
Institut de Recherche
Mathématique Avancée

INSTITUT DE
RECHERCHE

MATHÉMATIQUE
AVANCÉE

UMR 7501

Strasbourg

https://irma.math.unistra.fr

Thèse

présentée pour obtenir le grade de docteur de l’Université de
Strasbourg

Spécialité MATHÉMATIQUES APPLIQUÉES

Guillaume Steimer

Méthode de réduction d’ordre pour des dynamiques
hamiltoniennes utilisant l’apprentissage profond

Soutenue le 12 septembre 2025
devant la commission d’examen

Raphaël Côte, directeur de thèse
Virginie Ehrlacher, rapporteure

Tommaso Taddei, rapporteur
Stéphane Lanteri, examinateur

Nicolas Crouseilles, examinateur
Christophe, Prud’homme, examinateur

Emmanuel Franck, co-encadrant
Laurent Navoret, co-encadrant

Vincent Vigon, co-encadrant

Remerciements

Au terme de ce travail de thèse, le moment des remerciements est pour moi un instant tout
particulier. Il me permet de prendre du recul et de mesurer à quel point ce périple, à la fois
scientifique et humain, n’aurait été possible sans le soutien et la bienveillance de nombreuses
personnes. Ces remerciements vous sont dédiés.

Je tiens tout d’abord à exprimer ma profonde gratitude à mon directeur de thèse, Raphaël
Côte, ainsi qu’à mes co-encadrants Emmanuel Franck, Laurent Navoret et Vincent Vigon, pour
leur accompagnement, leurs conseils avisés et leur disponibilité tout au long de ces années. Merci
pour votre confiance et pour tout le temps que vous m’avez consacré. Ces remerciements ne
concernent pas seulement votre suivi scientifique, à travers les nombreuses et enrichissantes
réunions que nous avons eues autour de nos travaux de recherche et les multiples relectures
attentives de mes écrits mathématiques, mais aussi votre accompagnement humain, votre soutien
et votre écoute, qui ont beaucoup compté pour moi.

Je remercie également Virginie Ehrlacher et Tommaso Taddei d’avoir accepté de rapporter
ma thèse, ainsi que les membres du jury Stéphane Lanteri, Nicolas Crouseilles — avec qui j’ai eu
de nombreuses discussions autour de la dynamique des plasmas — et Christophe Prud’homme,
dont la présence revêt une signification particulière puisqu’il est également le directeur du Master
qui a marqué mes premiers pas dans le domaine de la recherche.

Je salue aussi les membres des équipes TONUS et MACARON pour tous ces séminaires qui
m’ont permis de découvrir plus en détail l’analyse numérique, les EDP ou encore le machine
learning scientifique. Je pense en particulier à Victor Michel-Dansac, pour sa bonne humeur, sa
gentillesse et nos nombreux échanges scientifiques. Je souhaite également remercier le personnel
administratif de l’IRMA, de l’UFR, de l’ED MSII et de l’INRIA, notamment Ouiza Herbi, qui a fait
preuve d’une grande gentillesse et d’une grande patience lors de la saisie de mes missions pour
diverses conférences.

Ces années de doctorat n’auraient pas eu la même saveur sans mes camarades — amis doctor-
ants et anciens doctorants de l’IRMA. Je vous remercie d’avoir rendu ces années plus agréables,
que ce soit lors des séminaires doctorants, à l’occasion d’un café, d’un goûter ou, soyons hon-
nêtes, autour d’une bière au Comptoir puis au Télégraphe. J’aimerais saluer nommément Thomas
et Tom, qui me supportent depuis le master, ainsi que Romane, Brieuc et Léopold pour nos es-
capades marseillaises du CEMRACS 2022, sans oublier Adam, Roméo, Killian, Frédérique, Jean-
Pierre, Clarence, Clément, Victoria, Céline, Thomas avec des lunettes, Paul, Ludovic, Mickaël,
Léo, Claire, Roxana, Vincent, Robin, Colin, Nicolas, Victor, Florian, Thibaut, Yohann, et al.

J’exprime aussi un remerciement spécial à mes amis les plus proches, les «belettes », ces
petites créatures rusées et agiles qui ont toujours su apporter leur soutien et leur sourire, même
dans les moments difficiles. J’ai une pensée particulière pour Océane, mon fidèle acolyte de
course à pied et de musculation, et pour Daphné, qui sont elles aussi en train de terminer leur
thèse de doctorat. En poursuivant dans la famille des mustélidés, je remercie chaleureusement
Claudia, Tom, Rémi et Louis, mais aussi Alex et Dimitri, piliers en amitié depuis notre première

3

année de licence en MPA. Je tiens également à remercier Marie et Cédric pour leur amitié et leur
soutien précieux depuis longtemps.

À ma fiancée, Céline, merci du fond du cœur. Ta bienveillance, ta force, ton soutien indé-
fectible, tes encouragements et ta présence constante m’ont porté plus loin que je ne saurais le
dire. Merci d’avoir survécu à ces quatre années de thèse, à ces semaines de travail interminables
et à mes humeurs de problème mal posé. Je te promets de redevenir rapidement un fiancé normal
! Merci d’avoir cru en moi sans relâche. Tu es mon roc, et cette thèse est aussi un peu la tienne.

Merci à ma famille : sans les racines solides que vous m’avez données depuis mon plus jeune
âge, rien n’aurait été possible. Un immense merci à ma mère, qui m’a toujours soutenu et rassuré
dans mes études et au-delà, à mon frère, pilier discret et solide, une présence sur laquelle je
peux toujours compter, et à ma grand-mère, dont la bienveillance et la sagesse tranquille m’ont
toujours accompagné. Merci aussi à mon père, parti trop tôt, mais dont la mémoire, les valeurs
et la force continuent de m’accompagner chaque jour. Papa, tu n’es plus là, mais je t’ai senti à
mes côtés tout au long du chemin. Enfin, pour reprendre les mots de Monsieur Fernand dans Les
Tontons Flingueurs : «Hé ben dis donc ! C’est du brutal ! » — une formule qui résume assez bien
ces quelques années de thèse.

Contents

1 Introduction 7
1.1 Contexte & problématique . 7
1.2 Description du manuscrit et contributions . 9
References . 12

2 Hamiltonian systems: numerical methods, reduction and deep learning tools 13
2.1 A primer on Hamiltonian dynamics . 14
2.2 Hamiltonian systems & numerical methods . 19

2.2.1 A formal introduction to Hamiltonian PDEs 19
2.2.2 Hamiltonian ODEs: definition & properties 22
2.2.3 Numerical methods for time integration 27

2.3 Linear model order reduction for Hamiltonian ODEs 30
2.3.1 Proper Symplectic Decomposition . 31
2.3.2 Building the projection matrix . 33
2.3.3 Hyper-reduction with symplectic DEIM 35
2.3.4 A practical example: the shallow-water system 37
2.3.5 Other reduction methods . 42

2.4 Deep learning tools for Hamiltonian model order reduction 43
2.4.1 Outline of neural networks . 43
2.4.2 Learning symplectic flows with Hamiltonian Neural Networks 45
2.4.3 Convolutional AutoEncoder for low-dimensional representations 46

References . 48

3 Hamiltonian reduction using a convolutional autoencoder coupled to an Hamil-
tonian neural network 52
3.1 Introduction . 53
3.2 Parameterized Hamiltonian systems and reduction 55

3.2.1 Parameterized Hamiltonian dynamics 55
3.2.2 Hamiltonian reduced order modeling . 57

3.3 A nonlinear Hamiltonian reduction method . 58
3.3.1 Reduction with an Auto Encoder (AE) 58
3.3.2 Reduced model with a Hamiltonian Neural Network (HNN) 59
3.3.3 Strong coupling of the neural networks 61
3.3.4 Training hyper-parameters . 61
3.3.5 Numerical complexity . 63

3.4 Numerical results . 64
3.4.1 Wave equations . 64
3.4.2 1D shallow water system . 72
3.4.3 2D shallow water system . 77

5

3.5 Conclusion . 83
References . 84

4 Reduced Particle in Cell method for the Vlasov-Poisson system using autoen-
coder and Hamiltonian neural networks 87
4.1 Introduction . 88
4.2 Particle discretization of the Vlasov-Poisson equation 91

4.2.1 The Vlasov-Poisson equation . 91
4.2.2 Hamiltonian particle-based discretization 91
4.2.3 Time discretization and initialization . 93

4.3 A Hamiltonian reduction with Proper Symplectic Decompostion prereduction . 94
4.3.1 PSD-AE-HNN reduction method . 95
4.3.2 PSD reduction . 97
4.3.3 AE-HNN reduction . 98
4.3.4 Hyperparameters tuning . 99

4.4 Numerical results . 101
4.4.1 Linear Landau damping . 102
4.4.2 Nonlinear Landau damping . 105
4.4.3 Two-stream instability . 111
4.4.4 Computation gain . 114

4.5 Conclusion . 118
References . 119

5 Hyperbolic reduced model for Vlasov-Poisson equation with
Fokker-Planck collision 122
5.1 Introduction . 123
5.2 Reduced model in velocity for 1D Vlasov-Poisson-Fokker-Planck 124

5.2.1 Vlasov-Poisson-Fokker-Planck model . 124
5.2.2 Semi-discretized model in velocity . 125
5.2.3 Reduced model . 127

5.3 Hyper-reduction and corrections of the reduced collision operator 128
5.3.1 DEIM hyper-reduction . 128
5.3.2 Preservation of reduced moments . 128
5.3.3 Reduced Maxwellian distributions . 129
5.3.4 Reduced moment equations . 130

5.4 Numerical results . 131
5.4.1 Reduction for given parameters . 131
5.4.2 Preservation of Maxwellian distributions 133
5.4.3 Generalization to other parameters . 134

5.5 Conclusion . 136
References . 136
A Numerical discretization details . 137

A.1 Discretization of the full model . 137
A.2 Discretization of the reduced model . 138

B Solution to the minimization problem . 138

6 Conclusion & perspectives 139
References . 141

Chapitre 1

Introduction

1.1 Contexte & problématique

Les systèmes rencontrés en sciences et en ingénierie – de la mécanique céleste à la dynamique
moléculaire – sont régis par des lois physiques fondamentales qui décrivent leur évolution
au cours du temps. Dans de nombreux cas, ces lois impliquent la conservation de certaines
grandeurs telles que la masse, la charge ou le moment angulaire. Notre analyse se concentre plus
particulièrement sur le cas, souvent rencontré, où l’énergie est conservée. Ces systèmes dits con-
servatifs sont naturellement décrits dans le cadre formel hamiltonien, nommé d’après le célèbre
physicien Sir William R. Hamilton.

Les systèmes hamiltoniens constituent une classe de modèles puissants et efficaces, apparais-
sant naturellement dans de nombreux domaines : mécanique céleste, dynamique moléculaire,
physique quantique, dynamique des plasmas, théorie du contrôle, etc. Ces systèmes décrivent
comment l’énergie totale, répartie entre énergie cinétique et énergie potentielle, guide l’évolution
de l’état du système. La notion de système hamiltonien est centrale non seulement en raison
de son omniprésence dans la nature, mais aussi parce qu’elle encode des lois fondamentales de
conservation, profondément liées à la structure géométrique de ces systèmes d’une manière re-
marquablement élégante.

Par exemple, dans le cas de l’équation des ondes, la structure hamiltonienne sous-tend le
comportement d’une corde ou d’une membrane qui s’étire ou se plie sous l’effet de forces. Le
modèle de Saint-Venant (dynamique des eaux peu profondes, shallow water) décrit l’évolution
de la surface libre d’un fluide sous l’influence de la gravité, illustrant notamment le mouvement
des vagues dans l’océan. Les systèmes hamiltoniens sont également omniprésents en physique
des plasmas, où ils gouvernent le mouvement rapide des particules chargées dans des champs
électromagnétiques jusqu’à la propagation des ondes de plasma.

Bien que le formalisme hamiltonien ne nécessite essentiellement que la connaissance
de l’énergie totale du système et de sa structure pour prédire son comportement complet,
l’utilisation pratique de tels modèles est souvent limitée par leur taille et leur complexité. En
effet, lorsqu’on modélise un système physique complexe, on commence généralement par for-
muler des Équations aux Dérivées Partielles (EDP). Ces équations sont ensuite discrétisées à l’aide
de techniques telles que les éléments finis, les différences finies, les discrétisations spectrales ou
les méthodes de type Particle-In-Cell (PIC), conduisant à des Équations Différentielles Ordinaires
(EDO) souvent de très grande dimension ou de nombreux degrés de liberté, et potentiellement
des non-linéarités.

Ces modèles complets (Full Order Models, FOMs) capturent des dynamiques très précises,
mais au prix d’un coût de simulation numérique / computationnel élevé. L’exécution d’une seule
simulation à haute résolution peut nécessiter plusieurs heures de calcul, voire davantage, même

7

8 Chapter 1 Introduction

sur un cluster de calcul haute performance. Dans les domaines du contrôle, de l’optimisation
de la conception et de la quantification d’incertitudes, il est souvent nécessaire d’effectuer de
nombreuses simulations de haute fidélité pour différents jeux de paramètres. Cela devient alors
difficilement réalisable, en particulier lorsque le temps ou la puissance de calcul sont limités, par
exemple dans des applications temps réel ou embarquées. Ces difficultés ne se limitent pas au
processus de simulation lui-même : elles compliquent également l’analyse, les études de sensi-
bilité ou tout processus décisionnel s’appuyant sur de tels modèles. Cela conduit à une demande
croissante pour des représentations réduites beaucoup moins coûteuses à évaluer, tout en con-
servant les dynamiques essentielles.

Dans ce contexte, la réduction de modèle (Model Order Reduction, MOR) offre une solution
particulièrement intéressante. L’idée principale de la MOR est relativement claire : trouver un
modèle beaucoup plus petit qui imite le comportement du modèle complet. Ce modèle réduit
doit être capable de prédire la dynamique du modèle complet sous différents paramètres tout
en préservant des caractéristiques essentielles telles que la précision, la stabilité et la fidélité
physique. En pratique, la MOR isole les motifs de faible dimension présents dans la dynamique
et filtre le reste. Par exemple, lorsqu’on cherche à résoudre la propagation d’ondes dans un
milieu sur une grille très fine afin d’obtenir des solutions numériques précises, cela conduit à la
résolution d’un système d’EDO de très grande dimension sur ordinateur. La réduction de modèle
permet d’identifier que la partie la plus significative de la dynamique peut être gouvernée par
quelques modes de Fourier dominants.

Cependant, une approximation satisfaisante de la dynamique du système ne suffit pas dans
le cas des systèmes hamiltoniens. Les techniques de réduction doivent également préserver la
structure hamiltonienne dans le modèle réduit. Un modèle réduit qui ne conserve pas la structure
hamiltonienne, notamment la préservation de l’énergie, conduit la plupart du temps à des insta-
bilités numériques et à des états non physiques lors de simulations à long terme. Or les approches
classiques de réduction détruisent souvent cette structure. Pour remédier à ce problème, on met
en œuvre des techniques de réduction de modèle préservant la structure. À titre d’exemple, la
décomposition symplectique aux valeurs propres (Proper Symplectic Decomposition, PSD) pro-
jette le système complet sur un sous-espace vectoriel de faible dimension tout en conservant la
structure hamiltonienne grâce à une base de vecteurs adaptée.

Parallèlement au développement de la réduction hamiltonienne de modèle, l’apprentissage
automatique (machine learning, ML) s’est imposé comme un outil puissant pour enrichir
l’analyse numérique. De nombreuses approches hybrides combinant analyse numérique clas-
sique et techniques d’apprentissage ont émergé, avec dans certains cas des résultats prometteurs.
L’apprentissage automatique propose une approche fondée sur les données pour découvrir des
motifs et des structures, permettant parfois de construire des modèles approchés quand les for-
mules analytiques explicites sont difficiles à obtenir ou bien que les coûts de calculs sont trop
élevés.

Néanmoins, les approches standards d’apprentissage automatique ne respectent pas la struc-
ture hamiltonienne des modèles considérés. Cela a conduit à un intérêt croissant pour les méth-
odes d’apprentissage informé par la physique et de préservation de la structure (structure pre-
serving machine learning) au sein de la communauté scientifique. Par exemple, les réseaux de
neurones informés par la physique (Physics-Informed Neural Networks, PINNs) intègrent di-
rectement les lois physiques dans l’entraînement du réseau de neurones (Neural Networks, NNs)
afin de prédire les états du modèle complet, tandis que les réseaux de neurones hamiltoniens
(Hamiltonian Neural Networks, HNNs) sont capables d’apprendre directement l’énergie totale
d’un système à partir des données.

1.2 Description du manuscrit et contributions 9

À la lumière de l’engouement récent pour le développement de techniques de réduction
préservant la structure, combinant méthodes classiques de réduction et apprentissage automa-
tique, cette thèse vise à développer de nouvelles méthodes de réduction de modèle hamiltonienne,
assistées par apprentissage profond (deep learning), combinant réseaux de neurones, techniques de
préservation de la structure et réduction de modèle. Les méthodes développées dans ce manuscrit
sont testées sur des équations de type ondulatoire, en dynamique des fluides (Saint-Venant), ainsi
qu’en dynamique des plasmas avec l’équation de Vlasov-Poisson, par exemple.

1.2 Description du manuscrit et contributions

Dans ce manuscrit, nous présentons le développement de nouvelles méthodes de réduction
hamiltonienne, assistées par apprentissage profond. Il est structuré en cinq chapitres. Le pre-
mier chapitre est une introduction fournissant une mise en contexte ainsi qu’une présentation
du manuscrit en français. Le deuxième chapitre fait office de boîte à outils présentant les notions
et méthodes utilisées dans les trois chapitres suivants. Chacun de ces chapitres correspond à
un article — l’un est déjà publié, le suivant est proche d’une soumission pour publication, et le
dernier est une communication (proceedings) de l’école d’été du CEMRACS 2022. Ils sont présen-
tés sous la forme d’articles scientifiques et peuvent être lus indépendamment les uns des autres.
Ils sont suivis d’une conclusion générale ainsi que des perspectives. Présentons plus en détail le
contenu des chapitres un à cinq.

Chapitre 1 - Introduction

Ce premier chapitre introduit les concepts de systèmes hamiltoniens, d’apprentissage automa-
tique et de réduction de modèle, afin de poser le cadre du sujet traité dans cette thèse. Il se conclut
par une présentation générale du contenu des chapitres du manuscrit.

Chapitre 2 - Hamiltonian systems: numerical methods, reduction and deep learning
tools

Le second chapitre regroupe l’ensemble des ressources théoriques et méthodologiques néces-
saires à ce manuscrit. Il aborde les questions clés ainsi que les défis inhérents au développement
de modèles réduits hamiltoniens, fondés sur l’apprentissage profond. Nous introduisons dans un
premier temps quelques notions de base afin de présenter les systèmes hamiltoniens à travers
des exemples d’EDO simples. En pratique, l’intérêt se porte sur des EDO de grande dimension is-
sues de la semi-discrétisation d’EDP hamiltoniennes. Ainsi, nous définissons d’abord les modèles
hamiltoniens sous la forme d’EDP, avant de procéder à leur semi-discrétisation en EDO hamil-
toniennes, pour enfin aboutir à des modèles numériques entièrement discrets, comme détaillé
dans les Sec. 2.2.1 et Sec. 2.2.2. Le principal défi réside dans la préservation de la structure hamil-
tonienne à chaque étape du processus, ainsi que dans la compréhension des implications de cette
préservation en termes de difficultés techniques et de coût de calcul. Ensuite, pour répondre à
la problématique du coût numérique élevé et du temps de calcul important des simulations de
modèles complets, nous introduisons les principes fondamentaux de la réduction de modèle dans
la Sec. 2.3. L’hypothèse principale de travail est que l’espace des solutions peut être décrit par
un sous-espace linéaire. En utilisant des projections symplectiques, nous dérivons un premier
modèle réduit. Toutefois, en raison de l’hypothèse de linéarité, ce modèle réduit rencontre des
obstacles pour réduire efficacement la complexité de calcul dans les problèmes non-linéaires, bien
que plusieurs techniques existent pour atténuer ce coût. En conséquence, nous introduisons les
outils d’apprentissage profond nécessaires pour la réduction hamiltonienne non-linéaire dans la

10 Chapter 1 Introduction

Sec. 2.4, à savoir les réseaux de neurones. Le couplage entre réduction hamiltonienne et réseaux
de neurones est réalisé dans les chapitres suivants.

Chapitre 3 - Hamiltonian reduction using a convolutional autoencoder coupled to an
Hamiltonian neural network

Ce chapitre correspond à un premier article [1]. Nous considérons une famille d’EDO hamil-
toniennes paramétrées et proposons une approche de réduction basée sur des auto-encodeurs
convolutifs (Convolution AutoEncoder, AE) et des réseaux de neurones hamiltoniens (Hamilto-
nian Neural Network, HNN). Les auto-encodeurs sont utilisés pour apprendre des opérateurs
d’encodage et de décodage, tandis que le réseau de neurones hamiltonien est employé pour ap-
prendre la dynamique réduite de manière à préserver la structure hamiltonienne. Le processus
d’entraînement est couplé, ce qui signifie que les trois composantes — l’encodeur, le décodeur et
la dynamique réduite — sont apprises simultanément. L’utilisation du réseau de neurones hamil-
tonien garantit que la dynamique réduite conserve la structure hamiltonienne sous-jacente.

Cette approche repose sur trois éléments clés :

(i) l’auto-encodeur apprend une projection non-linéaire adaptée aux équations considérées
entre les espaces complet et réduit, offrant de meilleures performances que les techniques de
projection linéaire classiques;

(ii) l’apprentissage conjoint avec un réseau de neurones hamiltonien compense l’absence de
contrainte symplectique sur l’auto-encodeur, en construisant un modèle réduit qui est hamil-
tonien par construction et proche du modèle complet grâce au processus d’entraînement;

(iii) l’utilisation de réseaux de neurones permet une forte parallélisation sur GPU, ce qui
accélère considérablement l’évaluation numérique du modèle réduit.

Nous présentons plusieurs cas tests pour illustrer les bonnes propriétés de réduction
obtenues. Deux ensembles d’équations sont considérés. Nous examinons d’abord une équation
d’onde 1D non-linéaire paramétrée

∂ttv(x, t;µ)− µa∂x
[
w′ (∂xv(x, t;µ), µb)

]
+ g′(v(x, t;µ), µc) = 0, (1.1)

sur un domaine périodique de longueur L > 0, avec une solution v : R/(LZ)× [0, T]× Γ→ R
représentant le déplacement orthogonal à une corde vibrante, et µ = (µa µb µc)

T ∈ Γ ⊂ R3

désigne des paramètres; w et g sont des fonctions données. Le cas linéaire est également traité, il
est obtenu avec w(x) = 1

2x
2 et g(x) = 0. Ensuite, nous testons notre méthode sur les équations

de Saint-Venant 1D et 2D sans bathymétrie, sur un domaine carré et périodique de longueur
L > 0. En 2D, elles s’écrivent


∂tχ(x, t;µ) +∇ · ((1 + χ(x, t;µ))∇ϕ(x, t;µ)) = 0,

∂tϕ(x, t;µ) +
1

2
|∇ϕ(x, t;µ)|2 + χ(x, t;µ) = 0,

(1.2)

où χ, ϕ : R2/(LZ2) × [0, T] × Γ → R représentent respectivement la perturbation par rapport
à l’équilibre et le potentiel scalaire. Dans ce cas test, la condition initiale est paramétrée par µ ∈
Γ ⊂ R2 deux paramètres scalaires correspondant à l’amplitude et l’écart-type d’une gaussienne.

1.2 Description du manuscrit et contributions 11

Chapitre 4 - Reduced Particle in Cell method for the Vlasov-Poisson system using au-
toencoder and Hamiltonian neural networks

Le Chap. 4 correspond à un article qui sera soumis pour publication dans un avenir proche. Il est
consacré à l’équation de Vlasov-Poisson 1D-1V de la forme

∂tf(t, x, v;µ) + v∂xf(t, x, v;µ) +
q

m
E(t, x;µ)∂vf(t, x, v;µ) = 0,

∂xE(t, x;µ) = q

∫
f(t, x, v;µ) dv − 1,

(1.3)

avec pour solution une distribution de particules f : [0, T] × R/(2πZ) × R → R de charge
q et masse m. Elle est discrétisée par une méthode Particle-In-Cell (PIC) : f est approchée par
une distribution discrète de particules numériques et le champ électrique E(t, x;µ) est résolu
à l’aide d’un maillage du domaine spatial. L’une des principales difficultés réside dans le fait
que le nombre de particules — dont dépend la dimension du modèle — est très élevé. De plus,
la dynamique est hautement non-linéaire et multi-échelles en raison du champ électrique auto-
induit, c’est-à-dire dépendant de la fonction de distribution f .

L’idée que nous présentons consiste à combiner les approches introduites dans l’article [1] et
au Chap. 3 avec une première projection linéaire et symplectique. Cela aboutit à une architecture
encodeur–décodeur à deux étages, couplée à une approximation de la dynamique réduite fondée
sur des réseaux de neurones.

Précisément, notre méthode précédente ne peut pas être appliquée directement à ce problème,
car les données en entrée sont constituées de particules : elles sont à la fois très nombreuses
et, aussi, non structurées (non définies sur une grille régulière). Une projection symplectique
linéaire préliminaire permet de réduire drastiquement la dimension du système tout en préser-
vant les propriétés symplectiques essentielles dans un espace intermédiaire désormais bien struc-
turé. Toutefois, en raison de la dynamique non-linéaire sous-jacente, cette projection ne suffit pas
à elle seule pour obtenir un modèle réduit suffisamment précis. Pour pallier à cette limite, nous la
combinons avec notre méthode introduite dans [1]. Le processus d’apprentissage global est facil-
ité par la qualité de la représentation intermédiaire, qui capture les caractéristiques essentielles
de la dynamique d’origine sans filtrer excessivement les comportements non-linéaires.

Nous démontrons l’efficacité de notre méthode sur trois problèmes tests classiques :
l’amortissement Landau linéaire, l’amortissement Landau non-linéaire et l’instabilité double fais-
ceau.

Chapitre 5 - Hyperbolic reduced model for Vlasov-Poisson equation with
Fokker-Planck collision

Le dernier Chap. 5 présente le travail réalisé lors de l’école d’été du CEMRACS 2022, qui a donné
lieu à une communication [2]. Comme dans le Chap. 4 précédent, nous considérons l’équation de
Vlasov-Poisson 1D-1V, cette fois avec un terme de collision de type Fokker-Planck Q(f) défini
par

∂tf(t, x, v;µ) + v∂xf(t, x, v;µ) +
q

m
E(t, x;µ)∂vf(t, x, v;µ) =

1

ε
Q(f)(t, x, v;µ),

∂xE(t, x;µ) = q

∫
f(t, x, v;µ) dv − 1,

(1.4)

où f représente à nouveau la distribution solution sur un domaine périodique en espace, E est le
champ électrique qu’elle génère via l’équation de Poisson, et Q désigne l’opérateur de collision
non-linéaire de Fokker-Planck, donné par

Q(f) = ∂v [(v − uf)f + Tf∂vf]

12 Chapter 1 Introduction

avec uf (t, x), Tf (t, x) désignent respectivement la vitesse et la température de la distribution.
Le paramètre est µ = (α ε)T ∈ Γ ⊂ R2 où α paramètre la condition initiale et ε > 0 sert de
facteur d’échelle, permettant de distinguer les régimes fortement colisionnels (ε ≪ 1) de ceux
avec peu de collisions.

Une part importante du coût calcul provient de la variable vitesse. Pour y remédier, nous
construisons un modèle réduit dans l’espace des vitesses en appliquant une compression sur
l’équation semi-discrétisée. Afin d’améliorer davantage l’efficacité numérique, nous appliquons
la méthode d’interpolation empirique discrète (Discrete Empirical Interpolation Method, DEIM) à
l’opérateur non-linéaire de Fokker–Planck. La taille du modèle réduit est déterminée en fonction
du nombre de Knudsen. Par ailleurs, nous introduisons une correction de l’opérateur de collision
réduit afin que les moments réduits satisfassent un système de type Euler : les trois premiers
moments réduits sont préservé par l’opérateur de collision réduit ainsi que la propriété qu’il
s’annule sur des maxwelliennes discrètes. Les expériences numériques montrent que le modèle
réduit reproduit fidèlement la dynamique de Vlasov–Poisson dans divers régimes collisionnels,
pour différentes conditions initiales et au delà du temps de simulation exploré par le modèle
réduit à sa construction.

Ce travail diffère des autres (Chaps. 3 et 4), en ce que le modèle réduit n’est pas hamiltonien.
Il est conçu de manière à ce que d’autres quantités / propriétés soient conservées comme décrit
plus haut.

