ m bl}$	Blood convection coefficient	$[W m^{-2} K^{-1}]$	65
E	Evaporation rate	$[W m^{-2}]$	40
k_{lens}	Lens conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.4
$k_{ m cornea}$	Cornea conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.58
$k_{\sf sclera}$	Sclera conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	1.0042
k _{AqueousHumor}	Aqueous humor conductivity	$[{\sf W}{\sf m}^{-1}{\sf K}^{-1}]$	0.28
$k_{\rm VitreousHumor}$	Vitreous humor conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.603
ε	Emissivity of the cornea	[-]	0.975

Table 1: Parameters involved in the model

Geometrical parameters may be involved, but we will not consider them in this work.

Thomas Saigre

Present work : focus on parameteric analysis

Parameter	Minimal value	Maximal value	Baseline value	Dimension
$T_{ m amb}$	283.15	303.15	298	[K]
Т _ы	308.3	312	310	[K]
$h_{ m amb}$	8	100	10	$[W m^{-2} K^{-1}]$
h _{bl}	50	110	65	$[W m^{-2} K^{-1}]$
E	20	320	40	$[W m^{-2}]$
k_{lens}	0.21	0.544	0.4	$[W m^{-1} K^{-1}]$

Table 2: Range of values for the parameters

• We set
$$\mu = (T_{amb}, T_{bl}, h_{amb}, h_{bl}, E, k_{lens}) \in D^{\mu} \subset \mathbb{R}^{6}$$
.

• $\bar{\mu} \in D^{\mu}$ is the baseline value of the parameters.

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References

Reduced Basis Method

Model Order Reduction

- **Goal :** replicate input-output behavior of the high fidelity model \mathcal{E}_{full} with a reduced order model \mathcal{E}_{RBM} ,
- ▶ With a procedure stable and efficient.

Model Order Reduction

- Goal : replicate input-output behavior of the high fidelity model \mathcal{E}_{full} with a reduced order model \mathcal{E}_{RBM} ,
- ▶ With a procedure stable and efficient.

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References
Problem statement				

Problem statement

Problem considered

Given $\mu \in D^{\mu}$, evaluate the output of interest

$$s(\mu) = \ell(u(\mu); \mu)$$

where $u(\mu) \in X$ is the solution of

$$a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in X$$

Definition

The problem is said to be *compliant* if the bilinear form *a* is symmetric, and $\ell = f$.

Definition

- Constant of continuity of $a(\cdot, \cdot; \mu)$: $\gamma(\mu)$
- Constant of coercivity of $a(\cdot, \cdot; \mu)$: $\alpha(\mu)$

Finite Element resolution

Finite Element resolution

Finite Element resolution

Problem considered

Given $\mu \in D^{\mu}$, evaluate the output of interest

$$s(\mu) = \mathcal{L}(\mu)^T \boldsymbol{u}(\mu)$$

where $\boldsymbol{u}(\mu) \in X^{\mathcal{N}}$ is the solution of

$$\underline{\underline{A}}(\mu)\boldsymbol{u}(\mu) = \boldsymbol{F}(\mu)$$

Finite Element results

Figure 2: Distribution of the temperature [K] in the eyeball from the linear model $\mathcal{E}_{L}(\mu)$

Affine decomposition

Offline / Online procedure

Offline:

- Solve *N* FEM systems depending on \mathcal{N} to form \mathbb{Z}_N ,
- Form and store $\boldsymbol{F}_{N}^{p}(\zeta_{i})$
- Form and store $\underline{\underline{A}}_{N}^{q}(\zeta_{i})$

Online: independant of $\mathcal N$

Given a new parameter $\mu \in D^{\mu}$,

- Form $\underline{\underline{A}}_{N}(\mu)$: $O(Q_a N^2)$,
- Form $\boldsymbol{F}_{N}(\mu)$: $O(Q_{f}N)$,

• Solve
$$\underline{\underline{A}}_{N}(\mu) \boldsymbol{u}_{N}(\mu) = \boldsymbol{F}_{N}(\mu) : O(N^{3}),$$

• Compute $s_N(\mu) = \mathcal{L}_N(\mu)^T \boldsymbol{u}_N(\mu)$: O(N).

