

GUILLAUME **STEIMER**

FORMATIONS

2021 - 2025 Doctorat de Mathématiques Appliquées Université de Strasbourg

Méthode de réduction d'ordre pour des dynamiques hamiltoniennes utilisant l'apprentissage pro-

Construction de méthodes de réduction non-linéaires préservant la structure symplectique du modèle complet (Saint-Venant, Vlasov-Poisson...) à l'aide de l'apprentissage automatique (ap-

prentissage profond, auto-encodeurs, réseaux Hamiltoniens...).

Master de Mathématiques et applications 2019 - 2021 Université de Strasbourg

Parcours type Calcul Scientifique et Mathématiques de l'Information (CSMI)

Modélisation, simulation, optimisation, calcul scientifique, apprentissage machine, EDP, graphes,

traitement du signal, compilation, calcul haute performance, incertitudes, réseaux.

Mention Très Bien

Licence de Mathématiques 2018 - 2019 Université de Strasbourg

Parcours type Mathématiques Appliquées

Mention Très Bien

2016 - 2018 **DEUG de Mathématiques** Université de Strasbourg

Parcours type Mathématiques et Physique Approfondies (MPA)

Mention Très Bien, major de promotion

ARTICLE & PREPRINT

Reduced Particle in Cell method for the Vlasov-Poisson system using auto-encoder and Hamiltonian **neural networks** R. Côte , E. Franck , L. Navoret , G. Steimer, V. Vigon.

Soumis

Hamiltonian reduction using a convolutional auto-encoder coupled to an Hamiltonian neural network

R. Côte, E. Franck, L. Navoret, G. Steimer, V. Vigon.

30h de TP par an.

10.4208/cicp.OA-2023-0300 Commun. in Comput. Phys., 2025

Hyperbolic reduced model for Vlasov-Poisson equation with Fokker-Planck collision

E. Franck, I. Lannabi, Y. Nasseri, L. Navoret, G. Parasiliti Rantone, G. Steimer.

doi:10.1051/proc/202477213 ESAIM Proc. Surveys, 2024

ENSEIGNEMENTS

2024-2025	Algèbre (L1 Mathématiques) Bases du calcul matriciel et de l'arithmétique sur Z. 35h de CI par an.	Université de Strasbourg
2024-2025	Calcul scientifique (L2 Mathématiques) Fondements de l'analyse numérique, applications en Python. 18h de TD par an.	Université de Strasbourg
2024-2025	Informatique (L2 Mathématiques) Bases de la programmation orientée objet en Python. 14h de CM et 14h de TP par an.	Université de Strasbourg
2021-2024	Informatique (L3 Mathématiques Appliquées) Programmation orientée objet en C++. 34h de TD par an.	Université de Strasbourg
2021-2023	Informatique (L2 Mathématiques) Bases de la programmation orientée objet en Python.	Université de Strasbourg

CONFÉRENCES INTERNATIONALES

June 2025 4th International Nonlinear Dynamics Conference (NODYCON 2025) New-York, USA

Reduced Particle in Cell method for the Vlasov-Poisson system using auto-encoder and Hamil-

tonian neural networks

E. Franck, L. Navoret, G. Steimer, V. Vigon

Mai 2023 Math 2 Product (M2P): Emerging Technologies in Computational Science for Industry, Sustain-

ability and Innovation Taormine, Italie

Reduced order modeling using auto-encoder and Hamiltonian neural networks

E. Franck, L. Navoret, G. Steimer, V. Vigon

Novembre 2022 Numerical Methods for the Kinetic Equations of Plasma Physics (NumKin) Garching, Allemagne

Data driven reduced modelling of the Vlasov-Poisson equation

E. Franck, L. Navoret, G. Steimer, V. Vigon

Septembre 2022 Model Reduction and Surrogate Modeling (MORE)

Berlin, Allemagne

Data driven reduced modelling of the Vlasov-Poisson equation

E. Franck, L. Navoret, G. Steimer, V. Vigon

Juin 2022 8th European Congress on Computational Methods in Applied Sciences and Engineering (EC-

COMAS) Oslo, Norvège

Data driven reduced modelling of the Vlasov-Poisson equation E. Franck, N. Crouseilles, L. Navoret, G. Steimer, V. Vigon

STAGES & PROJETS

2/2021 - 8/2021 Stage de Master 2: Réduction du modèle de Vlasov-Poisson guidée par les données INRIA équipe TONUS, IRMA, Strasbourg

Étude de l'équation de Vlasov-Poisson, simulation par méthode PIC, construction de modèles réduits par décomposition en valeurs singulières (SVD), auto-encodeur et apprentissage de la dynamique par réseaux de neurones Hamiltoniens.

10/2020 - 1/2021 Projet de Master 2: Apprendre la dynamique Hamiltonienne d'un système physique avec les réseaux de neurones Équipe MOCO, IRMA, Strasbourg

Implémentation de réseaux de neurones pouvant apprendre la dynamique de systèmes physiques simples à l'aide de la mécanique Hamiltonienne, là où les réseaux "classiques" échouent. Applications à des systèmes physiques conservatifs.

3/2020 - 8/2020 Projet et stage de Master 1: Modélisation de tsunamis, les apports des réseaux de neurones face aux schémas numériques classiques Équipe MOCO, IRMA, Strasbourg

Mise au point d'une méthode de prédiction de tsunamis en mer Méditerranée: écriture d'un code de simulation 1D en C++ avec de vraies topographies puis conception de différents réseaux de neurones en apprentissage profond pour effectuer des prédictions sur l'arrivée de tsunamis.

Printemps 2020 Projet: Homicide Report, peut-on prédire les traits d'un meurtrier? Université de Strasbourg

Travail de statistiques descriptives et d'apprentissage machine pour la prédiction de caractéristiques d'un meurtrier, en ayant connaissance des caractéristiques du meurtre et de la victime. Base de données Homicide Report de Kaggle, qui recense tous les homicides aux États-Unis de 1980 à 2014, collecté par le FBI. Effectué en binôme avec P. Bernard.

COMPÉTENCES SPÉCIFIQUES

Mathématiques: Analyse numérique, calcul scientifique, réduction de modèles, systèmes Hamiltoniens, algorithmique, méthodes numériques pour les EDO/EDP, apprentissage automatique scientifique, optimisation, modèle aléatoires, calcul haute performance.

Langages & librairies: C, C++, Python, Tensorflow, Scikitlearn, Keras, MPI, openMP, CUDA, Openturns, Pandas, Langages & Linux.

Langues: anglais (courant), norvégien (bokmål, débutant)