References

[1] R. Côte et al. “Hamiltonian reduction using a convolutional auto-encoder coupled to a
Hamiltonian neural network”. In: Commun. Comput. Phys. 37.2 (2025), pp. 315–352. issn:
1815-2406,1991-7120. doi: 10.4208/cicp.OA-2023-0300.

[2] E. Franck et al. “Hyperbolic reduced model for Vlasov-Poisson equation with Fokker-
Planck collision”. In: ESAIM: ProcS 77 (2024), pp. 213–228. doi: 10 . 1051 / proc /
202477213.

https://doi.org/10.4208/cicp.OA-2023-0300
https://doi.org/10.1051/proc/202477213
https://doi.org/10.1051/proc/202477213

Chapter 2

Hamiltonian systems: numerical
methods, reduction and deep learning
tools

Chapter’s contents
2.1 A primer on Hamiltonian dynamics . 14
2.2 Hamiltonian systems & numerical methods 19

2.2.1 A formal introduction to Hamiltonian PDEs 19

2.2.2 Hamiltonian ODEs: definition & properties 22

2.2.3 Numerical methods for time integration 27

2.3 Linear model order reduction for Hamiltonian ODEs 30
2.3.1 Proper Symplectic Decomposition . 31

2.3.2 Building the projection matrix . 33

2.3.3 Hyper-reduction with symplectic DEIM 35

2.3.4 A practical example: the shallow-water system 37

2.3.5 Other reduction methods . 42

2.4 Deep learning tools for Hamiltonian model order reduction 43
2.4.1 Outline of neural networks . 43

2.4.2 Learning symplectic flows with Hamiltonian Neural Networks 45

2.4.3 Convolutional AutoEncoder for low-dimensional representations . . . 46

References . 48

13

14 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

2.1 A primer on Hamiltonian dynamics

The objective of this section is to introduce a few basics of Hamiltonian mechanics. We provide
a gentle introduction to these systems, beginning with a handful of elementary concepts from
Newtonian mechanics, and proceed to describe the corresponding equations of motion. These
are then illustrated through several toy examples.

Basics of Newton’s mechanics One of the earliest major developments in mechanics with
a mathematical formalism comes from I. Newton in his treatise Philosophiæ Naturalis Principia
Mathematica [1] published in 1687. Some of these principles can be expressed as follows. In a
d > 0 dimensional real space Rd, a point-like particle’s motion at time t ∈ R+ is described with
its position x ∈ C2(R,Rd) and its velocity v ∈ C1(R,Rd). The velocity is given by the rate of
change of the position

v(t) :=
dx(t)

d t
,

and so that the acceleration is the rate of change of the velocity dv(t)
d t = d2 x(t)

d t2
. Newton’s Second

Law states that the force F that drives a particle’s motion is equal to its mass m > 0 multiplied
by its acceleration

F(t) :=
dmv(t)

d t
= m

dv(t)

d t
= m

d2 x(t)

d t2
,

which can be written as 
dx(t)

d t
= v(t),

dv(t)

d t
=

1

m
F(t).

(2.1)

By adding a few principles, such as the law of inertia and the action-reaction principle, we obtain
the rudiments of classical mechanics. This theory accurately describes the motion of objects that
have a reasonable mass and size, and are not moving at too high a speed.

Classical mechanics argues that once we know the force F applied to an object (and some
initial / boundary conditions), we can deduce its dynamics. This force can take a variety of forms.
Here, we focus on conservative forces. A force F : Rd → Rd is said conservative if and only if
there exists a potential φ : Rd → R such that

F(x) = −∇φ(x),

where ∇ is the gradient operator (∇φ(x))i = ∂xiφ(x). The system (2.1) rewrites
dx(t)

d t
= v(t),

dv(t)

d t
= − 1

m
∇φ(x(t)).

(2.2)

Subsequently, φ is commonly referred to as the potential energy of the system. Potential energy
represents the energy an object possesses due to its position relative to other objects. For in-
stance, conservative forces include the restoring force of a spring F(x) = kx with k the spring
stiffness constant and the gravitational force near the Earth F = mg with g the gravity field.
Similarly, there are many non-conservative forces. For example, there are dissipative forces such
as the drag force F(v) = bv with b a drag coefficient or the rolling friction F = cn with c a
friction coefficient and n a normal vector.

2.1 A primer on Hamiltonian dynamics 15

There is one other type of energy present in our system: the kinetic energy K : Rd → R is
the form of energy resulting to the object’s motion v. In our setting, it is given by

K(v) = 1

2
m∥v∥2.

Ultimately, the total energy H is defined as the sum of the kinetic energyK and the potential
energy φ

H (x,v) := K(v) + φ(x).

A system is called conservative when all the forces acting on it are conservative, the total energy
of the system remains conserved over time. Indeed

dH (x(t),v(t))

d t
= ∇vH (x(t),v(t)) · dv(t)

d t
+∇xH (x(t),v(t)) · dx(t)

d t

= mv(t) · dv(t)
d t

+∇φ(x) · v(t)

= −∇φ(x(t)) · v(t) +∇φ(x(t)) · v(t) = 0.

These conservatives systems are called Hamiltonian systems. The conservation of energy is only
one aspect of these systems. As we will see, they also encode the structure of the phase space,
and it is the combination of these two features that allows us to predict their dynamics.

A first look at Hamiltonian mechanics In this part, we present a sketch of Hamiltonian
formalism in classical mechanics, which was first introduced in 1833 by W. R. Hamilton in [2].
It focuses on the total energy H of the system. First of all, we must generalize the concept of
position to accommodate a system of multiple bodies, where the particles may undergo some
constrained motion. We define the generalized coordinates

q(t) ∈ RN .

It is a vector of N > 0 parameters used to uniquely describe the state of the system, they are
also called the degrees of freedom. For example, the motion of a pendulum in the plane is con-
strained by the string that holds it. It is sufficient to know the angle formed by the string to
describe the position of the pendulum, rather than using the complete 2D Cartesian coordinates.
In comparison, a n particles system moving freely in 3 dimension would require N = 3n param-
eters to be described. In addition to the generalized coordinates, the system is described with the
generalized momentum

p(t) ∈ RN .

For instance, the generalized momentum of a distribution of N particles of mass m moving freely
is p(t) = mq̇(t). Additional terms, such as angular or electromagnetic momenta, can also be
introduced depending on the system considered. In our casep = mq̇, the kinetic energy becomes
K(p(t)) = ∥p(t)∥2/(2m). We can then rewrite the Hamiltonian H as

H (q(t),p(t)) =
1

2m
∥p(t)∥2 + φ(q(t)).

Arguing Eq. (2.2), we derive Hamilton’s equations{
q̇(t) = ∇pH (q(t),p(t)),

ṗ(t) = −∇qH (q(t),p(t)).
(2.3)

In fact, these systems exhibit a much richer structure, involving more general Hamiltonian func-
tionals and vector fields with significant geometric structure as we will explore in Sec. 2.2. We
finish this section with three toy examples of Hamiltonian systems: the harmonic oscillator, the
simple gravity pendulum and the 2-body problem.

16 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

Harmonic oscillator We consider a 1D system where a spring with a stiffness constant k > 0
is attached at one end to a fixed wall and at the other end to a mobile mass m > 0. The quantity
x ∈ R is the displacement of the mass relative to its resting position. We denote ω =

√
k/m

the angular frequency. We scale the displacement q =
√
mωx and the momentum p = ω−1q̇.

Arguing Hooke’s law for ideal springs, we derive the potential energy φ(q) = ωq2/2. With the
kinetic energy K(p) = ωp2/2, we then write the Hamiltonian

H (q, p) =
ω

2
(q2 + p2).

We derive Hamilton’s equation 
d q

d t
= ωp,

d p

d t
= −ωq.

The solution of the system is{
q(t) = qinit cos(ωt) + pinit sin(ωt),

p(t) = pinit cos(ωt)− qinit sin(ωt).

We remark that
∀t, q2(t) + p2(t) = r2,

meaning the trajectory in the phase space is a circle of constant radius r =
√
q2init + p2init. Fur-

thermore, H (q(t), p(t)) = ωr2/2 is constant and we verify that the total energy is indeed
conserved.

We observe the streamline plot of this system for ω = 1 in Fig. 2.1. Such a plot shows
curves (streamlines) that remain tangent to the vector field at every point. Put differently, each
streamline represents a trajectory that a point (q, p) in the phase-space would follow if it were
initially placed on that curve. We verify that trajectories are circles.

Simple gravity pendulum We consider a mass m tied to a rigid rope of length l, with the
other end fixed to the ceiling. The quantity q ∈ [−π, π[is the angle between the rope and the
downward vertical equilibrium and its corresponding momentum p = ml2q̇. Arguing a constant
and downward gravity force of constant g > 0, the potential energy is φ(q) = mgl(1 − cos q)
hence the Hamiltonian of the system reads

H (q, p) =
1

2ml2
p2 +mgl(1− cos q).

Then, we derive Hamilton’s equations
d q

d t
=

1

ml2
p,

d p

d t
= mgl sin q.

Beyond the small angle approximation sin q = q + O(q2), no closed-form solution is known.
Indeed, looking at the streamline plot of the system in Fig. 2.2, we observe that, for small angles
i.e. q ≪ 1, the trajectory (q, p) is close to a circle. For larger angles, the motion near the maximum
amplitude deviates from the circular trajectory, displaying a rotational motion until reaching an
unstable equilibrium point at (q, p) = (π, 0).

2.1 A primer on Hamiltonian dynamics 17

Figure 2.1: (Harmonic oscillator) Streamline plot for ω = 1. The color-map represents the values
of the magnitude ∥u̇∥2.

Figure 2.2: (Simple gravity pendulum) Streamline plot for m = l = 1, g = 10. The color-map
represents the values of the magnitude ∥u̇∥2.

2-body problem We consider a simplest version of the well-known n-body problem [3], asking
whether it is possible to solve the individual trajectories of a group of celestial objects interacting

18 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

gravitationally. We set n = 2 e.g. the Earth-Sun system or a twin stars system. We admit the
motion is planar. For all i ∈ {1, 2}, we denote qi the position of the i-th body of mass mi and
momentum pi = miq̇i. Arguing Newton’s law of universal gravitation, the potential energy is
φ(q1,q2) = −Gm1m2/∥q1 − q2∥ and the Hamiltonian of the system is

H (q,p) =
1

2m1
∥p1∥2 +

1

2m2
∥p2∥2 −G

m1m2

∥q1 − q2∥
,

with G > 0, the universal gravity constant. We derive Hamilton’s equations
dqi

d t
=

1

mi
pi, ∀i ∈ {1, 2},

dpi

d t
= G

m1m2

∥qj − qi∥3
(qj − qi), ∀i, j ∈ {1, 2}, j ̸= i.

For instance, setting m1 = m2 = G = 1, an initial condition qinit,1 = −qinit,2 = (−1 0)T

and pinit,1 = −pinit,2 = (0 1/11)T results in trajectories that are two ellipses with a common
focal point, the latter being the unmoving barycenter of the system, as shown in Fig. 2.3.

Figure 2.3: (2-body problem) Trajectories of q1(t) and q2(t). Each sub-figure portrays the tra-
jectories for all times t ∈ [0, t′]. The color map represents the time evolution for t = 0 until
t = 200, from darker to brighter shades.

For more details on Hamiltonian systems, see [4, 5, 6]. In the remainder of this manuscript,
we focus on high-dimensional Hamiltonian Ordinary Differential Equations (ODEs) arising from
the semi-discretization of Hamiltonian Partial Differential Equations (PDEs).

2.2 Hamiltonian systems & numerical methods 19

2.2 Hamiltonian systems & numerical methods

To begin, we provide a formal introduction to Hamiltonian PDEs, outlining their various for-
mulations and key properties in Sec. 2.2.1 as well as numerical methods for semi-discretizing
Hamiltonian PDEs into Hamiltonian ODEs, employing techniques such as finite elements or
particle-based methods. We then explore the mathematical properties of Hamiltonian systems in
the ODE framework in Sec. 2.2.2, as it offers a broader, well-posed and more accessible perspec-
tive. Finally, we conclude with the terminal discretization process described in Sec. 2.2.3, leading
to numerical models and including a section on time integrators.

2.2.1 A formal introduction to Hamiltonian PDEs

In a general setting, a Hamiltonian system describes the evolution of a field u ∈ V with V
some functional space. Typically, this field u(x, t;µ) depends on space x ∈ Ω ⊂ Rd, time
t ∈ T = [0, T] and some parameters µ ∈ Γ ⊂ Rp. Given a smooth Hamiltonian functional
H : V → R of the system, the evolution of the state u is determined by the following equation,

∂ u

∂ t
= J (u)δH

δu
(u), (2.4)

It is called a Poisson system. This is generalization of Hamiltonian ones, where J depends on
state u. More precisely, J (u) : V → V is a skew-adjoint operator∫

Ω
J (u)v · w dx = −

∫
Ω
v · J (u)w dx, ∀v, w ∈ V,

which satisfies a Jacobi identity defined as, for any smooth functionals F ,G,H : V → R

{F , {G,H}}+ {H, {F ,G}}+ {G, {H,F}} = 0,

where {·, ·} denotes the so-called Poisson bracket. The Poisson bracket of two functionals F(u)
and G(u) is formally defined as

{F ,G} (u) =
∫
Ω

δF(u)
δu

· J (u)δG(u)
δu

dx,

where · denotes the inner product of V , and for any functional F : V → R, δF/δu is the
functional derivative of F .

The operator J (u) is referred to as the Poisson structure operator, and it encapsulates the
intrinsic geometric framework of the phase space. In most settings, the Hamiltonian functional
H represents the total energy of the system, whereas J (u) prescribes the geometric structure
through which the dynamics is driven. When the Poisson structure is nontrivial or exhibits de-
pendence on the state variable u, the verification of the Jacobi identity becomes a highly delicate
and nontrivial task, often requiring additional compatibility conditions.

A strength of this formulation is that the Hamiltonian structure is naturally encoded in it.
For instance, the Hamiltonian H is formally preserved throughout time

d

d t
H (u(., t)) = 0.

Indeed, using the chain rule and arguing that J (u) is skew-adjoint

d

d t
H (u(., t)) =

∫
Ω

δH

δu
(u(., t)) · ∂ u

∂ t
(., t) =

∫
Ω

δH

δu
(u(., t)) · J (u(., t))δH

δu
(u(., t)) = 0.

20 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

More generally, the evolution of any smooth observable F : V → R is given by the following
equation:

d

d t
F(u) = {F ,H } (u).

In particular, we can recover formally the evolution Eq. (2.4) by considering the functional u 7→
δxu = u(x, t)

∂ u

∂ t
(x, t) =

∂ δxu(., t)

∂ t
= {δx,H } (u)

=

∫
Ω
δxJ (u)

δH

δu
(u) dx′ = J (u)δH

δu
(u),

noting that u 7→ δxu has functional derivative equal to δx. Thus, Eq. (2.4) can sometimes be
written as

∂ u

∂ t
(x, t) = {δx,H } (u). (2.5)

More details on the finite and infinite-dimensional Hamiltonian structure can be found in [7,
Chapters 6 & 7],[8, Chapters 8 & 9] and [9]. These systems are described under standard Poisson
operator in [7] and in the field dependent case in [10] in which the Jacobi identity must be
carefully verified.

We now restrict our attention to Hamiltonian systems that can be expressed in canonical
coordinates. In this canonical setting, the function u(x, t;µ) takes values in R2N and the system
writes:

∂ u

∂ t
= J δH

δu
(u), with J (u) =

(
0 Id
−Id 0

)
. (2.6)

Equivalently, by introducing the canonical coordinates (q(x, t;µ), p(x, t;µ))T = u(x, t;µ), the
system becomes 

∂tq =
δH

δp
(q, p),

∂tp = −δH

δq
(q, p).

This system is thus associated with the canonical Poisson bracket in (q, p) coordinates:

{F ,G} (q, p) =
∫
Ω

(
δF
δq

(q, p)
δG
δp

(q, p)− δF
δp

(q, p)
δG
δq

(q, p)

)
dx. (2.7)

Remark. Thus, the presented theory can be extended to non-canonical coordinates, with J (u)
depends on the field, to non-autonomous Hamiltonians, and even to Hamiltonian systems defined
on manifolds, among other generalizations. However, these extensions will not be discussed in this
work.

Then, we give examples of Hamiltonian functionals of the systems explored in each chapter
and given in Sec. 1.2 along with their Poisson bracket.

Nonlinear wave equation We recall the equation

∂ttv(x, t;µ)− µa∂x
[
w′ (∂xv(x, t;µ), µb)

]
+ g′(v(x, t;µ), µc) = 0, (1.1)

of solution v : R/(LZ) × [0, T] × Γ → R the vertical displacement on a periodic domain of
length L with µ = (µa µb µc)

T ∈ Γ ⊂ R3 some parameters. With the momentum p := ∂tv, the
Hamiltonian is

H [v, p] =

∫
R/(LZ)

(
1

2
p2 + µaw(∂xv, µb) + g(v, µc)

)
dx

associated with the canonical Poisson bracket in (v, p) coordinates defined in Eq. (2.7).

2.2 Hamiltonian systems & numerical methods 21

2D shallow-water equations We remind the system
∂tχ(x, t;µ) +∇ · ((1 + χ(x, t;µ))∇ϕ(x, t;µ)) = 0,

∂tϕ(x, t;µ) +
1

2
|∇ϕ(x, t;µ)|2 + χ(x, t;µ) = 0,

(1.2)

where χ, ϕ : R2/(LZ2) × [0, T] × Γ → R are the perturbation from the equilibrium and the
scalar velocity potential, respectively, on a square periodic domain of length L. With a canonical
Poisson bracket from Eq. (2.7) in (χ, ϕ) variables, the Hamiltonian is

H [χ, ϕ] =
1

2

∫
R2/(LZ2)

(
(1 + χ) |∇ϕ|2 + χ2

)
dx. (2.8)

1D-1V Vlasov-Poisson equations This system is defined as follows
∂tf(t, x, v;µ) + v ∂xf(t, x, v;µ) +

q

m
E(t, x;µ) ∂vf(t, x, v;µ) = 0,

∂xE(t, x;µ) = q

∫
f(t, x, v;µ) dv − 1,

(1.3)

with solution a particles distribution f : [0, T] × R/(2πZ) × R → R. It admits a Hamiltonian
formulation with the Hamiltonian

H [f] =
m

2

∫
R
v2f(t, x, v;µ) dxdv +

1

2

∫
R/(2πZ)

|E(t, x;µ)|2 dx,

with a non-canonical Poisson bracket

{F ,G} =
∫
R/(2πZ)×R

δF
δf

(f)

{
δG
δf

(f), f

}
x,v

dxdv,

where {·, ·}x,v is the canonical Poisson bracket in (x, v) coordinates given in Eq. (2.7). In this
setting, we note that the structure is no longer canonical. More details are presented in [11].

As previously mentioned, the Hamiltonian often corresponds to the total energy of the sys-
tem, while the Poisson bracket encodes its structural properties. The identification of appropriate
Poisson brackets for complex physical systems remains an active area of research. In practice,
we are interested in the Hamiltonian ODEs arising from such Hamiltonian PDEs.

Towards ordinary differential equations In the last part of this section, we present a formal
semi-discretization of Hamiltonian PDEs into Hamiltonian ODEs in 1D. We replace u(x, t;µ) ∈
V by a finite dimensional approximation uh(t;µ) ∈ R2N solution of an Hamiltonian ODE of the
form

duh(t;µ)

d t
= Jh∇Hh(uh(t;µ))

with ∇ the standard gradient of R2N in place of the functional derivative δ/δu, and h > 0 a
given characteristic size of the discretization. In this manuscript, we use three different families
of discretization techniques.

1. With finite differences : we consider a mesh xi = ih over Ω of an uniform cell size h.
The approximation is ui(t;µ) ≈ u(xi, t;µ) with ui the i-th value of uh. Then, derivatives
are replaced by difference quotients, for example

∂xu(xi, t;µ) ≈
ui+1 − ui−1

2h
, ∂xxu(xi, t;µ) ≈

ui+1 − 2ui + ui−1

h2

and integrals are replaced by a quadrature formula in the expression of H and we obtain
Hh.

22 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

2. With finite elements : we consider a set of 2N basis functions {αi(x)}i e.g. hat functions
or splines to approximate u(x, t;µ) in the form

uh(x, t;µ) =

2N∑
i=1

ui(t;µ)αi(x).

After that, we test the weak formulation of H against αj and we derive a discrete Hamil-
tonian Hh possibly composed of some mass or stiffness matrices.

3. With particle-based approximation : we approach u(t, x;µ) by a discrete distribution
of particles {xi(t;µ)}i in the phase space such that

uh(x, t;µ) ≈
2N∑
i=1

ωiδ(x− xi(t;µ)),

with ωi are some weights.

Thus, in canonical coordinates, a natural discretization of J is the canonical symplectic ma-
trix J2N defined as

J2N =

(
0 IN
−IN 0

)
∈M2N (R)

with IN the identity matrix of size N .
The main difficulty is to preserve the Hamiltonian structure at the discrete level. To this end,

Jh must be skew-symmetric, i.e. J T
h = −Jh, which is natural in the canonical case, and Hh is

conserved.
d

dt
Hh(uh(t;µ)) = 0.

For instance, in the canonical case, centered finite difference schemes may suffice. For more
general systems, however, the numerical approximation of the bracket {·, ·}h must be built so
that it is anti-symmetric and satisfy the Jacobi identity. The development of Hamiltonian semi-
discretization techniques remains an active area of research. In the context of finite difference
methods, a comprehensive review can be found in [12, 13]. For finite element methods, appropri-
ate variational integrators must be constructed, as discussed in [14]. Finally, for particle-based
methods, the GEMPIC framework [15] provides a Hamiltonian Particle-In-Cell (PIC) scheme for
solving the Vlasov–Maxwell system. The specific numerical methods employed for each equa-
tion considered will be detailed in the corresponding chapters.

Hereafter, (i) Hamiltonian functionals H [u] are replaced by Hamiltonian functions H (u),
(ii) the functional derivative δH /δu is replaced the vector gradient operator ∇H and (iii) the
skew-adjoint operator J is replaced by a skew-symmetric matrix J2N . To maintain clarity and
consistency, we omit the subscript h and retain the same notation throughout.

2.2.2 Hamiltonian ODEs: definition & properties

This section addresses the dynamics of canonical Hamiltonian ODEs resulting from the semi-
discretization of Hamiltonian PDEs. Those systems are described using a vector state variable

u(t;µ) :=

(
q(t;µ)
p(t;µ)

)
∈ R2N ,

where q and p are the generalized coordinates and the generalized momentum, respectively,
t ∈ [0, T] is the time, N > 0 the degrees of freedom and µ ∈ Γ ⊂ Rp are p ≥ 0 parameters.

2.2 Hamiltonian systems & numerical methods 23

Definition 2.2.1 (Canonical Hamiltonian ODE). Let u(t;µ) ∈ C1(R,R2N) be a state variable
at time t > 0 and parameters µ ∈ Γ. u follows an Hamiltonian dynamics with an associated
Hamiltonian function H : R2N → R if

du(t;µ)

d t
= J2N∇uH (u(t;µ)),

u(0;µ) = uinit(µ),

(2.9)

with J2N =

(
0N IN
−IN 0N

)
∈ M2N (R) is the canonical symplectic matrix and uinit(µ) is a given

initial condition. IN and 0N are the identity matrix of size N and the null matrix of size N , respec-
tively.

Remark. In this work, we consider time-independent Hamiltonian functions. Many of the concepts
discussed below can be extended to the time-dependent case. However, this will not be addressed
here.

We note that the system (2.9) is equivalent to Hamilton’s equations (2.3) provided an initial
condition. Some of the systems described above are a special case where the Hamiltonian H is
said to be separable.

Definition 2.2.2 (Separable Hamiltonian). An Hamiltonian H : R2N → R is separable if there
exists K : RN → R and φ : RN → R such that

H (q,p) = K(p) + φ(q). (2.10)

In this case, the Hamiltonian system (2.9) simplifies
dq(t;µ)

d t
= ∇K(p(t;µ)),

dp(t;µ)

d t
= −∇φ(q(t;µ)).

A variety of physical systems are described with such separable Hamiltonians. Nevertheless,
the notion of Hamiltonian systems is more general than this. For instance, the Hamiltonian of
the shallow-water system is not separable, for more details see Chap. 3.

The term symplectic in this context arises from the fact that the phase space in which the
state variable u evolves has a symplectic structure. It comes from the Greek symplektikos and
means entwined as the two aggregates of u, namely q and p, are tied together in the phase
space, in some sens. The study of Hamiltonian systems takes place within a broader framework
of symplectic geometry given by Poisson brackets as briefly seen in Sec. 2.2.1.

Hamiltonian systems possess several remarkable properties, including the preservation of
certain quantities such as the volume and the Hamiltonian, or the reversibility. Herein, we high-
light some of these important properties. We first need to define the flow of d > 0 dimensional
ODE in a general context, which will be needed to describe the properties mentioned above.

Definition 2.2.3 (Flow of an ODE). Let y(t) ∈ C1(R,Rd) be a solution of the ODE
dy(t)

d t
= F(y(t)),

y(0) = yinit,

(2.11)

of vector field F ∈ C1(Rd,Rd) and a given initial condition yinit ∈ C1(R,Rd). The flow Φt of
this ODE is the map between the initial state yinit and the solution y(t) at time t. It is defined as

Rd −→ Rd,

yinit 7−→ Φt(yinit) := y(t).

24 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

Next, we provide some useful properties of the flow Φt in this general setting for the remain-
der of this section.

Lemma 2.2.4. Let Φt be the flow of the ODE defined in (2.11). Φt satisfies the following properties:

1. Φ0 = id,

2. Φt1+t2 = Φt2 ◦Φt1 ,

3. Φt is a C1-diffeomorphism and its inverse is given by Φ−1
t = Φ−t.

In the following paragraphs, we consider flows Φt of Hamiltonian systems as characterized
in Def. 2.2.1, which have additional properties.

Preservation of the Hamiltonian In Sec. 2.1, we established that total energy is conserved
over time for conservative systems. This result holds for the Hamiltonian H of Hamiltonian
ODEs as introduced in Def. 2.2.1.

Property 2.2.5. Consider a Hamiltonian H : R2N → R that does not explicitly depend on time,
then it is preserved over time

d

d t
H (u(t;µ)) = 0.

In terms of flow Φt, it implies that, for all u(t;µ) ∈ R2N solution of (2.9) that

∀t ≥ 0, H (Φt(u)) = H (u).

Proof. Indeed

dH (q,p)

d t
= ∇qH (q,p) · dq

d t
+∇pH (q,p) · dp

d t
= ∇qH (q,p) · ∇pH (q,p)−∇pH (q,p) · ∇qH (q,p)

= 0.

We retrieve the result from conservatives force in Newtonian mechanics. Prop. 2.2.5 is funda-
mental for Hamiltonian systems. Its conservation, along with a symplectic structure, guarantees
faithful dynamics with respect to physical behaviors. Thus, as it is constant over time, know-
ing its initial value allows us to study its future behavior. Indeed, certain states correspond to
potential/kinetic energies that cannot be reached: the system is therefore constrained.

Volume preservation Let A ⊂ R2N be a measurable set, its volume vol(A) is defined as

vol(A) =

∫
A
dy.

Given that Φt is a C1-diffeomorphism, we can define the volume associated to the flow Φt as

vol(Φt(A)) =

∫
Φt(A)

dy =

∫
A
| det(DΦt(y))| dy,

withDΦt =
((

∂ (Φt)i
∂ yj

))
i,j

is the Jacobian ofΦt.Then, we mention the following property about

volume preservation.

2.2 Hamiltonian systems & numerical methods 25

Property 2.2.6. Consider a flow Φt associated to a Hamiltonian system (2.9), then the volume is
conserved

vol(Φt(A)) = vol(A),

or, equivalently
d

d t
det(DΦt) = 0.

The proof of this property relies on the application of Liouville’s theorem. More details in [4,
5].

Reversibility The reversibility of a dynamic system implies that reversing the direction of the
velocity vector while keeping all other quantities unchanged, the system’s motion will simply
be reversed. In other words, an invertible system can return to a previous state by inverting its
velocity vector.

We denote ρ0 : R2N → R2N the linear application that invert the velocity direction

ρ0

(
q
p

)
=

(
IN 0N
0N −IN

)(
q
p

)
=

(
q
−p

)
.

Invoking the Picard-Lindelöf theorem, we define the concept of a reversible ODE and study the
reversibility of Hamiltonian ODEs.

Definition 2.2.7 (Reversible ODE). The ODE ẏ = F(y) defined in (2.11) is reversible or ρ0-
reversible if

∀y ∈ Rd, ρ0F(y) = −F(ρ0y).

Property 2.2.8. Let H (ρ0u) = H (u) hold for all u ∈ R2N , then the Hamiltonian ODE u̇ =
J2N∇uH (u) defined in (2.9) is reversible.