Time of execution

	Finite	Finite element resolution		
	\mathbb{P}_1	\mathbb{P}_2 (np=1)	₽ ₂ (np=12)	
Problem size	$\mathcal{N}=207845$	$\mathcal{N}=1$	580 932	N = 10
t_{exec}	6.883 s	101.81 s	21.11 s	$6.27 imes10^{-5}\mathrm{s}$
relative time	14.8	1	35.59	$1.62 imes 10^7$

Table 3: Times of execution for assembly + resolution of the problem

General Framework Reduced Basis Method	Sensitivity analysis	Conclusion	References
Problem statement Reduced Basis Method Error bound Adaptative procedure	Results		

Error bound

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References
Problem statement	Reduced Basis Method Error bound Adaptative procedure	Results		

Error bound

Norm of the residual error

$$\widehat{\mathbf{e}}(\mu) = \sum_{p} \beta_{F}^{p}(\mu) \boldsymbol{\mathcal{S}}^{p} + \sum_{q} \sum_{n} \beta_{A}^{q}(\mu) u_{N}^{n}(\mu) \boldsymbol{\mathcal{L}}^{n,q}$$

with :

$$\begin{array}{lll} (\boldsymbol{\mathcal{S}}^{p},v) & = & f^{p}(v) & \forall v \in X, \forall p \in \llbracket 1, Q_{F} \rrbracket \\ (\boldsymbol{\mathcal{L}}^{n,q},v) & = & -a^{q}(\zeta^{n},v) & \forall v \in X, \forall n \in \llbracket 1, N \rrbracket, \forall q \in \llbracket 1, Q_{A} \rrbracket \end{array}$$

Norm of the residual error

$$\begin{aligned} \|\widehat{e}(\mu)\|_{X}^{2} &= (\widehat{e}(\mu), \widehat{e}(\mu))_{X} \\ &= \left(\sum_{p} \beta_{F}^{p} \mathcal{S}^{p} + \sum_{q} \sum_{n} \beta_{A}^{q} u_{N,n} \mathcal{L}^{n,q}, \sum_{p} \beta_{F}^{p} \mathcal{S}^{p} + \sum_{q} \sum_{n} \beta_{A}^{q} u_{N,n} \mathcal{L}^{n,q}\right)_{X} \end{aligned}$$

$$\begin{aligned} \|\widehat{e}(\mu)\|_{X}^{2} &= \sum_{p} \sum_{p'} \beta_{F}^{p} \beta_{F}^{p'} (\mathcal{S}^{p}, \mathcal{S}^{p'})_{X} + 2 \sum_{p} \sum_{q} \sum_{n} \beta_{F}^{p} \beta_{A}^{q} u_{N,n} (\mathcal{S}^{p}, \mathcal{L}^{n,q})_{X} \\ &+ \sum_{q} \sum_{n} \sum_{q'} \sum_{n'} \beta_{A}^{q} \beta_{A}^{q'} u_{N,n} u_{N}^{n'} (\mathcal{L}^{n',q'}, \mathcal{L}^{n,q})_{X} \end{aligned}$$

Greedy algorithm

Algorithm 1: Greedy algorithm

Output: sample *S*, reduced basis \mathbb{Z}_N

Results over a sampling $\varXi_{\mathsf{test}} \subset D^{\mu}$ of 100 parameters

Figure 3: Error on RBM for various reduced basis sizes with error bound $\Delta_N(\mu)$

Results over a sampling $\varXi_{\mathsf{test}} \subset D^{\mu}$ of 100 parameters