Proof. Provided Def. 2.2.7 of a reversible ODE, we have to prove that

∀u ∈ R2N , ρ0J2N∇uH (u) = −J2N∇ρ0uH (ρ0u).

Considering the LHS; for all u ∈ R2N

ρ0J2N∇uH (u) =

(
0N IN
IN 0N

)(
∇qH (u)
∇pH (u)

)
=

(
∇pH (u)
∇qH (u)

)
.

Continuing with the RHS

−J2N∇ρ0uH (ρ0u) =

(
0N −IN
IN 0N

)(
∇qH (u)
∇−pH (u)

)
=

(
∇pH (u)
∇qH (u)

)
,

which shows that LHS=RHS.

In practice, the condition H (ρ0u) = H (u) does not impose any significant restriction.
Indeed, in physical systems, H typically depends on ∥p∥2 through the kinetic energy, rather
than directly on p.

We can derive an expression of Def. 2.2.7 in terms of flow Φt; the system is reversible if

(ρ0 ◦Φt)
2 = id ⇐⇒ ρ0 ◦Φt = Φ−t ◦ ρ0,

as Φt is a diffeomorphism. We illustrate this property on the simple gravity pendulum as shown
in Fig. 2.4. Starting from an initial condition u(0), we compute (ρ0◦Φt)u(0) and (Φ−t◦ρ0)u(0)
and we observe it leads to the same endpoint ρ0u(t). Details on the numerical integration are
presented in Sec. 2.2.3.

26 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

Figure 2.4: (Simple gravity pendulum) Streamline plot for m = l = 1, g = 10. The color-map
represents the values of the magnitude ∥u̇∥2. Superimposed, a representation of reversibility
showing that ρ0 ◦Φt = Φ−t ◦ ρ0 for an initial condition u(0), in black.

The Hamiltonian flow is symplectic Lastly, yet significantly, we give an overview of some
geometric results related to the flow of a Hamiltonian ODE. These results will be useful for the
construction of numerical methods and reduced models that preserve the Hamiltonian struc-
ture, as will be presented in Secs. 2.2.3 and 2.3. First, we define the mappings that preserve the
symplectic structure.

Definition 2.2.9 (Symplectic map & symplectic matrix). We consider two open sets X ⊂ R2n

and Y ⊂ R2m such that n ≤ m. A differentiable function f : X → Y is a symplectic map if the
Jacobian matrix Df(x) ∈M2m,2n(R) of f is a symplectic matrix i.e.

∀x ∈ X, (Df(x))T J2m (Df(x)) = J2n.

There exists a strong connection between symplectic maps and Hamiltonian ODEs flows, as
established in the property below.

Property 2.2.10. The flow has the following properties

1. if the flow is symplectic, then it conserves the volume,

2. the flow Φt of a canonical Hamiltonian ODE in Def. 2.2.1 is symplectic i.e.

∀t ≥ 0, ∀u ∈ R2N , (DΦt(u))
T J2N (DΦt(u)) = J2N .

3. if the flow of an ODE ẏ = F(y) is symplectic and F ∈ C1(R2N) then the system is Hamil-
tonian i.e. there exists H ∈ C1(R2N ,R) such that ∀y ∈ R2N ,F(y) = J2N∇yH (y).

2.2 Hamiltonian systems & numerical methods 27

Assertion (1) highlights the geometric implications of symplecticity derived from Liouville’s
theorem. Thus, symplecticity preserves more than just the volume but it is a key property. As-
sertions (2) and (3) are mutually converse : there is a deep connection between geometry (sym-
plecticity) and dynamics (Hamiltonian structure) as shown by the Poisson bracket in Eq. (2.5).
Symplecticity is a core attribute of Hamiltonian systems that guarantees the presence of numer-
ous invariants that guide the evolution of the system. More details and proofs can be found in
[4, 5].

2.2.3 Numerical methods for time integration

The results on Hamiltonian systems described in Sec. 2.2.2 provide substantial guarantees in
terms of long-term stability [16, 17]. As we will briefly see in this section, special care must be
taken to ensure that these properties are preserved at the discrete level, thus guaranteeing good
stability properties and ensuring that our numerical results behave in a way that is faithful to
the physics. First, we introduce an uniform temporal discretization of [0, T] with nt +1 interval
of size ∆t > 0 and denote tn = n∆t, n ∈ {0, . . . , nt} the n-th time-step. The approximate
numerical solution at the n-th time-step is un ≈ u(tn;µ), and u0 = uinit. We then integrate the
ODE Eq. (2.9) on each time interval [tn, tn+1] leading to the integration formula

u(tn+1;µ) = u(tn;µ) +

∫ tn+1

tn
J2N∇uH (u(t;µ)) dt. (2.12)

Then, applying a quadrature rule on Eq. (2.12) yields a time integrator. For instance, with the left
rectangle rule, we derive the explicit Euler scheme un+1 = un + ∆tJ2N∇uH (un). By inte-
grating the harmonic oscillator using this scheme, we get the results in Fig. 2.5. More precisely,
in Fig. 2.5a, we remark that the numeric solution drifts away from the analytical solution, which
is supposed to be a circle. It is due to the fact that this scheme does not preserve the symplectic
structure of ODE, as we can note in Fig. 2.5b that the Hamiltonian H grows linearly in time
instead of being constant over time.

(a) Numeric solution u(t) in the phase space. (b) Evolution of H .

Figure 2.5: (Harmonic oscillator) Euler explicit time integration of the system with parameters
T = 26,∆t = 1×10−1, ω = 1 and u(0) = (1 0)T . Left: numeric solution (q, p)(t) in the phase
space in black. Colored circles indicate the iso-values of H , with warmer colors corresponding
to larger values. Right: evolution of the energy H (q(t), p(t)) with respect to time t ∈ [0, T].

28 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

This phenomenon can be better understood in term of the numerical flow Ψ∆t defined such
that

Ψ∆t : u
n 7−→ un+1.

Ideally, this flow is an approximation (in some sense) of the actual continuous flow Ψ∆t ≈ Φ∆t.
A numerical flow is said to be of order p accurate with p ≥ 1 if

Ψ∆t = Φ∆t +O(∆tp+1).

The Euler explicit numerical flow ΨEuler
∆t (un) = un+∆tJ2N∇uH (un) is first order (p = 1)

accurate. The problem lies rather in the fact that this flow is not symplectic. We can compute
the discrete energy H n at time tn as a function of its initial value H 0; we find a dependence in
time H n = H 0 + O(∆t × tn). As a result, H n has a linear growth. In general, the discrete
Hamiltonian from a non-symplectic flow of order p grows for any time step ∆t and any order p
[4, prop. 12.17]

H n = H 0 +O(tn(∆t)p).

Of course, the lack of symplecticity also implies more than just an energy drift, for instance it
leads to a progressive degradation of the dynamics quality with respect to physical behaviors, a
possible absence of time reversibility, a distortion of the phase-space and a deficiency in long-
term stability. To tackle these issues, many symplectic schemes have been developed to preserve
the symplectic properties of Hamiltonian systems. A thorough description of these methods is
given by E. Hairer, G. Wanner and C. Lubich in [18]. From Def. 2.2.9, we remind that Ψ∆t is
symplectic if its Jacobian matrix is symplectic

∀un ∈ R2N , (DΨ∆t(u
n))T J2N (DΨ∆t(u

n)) = J2N .

For instance, a symplectic scheme leads to a bounded energy error over time. Indeed, for a
symplectic scheme of order p, it holds [4] that

∀m > p, H n = H 0 +O((∆t)p + tn(∆t)m+1),

meaning that H does not grow over time anymore. Thus, it is preserved up toO((∆t)p). In this
manuscript, we use two different symplectic schemes. The implicit midpoint scheme,

un+1 = un +∆tJ2N∇uH

(
un + un+1

2

)
, (2.13)

is a second-order accurate symplectic scheme. The Störmer-Verlet scheme

qn+
1
2 = qn +

∆t

2
∇pH

(
qn+

1
2 ,pn

)
,

pn+1 = pn − ∆t

2

[
∇qH

(
qn+

1
2 ,pn

)
+∇qH

(
qn+

1
2 ,pn+1

)]
,

qn+1 = qn+
1
2 +

∆t

2
∇pH

(
qn+

1
2 ,pn+1

)
,

(2.14)

and its variant

pn+
1
2 = pn − ∆t

2
∇qH

(
qn,pn+

1
2

)
,

qn+1 = qn +
∆t

2

[
∇pH

(
qn,pn+

1
2

)
+∇pH

(
qn+1,pn+

1
2

)]
,

pn+1 = pn+
1
2 − ∆t

2
∇qH

(
qn+1,pn+

1
2

)
,

2.2 Hamiltonian systems & numerical methods 29

are also second-order accurate. Both of these schemes are of the same order and implicit: the
implicit midpoint in Eq. (2.13) involves a single implicit step, while the Störmer-Verlet scheme in
Eq. (2.14) requires two implicit steps. In practice, the former would generally be preferred, except
when dealing with a separable Hamiltonian. If the Hamiltonian is separable i.e. H (q,p) =
K(p) + φ(q), Eq. (2.14) takes the form

qn+
1
2 = qn +

∆t

2
∇K(pn),

pn+1 = pn −∆t∇φ(qn+
1
2),

qn+1 = qn+
1
2 +

∆t

2
∇K(pn+1),

(2.15)

and the numerical scheme is completely explicit. Thus, if K(pn) = 1
2m∥p

n∥2, we have
∇K(pn) = 1

mpn. Consequently, it becomes more cost-effective than an implicit midpoint
scheme. More details on symplectic schemes can be found in [4, 18].

Remark. Both the implicit midpoint schemes and Störmer-Verlet schemes have time reversible flow,
these methods are called symmetric. Nonetheless, there exists symplectic schemes that are not sym-
metric, and conversely symmetric schemes that are not symplectic [18, p. VI.4.2].

We conclude this section with a few numerical examples. We revisit the previous example
of the harmonic oscillator and compute a numerical solution with a Störmer-Verlet scheme. We
increase the final time T = 100 and the other parameters remain unchanged. We observe the re-
sults in Fig. 2.6. On the left Fig. 2.6a, we verify that the numerical trajectory closely approximates
a circle of the correct radius and center, and remains near it over time. On the right Fig. 2.6b, we
observe that the Hamiltonian is bounded up to an error of O((∆t)2) where ∆t = 1×10−1, to
within the error of the numerical flow. The most important aspect is that the amplitude of the
error does not increase over time.

(a) Numeric solution u(t) in the phase space.
(b) Evolution of the relative error on H .

Figure 2.6: (Harmonic oscillator) Störmer-Verlet time integration of the system with parameters
T = 100,∆t = 1×10−1, ω = 1 and u(0) = (1 0)T . Left: numeric solution (q, p)(t) in the phase
space in black. Colored circles indicate the iso-values of H , with warmer colors corresponding
to larger values. Right: evolution of the relative error on the energy H (q(t), p(t)) with respect
to time t ∈ [0, T].

30 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

At this stage, we introduced the family of canonical Hamiltonian ODEs. They are ubiquitous
in physics and other fields. Their structure is rich in symmetries and invariants. Conserving these
properties in a discrete setting with tailored numerical methods allows to obtain more accurate,
stable, and efficient long-term simulations. Properties and numerical methods we have presented
can be extended to non-canonical ODEs (J := J (u)) and non autonomous Hamiltonians as
detailed in [18].

Since these ODEs arise from the semi-discretization of PDEs, they have a often large dimen-
sion and they are complex to solve numerically. As a consequence, we now turn to structure-
preserving model order reduction techniques for Hamiltonian systems, aiming to ease the asso-
ciated computational burden.

2.3 Linear model order reduction for Hamiltonian ODEs

Solving 2N -dimensional ODE of the form
du(t;µ)

d t
= J2N∇uH (u(t;µ)),

u(0;µ) = uinit(µ),

(2.9)

often proves to be numerically challenging, particularly with a large dimension 2N ≫ 1 and/or
a Hamiltonian gradient ∇uH which can be expensive to compute. This is particularly the case
for optimization algorithms, where multiple numerical evaluations of the solutions to Eq. (2.9)
are required, or in real-time control settings, where numerical solutions must be computed on
the fly. We are faced with the need to compute numerous solutions u(t;µ) for a range of times
and parameters (t, µ) ∈ T × Γ ⊂ R × Rp within a reasonable time. This requires speeding up
the calculations at the undeniable cost of some accuracy. Model Order Reduction (MOR) refers
to a technique used to reduce the numerical complexity/cost of mathematical models. It aims
to build a Reduced Order Model (ROM), i.e. an ODE of diminished complexity with solutions
closely related to the Full Order Model (FOM), i.e. Eq. (2.9).

In practice, model order reduction is divided in two stages called the offline/online decom-
position to implement an efficient reduction algorithm.

(i) offline stage: we build the FOM and the ROM. Most importantly, we precompute quan-
tities. It means that we generate snapshots, we build the reduced basis (more details later) and
we compress the full order operators onto the reduced space. This phase is computationally
expensive but parametrically independent, and it is performed once.

(ii) online stage: we aim to quickly solve the reduced parameters with new parameters and
evaluate outputs of interest, if any. Hence, we use the precomputed quantities from the offline
stage to obtain a much faster computational speed. This stage is done for every new parameter.

Then, A MOR technique is said to be structure-preserving when it retains some properties of
the FOM, e.g. the Hamiltonian structure. We will address two challenges which are to (i) preserve
the Hamiltonian structure and (ii) embed dynamics nonlinearities.

We consider the symplectic solution manifold

M := {u(t;µ) | (t, µ) ∈ T × Γ} ⊂ R2N ,

formed by the values of the solutions of Eq. (2.9) for various times and parameters, the manifold
structure resulting from the Picard-Lindelöf theorem with some regularity assumptions on the
Hamiltonian H . The fundamental hypothesis of MOR is that this manifoldM can be approxi-
mated with a trial manifold M̂ that reads

M̂ := uref(µ) + {D [ū(t;µ)] | (t, µ) ∈ T × Γ} ,

2.3 Linear model order reduction for Hamiltonian ODEs 31

where D : R2K → R2N is a reconstruction/decoding operator or decoder, uref(µ) ∈ R2N is a
reference state, and ū(t;µ) ∈ R2K is the reduced state or latent variable. Put differently, we
search for an approximation û(t;µ) of the full state u(t;µ) such that

û(t;µ) := uref(µ) +D [ū(t;µ)] ≈ u(t;µ).

For convenience, we define an encoding operator E : R2N → R2K or encoder such that

ū(t;µ) = E [u(t;µ)] .

It is a pseudo-inverse of the decoderD. The reference state often represents a state of equilibrium
and the reduced model is typically formulated in terms of deviation from this reference. In the
following, we set uref(µ) = 0, as it is done in [19, 20]. Otherwise, it is only needed when
reconstructing the full order approximation. In certain cases, the approximability ofM can be
evaluated by examining the decay of the Kolmogorov N -width, as illustrated in the context of
wave propagation problems in [21].

In this section, we present several techniques for constructing Hamiltonian reduced states. In
the first part, we present the Proper Symplectic Decomposition (PSD) [22] method, as first intro-
duced by L. Peng and K. Mohseni in 2015. It is the symplectic variant of the well-known Proper
Orthogonal Decomposition (POD) [23, 24] method. POD is a cornerstone of model reduction.
However, in the following we focus on the PSD. It closely resembles the POD but incorporates
additional structural constraints. We highlight these key differences throughout the discussion.

First, we present the method, and then we examine the strengths and limitations of this ap-
proach. Second, we discuss possible improvements to overcome these limitations, as well as
alternative model reduction techniques available in the literature, for both standard and Hamil-
tonian model reduction.

2.3.1 Proper Symplectic Decomposition

The PSD method assume that the trial manifold is a linear subspace or a vector subspace defined
as M̂ = span(ai, i ∈ {1, . . . , 2K}) or, equivalently

û(t;µ) = D [ū(t;µ)] = Aū(t;µ),

with A ∈ M2N,2K(R) the corresponding decoding matrix. Expressed differently, the dynamics
of the state u(t;µ) can be more or less captured in a 2K-dimensional subspace of basis {ai}2Ki=1.
Thus, we impose that the decoder D(ū) = Aū is a symplectic map as defined in Def. 2.2.9 such
that

A ∈ S2N,2K(R) :=
{
A ∈M2N,2K(R)

∣∣ATJ2NA = J2K
}
,

where S2N,2K(R) is the symplectic Stiefel manifold, which is also the set of symplectic matrices.
This is mandatory to preserve the symplectic structure in the reduced system. At last, we must
define the corresponding encoder E .

Definition 2.3.1 (Symplectic inverse). The symplectic inverse of A ∈ S2N,2K(R) is the matrix
A+ defined as

A+ := J T
2KATJ2N .

and such that A+A = I2K .

Thus, we define the encoder

ū(t;µ) = E [u(t;µ)] = A+u(t;µ).

32 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

Furthermore AA+ is the symplectic projection operator onto Im(A) = M̂.
After defining the encoding and decoding operators, the next step is to derive the reduced

model. We summarize the key elements in the following definition, which we will prove subse-
quently.

Property 2.3.2 (PSD’s Hamiltonian reduced model [22]). We consider an Hamiltonian FOM of
solution u(t;µ) with time t ∈ T and parameters µ ∈ Γ that reads

du(t;µ)

d t
= J2N∇uH (u(t;µ)),

u(0;µ) = uinit(µ),

(2.9)

and the encoder E(u) = A+u = ū and its symplectic inverse the decoder D(ū) = Aū with the
symplectic matrix A ∈ S2N,2K(R). The reduced Hamiltonian model of solution ū(t;µ) is given by
the symplectic Galerkin projection of Eq. (2.9)

d ū(t;µ)

d t
= J2K∇ūH̄ (ū(t;µ)),

ū(0;µ) = A+uinit(µ),

, (2.16)

with H̄ := H ◦A is the reduced Hamiltonian or the Hamiltonian of the ROM.

Proof. We consider the reconstructed solution û(t;µ) = Aū(t;µ) and we derive

d û(t;µ)

d t
= A

d ū(t;µ)

d t
.

We define the time-dependent residual r(t;µ) of û with respect to the FOM

r(t;µ) =
d û(t;µ)

d t
− J2N∇uH (û(t;µ)).

Arguing the symplectic Galerkin projection, the symplectic projection of the residual onto the
subspace M̂ must vanish

0 := A+r(t;µ),

= A+A
d ū(t;µ)

d t
−A+J2N∇uH (û(t;µ)),

=
d ū(t;µ)

d t
− J2KAT∇uH (Aū(t;µ)),

=
d ū(t;µ)

d t
− J2K∇ūH (Aū(t;µ)),

using the chain rule. We directly obtain Eq. (2.16).

Remark. Although the reduced model is an ODE of dimension 2K,K ≪ N , the reduced Hamilto-
nian H̄ still depends on the original Hamiltonian H . As a result, the computational cost generally
remains high.

In the POD method, the symplectic matrix A is replaced by an orthogonal matrix ATA =
I2K . Thus, the symplectic inverse is replaced by the transpose and the operator AAT is the
orthogonal projection. The Galerkin projection supposes then that the orthogonal projection of
the residual onto the subspace vanishes.

2.3 Linear model order reduction for Hamiltonian ODEs 33

To conclude this part, we must address the actual construction of the basis {ai}2Ki=1. In gen-
eral, we do not have any expression for the solution manifoldM. We only have access to P > 0
data points {u(tj ;µj)}Pj=1 called FOM snapshots. They are solutions of the FOM Eq. (2.9) for
several times and parameters (tj , µj) ∈ T × Γ, j ∈ {1, . . . , P}. As a consequence, we aim to
find the best basis {ai}i to express the shape and variability of the point cloud {u(tj ;µj)}j . In
other words, we join together the snapshots in a large snapshot matrix U

U =
[
u(t1;µ1) . . . u(tP ;µP)

]
∈M2N,P (R).

The best matrix A ∈ S2N,2K(R) is a solution to the optimization problem corresponding to
minimizing the reconstruction error on the snapshots in a least square sense. It reads

min
ATJ2NA=J2K

∥∥U −AA+U
∥∥
F
. (2.17)

2.3.2 Building the projection matrix

Computing a direct solution of Eq. (2.17) can be very expensive with a large N ≫ 1. In this
manuscript, we employ two of the methods presented in [22] to compute an approximated opti-
mal solution. These methods are described in detail below. We recall the factorization technique
for rectangular matrices: the Singular Value Decomposition (SVD) [25]. It can be thought of as a
generalization of the eigendecomposition to non-square or nondiagonalizable matrices.

Definition 2.3.3 (Singular Value Decomposition). The Singular Value Decomposition (SVD) of a
matrix X ∈Mm,n(C) is the factorization

X = WΣV ∗

with W ∈ Um(C), V ∈ Un(C) unitary matrices i.e. WW ∗ = W ∗W = Im and V V ∗ = V ∗V =
In and Σ ∈ Mm,n(C) is a rectangular diagonal matrix, V ∗ is the conjugate-transpose of V . The
diagonal values σi = Σi,i are sorted in descending order. W and V columns {wi}i and {vi}i
respectively are orthonormal bases. With rank(X) ≤ min(m,n) the rank of X , this decomposition
is equivalent to

X =

rank(X)∑
i=1

σiwiv
∗
i

arguing σi = 0, i > rank(X). Σ is uniquely determined by X but not W and V . σi is called
a singular value, wi,vi are the corresponding left singular vector and right singular vector, re-
spectively. If X is real-valued, the same decomposition exists with orthogonal matrices and the
conjugate-transpose becomes the transpose.

The SVD is closely related to dimensionality reduction and low-rank approximations of ma-
trices. We admit the following result, which will be useful for the construction of A.

Theorem 2.3.4 (Low-rank approximation - Eckart–Young–Mirsky theorem). We consider X ∈
Mm,n(C). The best rank r ≤ rank(X) approximation in Frobenius norm of X is given by the
truncation of the SVD given in Def. 2.3.3 of X , keeping the r largest singular values. The truncation
Xr ∈Mm,n(C) is defined as

Xr =

r∑
i=1

σiwiv
∗
i ⇐⇒ Xr = WrΣrV

∗
r ,

34 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

with Σr = diag(σ1, . . . , σr), and Wr, Vr represent the matrices W,V truncated to their first r
columns, respectively. In other words, Xr is solution of

Xr = argmin
X′∈Mm,n(C)
rank(X′)≤r

∥X −X ′∥F .

with the Frobenius norm ∥X∥F = tr(X∗X)1/2 = (
∑

i,j |xi,j |2)1/2 where tr is the trace operator.

Viewing X as a point cloud in R2N , the SVD extracts a hyperplane spanned by the basis
vectors {wi}i that captures the dominant directions of variance in the cloud. Thm. 2.3.4 argues
that this hyperplane is indeed optimal to express the variance of the point cloud: a projection
onto this hyperplane results in a minimal loss of information.

Thereafter, we describe the two above-mentioned methods presented in [22] to compute an
approximated optimal solution A of Eq. (2.17), in the form of two properties. To do so, we add
some prior on A ∈ S2N,2K(R) so that the minimization problem can be solved using an SVD.

Property 2.3.5 (Cotangent lift [22]). Under the assumption that the matrix A solution to Eq. (2.17)
is block diagonal i.e.

A ∈ S2N,2K(R) ∩
{(

A1 0
0 A1

)∣∣∣∣A1 ∈MN,K(R)
}
,

the optimal solution to the modified Eq. (2.17) is A1 = Wr := W:,:r with Wr the truncated matrix
obtained from the SVD of the extended snapshot matrix U1 that reads

U1 =
[
q(t1;µ1) . . . q(tP ;µP) p(t1;µ1) . . . p(tP ;µP)

]
∈MN,2P (R).

Proof. We reformulate Eq. (2.17) starting with the minimized norm. If A is block diagonal, we
have ∥∥U −AATU

∥∥
F
=
∥∥U1 −A1A

T
1 U1

∥∥
F
.

On the constraint, A ∈ S2N,2K(R) and A = diag(A1, A1) implies that AT
1 A1 = IK . Hence, the

modified minimization problem derived from Eq. (2.17) that we seek to solve is

min
AT

1 A1=IK

∥∥U1 −A1A
T
1 U1

∥∥
F
. (2.18)

In term of matrix approximation, A1A
T
1 U1 is the orthogonal projection onto the column space

of A1 i.e. the best approximation of U1 of at most rank K ≥ rank(A1A
T
1 U1).

Then, let U1 = WΣV T be the SVD of U1 as given in Def. 2.3.3. Arguing Eckart–Young–
Mirsky Thm. 2.3.4, the best approximation ofU1 which is at most rank K is given by the truncated
SVD U1,K = WKΣKV T

K such that

∥U1 − U1,K∥F = min
rank(X′)≤r

∥U1 −X ′∥F .

Thus, we take A1 = WK and we denote r = rank(X)

A1A
T
1 U1 = WKW T

KU1 =
r∑

i=1

σiWKW T
Kwiv

T
i .

However, WKW T
K is the orthogonal projection onto span (wi, i ∈ {1, . . . ,K}), so

WKW T
Kwi =

{
wi if i ≤ K,

0 else.

2.3 Linear model order reduction for Hamiltonian ODEs 35

Then,

A1A
T
1 U1 =

K∑
i=1

σiwiv
T
i = U1,K .

Indeed, the best approximation is U1,K and A1 = WK is the solution of Eq. (2.18).

Property 2.3.6 (Complex SVD [22]). Under the assumption that the matrix A solution to Eq. (2.17)
is block skew-symmetric i.e.

A ∈ S2N,2K(R) ∩
{(

A2 −B2

B2 A2

)∣∣∣∣A2, B2 ∈MN,K(R)
}
,

the optimal solution of the modified Eq. (2.17) is (A2, B2) = (ℜ(Wr),ℑ(Wr)) the real, resp. imag-
inary part of Wr := W:,:r , the truncated matrix obtained from the SVD of the complex snapshot
matrix U2 that reads

U2 =
[
q(t1;µ1) + ip(t1;µ1) . . . q(tP ;µP) + ip(tP ;µP)

]
∈MN,P (C).

Proof. The modified minimization problem is

min
D∗

2D2=IK
∥U2 −D2D

∗
2U2∥F .

with D2 = A2 + iB2. The remainder of the proof is the same as in Prop. 2.3.5 proof with
complex-valued matrices.

This raises a natural question: which criteria should guide the choice between the cotangent
lift and the complex SVD methods ? The cotangent lift has a clear separation between reduced
coordinates q̄ and reduced momenta p̄. When implementing the reduced model, treating sep-
arately the reduced position q = A1q̄ and momentum p = A1p̄ variables may lead to certain
simplifications. On the contrary, by considering a broader class of symplectic matrices, the com-
plex SVD might results in a better approximation but it is not clear considering the test cases in
[22, 26]. It is more a problem-dependent choice.

Regarding the POD method, the minimization problem given in Eq. (2.17) is the minimization
of ∥U −AATU∥F under the constraints ATA = I2K : it is a standard least squares problem that
can be solved directly via SVD decomposition of U .

2.3.3 Hyper-reduction with symplectic DEIM

As above-mentioned in Sec. 2.3.1, in general, the reduced Hamiltonian H̄ = H ◦A still depends
on the reference Hamiltonian H : the computational burden is increased. Indeed, in addition
to computing its gradient ∇uH at each time-step for the time integration, we also need to
decompress the reduced variable ū and compress back the gradient i.e. computingAT ◦∇uH ◦A.

Linear Hamiltonian system
Property 2.3.7 (Linear Hamiltonian system - reduced model). If the Hamiltonian function is of
the form H (u) = 1

2u
TDu where D ∈M2N (R) is symmetric i.e. D = DT . Let B := J2ND, the

linear Hamiltonian system derived from Eq. (2.9) reads
du

d t
= Bu.

Applying the symplectic projection A as given in Prop. 2.3.2, the reduced model is
d ū

d t
= B̄ū with B̄ = A+BA.

The full and reduced solutions, u(t;µ) and ū(t;µ), respectively, can be directly computed for all
t ∈ T .

36 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

Symplectic Discrete Empirical Interpolation Method (SDEIM) As we can directly com-
pute solutions of a linear Hamiltonian system, an idea to treat the general case is to split the
Hamiltonian H in two parts : (i) a term 1

2u
TDu as given in in Prop. 2.3.7 and (ii) a nonlinear

term HN (u) such that H (u) = 1
2u

TDu + HN (u). The subscript N indicates that computa-
tion cost of HN depends on N the FOM dimension. We denote hN (u) := ∇uHN (u). The PSD
reduced model from Prop. 2.3.2 then reads

d ū

d t
= J2KAT∇AūH (Aū) = J2K(ATDA)ū+ J2KAThN (Aū) (2.19)

The system’s linear term ATDA is computed once offline and as a result, the numerical eval-
uation of the linear vector field has a cost ofO(K) instead ofO(α(N)) for the full Hamiltonian
gradient, where α is some function of N .

The nonlinear term ψN := AT ◦ hN ◦ A comes with a cost of O(NK + α(N)) which
can quickly become prohibitive. The idea of the DEIM [27] is to project the term ψN onto a
subspace that approximates it well and which is spanned by a basis of dimension m ≪ N . In
practice, this proper subspace is given by the SVD on snapshots of the nonlinear functionψN . In
this paragraph, we focus on the DEIM’s variant for Hamiltonian system called SDEIM [22]. The
sole practical difference between these two methods lies in the multiplication of ψN by J2K in
Eq. (2.19), which is absent in the DEIM approach.

In details, we consider the snapshot matrix Uψ formed by snapshots of ψN

Uψ =
(
ψN [u(t1;µ1)] . . . ψN [u(tP ;µP)]

)
∈M2N,P (R).

As explained in Sec. 2.3.2, we compute the SVD of Uψ and keep the truncated matrix Aψ ∈
M2N,m(R) whose columns are the m first left singular vectors sorted by the magnitude of their
singular values in descending order. The low rank approximation of ψN on the column space of
Aψ then reads

ψN (u) ≈ Aψψ̂(u)

where ψ̂(u) ∈ Rm are the unknown coefficients of ψN (u) on the basis given by the columns of
Aψ . To determine ψ̂(u), we remark that the systemψN (u) = Aψψ̂(u) is overdetermined hence
we select m appropriates rows of indices {i1, . . . , im} such that ψ̂(u) is uniquely determined by

P TψN (u) =
(
P TAψ

)
ψ̂(u),

where P ∈M2N,m(R) is a selection matrix

P =
(
ei1 . . . eim

)
,

with ei is the i-th column of the identity matrix. Indeed, P selects those above-mentioned m
rows of the overdetermined system. Under the assumption that P TAψ is invertible, we can
approximate the nonlinear term with

ψN (u) ≈ Aψψ̂(u) = Aψ
(
P TAψ

)−1
P TψN (u).

Property 2.3.8 (SDEIM hyper-reduction [22]). We consider a Hamiltonian ODE with a Hamilto-
nian H (u) = 1

2u
TDu+HN (u) and its PSD’s reduced model as given in Prop. 2.3.2. The SDEIM

hyper-reduction results in the approximated reduced model

d ū

d t
= B̄ū+ J2KWhm(ū)

with the matrices B̄ := A+J2NDA,W := Aψ
(
P TAψ

)−1, and hm(ū) := P ThN (Aū).

2.3 Linear model order reduction for Hamiltonian ODEs 37

The primary objective of hyper-reduction is to reduce the numerical complexity while en-
suring that the approximation error remains controlled as detailed for the POD-DEIM method in
[28, 29]. If the nonlinear part of the Hamiltonian system hN is small and not strongly nonlinear,
we can expect to find an appropriate value of m ≪ N that introduces an error smaller than,
or comparable to, that imposed by the PSD. Thus, the matrices B̄ and W are computed once
offline. As said above, the linear term has a cost O(K). Then, the nonlinear term has a cost
O(mK + α(m)): it does not depend on N anymore.

Remark. In practice, the primary challenge in achieving an efficient implementation of SDEIM lies
in ensuring that the evaluation of hm = P T ◦hN ◦A remains independent of the full-order dimen-
sion N . A straightforward implementation would still involve evaluating hN (u), which defeats the
purpose of hyper-reduction. To address this, it is essential to reconstruct only the necessary rows of
the state vector ū, allowing hN to be evaluated at a reduced set of points. This approach ensures
that the multiplication by P T becomes implicit or effectively eliminated. This method is intrusive
and system-dependent.

We finish this section with the construction of the selection matrix P as detailed in [27]. The
interpolation points {i1, . . . , im} are selected with a greedy algorithm offline. Essentially, we
select the index that maximizes the approximation error between the SVD basis and its approx-
imation at the interpolation points at each iteration of the algorithm.

Algorithm 1 Symplectic Discrete Empirical Interpolation Method (SDEIM)

Require: Left singular vectors Aψ = [aψ,1, . . . ,aψ,m] ∈M2N,m(R) from PSD of ψN

Ensure: Interpolation indices {i1, . . . , im}, selection matrix P ∈M2N,m(R)
1: Initialize i1 = argmax |aψ,1|
2: Set P = [ei1], U = [aψ,1]
3: for k = 2 to m do
4: Solve (P TU)c = P Taψ,k for c
5: Compute residual r = aψ,k − Uc
6: ik = argmax |r|
7: P ← [P eik], U ← [U aψ,k]
8: end for
9: return {i1, . . . , im}, P

Remark. The SDEIM hyper-reduction is not Hamiltonian per se. However, when the DEIM tech-
nique offers a good approximation of the reduced vector field, we can expect the reduced dynamics
to remain close to Hamiltonian ones.

2.3.4 A practical example: the shallow-water system

We present a practical example of PSD model order reduction with SDEIM hyper-reduction on
the 2D shallow-water system defined in Eq. (1.2) as

∂tχ(x, t;µ) +∇ · ((1 + χ(x, t;µ))∇ϕ(x, t;µ)) = 0,

∂tϕ(x, t;µ) +
1

2
|∇ϕ(x, t;µ)|2 + χ(x, t;µ) = 0,

(1.2)

where χ, ϕ : [−4, 4]2 × [0, T]× Γ→ R are the perturbation from the equilibrium and the scalar
velocity potential, respectively, on a periodic domain. Its Hamiltonian functional writes:

H [χ, ϕ] =
1

2

∫
[−4,4]2

(
(1 + χ) |∇ϕ|2 + χ2

)
dx. (2.8)

38 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

We consider a uniform mesh over the square [−4, 4]2 resulting in semi-discretized coordinates
χ(t;µ),ϕ(t;µ) ∈ RN (in bold symbols) along with second-order accurate central finite dif-
ference operators Dx and Dy to discretize the spatial derivatives in the x and y direction, re-
spectively. It leads to a canonical Hamiltonian ODE and the gradient of H (u) with respect to
u = (χ,ϕ)T reads

∇uH (u) =

(
1
2

[
(Dxϕ)

2 + (Dyϕ)
2
]
+ χ

−Dx ([1 + χ]⊙Dxϕ)−Dy ([1 + χ]⊙Dyϕ) ,

)
where ⊙ is the Hadamard or element-wise product between two vectors.

PSD reduced model We discretize the space domain with N = 642 cells and the time domain
with T = 15;∆t = 1×10−3 and an implicit midpoint scheme, and we consider a parametric
initial condition with two parameters µ = (α, β) ∈ [0.2, 0.5]× [1, 1.7], given by

χinit(x;µ) = α exp
(
−β xTx

)
, ϕinit(x;µ) = 0.

We sample 20 different couples of parameter (α, β) regularly spaced in the segment
[(0.2, 1) , (0.5, 1.7)]. Then, we build the snapshot matrix and compute its SVD.

We recall that the SVD computes a decomposition in the form of singular vectors and their
singular values. If we view the snapshot collection as points in a high-dimensional space, each
singular value measure how much of the total variability in the data is explained by the corre-
sponding singular vectors.

Consequently, the reduced basis is constructed by selecting the most significant singular
vectors first. Increasing the number of selected singular vectors, i.e. increasing K , leads to a
higher explained variance over the dataset, thereby yielding a reduced basis of improved quality.

In Fig. 2.7, we see the relative magnitude of the singular values as a function of their index.
To begin with, we can verify that the singular values are indeed positive and sorted in descending
order. Thus, we remark a fast decay of the magnitude, it means that a small number of singular
vectors are sufficient to explain most of the variability in the data. It is encouraging to build a
reduced model based on the PSD : a relatively small reduced dimension K might be enough to
capture the most important dynamics.

Figure 2.7: (Shallow water 2D) Relative magnitude of the first 1200 singular values of the snapshot
matrix SVD as a function of their index. σi is the i-th singular value.

To illustrate the importance of the reduced dimension K , we set α = 0.35, β = 1.35 and we
compute the L2 error as a function of time for several values of K . As discussed above, a smaller
error is expected for larger values of K , which is indeed observed in Fig. 2.8.

2.3 Linear model order reduction for Hamiltonian ODEs 39

Figure 2.8: (Shallow water 2D) L2 error as a function of time between the full solution and the
reduced solution, respectively χ(t;µ) with Aχ̄(t;µ) (left), and ϕ(t;µ) with Aϕ̄(t;µ) (right), for
µ = (0.35, 1.35) and K ∈ {5, 10, 20, 30}.

In practice, we set K = 20 during the offline phase, based on the acceptable level of approx-
imation error. In certain cases, a priori error estimates or error bounds are available to assist
in the decision-making process: for instance, errors bounds are derived for randomized complex
SVD basis in [30], a Hamiltonian dynamical low-rank reduced model is built in [31] using a priori
error bounds.

With a given value of K , we can precompute the matrix A as defined in Prop. 2.3.2 with a
cotangent lift algorithm from Prop. 2.3.5. The online stage is limited to the computation of the
reduced Hamiltonian gradient AT ◦ ∇H ◦A at each time-step of the simulation.

SDEIM hyper-reduction In fact, the PSD reduced model is slower than the full model. Argu-
ing Sec. 2.3.3, we anticipated a poor performance in terms of computation time, so we need to
implement a hyper-reduction technique to improve it. First, we split the full order Hamiltonian
vector field as in Prop. 2.3.8. It leads to

d

dt
u = Bu+ J2NhN (u)

=

(
0 −D2

x −D2
y

−I 0

)
u+ J2N

(
1
2

[
(Dxϕ)

2 + (Dyϕ)
2
]

−Dx (χ⊙Dxϕ)−Dy (χ⊙Dxϕ)

)
,

and we can identify B and hN . Next, we apply Prop. 2.3.8 and identify the quantities that
can be precomputed to reduce the online computational cost. The reduced system’s linear part
B̄ = A+BA is computed once offline. We then apply the SDEIM method by assembling an
additional snapshot matrix composed of the evaluations of hN (u), computing its SVD, and se-
lecting the m most dominant singular vectors to form the columns of Aψ . The selection ma-
trix P is then constructed using the DEIM algorithm described in Sec. 2.3.3. Thus, the matrix
W = Aψ

(
P TAψ

)−1 is precomputed.
The main difficulty arises in the treatment of the nonlinear function hm := P T ◦ hN ◦ A.

Indeed, if implemented naively, the evaluation of hN would still incur a high computational
cost, thereby nullifying the efficiency gains expected from the SDEIM. This is why the method

40 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

is considered intrusive: it requires a detailed examination of hm to manually identify which
computations can be performed in advance and whether this leads to a reduction in the online
computational cost.

To simplify this process explanation, let us assume that the system is one-dimensional and
that the following term y appears.

y := P TDxA ū

In other words, we must compute a (numerical) derivative of the reconstructed state at the indices
{i1, . . . , im} selected by the DEIM algorithm, that is, the indices associated with the matrix P .
Dx is a centered finite difference so to compute the derivative on ij , we only need to reconstruct
the state of indices ij + 1 and ij − 1, i.e.

yj =
1

h

(
ûij+1 − ûij−1

)
=

1

h

(
Aij+1,: · ū−Aij−1,: · ū

)
=

1

h

(∑
k

Aij+1,kūk −
∑
k

Aij−1,kūk

)
,

where Ai,: is the i-th line of A and · the scalar product. As a consequence, we only need to
decompress at most 2m reduced coefficients (with m corresponding to left and right neighbors,
respectively); the computation cost therefore depends on m rather then on N . Alternatively,
we can precompute P TDxA ∈ Mm,2K(R) offline. Depending on the programming language
and other technical considerations, we may prefer either to select indices or to precompute the
matrix.

In practice, we must be very careful about (i) considering ψ and ϕ separately, (ii) noting
that in multiple dimensions the neighboring nodes are not necessarily adjacent in the array, (iii)
distinguishing interpolation indices belonging to ψ from those belonging to ϕ, (iv) accounting
for the structure of A, which in this case is block-diagonal, and (v) the fact that hN is often
more complex than a simple derivative. Note also that, sometimes, excessive precomputation can
actually harm the final computational cost. For instance, working directly with the Hadamard
product would lead to a third-order tensor, which increases the numerical complexity.

Subsequently, we test the SDEIM on our test case. We note that this hyper-reduction intro-
duces additional errors compared to the PSD reduced model. In Fig. 2.9, we observe the L2 error
of the PSD-SDEIM solution compared to the full order solution. We notice that with m ≈ 50
points, the SDEIM-PSD error (dashed red line) is comparable to the sole PSD error in a (black full
line).

In addition, in Fig. 2.10 we see the relative error on the energy |H (·)−Hinit| /Hinit with
Hinit = H (uinit). As explained in Sec. 2.2.3, the true Hamiltonian H is preserved up to the
precision of the numerical scheme. We note that the hyper-reduced solution does not preserve
the Hamiltonian as accurately, there are small variations. This is due to the fact that the SDEIM
method is, strictly speaking, not Hamiltonian-preserving, as mentioned in Sec. 2.3.3.

Finally, we plot solutions at time t = 8 for the full model and both reduced model in Fig. 2.11.
A very small difference is visible in the corners; however, the physical dynamics is well repro-
duced.

2.3 Linear model order reduction for Hamiltonian ODEs 41

Figure 2.9: (Shallow water 2D) L2 error as a function of time between the full solution u(t;µ) and
the hyper-reduced PSD-SDEIM solution Au(t;µ), on the χ variable (left) and on the ϕ variable
(right), for µ = (0.35, 1.35),K = 20 and m ∈ {20, 30, 60}.

Figure 2.10: (Shallow water 2D) Relative error on H as a function of time between the full
solution u(t;µ) , the PSD reduced solution and the PSD-SDEIM reduced solution for µ =
(0.35, 1.35),K = 20 and m = 60.

Figure 2.11: (Shallow water 2D) Full order solution χ(t;µ) (left), PSD solution (center) and PSD-
SDEIM solution (right) at t = 8 for µ = (0.35, 1.35),K = 20 and m = 60.

42 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

2.3.5 Other reduction methods

We have previously focused on POD-type reduction methods. Beyond this class of methods,
there are many other model reduction techniques. In this section, we present a brief overview.
While not all of these approaches will be employed in the remainder of this manuscript, their
presentation serves to contextualize the techniques considered herein. As explained in [32],
model order reduction techniques, structure-preserving techniques included, can be expressed
as

u(x, t;µ) ≈
2K∑
i=1

ai(x)si(t;µ) (2.20)

where ai ∈ V with V a Hilbert space and si ∈ S where S is a space of T × Γ → R functions
and K ≪ N is a small number in comparison to the FOM dimension. Model order reduction
techniques can be broadly classified into three categories. The first category constructs a reduced
basis {ai}i in the space V . The second category, which can be seen as somewhat dual to the first,
constructs a reduced basis {si(t;µ)}i in the space S. The third category directly formulates a
reduced model in the form of Eq. (2.20). These three approaches are closely interrelated and
exhibit structural similarities as they all ultimately yield a low-rank approximation ū(t;µ) on
the tensor space V ⊗ S. Subsequently, we provide a more detailed discussion of each of the
aforementioned categories, illustrating them with some examples in both standard and structure-
preserving settings.

1. Building a reduced basis {ai}i in the space V can be referred to as projection-based model
order reduction. This is the case for the PSD method, which is described in Sec. 2.3.1 and
the basis vectors are the columns of the matrix A as defined in Prop. 2.3.2 as the SVD
of a snapshot matrix. For standard ROM, we can cite the reduced basis method [33, 34],
the POD [24] or the Proper Generalized Decomposition (PGD) [35]. In a Hamiltonian
preserving setting, the reduced basis method can be extended [31, 36], along with the PSD
and so on.

2. Constructing a reduced basis si(t;µ)i in the space S includes sparse approximation meth-
ods with, for example, the sparse grid method [37].

3. Approximations focusing directly on an expression of the form of Eq. (2.20) are called
low-rank approximation methods: the solution of the system is approached by a low-rank
tensor decomposition with a rank as small as possible, then reduced solutions are computed
with structure-preserving methods as in [38, 39, 40].

Naturally, model reduction techniques are not restricted to Eq. (2.20). More generally, the ob-
jective is to construct low-rank, reduced-size approximations, or even other approximations that
significantly decrease computational complexity compared to the full order model. For example,
we can employ a time-adaptive reduced basis approach, as proposed in [41]. In this framework,
the reduced basis {ai(t)}i in V is dynamical, leading to a reduced model that consists of two cou-
pled evolution equations. Another, more distant example of non structure-preserving reduction
comes from [42]. They introduce a micro-macro decomposition of the Vlasov–Poisson dynamics
to separate fast and slow-scale behaviors, allowing for a reduction in the computational burden
by avoiding very small time steps in part of the numerical resolution, thereby speeding up the
overall computation.

2.4 Deep learning tools for Hamiltonian model order reduction 43

2.4 Deep learning tools for Hamiltonian model order reduction

This section provides a brief overview of deep learning tools that we will use to construct nonlin-
ear model order reduction for Hamiltonian ODEs. In practice, we rely on several neural network
architectures to build nonlinear operators for reduction. First, we give a definition on neural
networks and we explain their fitting process called training. Then, we describe the two primary
neural networks utilized in this manuscript: the Hamiltonian neural network and the convolu-
tional autoencoder.

2.4.1 Outline of neural networks

Neural networks as parametric functions An artificial Neural Network (NN) can be seen as
a parametric function gθ of parameters θ ∈ Θ with Θ ⊂ RpΘ a parameter space with pΘ > 0 the
number, eventually large, of parameters. This function is used to identify a particular relationship
between data in a set Y and data in set Z , without knowing an prior analytical expression for it.

gθ : Y −→ Z,
y 7−→ gθ(y) ≈ z.

y ∈ Y and z ∈ Z can come in a very wide variety of forms : numbers, vectors, matrix, images,
time series, meshes, words, etc. A notable historical example comes from the MNIST database
[43], which consists of tens of thousands of handwritten digits. Since its creation in 1994, re-
searchers have sought to establish a mapping gθ between each picture of an handwritten digit y
and its corresponding numerical value z with the goal of automated recognition of handwritten
digits.

However, the development of NN is much more recent. In the 1960’s, F. Rosenblatt intro-
duced the perceptron [44], one the first actually implemented NN. These concepts, along with
others that we will not discuss, have evolved over the years and resulted in a modern definition
of multiplayer perceptron or feedforward NN, which we will adopt here. Though not entirely
accurate, we will use the term NN to describe multiplayer perceptron. In the following, Y = Rnin

and Z = Rnout .

Definition 2.4.1 (Multiplayer perceptron). A multiplayer perceptron, or NN, is a parametric func-
tion gθ : Rnin → Rnout of parameters θ ∈ Θ, nin, nout > 0 constituted by the composition of l > 0

elementary functions g[k] : Rn[k−1] → Rn[k]
called layers such that

gθ = g[l] ◦ g[l−1] ◦ · · · ◦ g[1].

n[k] > 0, i ∈ {1, . . . , l} is the number of units or output dimension of the i-th layer, n[0] = nin and
n[l] = nout. A layer g[k] : Rn[k−1] → Rn[k]

is a simple function of the form

g[k](y) = σ
(
W [k]y + b[k]

)
(2.21)

with a weight matrix W [k] ∈ Mn[k],n[k−1](R), a bias b[k] ∈ Rn[k]
and σ : R → R a nonlinear

function. We denote σ(y) := (σ(yi))i.
The NN parameters θ is the set of every layer’s weight matrix and bias i.e.

θ ∈ Θ :=
{
W [k], b[k]

∣∣∣W [k] ∈Mn[k],n[k−1](R),b[k] ∈ Rn[k]
, k ∈ {1, . . . , l}

}
In general, the activation function σ is fixed for every layer with the exception of the last one.

44 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

There are many options available for the activation function σ, for instance the Rectified
Linear Unit (ReLU) y → max(0,y), the hyperbolic tangent y → tanhy or the softplus y →
log(1 + expx).

In the literature, the term "hidden layer" refers to any layer that is neither the input layer nor
the output layer. Then, layers g[k] defined in Eq. (2.21) are named dense or fully-connected and
a MLP with these layers is called "dense neural network".

In some cases, a part or all an MLP layers can be replaced with convolutional layers. Essen-
tially, the weight matrix multiplication is exchanged with a discrete convolution with a small
kernel as detailed in Def. 2.4.2. MLPs with convolution layers are called "convolutional neural
networks".

Definition 2.4.2 (Convolutional layer). A convolutional layer g[k] : Rn[k−1] → Rn[k]
is a function

of the form
g[k](y) = σ

(
K [k] ∗ y + b[k]

)
with a kernel K [k] and a bias b[k]. We denote ∗ the discrete 1D concolution operator

(K [k] ∗ y)i =
∑
j

yi+jK
[k]
j

The kernel replaces the weight matrix in the definition of parameters. The remainder is unchanged.

Remark. In practice, the inputs to convolutional layers consist of multiple channels i.e. columns.
As a result, convolutional layers perform several convolutions in parallel, one for each channel of
the input signal.

Many other types of layers and neural networks more complex than a simple composition of
functions. They will not be discussed in this document. More details are available in [45, 46].

Training a neural network The next step is to find appropriate parameters θ ∈ Θ such that
gθ approximate a target function g∗. We assume that we know the value of g∗ on a given set of
points (yi)i. Let us denote zi = g∗(yi), and we have a set of input-output data D

D := {(yi, zi)i}

Then, we define the loss function, L : Θ→ R, also called cost function, as the error between gθ
and g∗ on the dataset D

L(θ) =
∑

(yi,zi)∈D

∥zi − gθ(yi)∥2 =
∑

(yi,zi)∈D

∥g∗(yi)− gθ(yi)∥2.

An appropriate θ such that gθ ≈ g∗ is a local minimizer of the loss function, i.e. a local solution
of the optimization problem

θ ∈ argminθ∈ΘL(θ).

Searching for a minimizer θ is called the training process. The simplest method is the so-called
gradient descent method: we define a sequence of parameters (θk)k as follows

θk+1 = θk − η∇θL(θk), (2.22)

where η > 0 is the step size. The gradient of loss function is computed with the chain rule, using
the backpropagation algorithm [45, 47].

This simple version of the gradient descent algorithm is rarely used as is, for two main rea-
sons. First, the dimension of the parameter space Θ is usually very large. As a result the method

2.4 Deep learning tools for Hamiltonian model order reduction 45

might converges poorly due to gradient averaging effects. Second, the loss function L is not
convex a priori: we can expect numerous local minima and a wide range of gradient magnitudes.
Hence, the gradient descent will also converge poorly, if at all. One solution to address these
issues is to use an adaptive stochastic gradient descent with momentum. Very briefly, adap-
tive means that the step size η depends on the training iteration to give more robustness to the
algorithm. A stochastic descent computes the gradient on a small subset of the dataset D ran-
domly chosen at each iteration: it fastens computations and circumvents the averaging effects.
Momentum consists in adding a fraction of the previous iteration’s gradient to the current pa-
rameter update, thus reducing oscillations in the descent direction and avoiding getting stuck in
a sub-optimal local minimum. More details can be found in [45, 48].

Remark. The situation considered so far, in which the input–output relationship g∗ is known, is
referred to as supervised learning. This is not always the case, when such a relationship is unknown,
the problem is called unsupervised learning. We will see an example in the following Sec. 2.4.3.

A natural question that arises concerns the quality of the approximations produced by such
architectures. Given a target function g∗, can a neural network gθ be shown, in theory, to con-
verge to it? The answer is affirmative: both dense and convolutional neural networks fall under
the category of universal approximators, meaning they are theoretically capable of approximat-
ing any continuous function to arbitrary accuracy under suitable conditions [49, 50, 51].

Thereafter, we introduce two practical neural networks models which will play a key role
in the construction of nonlinear reduction methods : the Hamiltonian neural network and the
convolutional autoencoder.

2.4.2 Learning symplectic flows with Hamiltonian Neural Networks

For the construction of nonlinear reduction methods, we use neural networks to approximate
the time evolution of Hamiltonian systems : they learn the underlying symplectic flow of an
(unknown) Hamiltonian ODE directly from data. The goal of such network is to replicate/predict
the system dynamics. These models incorporate symplecticity -either by design or through loss
constraints-to ensure long-term stable and physically accurate predictions. Several methods has
been developed, for instance the Hamiltonian Neural Network (HNN) [52] learns an Hamiltonian
function, SympNets [53] are designed to learn symplectic maps and SympFlow [54] are neural
network-based symplectic integrators.

In this work, we focus on the HNN [52] first introduced by S. Greydanus, M. Dzamba and J.
Yosinski in 2019. The HNN Hθh of parameters θh represents the Hamiltonian of a system

Hθh : R2N × Γ→ R,
(u;µ) 7→Hθh(u;µ).

with a state u(t;µ) ∈ R2N and some parameters µ ∈ Γ. The HNN is implemented as a standard
feedforward neural network with dense layers or MLP as given in Def. 2.4.1. The parameters
µ are just concatenated to the first layer’s input. As the output of interest is often the gradient
∇uHθh(u;µ), we remove the bias and set a linear activation function σ = id in the last layer
i.e. g[l](y) = W [l]y. The implementation is made rather practical for gradient computation by
automatic differentiation methods implemented in standard machine learning libraries.

The HNN learns a system’s flow through its vector field. Hence, we enforce that the gradient
of the neural network approximates the vector field of the underlying system with the prediction
loss Lpred(θh) in the form

Lpred(θh) =
∑
u∈D

∥u̇−∇uHθh(u;µ)∥2

46 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

In most cases, the time derivative of u is not known, we can replace it by any numerical estimate,
for example a central finite difference (un+1 − un−1)/(2∆t). We could also replace the term
inside the norm with its integrated form and thus use a numerical scheme.

Remark. Strictly speaking, with this loss function, the HNN learns a slightly modified Hamiltonian
that depends on the numerical scheme and its order of accuracy (see more details in [18, Chapter 9]).
Nevertheless, this minor difference is deemed acceptable in this context.

The definitions provided in this section fully generalize to the case of learning a re-
duced model of reduced state ū(t;µ) and reduced learned Hamiltonian H̄θh , as we do in this
manuscript.

2.4.3 Convolutional AutoEncoder for low-dimensional representations

Convolution AutoEncoders (CAEs) are a family of neural networks architectures designed to
learn efficient, low-dimensional representations of high-dimensional data [45]. Put differently,
they are built as nonlinear compression tools. CAEs are composed of two parts : an encoder
which compress the data into a latent/reduced space, and a decoder which reconstructs the input
from its latent form. The encoder is made of convolutional layers followed by dense layers, and
conversely for the decoder. In fact, the simplest autoencoders consisted exclusively of dense
layers, with dimensionality reduction achieved by progressively decreasing the number of units
in each successive layer. Convolutional layers are added for two main reasons

(i) convolutional layers exploit the input’s spatial structure, making them efficient for data
that exhibits this type of structure such as wave propagation or fluid dynamics, and essentially
mesh-discretized data u,

(ii) the CAE is significantly more parameter-efficient, offering comparable performance with
a lower number of parameters, especially with a large full dimension N .

Thus, the encoder-decoder architecture of a CAE is implemented as a pair of neural networks
Eθe ,Dθd called an encoder and a decoder, respectively. The encoder is a mapping Eθe : Rn → Rm

with m≪ n which output reduced/compressed representations. Then, the decoderDθd : Rm →
Rn decompress reduced data.

These networks are trained together such that the following reconstruction loss function is
enforced

LAE(θe, θd) =
∑
y∈D

∥y −Dθd (Eθe(y))∥2 (2.23)

meaning that the training aims to achieve minimal information loss during the compression-
decompression process.

In practice, the encoder and decoder are designed as mirror images of one another. As illus-
trated in Fig. 2.12, the encoder takes as input a high-dimensional vector y ∈ Rn. The encoding
process starts with a sequence of encoder blocks, each consisting of a standard convolutional
layer followed by a downsampling layer—typically implemented as a convolutional layer with
a stride two. This stride implies that the kernel advances across the input with a step size of
two rather than one, effectively halving the spatial resolution. Simultaneously, the number of
feature channels is doubled; for example, a transformation from a shape (2l, f) to (l, 2f). After
passing through multiple encoder blocks, the resulting output is fed to series of fully connected
(dense) layers. These layers progressively reduce the dimensionality, ultimately yielding a latent
representation ȳ ∈ Rm. The decoder is built as a mirror of the prior. Downsampling layers
are replaced by upsampling layers which are transposed convolutional layers. Ultimately, the
decoder outputs ŷ ≈ y ∈ Rn.