Figure 3: Convergence of the errors on the field and the output on point O

Results over a sampling $\varXi_{\mathsf{test}} \subset D^{\mu}$ of 100 parameters

Figure 3: Stability of the effectivities $\eta_N^s(\mu)$ and $\eta_N^{en}(\mu)$

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References

Sensitivity analysis

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References
Sobol indices				. →
$ \mu = (\mu_1, \mu_i \sim X_i) $ $ \mu_i \sim X_i $ $ Output $ $ Distribut$	$\dots, \mu_n) \in D^\mu$, where $(X_i)_i$ is a familly c $\kappa_N(\mu) \sim Y = f(X_1, \dots, \lambda)$ ions selected from data a	of <i>independent</i> random (_n), available in the literatu	variables, ıre.	
Sobol indices				
► First-ord	ler indices : <i>Sj</i>	$= \frac{Var\left(\mathbb{E}\left[Y X_{j}\right]\right)}{Var(Y)}$		(1)

► Total-order indices: $S_j^{\text{tot}} = \frac{\text{Var}\left(\mathbb{E}\left[Y|X_{(-j)}\right]\right)}{\text{Var}(Y)}$

where $X_{(-j)} = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_n).$

(2)

Distributions

³Michaël Baudin et al. "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: *Handbook of Uncertainty Quantification*. Ed. by Roger Ghanem et al. Cham: Springer International Publishing, 2016, pp. 1–38.

Thomas Saigre

³Michaël Baudin et al. "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: *Handbook of Uncertainty Quantification*. Ed. by Roger Ghanem et al. Cham: Springer International Publishing, 2016, pp. 1–38.

Thomas Saigre

Figure 4: Sobol indices for the SSA : temperature at point O

Figure 4: Temperature at point G

Conclusion and outlooks

Heat transport model in the human eye :

- FEM simulations,
- validation against experimental data,
- model order reduction with *certified* error bound.

Sensitivity analysis :

Stochastic approach : computation of Sobol indices thanks to MOR, highlight of the impact of T_{amb} and h_{amb} on T_O. k_{lens} has not impact on any output an can be removed from the parameteric model.

Conclusion and outlooks

Next steps :

- Model : couple thermal effect with aqueous humor dynamics in the anterior chamber,
- Application : robust framework to simulate drug delivery in the eye.

What happens if we don't have access to the affine decomposition ?

Bibliography

- [Bau+16] Michaël Baudin et al. "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: Handbook of Uncertainty Quantification. Ed. by Roger Ghanem, David Higdon, and Houman Owhadi. Cham: Springer International Publishing, 2016, pp. 1–38.
- [BBS20] Ajay Bhandari, Ankit Bansal, and Niraj Sinha. "Effect of aging on heat transfer, fluid flow and drug transport in anterior human eye: A computational study". In: *Journal of Controlled Release* 328 (2020), pp. 286–303.
- [Ng 06] Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: Computer Methods and Programs in Biomedicine 82.3 (2006), pp. 268–276.
- [Pru+01] C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods ". In: Journal of Fluids Engineering 124.1 (Nov. 2001), pp. 70–80.

Bibliography

- [PW05] Christine Purslow and James S Wolffsohn. "Ocular surface temperature: a review". en. In: Eye Contact Lens 31.3 (May 2005), pp. 117–123.
- [QMN16] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. *Reduced Basis Methods for Partial Differential Equations*. Springer International Publishing, 2016.
- [RF77] Robert F. Rosenbluth and Irving Fatt. "Temperature measurements in the eye". In: Experimental Eye Research 25.4 (1977), pp. 325–341.
- [Sal19] Lorenzo Sala. "Mathematical modelling and simulation of ocular blood flows and their interactions". PhD Theses. Université de Strasbourg, Sept. 2019.
- [Sco88] J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242.

General Framework	Reduced Basis Method	Sensitivity analysis	Conclusion	References

Thank you for your attention!