2.4 Deep learning tools for Hamiltonian model order reduction 47

y ∈ Rn

ȳ ∈ Rm

ȳ

ŷ ∈ Rn

expand dim.

squeeze

︸ ︷︷ ︸

︸︷︷︸ encoder Eθe

decoder Dθd

flatten

unflatten

Figure 2.12: CAE architecture: from the full state u(t;µ), a reduced state ū(t;µ) = Eθe(u(t;µ))
is computed with the decoder. Newt, the reduced state is decompress with the decoder leading
to an approximation of the full state û(t;µ) = Dθd(ū(t;µ)).

Downsampling and upsampling can be replaced by pooling layers. For example, a max pool-
ing layer partitions the input into segments of a specified stride length and outputs the maximum
value from each segment. Furthermore, a stride of two can be replaced by any higher value, re-
sulting in harsher compression. Thus, multiple convolutions can be applied in each block before
the sampling layer. Also, 1D convolution can easily be replaced by their 2D or 3D counterparts
for specific cases.

48 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

References

[1] I. S. Newton. Philosophiae naturalis principia mathematica. William Dawson & Sons, Ltd.,
London, 1687, pp. viii+510+i. doi: 10.5479/sil.52126.39088015628399.

[2] W. R. Hamilton. On a General Method of Expressing the Paths of Light, and of the Planets,
by the Coefficients of a Characteristic Function. Hardy, P. D., 1833.

[3] K. R. Meyer and G. R. Hall. Introduction to Hamiltonian dynamical systems and the N -
body problem. Vol. 90. Applied Mathematical Sciences. Springer-Verlag, New York, 1992,
pp. xii+292. isbn: 0-387-97637-X. doi: 10.1007/978-1-4757-4073-8.

[4] V. Michel-Dansac. “Structure-preserving methods for Hamiltonian ODEs”. Lecture notes
for a course given the Master 2 Mathématiques Fondamentales at the University of Stras-
bourg. 2023.

[5] E. Franck. “Apprentissage et calcul scientifique”. Lecture notes for courses given at the
University of Strasbourg. Oct. 2024. url: https://sciml.gitlabpages.inria.fr/
scimllectures/meta_frontmatter.html.

[6] A. Ghosh. Introduction to analytical mechanics. Springer, Singapore, 2024, pp. xvii+128.
isbn: 978-981-97-2484-0. doi: 10.1007/978-981-97-2484-0.

[7] P. J. Olver. Applications of Lie groups to differential equations. Second. Vol. 107. Graduate
Texts in Mathematics. Springer-Verlag, New York, 1993, pp. xxviii+513. isbn: 0-387-95000-
1. doi: 10.1007/978-1-4612-4350-2.

[8] V. I. Arnold. Mathematical methods of classical mechanics. Vol. 60. Graduate Texts in Math-
ematics. Translated from the Russian by K. Vogtmann and A. Weinstein. Springer-Verlag,
New York-Heidelberg, 1978, pp. x+462. isbn: 0-387-90314-3.

[9] J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry. Second. Vol. 17. Texts
in Applied Mathematics. A basic exposition of classical mechanical systems. Springer-
Verlag, New York, 1999, pp. xviii+582. isbn: 0-387-98643-X. doi: 10.1007/978-0-387-
21792-5.

[10] D. D. Holm. Geometric mechanics. Part I. Dynamics and symmetry. Imperial College Press,
London; distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008,
pp. xx+354. isbn: 1-84816-195-6.

[11] F. Casas et al. “High-order Hamiltonian splitting for the Vlasov-Poisson equations”. In: Nu-
mer. Math. 135.3 (2017), pp. 769–801. issn: 0029-599X,0945-3245. doi: 10.1007/s00211-
016-0816-z.

[12] P. J. Morrison. “Hamiltonian description of the ideal fluid”. In: Rev. Modern Phys. 70.2 (1998),
pp. 467–521. issn: 0034-6861,1539-0756. doi: 10.1103/RevModPhys.70.467.

[13] T. J. Bridges and S. Reich. “Numerical methods for Hamiltonian PDEs”. In: J. Phys. A 39.19
(2006), pp. 5287–5320. issn: 0305-4470,1751-8121. doi: 10.1088/0305-4470/39/19/
S02.

[14] A. Lew, J. Marsden, and M. West. “An Overview of Variational Integrators”. In: Finite Ele-
ment Methods: 1970’s and Beyond (2004).

[15] M. Kraus et al. “GEMPIC: geometric electromagnetic particle-in-cell methods”. In: J.
Plasma Phys. 83.4 (2017). issn: 1469-7807. doi: 10.1017/s002237781700040x.

[16] H. E. Cabral and L. Brandão Dias. Normal forms and stability of Hamiltonian systems.
Vol. 218. Applied Mathematical Sciences. With a foreword by Kenneth Meyer. Springer,
Cham, 2023, pp. xxi+337. isbn: 978-3-031-33045-2. doi: 10.1007/978-3-031-33046-9.

https://doi.org/10.5479/sil.52126.39088015628399
https://doi.org/10.1007/978-1-4757-4073-8
https://sciml.gitlabpages.inria.fr/scimllectures/meta_frontmatter.html
https://sciml.gitlabpages.inria.fr/scimllectures/meta_frontmatter.html
https://doi.org/10.1007/978-981-97-2484-0
https://doi.org/10.1007/978-1-4612-4350-2
https://doi.org/10.1007/978-0-387-21792-5
https://doi.org/10.1007/978-0-387-21792-5
https://doi.org/10.1007/s00211-016-0816-z
https://doi.org/10.1007/s00211-016-0816-z
https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1088/0305-4470/39/19/S02
https://doi.org/10.1088/0305-4470/39/19/S02
https://doi.org/10.1017/s002237781700040x
https://doi.org/10.1007/978-3-031-33046-9

References 49

[17] P. Lochak. “Stability of Hamiltonian systems over exponentially long times: the near-linear
case”. In: Hamiltonian dynamical systems (Cincinnati, OH, 1992). Vol. 63. IMA Vol. Math.
Appl. Springer, New York, 1995, pp. 221–229. isbn: 0-387-94437-0. doi: 10.1007/978-1-
4613-8448-9_16.

[18] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration. Second. Vol. 31.
Springer Series in Computational Mathematics. Structure-preserving algorithms for or-
dinary differential equations. Springer-Verlag, Berlin, 2006, pp. xviii+644. isbn: 978-3-540-
30663-4.

[19] B. M. Afkham and J. S. Hesthaven. “Structure preserving model reduction of paramet-
ric Hamiltonian systems”. In: SIAM J. Sci. Comput. 39.6 (2017), A2616–A2644. issn: 1064-
8275,1095-7197. doi: 10.1137/17M1111991.

[20] J. S. Hesthaven, C. Pagliantini, and N. Ripamonti. “Adaptive symplectic model order reduc-
tion of parametric particle-based Vlasov-Poisson equation”. In: Math. Comp. 93.347 (2024),
pp. 1153–1202. issn: 0025-5718,1088-6842. doi: 10.1090/mcom/3885.

[21] C. Greif and K. Urban. “Decay of the Kolmogorov N -width for wave problems”. In: Appl.
Math. Lett. 96 (2019), pp. 216–222. issn: 0893-9659,1873-5452. doi: 10.1016/j.aml.
2019.05.013.

[22] L. Peng and K. Mohseni. “Symplectic model reduction of Hamiltonian systems”. In: SIAM J.
Sci. Comput. 38.1 (2016), A1–A27. issn: 1064-8275,1095-7197. doi: 10.1137/140978922.

[23] Y. C. Liang et al. “Proper orthogonal decomposition and its applications. I. Theory”. In: J.
Sound Vibration 252.3 (2002), pp. 527–544. issn: 0022-460X. doi: 10.1006/jsvi.2001.
4041.

[24] C. Gräßle, M. Hinze, and S. Volkwein. “Model order reduction by proper orthogonal de-
composition”. In: Volume 2 Snapshot-Based Methods and Algorithms. Ed. by P. Benner et al.
Model Order Reduction. De Gruyter, 2021, pp. 47–96. isbn: 9783110671490. doi: 10.1515/
9783110671490-002.

[25] K. Lange. “Singular Value Decomposition”. In: Numerical analysis for statisticians. Second.
Statistics and Computing. Springer, New York, 2010, pp. 129–142. isbn: 978-1-4419-5945-4.
doi: 10.1007/978-1-4419-5945-4_9.

[26] T. Tyranowski and M. Kraus. “Symplectic model reduction methods for the Vlasov equa-
tion”. In: Contrib. Plasma Phys. 63.5-6 (2023), e202200046. issn: 0863-1042. doi: 10.1002/
ctpp.202200046.

[27] S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical
interpolation”. In: SIAM J. Sci. Comput. 32.5 (2010), pp. 2737–2764. issn: 1064-8275,1095-
7197. doi: 10.1137/090766498.

[28] S. Chaturantabut and D. C. Sorensen. “A state space error estimate for POD-DEIM nonlin-
ear model reduction”. In: SIAM J. Numer. Anal. 50.1 (2012), pp. 46–63. issn: 0036-1429,1095-
7170. doi: 10.1137/110822724.

[29] D. Wirtz, D. C. Sorensen, and B. Haasdonk. “A posteriori error estimation for DEIM re-
duced nonlinear dynamical systems”. In: SIAM J. Sci. Comput. 36.2 (2014), A311–A338.
issn: 1064-8275,1095-7197. doi: 10.1137/120899042.

[30] R. Herkert et al. Error Analysis of Randomized Symplectic Model Order Reduction for Hamil-
tonian systems. May 2024. doi: 10.48550/arXiv.2405.10465. arXiv: 2405.10465
[math.NA].

[31] C. Pagliantini. “Dynamical reduced basis methods for Hamiltonian systems”. In: Numer.
Math. 148.2 (2021), pp. 409–448. issn: 0945-3245. doi: 10.1007/s00211-021-01211-w.

https://doi.org/10.1007/978-1-4613-8448-9_16
https://doi.org/10.1007/978-1-4613-8448-9_16
https://doi.org/10.1137/17M1111991
https://doi.org/10.1090/mcom/3885
https://doi.org/10.1016/j.aml.2019.05.013
https://doi.org/10.1016/j.aml.2019.05.013
https://doi.org/10.1137/140978922
https://doi.org/10.1006/jsvi.2001.4041
https://doi.org/10.1006/jsvi.2001.4041
https://doi.org/10.1515/9783110671490-002
https://doi.org/10.1515/9783110671490-002
https://doi.org/10.1007/978-1-4419-5945-4_9
https://doi.org/10.1002/ctpp.202200046
https://doi.org/10.1002/ctpp.202200046
https://doi.org/10.1137/090766498
https://doi.org/10.1137/110822724
https://doi.org/10.1137/120899042
https://doi.org/10.48550/arXiv.2405.10465
https://arxiv.org/abs/2405.10465
https://arxiv.org/abs/2405.10465
https://doi.org/10.1007/s00211-021-01211-w

50 Chapter 2 Hamiltonian systems: numerical methods, reduction and deep learning tools

[32] A. Nouy. “Low-rank tensor methods for model order reduction”. In: Handbook of uncer-
tainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017, pp. 857–882. isbn: 978-3-319-12385-
1. doi: 10.1007/978-3-319-12385-1_21.

[33] Buffa, Annalisa et al. “A priori convergence of the Greedy algorithm for the parametrized
reduced basis method”. In: ESAIM: M2AN 46.3 (2012), pp. 595–603. doi: 10.1051/m2an/
2011056.

[34] J. S. Hesthaven, C. Pagliantini, and G. Rozza. “Reduced basis methods for time-dependent
problems”. In: Acta Numer. 31 (2022), pp. 265–345. issn: 0962-4929,1474-0508. doi: 10.
1017/S0962492922000058.

[35] F. Chinesta, P. Ladeveze, and E. Cueto. “A Short Review on Model Order Reduction Based
on Proper Generalized Decomposition”. In: Arch. Computat. Methods Eng. 18.4 (2011),
pp. 395–404. issn: 1886-1784. doi: 10.1007/s11831-011-9064-7.

[36] J. S. Hesthaven and C. Pagliantini. “Structure-preserving reduced basis methods for Pois-
son systems”. In: Math. Comput. 90.330 (2021), pp. 1701–1740. doi: 10.1090/mcom/3618.

[37] K. Kormann and E. Sonnendrücker. “Sparse grids for the Vlasov–Poisson equation”. In:
Sparse Grids and Applications, 2014. Ed. by Garcke, Jochen and Pflüger, Dirk. Lecture
Notes in Computational Science and Engineering. Springer International Publishing, 2016,
pp. 163–190. isbn: 978-3-319-28262-6. doi: 10.1007/978-3-319-28262-6_7.

[38] V. Ehrlacher and D. Lombardi. “A dynamical adaptive tensor method for the Vlasov-
Poisson system”. In: J. Comput. Phys. 339 (2017), pp. 285–306. issn: 0021-9991,1090-2716.
doi: 10.1016/j.jcp.2017.03.015.

[39] L. Einkemmer and I. Joseph. “A mass, momentum, and energy conservative dynamical low-
rank scheme for the Vlasov equation”. In: J. Comput. Phys. 443 (2021), Paper No. 110495,
16. issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2021.110495.

[40] L. Einkemmer and C. Lubich. “A low-rank projector-splitting integrator for the Vlasov-
Poisson equation”. In: SIAM J. Sci. Comput. 40.5 (2018), B1330–B1360. issn: 1064-8275,1095-
7197. doi: 10.1137/18M116383X.

[41] J. S. Hesthaven, C. Pagliantini, and N. Ripamonti. “Rank-adaptive structure-preserving
model order reduction of Hamiltonian systems”. In: ESAIM: M2AN 56.2 (2022), pp. 617–
650. doi: 10.1051/m2an/2022013.

[42] N. Crouseilles et al. “Two-Scale Macro–Micro Decomposition of the Vlasov Equation with
a Strong Magnetic Field”. In: Math. Models Methods Appl. Sci. 23.8 (2013), pp. 1527–1559.
doi: 10.1142/S0218202513500152.

[43] Y. LeCun, C. Cortes, and C.-J. Burges. “MNIST handwritten digit database”. In: ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[44] F. Rosenblatt. “The perceptron: a probabilistic model for information storage and orga-
nization in the brain.” In: Psychol. Rev. 65.6 (1958), pp. 386–408. issn: 0033-295X. doi:
10.1037/h0042519.

[45] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. url: http:
//www.deeplearningbook.org.

[46] A. Apicella et al. “A survey on modern trainable activation functions”. In: Neural Netw. 138
(2021), pp. 14–32. issn: 0893-6080. doi: 10.1016/j.neunet.2021.01.026.

[47] R. Rojas. “The Backpropagation Algorithm”. In: Neural Networks: A Systematic Introduc-
tion. Springer Berlin Heidelberg, 1996, pp. 149–182. isbn: 978-3-642-61068-4. doi: 10 .
1007/978-3-642-61068-4_7.

https://doi.org/10.1007/978-3-319-12385-1_21
https://doi.org/10.1051/m2an/2011056
https://doi.org/10.1051/m2an/2011056
https://doi.org/10.1017/S0962492922000058
https://doi.org/10.1017/S0962492922000058
https://doi.org/10.1007/s11831-011-9064-7
https://doi.org/10.1090/mcom/3618
https://doi.org/10.1007/978-3-319-28262-6_7
https://doi.org/10.1016/j.jcp.2017.03.015
https://doi.org/10.1016/j.jcp.2021.110495
https://doi.org/10.1137/18M116383X
https://doi.org/10.1051/m2an/2022013
https://doi.org/10.1142/S0218202513500152
https://doi.org/10.1037/h0042519
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1007/978-3-642-61068-4_7
https://doi.org/10.1007/978-3-642-61068-4_7

References 51

[48] C. C. Aggarwal. “Training Deep Neural Networks”. In: Neural Networks and Deep Learning:
A Textbook. Springer International Publishing, 2018, pp. 105–167. isbn: 978-3-319-94463-0.
doi: 10.1007/978-3-319-94463-0_3.

[49] M. Leshno et al. “Multilayer feedforward networks with a nonpolynomial activation func-
tion can approximate any function”. In: Neural Netw. 6.6 (1993), pp. 861–867. issn: 0893-
6080. doi: 10.1016/s0893-6080(05)80131-5.

[50] A. Pinkus. “Approximation theory of the MLP model in neural networks”. In: Acta numer-
ica, 1999. Vol. 8. Acta Numer. Cambridge Univ. Press, Cambridge, 1999, pp. 143–195. isbn:
0-521-77088-2. doi: 10.1017/S0962492900002919.

[51] D.-X. Zhou. “Universality of deep convolutional neural networks”. In: Appl. Comput. Har-
mon. Anal. 48.2 (2020), pp. 787–794. issn: 1063-5203,1096-603X. doi: 10.1016/j.acha.
2019.06.004.

[52] S. Greydanus, M. Dzamba, and J. Yosinski. “Hamiltonian neural networks”. In: Proceedings
of the 33rd International Conference on Neural Information Processing Systems. Ed. by H.
Wallach et al. Vol. 32. Curran Associates Inc., 2019. doi: 10.48550/arXiv.1906.01563.

[53] P. Jin et al. “SympNets: Intrinsic structure-preserving symplectic networks for identify-
ing Hamiltonian systems”. In: Neural Netw. 132 (2020), pp. 166–179. doi: 10.1016/j.
neunet.2020.08.017.

[54] P. Canizares et al. Hamiltonian Matching for Symplectic Neural Integrators. 2024. doi: 10.
48550/arXiv.2410.18262. arXiv: 2410.18262 [cs.LG].

https://doi.org/10.1007/978-3-319-94463-0_3
https://doi.org/10.1016/s0893-6080(05)80131-5
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.48550/arXiv.1906.01563
https://doi.org/10.1016/j.neunet.2020.08.017
https://doi.org/10.1016/j.neunet.2020.08.017
https://doi.org/10.48550/arXiv.2410.18262
https://doi.org/10.48550/arXiv.2410.18262
https://arxiv.org/abs/2410.18262

Chapter 3

Hamiltonian reduction using a
convolutional autoencoder coupled to
an Hamiltonian neural network

This chapter has been published as an article in Communications in Computational Physics.

R. Côte, E. Franck, L. Navoret, G. Steimer, and V. Vigon. “Hamiltonian reduction using a
convolutional auto-encoder coupled to a Hamiltonian neural network”. In: Commun. Comput.
Phys. 37.2 (2025), pp. 315–352. issn: 1815-2406,1991-7120. doi: 10.4208/cicp.OA-2023-0300

Abstract

The reduction of Hamiltonian systems aims to build smaller reduced models, valid over a certain
range of time and parameters, in order to reduce computing time. By maintaining the Hamil-
tonian structure in the reduced model, certain long-term stability properties can be preserved.
In this paper, we propose a nonlinear reduction method for models coming from the spatial
discretization of partial differential equations: it is based on convolutional autoencoders and
Hamiltonian neural networks. Their training is coupled in order to simultaneously learn the
encoder-decoder operators and the reduced dynamics. Several test cases on nonlinear wave dy-
namics and fluid dynamics (shallow water) show that the method has better reduction properties
than standard linear Hamiltonian reduction methods.

52

https://doi.org/10.4208/cicp.OA-2023-0300

3.1 Introduction 53

Chapter’s contents
3.1 Introduction . 53
3.2 Parameterized Hamiltonian systems and reduction 55

3.2.1 Parameterized Hamiltonian dynamics 55

3.2.2 Hamiltonian reduced order modeling 57

3.3 A nonlinear Hamiltonian reduction method 58
3.3.1 Reduction with an Auto Encoder (AE) 58

3.3.2 Reduced model with a Hamiltonian Neural Network (HNN) 59

3.3.3 Strong coupling of the neural networks 61

3.3.4 Training hyper-parameters . 61

3.3.5 Numerical complexity . 63

3.4 Numerical results . 64
3.4.1 Wave equations . 64

3.4.2 1D shallow water system . 72

3.4.3 2D shallow water system . 77

3.5 Conclusion . 83
References . 84

3.1 Introduction

Hamiltonian reduced order modeling techniques have been successfully developed in order to
perform accelerated numerical simulations of some parameterized Hamiltonian models of large
dimension [2, 3, 4]. The spatial discretization of some wave-like partial differential equations
gives rise to very large such Hamiltonian systems. Reduced order models can be essential for
real-time simulations or when a large number of simulation instances are required as part of a
control, optimization or uncertainty quantification algorithm. Starting from the initial model, a
large differential system, the methods consist into constructing a differential system of a smaller
size that can produce valid approximate solutions for a predefined range of times and parameters.
Many physical models have a Hamiltonian structure and this gives the system a certain number
of geometrical properties like the conservation of energy and the symplecticity of the phase space
flows. In particular, the preservation of this structure at the discrete level enables to ensure large-
time stability of the numerical simulations [5]. In order to build consistent and robust reduced
models, it is therefore interesting to preserve this Hamiltonian structure through the reduction.

The construction of reduced models can be divided in two steps: (i) find a so-called pair of
encoder and decoder operators that goes from the full to the reduced variables and inversely; (ii)
identify the dynamics followed by the reduced variables. The construction of the encoder and
decoder operators relies on a large number of data produced by numerical simulations in the
range of time and parameters of interest.

The first approach to reduce a large Hamiltonian system relies on a linear approximation:
the solutions manifold is approximated with a symplectic vector space of small dimension [2].
The encoder is here a linear mapping, which is also constructed to be symplectic so that the
Hamiltonian structure is preserved into the reduced model. Such symplectic mapping can be
constructed from data through greedy algorithms [6] or through a Singular Value Decomposition
(SVD) methodology: this is the Proper Symplectic Decomposition (PSD) proposed in [2]. In
this work, several algorithms have been proposed to define approximated optimal symplectic
mappings: for instance, the cotangent-lift algorithm devise a symplectic mapping which is also

54 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

orthogonal and have a block diagonal structure. Then the reduced model is obtained using the
Galerkin projection method: the model is constructed by supposing that a symplectic projection
of the residual vanishes, where the residual stands for the error obtained after replacing the
original variables by the decoded reduced variables.

Such linear reductions, however, can hardly handle nonlinear dynamics: this is the case for
convection-dominated or nonlinear wave-like problems for which the solution manifold is badly
approximated by hyperplanes. In order to build more expressive reduced models, one possibility
is to consider time adaptive reduced methods [7, 8]. Another widely investigated possibility is
to consider nonlinear reduction methods.

Regarding the construction of nonlinear encoder-decoder operators, a first class of methods
rely on manifold learning techniques [9, 10]. Such methods are based on the geometrical analysis
of the neighbors graph of the data thanks to the computation of geodesic distances (ISOMAP
method, [11]), of eigenfunctions of the graph Laplacian (EigenMaps method [12]) or of diffusion
processes (DiffusionMaps method [13]). This provides reduced variables for each data that can
be further interpolated using the Nyström formula [14].

Since the explosion of deep learning in the early 2010s, new dimension reduction methods
grounded on neural networks have been developed. The convolutional autoencoder architecture
[15] seems particularly appropriate since its very purpose is to determine latent variables: the
neural network is indeed divided into an encoder part and decoder part and they are trained si-
multaneously so that the sequence of encoder and decoder is close to the identity map. This was
originally developed for image generation, but has been also used for reduced order modeling for
models coming from the spatial discretization of partial differential equations on a grid [16, 17,
18]. Indeed, convolutional neural networks have proved particularly effective to extract multi-
scale information of grid-structured data. Secondly, they involve far less parameters than their
dense counterparts, especially when the input size of the neural network is large. In [19], the au-
thors use autoencoder neural networks for Hamiltonian reduction: the encoder and the decoder
are weakly constrained to be symplectic thanks to a penalization term in the cost functional.

Once nonlinear encoders and decoders have been devised from data, the dynamics of the
reduced variables still has to be determined. Two strategies can be considered. The first one
relies on a Galerkin projection of the Hamiltonian system as in the linear case [19]. Note that the
reduced model is indeed Hamiltonian provided the decoder is a symplectic map. However, the
reduced model still requires the evaluation of the vector field in the original large dimension space
of size 2N : this is a well-known difficulty in nonlinear reduction. To overcome this difficulty,
hyper-reduction methods have been proposed like the discrete empirical interpolation method
(DEIM) [20]. This method has to be adapted to not destroy the geometric structure of the full
order model as in [8, 21, 22] where the authors propose to apply a DEIM algorithm to the gradient
of the Hamiltonian thus, with some additional strategies, preserve the geometric structure of the
full order model.

Another approach is to learn about the dynamics of the reduced variables using a neural
network: given the initial state, the neural network provides the full trajectory. As the learn-
ing is done directly in the reduced dimension, the obtained reduced model does not require an
evaluation of nonlinear terms in the original variables: this is a clear advantage of the method
compared with projection-based ones. The reduced dynamics can be captured for instance by Re-
current Neural Networks (RNNs), Long Short Term Memory (LSTM) neural networks [23], or by
fully connected networks [24]. This has also been considered as correction of the Galerkin-type
reduced models [25].

Here we consider another strategy which consists in learning the vector field that generates
the observed reduced dynamics. The neural network is trained so as to minimize its deviation
from the finite difference time derivative of the reduced data obtained after encoding. As we
aim at conserving the Hamiltonian structure at the reduced level, the vector field is further sup-

3.2 Parameterized Hamiltonian systems and reduction 55

posed to be associated with a reduced Hamiltonian function. Therefore, we can learn directly the
Hamiltonian function instead of the vector field. This is a so-called Hamiltonian Neural Network
(HNN) strategy proposed in [26] where a symplectic time integrator is used. We also note that
neural networks methods has also recently be used to learn hidden or reduced dynamics which
also involve dissipation [27, 28, 29, 30].

The present paper proposes to combine an autoencoder strategy for the encoding-decoding
part and a HNN method to learn the reduced dynamics: this will be referred to as the AE-HNN
method. Note that there is a priori no reason for the autoencoder neural networks to spon-
taneously provide reduced variables compatible with Hamiltonian dynamics. Therefore, some
constraints on the autoencoder have to be added. This can be done by imposing symplecticity
weakly as in [19], where a penalization term of the symplectic constraint is added to the loss
function. Here, we propose instead to train it simultaneously with the HNN. With this joint
training, the autoencoder will gradually converge to a set of reduced variables compatible with
a Hamiltonian system. Of course, this means that the loss functions associated with each neural
network must be weighted judiciously during training. Note that such a joint training of the
encoding-decoding operators and the reduce dynamics have been explored in [24, 27], but with-
out considering Hamiltonian structures for the first and without symplectic time integrator for
the second.

The outline of the article is as follows. In Section 3.2, we introduce parameterized Hamilto-
nian systems as well as the main steps for the construction of reduced order models. Section 3.3
then presents the nonlinear AE-HNN reduction method. In particular we describe the architec-
tures and the loss functions used for the trainings. Finally, Section 3.4 is devoted to the numerical
results: we apply our reduction method on the Hamiltonian systems obtained after spatial dis-
cretization of linear, nonlinear wave equations and a shallow water system and compare it with
the linear PSD reduction technique.

3.2 Parameterized Hamiltonian systems and reduction

In this section, we introduce the notations used for the parameterized Hamiltonian systems and
the main steps for the construction of a reduced model.

In the following, we often write vectors of interest with bold script letters, operators with
capital italic letters, with their parameters as indices, and overline quantities when related to the
reduced model.

3.2.1 Parameterized Hamiltonian dynamics

We consider a parameterized autonomous Hamiltonian system, whose solution, y(t;µ) ∈ R2N

with N ∈ N∗, depends on time t ∈ [0, T], with T > 0, and on a parameter µ ∈ Ξ ⊂ Rd, with
d ∈ N. The dynamics derive from a given Hamiltonian function H : R2N × Ξ→ R and writes

d

dt
y(t;µ) = J2N ∇yH (y(t;µ);µ) , in (0, T],

y(0;µ) = yinit(µ),
(3.1)

where yinit(µ) ∈ R2N is a given initial condition and J2N refers to the canonical symplectic
matrix

J2N =

(
0N IN
−IN 0N

)
,

with IN the identity matrix of dimension N .

56 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

Introducing the canonical coordinates y = (q,p)T , the system becomes:

d

dt
q(t;µ) = ∇pH (q,p;µ) , in (0, T],

d

dt
p(t;µ) = −∇qH (q,p;µ) , in (0, T],

q(0;µ) = qinit(µ),

p(0;µ) = pinit(µ),

(3.2)

with qinit,pinit ∈ RN such that yinit = (qinit,pinit)
T . A key property of such systems is that the

associated flow is symplectic, meaning that ϕt (yinit(µ);µ) = y(t;µ) satisfies the relation

(∇yϕt (yinit(µ);µ))
T J2N (∇yϕt (yinit(µ);µ)) = J2N .

One consequence is that the Hamiltonian H is preserved along the flow

∀t ∈ (0, T], µ ∈ Ξ, H (y(t;µ);µ) = H (yinit(µ);µ) ,

which is of particular importance when considering physical systems.
In this work, we are specifically interested in Hamiltonian systems resulting from the space

discretization of one-dimensional and two-dimensional wave-type equations. In such systems,
q ∈ RN refers to the height of the wave at grid points and p ∈ RN to the velocity of the wave
also at grid points. Examples will be detailed in the numerical section.

In order to provide numerical approximations of the solution, specific numerical schemes
have been developed to ensure the symplectic property at the discrete level [5]. These schemes
also guarantee large time stability of the numerical solutions. Here we consider the standard
second-order Störmer-Verlet scheme. Denoting yn

µ =
(
qn
µ,p

n
µ

)T ∈ R2N the approximate solu-
tion at time tn = n∆t, with time step ∆t > 0, one iteration of the scheme is defined by:

p
n+

1
2

µ = pn
µ − 1

2∆t∇qH

(
qn
µ,p

n+
1
2

µ ;µ

)
,

qn+1
µ = q

n+
1
2

µ +∆t

[
∇pH

(
qn
µ,p

n+
1
2

µ ;µ

)
+∇pH

(
qn+1
µ ,p

n+
1
2

µ ;µ

)]
,

pn+1
µ = p

n+
1
2

µ − 1
2∆t∇qH

(
qn+1
µ ,p

n+
1
2

µ ;µ

)
.

(3.3)

Under the further assumption that the Hamiltonian H is separable, i.e. is the sum of a function
depending only q and another depending only p:

H (y;µ) = H 1(q;µ) + H 2(p;µ),

the implicit first two steps of (3.3) become explicit and the scheme simplifies into:

p
n+

1
2

µ = pn
µ − 1

2∆t∇qH 1
(
qn
µ;µ
)
,

qn+1
µ = qn

µ +∆t∇pH 2

(
p
n+

1
2

µ ;µ

)
,

pn+1
µ = p

n+
1
2

µ − 1
2∆t∇qH 1

(
qn+1
µ ;µ

)
.

(3.4)

3.2 Parameterized Hamiltonian systems and reduction 57

3.2.2 Hamiltonian reduced order modeling

Solving Hamiltonian systems with large dimension 2N ≫ 1 numerically can be relatively costly,
and this is especially true when we want to solve a large number of them for a parametric study,
for example. Therefore, methods have been developed in order to construct reduced Hamiltonian
systems of smaller size 2K ≪ 2N , which capture the main dynamics for a range of times t and
reduction parameters µ.

We first have to define an appropriate change of variable. To do that, we search for a 2K-
dimensional trial manifold M̂ that approximates well the solution manifold

M = {y(t;µ) with t ∈ [0, T], µ ∈ Ξ} ⊂ R2N

formed by the values taken by the solutions of the differential equation (3.1). The solution mani-
fold structure results from the Cauchy-Lipschitz (Picard-Lindelöf) theorem with parameters un-
der some regularity assumptions of the Hamiltonian. The trial manifold M̂ is defined thanks to
a so-called decoding operator Dθd : R2K → R2N :

M̂ =
{
Dθd (ȳ) with ȳ ∈ R2K

}
⊂ R2N .

We also consider a pseudo-inverse operator Eθe : R2N → R2K , called the encoder, which satisfies
the relation

Eθe ◦ Dθd = IdR2K .

To determine Dθd and Eθe , we therefore ask for the projection operator Dθd ◦ Eθe onto M̂ to be
close to the identity on a data set U ⊂M:

∀u ∈ U, Dθd ◦ Eθe(u) ≈ u. (3.5)

The data set U is composed of snapshots of the solutions at different times and various parame-
ters, obtained with the symplectic algorithm defined above in (3.3); it writes

U =
{
y0
µ1
, . . . ,yM

µ1
, . . . ,y0

µP
, . . . ,yM

µP

}
,

where M ∈ N∗ is the number of time-step chosen and P ∈ N∗ the number of sampled parame-
ters.

In addition to these approximation properties, we also ask for the reduced variables,

ȳ(t;µ) = Eθe(y(t;µ)) ∈ R2K ,

to follow a reduced Hamiltonian dynamics:
d

dt
ȳ(t;µ) = J2K∇ȳH θh(ȳ(t;µ);µ), in (0, T],

ȳ(0;µ) = Eθe(yinit(µ)),
(3.6)

where H θh : R2K × Ξ→ R is a reduced Hamiltonian to be built.
The most common approach for Hamiltonian reduced order modeling is called the Proper

Symplectic Decomposition (PSD) [2]. This method is well described in Chapter 1, Sec. 2.3.1.
Although efficient for linear dynamics, it fails into reducing nonlinear ones. This is why several
nonlinear Hamiltonian reduction techniques have been developed [19, 8]. In the next section,
we present a strategy based on the coupling of an autoencoder (AE) and a Hamiltonian Neural
Network (HNN) method.

58 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

3.3 A nonlinear Hamiltonian reduction method

The method proposed in this work consists in constructing the Hamiltonian reduced model via
neural networks. More precisely, we aim at defining the following three neural networks:

• a decoder Dθd : R2K → R2N ,

• an encoder Eθe : R2N → R2K ,

• a reduced HamiltonianHθh : R2K × Ξ→ R,

where (θd, θe, θh) stands for their parameters, such that the resulting reduced dynamics provides
a good approximation of the initial one. An autoencoder strategy will be used to define Dθd and
Eθe while a Hamiltonian Neural Network will be considered forHθh . Note that the encoder and
decoder are not enforced to be symplectic but the reduced model is.

Figure 3.1 illustrates how the reduced model is expected to be used for prediction. The initial
conditiony(t = 0;µ) is converted by the encoder Eθe to the reduced initial condition ȳ(t = 0;µ).
Then several iterations of the Störmer-Verlet scheme with the reduced Hamiltonian Hθh are
performed to obtain an approximated reduced solution ȳ(t = T ;µ) at time T . Finally, by using
the decoder Dθd , the latter is transformed into ŷ(t = T ;µ) ≈ y(t = T ;µ). Note parameter µ
has to be supplied to the Hamiltonian function.

In order to determine the appropriate parameters of the three neural networks Dθd , Eθe and
Hθh , we have to define both their architectures and the loss functions used for their training.
This section focuses on the latter.

y
(t

=
0)

µ

y
(t

=
0)

µ
+

/

y
(t

=
T
)

ŷ
(t

=
T
)

Eθe DθdHθh

Figure 3.1: Prediction using the reduced model. The closed loop in the middle refers to the
application of several iterations of the Störmer-Verlet scheme.

3.3.1 Reduction with an Auto Encoder (AE)

An autoencoder (AE) is a classical architecture of neural networks to find a reduced representa-
tion of data [15]. It is composed of two neural networks,Dθd and Eθe , which are trained together
such as to make the projection operator Dθd ◦ Eθe the closest to the identity map on the training
data set U . Therefore, the AE is trained so as to minimize the following loss

LAE(θe, θd) =
∑
y∈U

∥y −Dθd (Eθe (y))∥
2
2 . (3.7)

3.3 A nonlinear Hamiltonian reduction method 59

To account for the particular structure of y made of coordinates and momenta, the encoder input
is a tensor of size (N, 2). This AE will be referred to as the bichannel AE.

Another choice would be to define two separate autoencoders for coordinates and momenta:
the coordinates AE is denoted (E1θe,1,D

1
θd,1

) and the momenta AE is denoted (E2θe,2,D
2
θd,2

); each
encoder input has shape (N, 1). The AEs are trained by minimizing the loss:

Lsplit,AE(θe, θd) =
∑

(q,p)∈U

∥∥q−D1
θd,1

(
E1θe,1 (q)

)∥∥2
2
+
∥∥p−D2

θd,2

(
E2θe,2 (p)

)∥∥2
2
.

These AEs will be called the split AE. This split AE will be used to preserve the separability
property of the Hamiltonian, where applicable (see Rem. 3.3.2 below).

The architectures of the neural networks are chosen specifically to the Hamiltonian systems
in consideration. In this work, we focus on systems resulting from the spatial discretization of
wave-like equations: networks will be more efficient if they take into account the spatial structure
of the data. Consequently, the encoder Eθe is first composed of several pairs of convolution layer
and down-sampling before ending with some dense layers, as depicted in Figure 3.2. As usual
for AE networks, the decoder is constructed in a mirror way, i.e. starting with some dense layers
and then ending with pairs of up-sampling and convolution layers in reversed size order.

More precisely, the encoder takes as input a vector y = (q,p) and starts with a succession of
so-called encoder blocks, made of a stride 1 convolution with kernel size 3 and a down-sampling
step (stride 2 convolution with kernel size 2). An encoder block results in an output that has
twice as many channels and half as many rows as the input. After possibly composing several
encoder blocks, we add a last convolution layer with kernel size 3 and then a flattening opera-
tion by concatenating every channels. Then, dense layers are added until reaching the desired
reduced dimension 2K of ȳ. As already said, the decoder is built as a mirror: the flattening
operation is replaced by unflattening and the encoder blocks by the decoder blocks made of an
up-sampling layer of size 2 smoothed out with a convolution with kernel size 2 and a convolution
layer with kernel size 3, which symmetrically results in output that has half as many channels
and twice as many rows as the input. The architecture of the autoencoder is thus defined with the
number of encoder and decoder blocks and the dense layer sizes for both encoder and decoder.
Figure 3.2 illustrates an example of autoencoder architecture with one block for the encoder and
one block for the decoder. This AE architecture can easily be extended to 2D systems using
two-dimensional convolutionlayers and up and down-sampling with appropriate dimensions.

3.3.2 Reduced model with a Hamiltonian Neural Network (HNN)

The AE constructed in the previous section enables us to define the reduced trajectories:

ȳ(t;µ) = Eθe(y(t;µ)). (3.8)

To obtain the dynamics of these reduced variables, we propose to use a Hamiltonian Neural
Network strategy [26]. We thus look for a neural network function H θh , parameterized by θh,
such that:

d

dt
ȳ(t;µ) = J2K∇ȳH θh(ȳ(t;µ);µ).

Note that the Hamiltonian is supposed to depend on parameter µ. We remind that µ ∈ Ξ stands
for known parameters of the model, unlike θh that is the neural networks parameters to be
learnt. The architecture of the reduced Hamiltonian is a classical MLP neural network. The size
of the neural network is chosen to be small so that the reduced model remains competitive. This
reduced dynamics are in practice defined through a time discretization. We therefore introduce
the prediction operator:

Ps
(
ȳ;H θh,µ

)
,

60 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

y

y

ŷ

(N
,2
)

(N
,2
)

(N
,2
)

(N
,2
)

(1 2
N
,4
)

(1 2
N
,4
)

(1 2
N
,4
)

(1 2
N
,4
)

(2
N
,)

(2
N
,)

(2
K
,)

fla
tt

en

un
fla

tt
en

de
ns

e
la

ye
rs

de
ns

e
la

ye
rs

∗

∗ ∗

∗

⇑⇓

encoder Eθe decoder Dθd

en
co

de
r

bl
oc

k

de
co

de
r

bl
oc

k

Figure 3.2: Autoencoder architecture: encoder in blue, decoder in green. Symbols. ∗: stride
1 convolution with periodic padding, ⇓ down-sampling (stride 2 convolution), ⇑: up-sampling
(repeat once each value along the last axis then smooth it with a kernel size 2 convolution).

which consists in performing s ∈ N∗ iterations of the Störmer-Verlet scheme, defined in (3.3),
starting from ȳ and where H θh,µ stands for the Hamiltonian function H θh(.;µ). The number
of steps s considered in this prediction is called the watch duration. This is a hyper-parameter of
the method that has to be set. The parameters of the reduced Hamiltonian are finally obtained
by minimizing the following loss:

Lspred(θe, θh) =
∑

yn
µ ,y

n+s
µ ∈U

∥∥ȳn+s
µ − Ps

(
ȳn
µ;H θh,µ

)∥∥2
2

(3.9)

where yn
µ,y

n+s
µ ∈ U denote the sampling of random pairs (yn

µ,y
n+s
µ) on the data set U . In other

words, random time series of size s are sampled and only the data at both ends are considered.
This loss thus compares the reduced trajectories (3.8) with the ones obtained with the reduced
Hamiltonian. The name of the loss function, “pred”, refers to the prediction in the reduced vari-
ables. Note that the encoder neural network is required to obtain the reduced data ȳ = Eθe(y)
and this is why the loss also depends on θe. This kind of loss function, based on a model, has
been widely used in physics based deep learning methods [31].

Then, we constrain the reduced trajectories to preserve the reduced Hamiltonian with the
following loss function :

Lsstab(θe, θh) =
∑

yn
µ ,y

n+s
µ ∈U

∥∥H θh,µ

(
ȳn+s
µ

)
−H θh,µ

(
ȳn
µ

)∥∥2
2
, (3.10)

where ȳn+s
µ and ȳn

µ are still obtained using the encoder Eθe . The aim is to ensure some stability
of the reduced model, hence its name “stab” . At first sight, this loss seems redundant with the
prediction-reduced loss since using Störmer-Verlet schemes in the prediction step ensures that
the reduced Hamiltonian is preserved at least approximately. Hence if the prediction-reduced loss
becomes small, so does the stability loss. However, this additional loss may help the coupling to
converge.

3.3 A nonlinear Hamiltonian reduction method 61

Remark. The separability of the Hamiltonian could be an interesting property to preserve at the
reduced level. Using a split AE to learn separately reduced coordinates and momenta, a separable
reduced Hamiltonian can be designed:

H θh(ȳ;µ) = H
1
θh
(q̄;µ) + H

2
θh
(p̄;µ),

involving two neural networks. This will be referred to as the split HNN. The Störmer-Verlet scheme
would then have a cost of an explicit scheme. Note however that this is not a crucial gain since the
reduced models under consideration have small sizes.

Remark. The HNN will produce an approximation of the Hamiltonian, whose associated flow would
have generated the discrete solution we would like to fit. Note also that the data used to fit the HNN
was obtained after encoding a discrete solution of the initial dynamics of the Hamiltonian. Thus, even
this discrete dynamics is an approximation to the encoded continuous Hamiltonian flow. However,
from a practical point of view, it is not essential to capture the underlying continuous dynamics
(at the reduced level): the objective is rather to obtain a method capable of reproducing the discrete
dynamics, with good geometric properties, for a given time step. So, in practice, we actually do not
vary the time step.

3.3.3 Strong coupling of the neural networks

The prediction-reduced and the stability-reduced losses (3.9) already introduce a coupling be-
tween the encoder neural networks and the reduced Hamiltonian one. To make the coupling
stronger, we could ask for the trajectories in the initial variables to be well recovered. This is
why we introduce the following fourth loss function named “ pred ” which refers to the model
prediction in the FOM space:

Lspred(θe, θd, θh) =
∑

yn
µ ,y

n+s
µ ∈U

∥∥yn+s
µ −Dθd

(
Ps
(
ȳn
µ;H θh,µ

))∥∥2
2
. (3.11)

This is the only loss function that couples the three neural networks. It compares the trajectories
in the initial variables with the full process of encoding, predicting in reduced variables over s
iterations and then decoding.

To sum up, we use four different loss functions LAE,Lspred,Lstab and Lspred, given by (3.7)-
(3.9)-(3.10)-(3.11) that couple both AE and HNN neural networks. The training aims to find the
parameters (θe, θd, θh) that are a solution to the minimization problem:

min
θe,θd,θh

ωAE LAE(θe, θd) + ωpred Lspred(θe, θh) + ωstab Lsstab(θe, θh) + ωpred Lspred(θe, θd, θh),

where ωAE, ωpred, ωstab, ωpred are positive weights: these are hyper-parameters of the method.
The four loss functions interact during training and possibly compete with each other. Note that
in the end, the only loss value that really quantifies the quality of the reduction and prediction
process is the one corresponding toLspred. The other loss functions are only useful in the training
process.

3.3.4 Training hyper-parameters

In addition to the parameters of the neural networks (number of layers, size of the layers), the
training of the model also depends on several hyper-parameters.

Reduced dimension K. In classical reduction method, the larger K , the more accurate the
reduced model. Regarding the AE-HNN method, as the approximation is truly nonlinear, there
may be no benefit increasing the reduced dimension. In practice, the minimum possible reduced
dimension should be equal to the number of variable parameters in the model.

62 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

Watch duration in predictions. One of the hyper-parameter to set is the watch duration s in
the loss functions Lsstab, Lspred and Lspred that make predictions. This quantity should be not too
small to capture the dynamics but also not too large as the computation of the gradients of the
associated loss functions may generate vanishing gradient problems. In the numerical setting,
the watch duration will be typically set to s = 16.

Loss functions weights. Losses weights have been chosen experimentally as follows:

ωpred = 0.1, ωAE = 0.1, ωpred = 80, ωstab = 7× 10−4.

A typical loss functions history is shown in Figure 3.3b: each loss function is represented mul-
tiplied by its weight. We first notice that the prediction loss function Lspred and the autoencoder
loss functionLAE have the same magnitude and actually are almost equal: the error in prediction
is mostly due to the encoder-decoder step. We keep this behavior by assigning them the same
weight ωpred = ωAE = 0.1. This value is determined in proportion to the learning rate chosen
below. As the prediction loss function Lspred is the most important one for the applications, we
want it to dominate over the others. We therefore set the weight ωpred = 80 so that the weighted
reduced prediction loss function ωpredLspred is about 10 times smaller than the previous two. Fi-
nally, we want the weighted reduced stability loss function ωstabLsstab to act as a quality control
that remains small compared to the other loss functions. To this end, we set ωstab = 7× 10−4 in
order to make it about 100 times smaller than the weighted reduced prediction loss.

Gradient descent. An Adam optimizer [32] is used for the training. The learning rate follows
the following rule:

ρk = (0.99)k/150 0.001.

where the division operator stands here for the integer division, and k is the train step. Thus,
the learning rate is constant over 150 iterations, then decreases. It has an exponential decay with
the shape of a staircase. In addition, we can reset this decay i.e. set k = 0 at any time if we
notice that the loss is reaching a plateau. The main goal of this reset strategy is to escape poor
local minima of the minimization problem with a sudden large learning rate. On Figure 3.3a is
shown a typical training and validation loss history as functions of the training step k as well as
the learning rate at each step. The resets enable us to make the training loss go from 1×10−3

to 5×10−4 and then to 1×10−4. With the loss functions weights above-mentioned, we consider
1×10−5 to be a correct plateau value to stop the training process. The training phase lasts from
1 to 3 hours on a shared NVIDIA Tesla T4 GPU.

Pre-processing Data pre-processing is required to optimize the learning process. Here we use
usual standardization techniques.

3.3 A nonlinear Hamiltonian reduction method 63

(a) Training loss function (blue) and validation loss function (red) as functions of the training step.

(b) All the weighted loss functions as functions of the training step.

Figure 3.3: Example of loss functions history during a training, overlaid with the evolution of the
learning rate (green).

3.3.5 Numerical complexity

Here, we briefly compare the computational gain in using the reduced models in the online phase.
For the original system, the main cost comes from evaluating the N components of the Hamil-
tonian gradient. If we denote by α the evaluation complexity for one component, the com-
putational cost is therefore about O(Nα). When using the reduced PSD model, an additional
cost arises from the linear encoding-decoding operations and the computational cost is equal to
O(Nα +NK). The use of the DEIM-PSD method, as presented in Chapter 1, Sec. 2.3.3, allows
us to rely only on m components of the gradient of the Hamiltonian and the computation time
is therefore about O(mα +mK), which no longer depends on the N dimension. On the other
hand, the reduced HNN model relies on the evaluation of the gradient of the neural network
Hamiltonian, whose evaluation complexity is, to a first approximation, equivalent to a direct
evaluation. Thus, if we denote by nk the width (i.e. the number of neurons) of the k-th layer
and only count the linear operations between the layers, the total complexity of the evaluation is
about O(

∑L
k=1 n

(k−1)n(k)). Therefore, if the width is of the order of K2, the complexity of the
evaluation is of the order of O(K4). Depending on the values of α and m, the reduced model
AE-HNN can be competitive. It should also be noted that an additional advantage of the AE-HNN
reduced model is that it can naturally be evaluated for a batch of parameters in parallel.

64 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

3.4 Numerical results

This section is devoted to the numerical results obtained with the proposed Hamiltonian reduc-
tion method. We consider one-dimensional discretizations of three wave-type equations: the
linear wave equation, the nonlinear wave equation and the shallow water equation.

3.4.1 Wave equations

We introduce a parameterized one-dimensional wave equation:
∂ttu(x, t;µ)− µa ∂x (w

′ (∂xu(x, t;µ), µb)) + g′(u(x, t;µ), µc) = 0, in Ω1 × (0, T],

u(x, 0;µ) = uinit(x;µ), in Ω1,

∂tu(x, 0;µ) = vinit(x;µ), in Ω1,

(3.12)

complemented with periodic boundary conditions. The solution u(x, t;µ) represents the vertical
displacement of a string over the interval Ω1. The model depends on two given functions w, g :
R→ R and three parameters: µ = (µa, µb, µc)

T ∈ Ξ ⊂ R3
+.

Defining the vertical displacement velocity v(x, t;µ) = ∂tu(x, t;µ), Equation (3.12) can be
reformulated as a first order in time system:

∂tu(x, t;µ)− v(x, t;µ) = 0, in Ω1 × (0, T],

∂tv(x, t;µ) + µa∂x (w
′ (∂xu(x, t;µ), µb)) + g′(u(x, t;µ), µc) = 0, in Ω1 × (0, T]

u(x, 0;µ) = uinit(x;µ), in Ω1,

v(x, 0;µ) = vinit(x;µ), in Ω1.

Then, we consider a spatial finite difference discretization of this system. Introducing a uniform
mesh of the interval Ω1, with N cells, space step ∆x = 1/(N − 1) and nodes xi = i∆x, for
i ∈ {0, . . . , N−1}, the approximate solution (u,v) = (ui(t;µ), vi(t;µ))i∈{0,...,N−1} ∈ RN×RN

satisfies the following system:

d

dt
ui(t;µ) = vi(t;µ), in (0, T],

d

dt
vi(t;µ) = −

µa

∆x

(
w′
(
ui+1 − ui

∆x
, µb

)
− w′

(
ui − ui−1

∆x
, µb

))
+ g′(ui, µc),

in (0, T],

ui(0;µ) = uinit(xi;µ),

vi(0;µ) = vinit(xi;µ).

(3.13)

These equations actually form a Hamiltonian system of size 2N , with a separable Hamilto-
nian function ((u,v) stands for variables (q,p)) given by

H (u,v;µ) = H 1(u;µ) + H 2(v;µ), (3.14)

with

H 1(u;µ) = ∆x

N−1∑
i=0

(
µaw

(
ui+1 − ui

∆x
, µb

)
+ µaw

(
ui − ui−1

∆x
, µb

)
+ g(ui, µc)

)
,

H 2(v;µ) =
1

2
∆x

N−1∑
i=0

v2i .

In the following, we test the AE-HNN method for two choices of functions w and g. The same
hyper-parameters are used in both test-cases. They are summarized in Table 3.1.

3.4 Numerical results 65

wave equations shallow water 1D shallow water 2D

AE type split bichannel bichannel
nb of convolution blocks
(encoder)

4 4 4

dense layers (encoder) [256, 128, 64, 32] [256, 128, 64, 32] [512, 256, 128, 64, 32]
activation functions ELU swish ELU

HNN type split standard standard
dense layers [24, 12, 12, 12, 6] [40, 20, 20, 20, 10] [96, 48, 48, 48, 24]
activation functions tanh swish tanh

watch duration s 16 48 16

Table 3.1: Hyper-parameters. Activation functions are used except for the last layer of the neural
networks. ELU refers to the function elu(x) = x1x>0 + (ex − 1)1x<0 and swish to the function
swish(x) = x/(1 + e−x). For the autoencoder (AE), the number of convolution blocks and the
sizes of the hidden of layers are those of the encoder. The decoder is constructed in a mirror way.

3.4.1.1 Reduction of the linear wave equation

Here we consider the linear wave equation:{
∂ttu(x, t;µ)− µa ∂xxu(x, t;µ) = 0, in Ω1 × (0, T],

u(x, 0;µ) = uinit(x;µ), in Ω1.

corresponding to w(x, µb) =
1
2x

2 and g(x, µc) = 0. In particular, we conserve only one param-
eter µa ∈ [0.2, 0.6], which corresponds to the square of the wave velocity. The initial condition
is taken equal to:

uinit(x;µ) = h(10|x− 1
2 |), vinit(x;µ) = 0. (3.15)

where h is the compactly supported (single bump) function:

h(r) =
(
1− 3

2r
2 + 3

4r
3
)
1Ω1(r) +

1
4(2− r)31(1,2](r). (3.16)

The initial condition can be observed in Figure 3.5a. We consider N = 1024 discretization points,
set T = 0.4 and ∆t = 1×10−4. In Figure 3.4, we observe the solution at final time T = 0.4 as a
function of µa. Each color corresponds to a different value of µa. As we can expect, large values
of µa generate waves farther from the initial condition.

Figure 3.4: (Linear wave) Solution (u,v) at final time T = 0.4 for various parameters µ = µa

To train the model, we consider numerical solutions obtained with P = 20 different values
µa taken regularly spaced in the interval [0.2, 0.6]. The validation set is obtained considering
numerical solutions with 6 different parameter values in the same interval and 128 random pairs

66 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

(yn,yn+s) for each validation parameter. The final value of the validation loss functions are
given in Table 3.2.

Then we test the obtained model on 3 test values:

µa = 0.2385 (test 1), µa = 0.3798 (test 2), µa = 0.5428 (test 3).

To evaluate our model, we compute the relative L2 discrete error between the reference solution
uref and the reduced model prediction upred:

err =

∑M
n=1∆t

(∑N
i=1∆x (unref,i − unpred,i)

2
)

∑M
n=1∆t

(∑N
i=1∆x (unpred,i)

2
) ,

where M is the total number of time steps. Table 3.3 compares the errors of the AE-HNN method
with the ones obtained with the PSD and the POD for different reduced dimensions K . We have
colored in blue the cells of the PSD and POD methods with an error lower than the AE-HNN for
K = 1 (in yellow). As shown in Table 3.3, we succeed in capturing the dynamics with a AE-
HNN model of dimension K = 1 with a relative error equal to 1×10−2. To obtain comparable
performance, K = 6 modes are needed for the PSD and K = 10 modes for the POD. The
reduction capability of the PSD is nevertheless quite good and this is due to the linearity of the
problem. Also, the POD results show that taking into account the symplecticity of the problem
enables us to improve significantly the reduction.

Figure 3.5 shows the simulations of the reduced models for both the AE-HNN (K = 1) and
the PSD (K = 6) methods at different times for test 3. As expected, both methods provide good
results.

Lspred LAE Lspred Lsstab

linear wave 8.25×10−4 8.19×10−4 2.52×10−7 1.54×10−5

nonlinear wave 3.47×10−5 3.53×10−5 1.84×10−8 1.98×10−6

shallow water 1D 6.49×10−5 6.51×10−5 7.70×10−9 1.19×10−7

shallow water 2D 9.19×10−5 9.11×10−5 3.80×10−8 3.29×10−7

Table 3.2: Values of the loss functions on validation data for the different test-cases.

test 1 test 2 test 3
error u error v error u error v error u error v

AE-HNN
K = 1 1.20×10−2 6.05×10−2 7.07×10−3 5.84×10−2 1.43×10−2 8.09×10−2

K = 2 6.71×10−3 2.24×10−2 1.48×10−2 3.99×10−2 9.71×10−3 2.30×10−2

K = 5 1.67×10−2 2.54×10−2 1.48×10−2 2.90×10−2 1.79×10−2 3.55×10−2

PSD
K = 4 6.70×10−1 3.67×10−1 7.01×10−1 8.69×10−1 7.30×10−1 3.65×10−1

K = 5 1.28×10−1 1.34×10−1 1.60×10−1 1.43×10−1 1.91×10−1 1.52×10−1

K = 6 4.80×10−3 2.11×10−2 5.52×10−2 2.14×10−2 5.89×10−3 2.23×10−2

POD
K = 6 3.07×10−2 1.08×10−1 1.30×10−2 2.67×10−2 6.00×10−2 1.54×10−1

K = 8 1.28×10−2 4.89×10−2 1.12×10−2 2.66×10−2 3.96×10−2 7.05×10−2

K = 10 9.78×10−3 4.36×10−2 2.30×10−3 9.07×10−3 1.58×10−2 5.93×10−2

Table 3.3: (Linear wave) Relative L2 errors for different reduced dimensions K . Blue cells corre-
spond to POD and PSD simulations with lower errors than the corresponding AE-HNN simula-
tion in yellow.

3.4 Numerical results 67

(a) AE-HNN, K = 1

(b) PSD, K = 6

Figure 3.5: (Linear wave) Solution (u,v) at different times on test 3, reference solution (full lines)
and prediction (dashed lines).

3.4.1.2 Reduction of nonlinear wave equation

Now, we consider the following nonlinear wave equations over the domain Ω1 = [0, 1]:


∂ttu(x, t;µ)− µa ∂xxu(x, t;µ)− µb ∂x (cos(µb∂xu(x, t;µ)))

+ 30µcx
2 = 0,

in Ω1 × (0, T],

u(x, 0;µ) = uinit(x;µ), in Ω1.

corresponding to w(x, µb) = 1
2x

2 + sin (µbx) and g(x, µc) = 10µcx
3. There are three

parameters µa ∈ [0.2, 0.6], µb ∈ [0.025, 0.5] and µc ∈ [0.4, 2.4]. The initial condition is given by
Eq. (3.15)-(3.16).

The number of discretization points is still N = 1024 but the final time is taken equal to
T = 0.3 and the time step ∆t = 1×10−4. These parameters have been chosen so that the
numerical simulations remain stable despite the strong nonlinearities. In Figure 3.6, we observe
the numerical solutions at final time for several sets of parameters.

Training data are obtained using P = 20 different values (µa, µb, µc) regularly spaced in the
segment [(0.2, 0.025, 0.4), (0.6, 0.5, 2.4)]. The validation set is also made of 6 different triplets
define on the same domain. At the end of the training, the validation loss takes the values given
in Table 3.2.

The obtained model is tested on 3 sets of parameters:

(µa, µb, µc) = (0.2385, 0.088, 0.5485) (test 1),

(µa, µb, µc) = (0.3785, 0.281, 1.354) (test 2),

(µa, µb, µc) = (0.5528, 0.437, 2.128) (test 3),

68 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

and Table 3.4 presents the relative errors. A relative error of order 1×10−2 can be reached with
the AE-HNN method with a reduced dimension of K = 3 only. In comparison, the PSD and the
POD require K = 15 and K = 30 reduced dimensions to obtain similar results.

Figure 3.7 shows numerical solutions obtained for parameters corresponding to test 3. While
the AE-HNN method with K = 3 remains close to the reference solution (Fig. 3.7a), the PSD
with the same reduced dimension does not provide satisfactory results (Fig. 3.7b). Increasing the
reduced dimension to K = 15 for the PSD allows us to recover comparable results (Fig. 3.7c).

Figure 3.6: (Nonlinear wave) final condition (u,v)(t = T ;µ) for various parameters µ =
(µa, µb, µc)

test 1 test 2 test 3
error u error v error u error v error u error v

AE-HNN K = 3 4.34×10−3 1.17×10−2 5.82×10−2 8.65×10−2 1.06×10−2 1.36×10−2

PSD
K = 3 4.04×10−1 2.55×10−1 4.21×10−1 2.49×10−1 4.33×10−1 2.73×10−1

K = 10 3.26×10−2 4.92×10−2 3.84×10−2 4.53×10−2 5.63×10−2 4.94×10−2

K = 15 8.48×10−3 1.66×10−2 6.45×10−3 1.66×10−2 5.29×10−3 1.87×10−2

POD
K = 3 1.86×10−1 3.16×10−1 5.72×10−2 6.66×10−2 2.44×10−1 2.89×10−1

K = 20 2.08×10−2 4.00×10−2 3.10×10−2 7.00×10−2 3.66×10−3 1.01×10−2

K = 30 5.36×10−3 2.09×10−2 9.54×10−3 2.26×10−2 8.87×10−3 1.93×10−2

Table 3.4: (Nonlinear wave) Relative L2 errors for different reduced dimensions K and differ-
ent parameters. Blue cells correspond to POD and PSD simulations with lower errors than the
corresponding AE-HNN simulation in yellow.

3.4 Numerical results 69

(a) AE-HNN, K = 3

(b) PSD, K = 3

(c) PSD, K = 15

Figure 3.7: (Nonlinear wave) Solutions (u,v) at different times on test 3. Reference solution in
solid lines and prediction in dashed lines.

3.4.1.3 Comparison with a non Hamiltonian reduction

In this section, we want to highlight the importance of the Hamiltonian framework for the re-
duced dynamics. Indeed, if the Hamiltonian structure is ignored, then the reduced system can
be written: 

d

dt
ȳ(t;µ) = F(ȳ(t;µ);µ), ∀t ∈ (0, T],

ȳ(0;µ) = E(yinit(µ)),
(3.17)

where F : RK × Ξ → RK is the reduced vector field. Then the reduced dynamics can be learn
by designing a neural network approximation Fθf , with a classical MLP architecture. To this
aim, we can consider the following loss function:

LsFlow(θe, θf) =
∑

yn
µ ,y

n+s
µ ∈U

∥∥ȳn+s
µ − Ps

(
ȳn
µ;Fθf

)∥∥2
2
, (3.18)

where the prediction operator is here a simple RK2 scheme. We discard the stability loss function
Lsstab and keep all the other hyper-parameters identical to those of the previous section. Coupled

70 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

with the autoencoder, this reduction method will be referred to as AE-Flow.
We compare the two resulting method on the nonlinear wave test-case considered in Section

3.4.1.2. The HNN parameters are unchanged. For a fair comparison, the flow neural networkFθf

has the same amount of parameters: the hidden layers have [32, 24, 16, 16] units, which results
in 1 886 parameters instead of 1 728 for the HNN. We train both models up to reach a loss value
of about 1×10−5. The obtained validation loss functions are as follows

Lspred = 9.46×10−5, LAE = 9.88×10−5, LsFlow = 7.92×10−7.

They are of comparable magnitude to that of the AE-HNN method in Table 3.2.
Relative errors are provided in Table 3.5. The errors of the AE-HNN method are about 5 times

smaller than those of the AE-Flow method. Figure 3.8 shows the time evolution of the relative
error for test case 3 and Figure 3.9 depicts the solutions at different times. We observe that
the AE-HNN solution remains close to the reference while the AE-Flow solution drifts from it.
Furthermore, we compare in Figure 3.10 the time evolution of the Hamiltonian for the reference
solution, the AE-HNN solution, and the AE-Flow solution on test case 3. We observe that the
AE-HNN method results in a better preservation of the Hamiltonian than the AE-Flow solution.

test 1 test 2 test 3
error u error v error u error v error u error v

AE-HNN 4.35×10−3 1.18×10−2 5.82×10−2 8.66×10−2 1.05×10−2 1.36×10−2

AE-Flow 5.11×10−2 5.56×10−2 1.27×10−1 1.50×10−1 9.99×10−2 1.07×10−1

Table 3.5: (Non linear wave) Relative L2 errors for the AE-Flow and the AE-HNN

Figure 3.8: (Non linear wave) L2 errors on test 3 as a function of time for the AE-Flow (purple)
and the AE-HNN (red)

3.4 Numerical results 71

Figure 3.9: (Non linear wave) (u,v) for different times on test 3, reference solution (green), AE-
HNN solution (red) and AE-Flow solution (purple)

Figure 3.10: (Non linear wave) Time evolution of the Hamiltonian on test 3 for the reference
solution (green), the AE-HNN solution (red) and the AE-Flow solution (purple).

3.4.1.4 Gain in computation time

In this section, we compare the actual computation time on an Intel Xeon CPU. To obtain a fair
comparison, we use the same implementation of the Störmer-Verlet algorithm for all the methods.

The only difference between the PSD and the AE-HNN methods lies in the gradient com-
putations. For the former, we use the explicit expression of the reduced Hamiltonian as de-
fined in Chapter 1, Sec. 2.3.1 and for the latter, we use the HNN backpropagation algorithm.
We use 32 bits floating-point numbers and include the encoding or decoding of the data in the
computation time. We consider the nonlinear wave test case with the following parameters:
N = 1024,K = 3, T = 0.4 and ∆t = 1×10−4.

The reference solution without reduction is computed in 2 200± 14 ms. In comparison, the
AE-HNN method spends 452±20ms, which is five times faster. On the contrary, the PSD method
spends 2 382 ± 12 ms, which is a bit slower than the reference solution. This results from the
evaluation of the gradient of the Hamiltonian in the non-reduced dimension. Hyper-reduction
technic like Hamiltonian DEIM would accelerate the computations [8]. However, this could also
deteriorate the precision, and one should then consider larger reduced dimensions.

72 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

3.4.2 1D shallow water system

We consider the one-dimensional shallow water system under the following formulation:
∂tχ(x, t;µ) + ∂x ((1 + χ(x, t;µ)) ∂xϕ(x, t;µ)) = 0, in Ω2 × (0, T],

∂tϕ(x, t;µ) +
1
2(∂xϕ(x, t;µ))

2 + χ(x, t;µ) = 0, in Ω2 × (0, T],

χ(x, 0;µ) = χinit(x;µ), in Ω2,

ϕ(x, 0;µ) = ϕinit(x;µ), in Ω2,

where χ(x, t;µ) denotes the perturbation of the equilibrium and ϕ(x, t;µ) is the scalar velocity
potential and Ω2 = [−1, 1]. Periodic boundary conditions are considered. This system admits a
Hamiltonian function given by:

Hcont(χ, ϕ) =
1

2

∫ 1

−1

(
(1 + χ)(∂xϕ)

2 + χ2
)
dx.

Like the wave equation, we consider a spatial discretization of this model, still using a uniform
mesh grid with N nodes (xi)i∈{0,...,,N−1} on Ω2. The approximate solution is denoted χ =
(χi)i∈{0,...,,N−1},ϕ = (ϕi)i∈{0,...,,N−1}. We then introduce the discrete Hamiltonian function:

H(χ,ϕ) = ∆x

2

N∑
i=1

(1 + χi)

(
ϕi+1 − ϕi−1

∆x

)2

+ χ2
i , (3.19)

and the resulting discrete shallow water equation:

d

dt
χ(t;µ) = −D2

xϕ(t;µ)−Dx(χ(t;µ)⊙Dxϕ(t;µ)),

d

dt
ϕ(t;µ) = −1

2
(Dxϕ(t;µ))⊙ (Dxϕ(t;µ))− χ(t;µ),

χi(0;µ) = χinit(xi;µ),

ϕi(0;µ) = ϕinit(xi;µ),

(3.20)

where⊙ denotes the element-wise vector multiplication and Dx the centered second-order finite
difference matrix with periodic boundary condition

Dx =
1

2∆x


0 1 −1

−1 . . .
. . . 1

1 −1 0

 .

We note that Hamiltonian (3.19) is not separable. As a consequence, the numerical resolution of
(3.20) with the Störmer-Verlet scheme is implicit.Therefore, applying a reduction is all the more
attractive.

3.4.2.1 Reduction of the system

The number of discretization points is taken equal to N = 1024, the final time equal to T = 0.5
and the time step ∆t = 2× 10−4. The initial condition is parameterized with 2 parameters
µ = (c, σ) ∈ [0, 0.2]× [0.2, 0.05]

χinit(x;µ) =
0.02

σ
√
2π

exp

(
−1

2

(
x− c

σ

)2
)
, ϕinit(x;µ) = 0.

3.4 Numerical results 73

For the training data, we use 20 different solution parameters (c, σ): we take regularly spaced
values in the segment [(0, 0.2), (0.2, 0.05)]. Let us observe the influence of the parameters on
the solutions at initial and final time on Figure 3.11. Nonlinear patterns appear for small values
of the standard deviation σ.

The set of hyper-parameters is almost identical to the previous test cases except for the HNN
architecture, activation functions and the watch duration, which here is taken equal to 48. They
are gathered in Table 3.1.

As in the previous sections, we inspect the validation loss functions and obtain value given
in Table 3.2.

We choose three different sets of parameters to test the AE-HNN method:

(c, σ) = (0.105, 0.11), (test 1)

(c, σ) = (0.195, 0.053), (test 2)

(c, σ) = (0.21, 0.045). (test 3)

As in the previous test cases, we compute the relative errors of the AE-HNN method with respect
to the reference solution (see Table 3.6) and compare them to the results obtained with the PSD
and POD methods for different values of K .

The AE-HNN method achieves a mean error of about 3×10−2 with a reduced dimension
of K = 4 only. To achieve a similar performance, the PSD requires a reduced dimension of
K = 24 and the POD need a value larger than K = 32. Table 3.6 also shows that the AE-HNN
method has a different behavior with respect to K than the POD and PSD methods. For the
latter, increasing K improves accuracy (at the expense of computation time). With the AE-HNN
method, increasing K improves the encoder-decoder performance but makes it more difficult
to learn the reduced dynamics for the HNN neural network. Therefore, the HNN performance
requires a balance between an adequate compression and a low-dimensional reduced model.

Then, we compare the solutions obtained with the AE-HNN method and the PSD in Fig-
ure 3.12. For a given reduced dimension K = 4, the AE-HNN method solution remains close
to the reference as expected (Fig. 3.12a) while the PSD solution oscillates and stays far from the
reference solution, even for the initial condition (Fig. 3.12b). When increasing the dimension of
the reduced model to K = 24 for the PSD method (Fig. 3.12c), we recover similar results as the
ones obtained with the AE-HNN.

74 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

(a) t = 0

(b) t = 0.5

Figure 3.11: (Shallow water 1D) Solutions (χ,ϕ) at initial time t = 0 and final time t = 0.5 for
various parameters (c, σ).

test 1 test 2 test 3
error χ error ϕ error χ error ϕ error χ error ϕ

AE-HNN
K = 4 5.86×10−2 2.89×10−2 1.34×10−2 5.00×10−3 8.12×10−2 2.27×10−2

K = 6 8.46×10−2 5.17×10−2 2.07×10−2 7.77×10−3 9.70×10−2 2.80×10−2

K = 8 6.26×10−2 3.54×10−2 2.21×10−2 1.20×10−2 1.45×10−1 4.99×10−2

PSD
K = 10 7.11×10−2 1.71×10−2 1.64×10−1 2.74×10−2 3.08×10−1 5.89×10−2

K = 14 2.67×10−2 5.36×10−3 7.98×10−2 1.00×10−2 2.08×10−1 3.17×10−2

K = 24 1.19×10−2 3.43×10−3 2.69×10−2 4.20×10−3 9.56×10−2 1.06×10−2

POD
K = 14 1.13×10−1 4.14×10−2 1.22×10−1 4.10×10−2 6.98×10−1 2.99×10−1

K = 24 4.22×10−2 9.91×10−3 3.31×10−2 7.81×10−3 3.10×10−1 7.96×10−2

K = 32 8.70×10−3 1.67×10−3 1.32×10−2 2.31×10−3 1.35×10−1 2.43×10−2

Table 3.6: (Shallow water 1D) Relative L2 errors for different reduced dimensions K . Blue cells
correspond to POD and PSD simulations with lower errors than the corresponding AE-HNN
simulation in yellow.

3.4 Numerical results 75

(a) AE-HNN, K = 4

(b) PSD, K = 4

(c) PSD, K = 24

Figure 3.12: (Shallow water 1D) (χ,ϕ) as a at different times on test 2 and K = 8, reference
solution (full lines) and prediction (dashed lines).

76 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

3.4.2.2 Comparison with a non Hamiltonian reduction

In this section, we perform a study similar to that performed in Section 3.4.1.3 to show the impor-
tance of having a Hamiltonian AE-HNN reduction instead of a classical AE-Flow reduced model.
We consider the same test case as in Section 3.4.2.1 with the same hyper-parameters described
in Table 3.1. We stop both AE-HNN and AE-Flow training after reaching a validation loss value
of 3×10−5. The obtained validation loss functions for the AE-Flow are as follows

Lspred = 7.02×10−5, LAE = 6.97×10−5, LsFlow = 2.85×10−7.

They are of comparable magnitude to that of the AE-HNN method in Table 3.2. Relative errors
are provided in Table 3.7 for the different test values. The AE-HNN method is about 4 times
more precise than the AE-Flow method. Figure 3.13 shows the time evolution of the L2 errors
for test case 2 and Figure 3.14 depicts the solution at different times. The AE-Flow drifts away
from the reference solution while the AE-HNN remains close to it. Finally, Figure 3.15 shows
that the AE-HNN method preserves the Hamiltonian more effectively than the AE-Flow method.

test 1 test 2 test 3
error χ error ϕ error χ error ϕ error χ error ϕ

AE-HNN 5.86×10−2 2.89×10−2 1.34×10−2 5.00×10−3 8.12×10−2 2.27×10−2

AE-Flow 6.63×102 3.66×10−2 1.05×10−1 3.61×10−2 1.73×10−1 5.12×10−2

Table 3.7: (Shallow water 1D) Relative L2 errors for the AE-Flow and the AE-HNN

Figure 3.13: (Shallow water 1D) L2 errors on test 2 as a function of time for the AE-Flow (purple)
and the AE-HNN (red)

3.4 Numerical results 77

Figure 3.14: (Shallow water 1D) (χ,ϕ) for different times on test 2, reference solution (green),
AE-HNN solution (red) and AE-Flow solution (purple)

Figure 3.15: (Shallow water 1D) Time evolution of the Hamiltonian on test 2 for the reference
solution (green), the AE-HNN solution (red) and the AE-Flow solution (purple).

3.4.3 2D shallow water system

We consider the two-dimensional shallow water system on a square Ω3 = [−1, 1]2 under the
following formulation:

∂tχ(x, t;µ) +∇ · ((1 + χ(x, t;µ))∇ϕ(x, t;µ)) = 0, in Ω3 × (0, T],

∂tϕ(x, t;µ) +
1

2
|∇ϕ(x, t;µ)|2 + χ(x, t;µ) = 0, in Ω3 × (0, T],

χ(x, 0;µ) = χinit(x;µ), in Ω3,

ϕ(x, 0;µ) = ϕinit(x;µ), in Ω3,

(3.21)

where χ(x, t;µ) denotes the perturbation of the equilibrium and ϕ(x, t;µ) is the scalar veloc-
ity potential. Periodic boundary conditions are considered. This system admits a Hamiltonian
function given by:

Hcont(χ, ϕ) =
1

2

∫
Ω3

(
(1 + χ) |∇ϕ|2 + χ2

)
.

We consider a spatial discretization of the domain Ω with a regular mesh of N = M2 cells of
size ∆x = 2/(M − 1) in each direction. The discrete Hamiltonian function is

H(χ,ϕ) = 1

2

M−1∑
i,j=0

(
(1 + χi,j)

[(
ϕi+1,j − ϕi−1,j

2∆x

)2

+

(
ϕi,j+1 − ϕi,j−1

2∆y

)2
]
+ χ2

i,j

)

78 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

with χi,j(t;µ) ≈ χ(xi,j , t;µ) (resp. ϕi,j(t;µ) ≈ ϕ(xi,j , t;µ)), with xi,j = (−1,−1) +
(i∆x, j∆x). The resulting discrete system reads

d

dt
χ(t;µ) = −Dx ([1 + χ(t;µ)]⊙Dxϕ(t;µ))−Dy ([1 + χ(t;µ)]⊙Dyϕ(t;µ)) ,

d

dt
ϕ(t;µ) = −1

2

[
(Dxϕ(t;µ))

2 + (Dyϕ(t;µ))
2
]
− χ(t;µ),

χm(0;µ) = χinit(xm;µ),

ϕm(0;µ) = χinit(xm;µ),

where Dx and Dy are respectively the centered finite difference operators along the x and y axis,
and m = jM + i.

3.4.3.1 Reduction of the system

We consider M = 64 cells per direction, The final time is set to T = 15 and the time step to
∆t = 1×10−3. In this test case, we choose to use an implicit midpoint scheme [5]. The initial
condition, parameterized with two parameters µ = (α, β) ∈ [0.2, 0.5]× [1, 1.7], is chosen equal
to

χinit(x;µ) = α exp
(
−β xTx

)
, ϕinit(x;µ) = 0.

For the training data, we use 20 different couples of parameter (α, β) regularly spaced in the
segment [(0.2, 1) , (0.5, 1.7)]. Figure 3.15 shows the time evolution for two couples of parameters:
(α, β) = (0.2, 1) and (α, β) = (0.5, 1.7).

As data are two-dimensional, we use a 2D variant of the convolutional AE: convolutionlayers
are two-dimensional, up and down-sampling are extended in 2D. All the neural network hyper-
parameters are given in Table 3.1.

We choose three different sets of parameters to test the AE-HNN method

(α, β) = (0.35, 1.35), (test 1)

(α, β) = (0.41, 1.49), (test 2)

(α, β) = (0.51, 1.72). (test 3)

As in the previous test cases, we compute relative errors of the AE-HNN method with respect to
the reference solution and compare them to the results obtained with the PSD and POD methods
for different values of K in Table 3.8. Regarding the AE-HNN method, a fixed reduced dimension
of K = 4 if sufficient to obtain a precise reduced model while, for the same reduced dimension,
the PSD solution is far from the reference solution as it can be observed in Fig. 3.16. When
increasing the reduced dimension to K = 30, the PSD produces similar results as the ones
obtained with the AE-HNN with only K = 4. Regarding the POD reduced model, even a reduced
dimension of K = 35 does not provide the targeted precision. Indeed, the non-symplecticity of
the reduced model produces some instabilities as it can be observed on test 3 in Fig. 3.17.

3.4 Numerical results 79

(a) χ(t;µ)

(b) ϕ(t;µ)

Figure 3.15: (Shallow water 2D) Solutions (χ,ϕ) at different times t ∈ {0, 5, 10, 15} for various
parameters (α, β) ∈ {(0.2, 1), (0.5, 1.8)}.

80 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

test 1 test 2 test 3
error χ error ϕ error χ error ϕ error χ error ϕ

AE-HNN
K = 4 4.68×10−2 1.37×10−2 1.73×10−2 5.03×10−3 3.33×10−2 8.92×10−3

K = 5 2.32×10−2 6.25×10−3 7.38×10−2 1.62×10−2 1.39×10−1 2.98×10−2

PSD
K = 6 3.48×10−1 3.96×10−2 3.82×10−1 4.50×10−2 4.33×10−1 5.41×10−2

K = 20 5.05×10−2 3.39×10−3 6.52×10−2 4.55×10−3 9.49×10−2 7.13×10−3

K = 30 1.37×10−2 9.20×10−4 1.87×10−2 1.19×10−3 3.09×10−2 2.01×10−3

POD
K = 10 4.51×10−1 3.69×10−2 4.81×10−1 4.47×10−2 5.33×10−1 6.02×10−2

K = 16 1.19×10−1 6.31×10−3 4.04×10−1 1.76×10−2 1.01×100 4.52×10−2

K = 35 3.94×10−2 1.83×10−3 5.74×10−2 2.67×10−3 5.05×10−1 2.52×10−2

Table 3.8: (Shallow water 2D) Relative L2 errors for different reduced dimensions K . Blue cells
correspond to POD and PSD simulations with lower errors than the corresponding AE-HNN
simulation in yellow.

Figure 3.16: (Shallow water 2D) Solutions χ(t;µ) at different times t ∈ {0, 5, 10, 15} on test
3 with K = 4, reference solution (top line), AE-HNN solution (middle line) and PSD solution
(bottom line).

3.4 Numerical results 81

Figure 3.17: (Shallow water 2D) POD solution χ(t;µ) at different times t ∈ {0, 5, 10, 15} on test
3 with K = 35.

82 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

3.4.3.2 Comparison with a symplectic DEIM hyper-reduction

While the AE-HNN would require a smaller reduced dimension than the PSD for a given targeted
precision, practical efficiency still need to be compared. As the PSD still requires to come back
to the original 2N dimension for nonlinear models, we also compare the AE-HNN with the
Discrete Empirical Interpolation Method (DEIM) version of the PSD as proposed in [2]: it relies
on an interpolation of m given components (among the 2N ones). For the sake of completeness,
the method is well presented in Chapter 1, Sec. 2.3.3.

First, we test the precision of this DEIM approximation as a function of m. We consider the
test-case of the previous subsection, with reduced dimension equal to K = 30. We compute the
discrete L2 error on the 3 test cases:

errnu =
1

3

∑
µ∈ test

(
N∑
i=1

∆x (uµ,nref,i − uµ,npred,i)
2

)
.

where uref,i refers to the reference solution computed with the original model and uµ,npred,i the one
computed with the reduced one. We observe the time evolution of this error for different values
of m on Fig 3.18. As expected, the DEIM method deteriorates the reduced model solution with
respect to the sole PSD and increasing m decreases the error. In practice, the value of m is set so
that the DEIM does not deteriorate the solution too much.

Figure 3.18: (Shallow water 2D) err for solutions χ(t;µ) (left) and ϕ(t;µ) (right) for different
m ∈ {16, 32, 48, 64, 96} with K = 30.

We then compare the computational times of the AE-HNN method with respect to the PSD
algorithm with and without symplectic DEIM hyper-reduction. We set K = 4 and m = 32 so
that the DEIM error is smaller than the PSD error. Numerical integration are performed with an
implicit midpoint scheme as above-mentioned. The original model and the PSD without DEIM
are solved on an Intel Xeon CPU while the AE-HNN method is executed on a NVIDIA Tesla T4
GPU. We also use the Strang splitting method [5] where the linear part is solved explicitly and
the nonlinear one is solved with numerical integration except for the AE-HNN method which
cannot be split.

The computational time equals 101.0 s for the original model, 107.0 s for the PSD and 57.4
s for the DEIM-PSD. As expected, the PSD is not time efficient in a nonlinear case due to the

3.5 Conclusion 83

decompression-compression of the solution at each time step. An efficient DEIM-PSD imple-
mentation allows a satisfactory speed-up of a factor 1.76. Regarding the AE-HNN model, it is
solved in 26.5 s, which corresponds to a speed up of 3.81. This could be further improved. In-
deed, the neural networks are executed on a GPU but the nonlinear solver used in the implicit
part of the scheme is executed on a CPU, which slows down the reduced order model. In practice,
a SciPy [33] implementation of the nonlinear solver [34] is used. More than 62% of the nonlinear
solver computation time takes place on the CPU.

3.5 Conclusion

We have developed a new Hamiltonian reduction method. It is based on an autoencoder (AE) to
transform initial variables into reduced variables and vice versa, and on a Hamiltonian Neural
Network (HNN) to learn the Hamiltonian reduced dynamics. Using a set of coupled loss func-
tions, we are able to learn a reduced model (AE-HNN), which has an Hamiltonian structure. It
already has better reduction properties than the PSD in linear test-cases, but the gain is much
larger in nonlinear test-cases, as expected. Due to its Hamiltonian structure, the reduced model
also shows good stability properties. Two-dimensional test-cases show that the AE-HNN method
has better computational performance than the PSD-DEIM method.

The question remains of how to improve the quality of the approximation. Indeed, unlike
the PSD method, increasing the reduced dimension K does not always provide better results.
The quality of the approximation could rather be increased by modifying the architecture of the
neural networks (increasing the number of layers and the number of neurons per layer), which
implies increasing the number of trainable parameters. However, up to our knowledge, there is
unfortunately a lack of theoretical results about a systematic way to improve such approxima-
tions. Further studies need to be carried out.

Obviously, the results will have to be extended to partial differential equations in three spatial
dimension. As convolution layers are used in the autoencoder, the increase of dimension should
not require too large an increase in the size of the neural networks. In consequence, we expect
that the computational gain will be even larger for such dynamics. Other extensions would be
to consider time-dependent reductions as in [8] and adapt the method for the reduction of large
Hamiltonian differential equations that do not have spatial structures [8].

Acknowledgements. This research was funded in part by l’Agence Nationale de la Recherche
(ANR), project ANR-21-CE46-0014 (Milk).

84 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

References

[1] R. Côte et al. “Hamiltonian reduction using a convolutional auto-encoder coupled to a
Hamiltonian neural network”. In: Commun. Comput. Phys. 37.2 (2025), pp. 315–352. issn:
1815-2406,1991-7120. doi: 10.4208/cicp.OA-2023-0300.

[2] L. Peng and K. Mohseni. “Symplectic model reduction of Hamiltonian systems”. In: SIAM J.
Sci. Comput. 38.1 (2016), A1–A27. issn: 1064-8275,1095-7197. doi: 10.1137/140978922.

[3] J. S. Hesthaven, C. Pagliantini, and G. Rozza. “Reduced basis methods for time-dependent
problems”. In: Acta Numer. 31 (2022), pp. 265–345. issn: 0962-4929,1474-0508. doi: 10.
1017/S0962492922000058.

[4] T. Tyranowski and M. Kraus. “Symplectic model reduction methods for the Vlasov equa-
tion”. In: Contrib. Plasma Phys. 63.5-6 (2023), e202200046. issn: 0863-1042. doi: 10.1002/
ctpp.202200046.

[5] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration. Second. Vol. 31.
Springer Series in Computational Mathematics. Structure-preserving algorithms for or-
dinary differential equations. Springer-Verlag, Berlin, 2006, pp. xviii+644. isbn: 978-3-540-
30663-4.

[6] B. M. Afkham and J. S. Hesthaven. “Structure preserving model reduction of paramet-
ric Hamiltonian systems”. In: SIAM J. Sci. Comput. 39.6 (2017), A2616–A2644. issn: 1064-
8275,1095-7197. doi: 10.1137/17M1111991.

[7] C. Pagliantini. “Dynamical reduced basis methods for Hamiltonian systems”. In: Numer.
Math. 148.2 (2021), pp. 409–448. issn: 0945-3245. doi: 10.1007/s00211-021-01211-w.

[8] J. S. Hesthaven, C. Pagliantini, and N. Ripamonti. “Adaptive symplectic model order reduc-
tion of parametric particle-based Vlasov-Poisson equation”. In: Math. Comp. 93.347 (2024),
pp. 1153–1202. issn: 0025-5718,1088-6842. doi: 10.1090/mcom/3885.

[9] B. Sonday et al. “Manifold learning techniques and model reduction applied to dissipative
PDEs”. In: arXiv e-prints (2010), arXiv–1011. doi: 10.48550/arXiv.1011.5197.

[10] S. Bhattacharjee and K. Matouš. “A nonlinear manifold-based reduced order model for mul-
tiscale analysis of heterogeneous hyperelastic materials”. In: J. Comput. Phys. 313 (2016),
pp. 635–653. issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2016.01.040.

[11] J. B. Tenenbaum, V. de Silva, and J. C. Langford. “A Global Geometric Framework for Non-
linear Dimensionality Reduction”. In: Science 290.5500 (2000), pp. 2319–2323. doi: 10.
1126/science.290.5500.2319.

[12] M. Belkin and P. Niyogi. “Laplacian eigenmaps for dimensionality reduction and data
representation”. In: Neural computation 15.6 (2003), pp. 1373–1396. doi: 10 . 1162 /
089976603321780317.

[13] R. R. Coifman and S. Lafon. “Diffusion maps”. In: Appl. Comput. Harmon. Anal. 21.1 (2006),
pp. 5–30. issn: 1063-5203,1096-603X. doi: 10.1016/j.acha.2006.04.006.

[14] Y. Bengio et al. “Learning eigenfunctions links spectral embedding and kernel PCA”. In:
Neural computation 16.10 (2004), pp. 2197–2219. doi: 10.1162/0899766041732396.

[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. url: http:
//www.deeplearningbook.org.

[16] K. Lee and K. T. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders”. In: J. Comput. Phys. 404 (2020), pp. 108973, 32.
issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2019.108973.

https://doi.org/10.4208/cicp.OA-2023-0300
https://doi.org/10.1137/140978922
https://doi.org/10.1017/S0962492922000058
https://doi.org/10.1017/S0962492922000058
https://doi.org/10.1002/ctpp.202200046
https://doi.org/10.1002/ctpp.202200046
https://doi.org/10.1137/17M1111991
https://doi.org/10.1007/s00211-021-01211-w
https://doi.org/10.1090/mcom/3885
https://doi.org/10.48550/arXiv.1011.5197
https://doi.org/10.1016/j.jcp.2016.01.040
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1162/0899766041732396
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1016/j.jcp.2019.108973

References 85

[17] Y. Kim et al. “A fast and accurate physics-informed neural network reduced order model
with shallow masked autoencoder”. In: J. Comput. Phys. 451 (2022), Paper No. 110841, 29.
issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2021.110841.

[18] F. Romor, G. Stabile, and G. Rozza. “Non-linear manifold reduced-order models with convo-
lutional autoencoders and reduced over-collocation method”. In: J. Sci. Comput. 94.3 (2023),
Paper No. 74, 39. issn: 0885-7474,1573-7691. doi: 10.1007/s10915-023-02128-2.

[19] P. Buchfink, S. Glas, and B. Haasdonk. “Symplectic model reduction of Hamiltonian sys-
tems on nonlinear manifolds and approximation with weakly symplectic autoencoder”. In:
SIAM J. Sci. Comput. 45.2 (2023), A289–A311. issn: 1064-8275,1095-7197. doi: 10.1137/
21M1466657.

[20] S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical
interpolation”. In: SIAM J. Sci. Comput. 32.5 (2010), pp. 2737–2764. issn: 1064-8275,1095-
7197. doi: 10.1137/090766498.

[21] C. Pagliantini and F. Vismara. “Fully adaptive structure-preserving hyper-reduction of
parametric Hamiltonian systems”. In: SIAM J. Sci. Comput. 47.1 (2025), A124–A152. issn:
1064-8275,1095-7197. doi: 10.1137/23M1601225.

[22] C. Pagliantini and F. Vismara. “Gradient-preserving hyper-reduction of nonlinear dynam-
ical systems via discrete empirical interpolation”. In: SIAM J. Sci. Comput. 45.5 (2023),
A2725–A2754. issn: 1064-8275,1095-7197. doi: 10.1137/22M1503890.

[23] R. Maulik, B. Lusch, and P. Balaprakash. “Reduced-order modeling of advection-dominated
systems with recurrent neural networks and convolutional autoencoders”. In: Phys. Fluids
33.3 (2021), p. 037106. doi: 10.1063/5.0039986.

[24] S. Fresca, L. Dede’, and A. Manzoni. “A comprehensive deep learning-based approach to
reduced order modeling of nonlinear time-dependent parametrized PDEs”. In: J. Sci. Com-
put. 87.2 (2021), Paper No. 61, 36. issn: 0885-7474,1573-7691. doi: 10.1007/s10915-
021-01462-7.

[25] Q. Wang, N. Ripamonti, and J. S. Hesthaven. “Recurrent neural network closure of para-
metric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism”. In:
J. Comput. Phys. 410 (2020), pp. 109402, 32. issn: 0021-9991,1090-2716. doi: 10.1016/j.
jcp.2020.109402.

[26] S. Greydanus, M. Dzamba, and J. Yosinski. “Hamiltonian neural networks”. In: Proceedings
of the 33rd International Conference on Neural Information Processing Systems. Ed. by H.
Wallach et al. Vol. 32. Curran Associates Inc., 2019. doi: 10.48550/arXiv.1906.01563.

[27] H. Yu et al. “OnsagerNet: Learning stable and interpretable dynamics using a general-
ized Onsager principle”. In: Phys. Rev. Fluids 6.11 (2021). issn: 2469-990X. doi: 10.1103/
physrevfluids.6.114402.

[28] Z. Zhang, Y. Shin, and G. E. Karniadakis. “GFINNs: GENERIC formalism informed neural
networks for deterministic and stochastic dynamical systems”. In: Philos. Trans. Roy. Soc. A
380.2229 (2022), Paper No. 20210207, 21. issn: 1364-503X,1471-2962. doi: 10.1098/rsta.
2021.0207.

[29] X. Chen et al. “Constructing custom thermodynamics using deep learning”. In: Nat. Com-
put. Sci. 4.1 (2024), pp. 66–85. issn: 2662-8457. doi: 10.1038/s43588-023-00581-5.

[30] M. Flaschel, S. Kumar, and L. De Lorenzis. “Automated discovery of generalized standard
material models with EUCLID”. In: Comput. Methods Appl. Mech. Engrg. 405 (2023), Paper
No. 115867, 26. issn: 0045-7825,1879-2138. doi: 10.1016/j.cma.2022.115867.

https://doi.org/10.1016/j.jcp.2021.110841
https://doi.org/10.1007/s10915-023-02128-2
https://doi.org/10.1137/21M1466657
https://doi.org/10.1137/21M1466657
https://doi.org/10.1137/090766498
https://doi.org/10.1137/23M1601225
https://doi.org/10.1137/22M1503890
https://doi.org/10.1063/5.0039986
https://doi.org/10.1007/s10915-021-01462-7
https://doi.org/10.1007/s10915-021-01462-7
https://doi.org/10.1016/j.jcp.2020.109402
https://doi.org/10.1016/j.jcp.2020.109402
https://doi.org/10.48550/arXiv.1906.01563
https://doi.org/10.1103/physrevfluids.6.114402
https://doi.org/10.1103/physrevfluids.6.114402
https://doi.org/10.1098/rsta.2021.0207
https://doi.org/10.1098/rsta.2021.0207
https://doi.org/10.1038/s43588-023-00581-5
https://doi.org/10.1016/j.cma.2022.115867

86 Chapter 3 Convolutional autoencoder and HNN for Hamiltonian reduction

[31] N. Thuerey et al. “Physics-based deep learning”. In: arXiv preprint arXiv:2109.05237 (2021).
doi: 10.48550/arXiv.2109.05237.

[32] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: arXiv preprint
arXiv:1412.6980 (2014). doi: 10.48550/arXiv.1412.6980.

[33] P. Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.
In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[34] W. La Cruz, J. M. Martínez, and M. Raydan. “Spectral residual method without gradient
information for solving large-scale nonlinear systems of equations”. In: Math. Comp. 75.255
(2006), pp. 1429–1448. issn: 0025-5718,1088-6842. doi: 10.1090/S0025- 5718- 06-
01840-0.

https://doi.org/10.48550/arXiv.2109.05237
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1090/S0025-5718-06-01840-0
https://doi.org/10.1090/S0025-5718-06-01840-0

Chapter 4

Reduced Particle in Cell method for
the Vlasov-Poisson system using
autoencoder and Hamiltonian neural
networks

This chapter is based on a preprint currently under review (submitted for publication).

E. Franck, L. Navoret, V. Vigon, R. Côte, and G. Steimer. “Reduced Particle in Cell method
for the Vlasov-Poisson system using auto-encoder and Hamiltonian neural”. working paper or
preprint. June 2025. url: https://hal.science/hal-05116555

Abstract

Hamiltonian particle-based simulations of plasma dynamics are inherently computationally
intensive, primarily due to the large number of particles required to obtain accurate solutions.
This challenge becomes even more acute in many-query contexts, where numerous simulations
must be conducted across a range of time and parameter values. Consequently, it is essential to
construct reduced order models from such discretizations to significantly lower computational
costs while ensuring validity across the specified time and parameter domains. Preserving the
Hamiltonian structure in these reduced models is also crucial, as it helps maintain long-term
stability.

In this paper, we introduce a nonlinear, non-intrusive, data-driven model order reduction
method for the 1D-1V Vlasov–Poisson system, discretized using a Hamiltonian Particle-In-Cell
scheme. Our approach relies on a two-step projection framework: an initial linear projection
based on the Proper Symplectic Decomposition, followed by a nonlinear projection learned via
an autoencoder neural network. The reduced dynamics are then modeled using a Hamiltonian
neural network. The offline phase of the method is split into two stages: first, constructing the
linear projection using full-order model snapshots; second, jointly training the autoencoder and
the Hamiltonian neural network to simultaneously learn the encoder-decoder mappings and the
reduced dynamics. We validate the proposed method on several benchmarks, including Landau
damping and two-stream instability. The results show that our method has better reduction
properties than standard linear Hamiltonian reduction methods.

87

https://hal.science/hal-05116555

88 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

Chapter’s contents
4.1 Introduction . 88
4.2 Particle discretization of the Vlasov-Poisson equation 91

4.2.1 The Vlasov-Poisson equation . 91

4.2.2 Hamiltonian particle-based discretization 91

4.2.3 Time discretization and initialization 93

4.3 A Hamiltonian reduction with Proper Symplectic Decompostion pre-
reduction . 94
4.3.1 PSD-AE-HNN reduction method . 95

4.3.2 PSD reduction . 97

4.3.3 AE-HNN reduction . 98

4.3.4 Hyperparameters tuning . 99

4.4 Numerical results . 101
4.4.1 Linear Landau damping . 102

4.4.2 Nonlinear Landau damping . 105

4.4.3 Two-stream instability . 111

4.4.4 Computation gain . 114

4.5 Conclusion . 118
References . 119

4.1 Introduction

Plasma are gases made of charged particles interacting through long-range Coulomb interac-
tions. A standard kinetic approach for characterizing collisionless plasma dynamics is based on
the Vlasov–Maxwell equations, which describe the time evolution of the particle distribution
functions in position-velocity phase space and the dynamics of the self-consistent electromag-
netic fields. In this work, we focus on the electrostatic limit of these equations, namely the
Vlasov–Poisson system, where particle interactions are driven by a self-consistent electric field
satisfying the Poisson equation.

Simulating the Vlasov–Poisson system numerically presents significant challenges, and a
wide range of particle-based methods have been developed to address them. These methods
represent the charged particles distribution using a large set of macro particles, whose trajectories
are evolved according to the characteristics of the kinetic equation. To compute the self-induced
electric field, the computational domain is discretized into a mesh on which the Poisson equation
is solved. The particle distribution is projected onto this mesh to get the charge density, the
electric field is computed there, and then interpolated back to the particle positions. The particles
are subsequently moved under the influence of the resulting Lorentz force. This approach is
known as the Particle-In-Cell (PIC) method [2, 3].

Over time, PIC methods have been refined to preserve important physical invariants, such
as total energy (see [4, 5] and references therein). Notably, the Vlasov–Poisson system admits
a Hamiltonian formulation [6], which ensures conservation of total energy and the system’s
underlying symplectic structure. Preserving this Hamiltonian structure in the discretized PIC
framework is essential for maintaining long-term numerical stability. As a consequence, several
Hamiltonian PIC methods have been developed, including the Hamiltonian PIC scheme [7], as
well as canonical and non-canonical symplectic PIC methods [8, 9], and the Geometric Electro-
magnetic PIC (GEMPIC) method [10].

4.1 Introduction 89

Given the nonlinear dynamics and multiscale phenomena of the Vlasov–Poisson system,
along with the need to employ a very large number of particles to achieve accurate conver-
gence to the solution [11], PIC simulations present a significant numerical challenge. This
makes the use of Hamiltonian model order reduction techniques particularly compelling. In real
time or many query contexts—such as control processes, optimization, or uncertainty quantifica-
tion—reduced order models (ROMs) can be crucial. Starting from a particle-based discretization
of the Vlasov–Poisson system, referred to as the full order model (FOM), model reduction seeks
to construct a smaller dynamical system that provides accurate approximations over a specified
range of times and parameters, while substantially lowering computational cost. Crucially, pre-
serving the Hamiltonian structure in the reduced model contributes to its long-term robustness
and stability [12].

Over the recent years, considerable efforts have been devoted to constructing reduced models
for the Vlasov–Poisson dynamics. These surrogate models aim to reduce the computational cost
associated with plasma simulations. By allowing for a small approximation error, reduced models
enable significantly faster solution evaluations. Broadly speaking, three main families of model
order reduction techniques have been applied to the Vlasov–Poisson system. These approaches
are well reviewed in [13] within a more general framework.

The first family comprises projection-based model order reduction methods [14, 15, 16].
These approaches assume that the solution manifold lies close to a low-dimensional subspace,
which is approximated using a collection of solution snapshots obtained thanks to Proper Or-
thogonal Decomposition (POD) or greedy approach. The reduced model is then derived using
a Galerkin projection onto this subspace. However, projection alone often does not suffice to
reduce computational cost: to compute the reduced system’s vector field, the reduced state must
typically be lifted back to the full physical space. To mitigate this costly round trip, various strate-
gies have been introduced. For example, the Discrete Empirical Interpolation Method (DEIM) [17]
selects a small set of spatial points at which to evaluate the nonlinear terms, while Dynamic Mode
Decomposition (DMD) [18, 19] extracts relevant modes from the data and models their evolution
with a simplified linear system. The second family concerns sparse approximation methods, in
which solutions are approximated by selecting a small number of basis functions, based on prior
knowledge about the structure of the solution. This has been explored for the Vlasov-Poisson
dynamics in [20], where the dynamics is computed on a sparse grid using a semi-Lagrangian
solver. The third family is made of low-rank approximation methods, where the solutions are
expressed as a sum of low rank tensors. This has been applied for plasma dynamics in [21, 22,
23]. For instance, [22] proposes a continuous low-rank representation of the distribution func-
tion, followed by discretization using a conservative dynamical low-rank scheme that preserves
key physical quantities such as mass, momentum, and energy.

While these techniques have proven effective for continuous problems in Eulerian or
semi-Lagrangian frameworks, the model reduction of particle-based discretizations of the
Vlasov–Poisson system poses a distinct challenge. In parallel with the development of these
methods, several studies have highlighted the potential of machine learning—particularly neural
networks—to assist with or even automate aspects of model order reduction. Examples include
manifold learning techniques [24, 25], as well as data-driven reduced order models for PDEs
derived from mesh-based discretizations [26, 27].

In addition, preserving the Hamiltonian structure in the reduced model is a supplementary
challenge. Using reduction techniques which do not preserve structure, such as POD, often leads
to numerically unstable models: their dynamics can diverge significantly from the underlying
physical behavior. Fortunately, several reduction techniques can be adapted to retain structural
properties within the reduced model. For example, the DEIM method can be modified to preserve
the first moments of an operator, as shown in [28]. Specifically for Hamiltonian systems, struc-

90 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

ture preservation can be ensured through the Proper Symplectic Decomposition (PSD) [29], a
symplectic counterpart to POD, in which the projection onto the reduced space is constrained to
be symplectic. For the PIC model that motivates our work, [16] introduces a dynamic, projection-
based model order reduction framework. The projection evolves in time and, with additional
constraints, can be made symplectic—thus ensuring that the reduced model remains Hamilto-
nian. To further enhance computational efficiency, their approach also integrates a DMD-DEIM
method to reduce the number of particles effectively. Machine learning techniques have also
been extended to account for Hamiltonian structures. In [30], for instance, the authors replace
the linear PSD mapping with a neural network that is weakly constrained to be symplectic.

In this paper, we focus on the 1D-1V Vlasov–Poisson system discretized using a Hamiltonian
PIC scheme. This discretization yields a high-dimensional ODE with a Hamiltonian structure.
However, relying solely on a PSD to construct a reduced model is insufficient to capture small-
scale dynamics and nonlinear behaviors with a small reduced dimension. As a result, such an
approach would offer limited computational speedup.

To address this issue, we present a strategy inspired by [31], where the authors perform
an initial projection onto an intermediate subspace using a Proper Orthogonal Decomposition
(POD), followed by the construction of a reduced model through deep learning techniques. Our
approach, which we refer to as the PSD-AE-HNN method, similarly employs a two-step projec-
tion. It combines PSD with the AE-HNN method introduced in [32].

Starting from the full state variables of the PIC model, we first apply a PSD-based projection
onto a symplectic subspace of intermediate dimension. Due to the symplectic nature of the PSD,
the intermediate variables follows a Hamiltonian dynamic. Next, we perform a second, nonlin-
ear projection using an autoencoder (AE) neural network [33] to map the system onto a lower
dimensional space. While this second mapping is not explicitly symplectic, we enforce Hamilto-
nian structure in the reduced dynamics by training a Hamiltonian Neural Network (HNN) [34]
and incorporating tailored loss functions to constrain the training process.

The motivation behind this two-step mapping lies in the nature of the PIC discretization:
particles are neither ordered nor regularly spaced, precluding the use of convolutional neural
networks. Furthermore, a large number of particles (e.g. 105 in 1D–1V) are typically required to
achieve accurate convergence, making the direct use of dense neural networks impractical. The
PSD thus acts as a symplectic preconditioner, enabling the AE-HNN method to learn dynamics
from a Hamiltonian intermediate representation of reasonable size (e.g. 102).

The structure of this paper is as follows: In the first section, we recall the Vlasov-Poisson
equation and its Hamiltonian PIC discretization. In the second section, we present our model
order reduction technique, referred to as the PSD-AE-HNN method. In the third section, we
apply this method to several classic numerical test cases, including linear and nonlinear Landau
damping and the two-stream instability. We then provide a comparison of computational times
before concluding.

4.2 Particle discretization of the Vlasov-Poisson equation 91

4.2 Particle discretization of the Vlasov-Poisson equation

In this section, we present the full order model (FOM) of interest. It is a particle-based discretiza-
tion of the Vlasov-Poisson equation which possesses a Hamiltonian structure.

4.2.1 The Vlasov-Poisson equation

We consider a parametric 1D-1V Vlasov-Poisson equation, that gives the dynamics of the particle
distribution function f(t, x, v;µ) which depends on time t ∈ [0, T] with T > 0, position x ∈ Ωx,
a periodic domain of size |Ωx|, velocity v ∈ Ωv ⊂ R, and parameters µ ∈ Γ ⊂ Rd with d > 0.
The equation reads
∂tf(t, x, v;µ) + v ∂xf(t, x, v;µ) +

q

m
E(t, x;µ) ∂vf(t, x, v;µ) = 0, in [0, T]× Ωx × Ωv × Γ,

∂xE(t, x;µ) = q

∫
Ωv

f(t, x, v;µ) dv − ρ0, in [0, T]× Ωx × Γ,

f(0, x, v;µ) = finit(x, v;µ), in Ωx × Ωv × Γ,

(4.1)

where E(t, x;µ) ∈ R is the electric field, q is the individual charge of the particles, m their
individual mass and finit(x, v;µ) ∈ R is a given initial condition. Defining the charge density
ρ(t, x;µ) = q

∫
R f(t, x, v;µ) dv and the electric potential ϕ(t, x;µ) ∈ R such that E(t, x;µ) =

−∂xϕ(t, x;µ), the Poisson equation rewrites

−∂xxϕ(t, x;µ) = ρ(t, x;µ)− ρ0, in [0, T]× Ωx × Γ. (4.2)

The variable ρ0 corresponds to the average global charge density initially and remains constant
over time:

ρ0 =
1

|Ωx|

∫
Ωx

ρ(t, x;µ) dx. (4.3)

This quantity is subtracted from the charge density ρ in the right-hand side of the Poisson equa-
tion to ensure that the system is well posed with periodic boundary conditions.

The Vlasov-Poisson equation given in Eq. (4.1) admits a Hamiltonian formulation with a
Lie-Poisson bracket [35], and a Hamiltonian which corresponds to the sum of the kinetic and
potential energies of the system

H(f ;µ) =
m

2

∫
Ωx×Ωv

v2f(t, x, v;µ) dxdv +
1

2

∫
Ωx

|E(t, x;µ)|2 dx.

4.2.2 Hamiltonian particle-based discretization

We consider a Particle-In-Cell (PIC) discretization of Eq. (4.1) that preserves the Hamiltonian
structure of the equations. Namely, we use a particularization of the GEMPIC algorithm [10],
as considered in [16]. The distribution function f is approximated with a set of N ∈ N macro-
particles and the electric field is obtained by solving the Poisson equation with a finite element
discretization resulting in an approximate electric field Eh(t, x, µ). More precisely, we approx-
imate f with a sum of Dirac delta distributions, located at position (xk(t;µ), vk(t;µ)) in phase
space:

fN (t, x, v;µ) =
N∑
k=1

ω δ (x− xk(t;µ)) δ (v − vk(t;µ)) ,

92 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

where ω is the weight of each particle assumed to be identical for all particles and set equals to
|Ωx|ρ0/(qN) to ensure the charge density to be normalized (Eq. (4.3)). To satisfy the Vlasov equa-
tion of Eq. (4.1), the dynamics of N particles have to satisfy the following system of differential
equations: 

d

dt
x(t;µ) = v(t;µ), in [0, T],

d

dt
v(t;µ) =

q

m
Eh(t,x(t;µ);µ), in [0, T],

x(0;µ) = xinit(µ),

v(0;µ) = vinit(µ),

(4.4)

where x(t;µ) = (xk(t;µ)),v(t;µ) = (vk(t;µ)) ∈ RN denotes the vectors of positions and
velocities and Eh(t,x;µ) = (Eh(t, xk;µ)) ∈ RN the approximate electric field evaluated at
each particle position. To obtain this approximate electric field, an approximate charge density
ρh(t, x;µ) is computed on the finite element mesh from the particles distribution (deposition
step), the Poisson equation is solved and then the electric field is evaluated at particle positions
(interpolation step). We thus need deposition and interpolation steps such that the resulting
system is still Hamiltonian.

In detail, we introduce a uniform grid of Ωx, denoted Xh = {ih, i ∈ {1, · · · , nx}}, where
h is the cell length. We consider a H1-conforming finite element discretization of the Poisson
Eq. (4.2) in the space P1Λ0(Ωx) of piecewise linear functions. As in [16],

(
λ0
i (x)

)
i∈{1,··· ,nx}

denotes the basis, which satisfies λ0
i (jh) = δi,j with δi,j the Kronecker delta. Then, we define

the particle-to-grid mapping Λ0(x) ∈MN,nx(R):(
Λ0(x)

)
k,i

= λ0
i (xk), k ∈ {1, · · · , N}, i ∈ {1, · · · , nx},

and the matrix of the Poisson problem L ∈Mnx,nx(R) by

Li,j = ⟨dxλ0
i , dxλ

0
j ⟩L2(Ωx), i, j ∈ {1, · · · , nx},

where dx is the derivative with respect to x and ⟨·, ·⟩L2(Ωx) is the standard L2(Ωx) scalar product,
which in our case equals the standard one-dimensional discrete Laplacian matrix (up to factor
1/h):

L =
1

h


−2 1

1
.
. 1

1 −2

 .

With these notations, the computation of the approximate electric field can be written as follows.
From the particles positions, we compute a discrete charge density

(deposition step) ρh = qωΛ0(x)T1N =

(
qω

N∑
k=1

λ0
i (xk)

)
i

∈ Rnx .

where 1N ∈ RN is a vector of ones. Then, the approximate potential is computed by solving the
discrete Poisson equation

− Lϕh = ρh − hρ01nx ,

4.2 Particle discretization of the Vlasov-Poisson equation 93

with ϕh ∈ Rnx . Finally, the discrete electric field is defined by Eh(t, x;µ) =
−
∑nx

i=1 dxλ
0
i (x)(ϕh)i, and can be evaluated at particles positions:

(interpolation step) Eh = −∇Λ0 (x)ϕh =

(
−

nx∑
i=1

dxλ
0
i (xk)(ϕh)i

)
k

∈ RN ,

with ∇Λ0(x) = (dxλ
0
i (xk))k,i ∈MN,nx(R). We note that we recover the deposition and inter-

polation steps of the standard PIC method [2].
The resulting system has a Hamiltonian structure. Indeed, introducing the discrete Hamilto-

nian function

H (x(t;µ),v(t;µ)) =
1

2
∥v(t;µ)∥2 + U (x(t;µ)) , (4.5)

with

U (x(t;µ)) =
1

2mω

(
qωΛ0 (x(t;µ))T 1N − hρ01nx

)T
L−1

(
qωΛ0 (x(t;µ))T 1N − hρ01nx

)
,

(4.6)

and the variable u(t;µ) = (x(t;µ),v(t;µ)), the full order dynamics Eq. (4.4) rewrite as a Hamil-
tonian system: 

d

dt
u(t;µ) = J2N∇uH (u(t;µ)) , in [0, T]

u(0;µ) = uinit(µ)
(4.7)

with the Hamiltonian gradient given by:

∇uH (u(t;µ)) =

(
∇xU(x(t;µ))

v(t;µ)

)
=

(
q
m∇Λ

0 (x(t;µ))L−1
(
qωΛ0 (x(t;µ))T 1N − hρ01nx

)
v(t;µ)

)
(4.8)

and J2N referring to the canonical symplectic matrix

J2N =

(
0N IN
−IN 0N

)
,

with IN and 0N , respectively, the identity and null matrices of size N . Equations (4.7)-(4.8) will
be referred to as the Hamiltonian FOM system.

4.2.3 Time discretization and initialization

We recall that the flow ϕt : R2N → R2N of a differential equation is a mapping from the initial
state to the state at any time t

ϕt (uinit(µ)) := u(t;µ).

A key property of Hamiltonian systems, as defined in Eq. (4.7), is that the associated flow is
symplectic, meaning that it satisfies the relation

(∇uϕt (uinit(µ)))
T J2N (∇uϕt (uinit(µ))) = J2N , ∀t ∈ [0, T], µ ∈ Γ.

One consequence is that the Hamiltonian H is preserved along the flow

H (u(t;µ)) = H (uinit(µ)) , ∀t ∈ (0, T], µ ∈ Γ.

94 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

This is particularly important when considering physical systems. To preserve the symplectic
structure at the discrete level, we consider the Störmer-Verlet scheme, which is a symplectic time
integrator [36]. It is second order accurate and is explicit in the case of a separable Hamiltonian,
which is the case in the problem under consideration. Indeed, the Hamiltonian (4.5) writes as the
sum of a discrete kinetic energy, depending only on v, and a discrete potential energy, depending
only on x:

H (u) = H kin(v) + H pot(x).

with

H kin(v) =
1

2
∥v∥2, H pot(x) = U(x).

Introducing a time step ∆t, and denoting un = (xn,vn) the numerical solution at time tn =
n∆t, the Störmer-Verlet scheme reads

vn+
1
2 = vn − ∆t

2
∇xU(xn),

xn+1 = xn +∆tvn+
1
2 ,

vn+1 = vn+1 − ∆t

2
∇xU(xn+1),

(4.9)

where the expression of ∇xU is given in Eq. (4.8).
The numerical simulation starts by initializing the particle positions, x0 = xinit(µ), and ve-

locities, v0 = vinit(µ), based on the initial distribution finit(x, v;µ). A common approach is to use
inverse sampling, which may require to empirical estimate the inverse cumulative distribution
function. This method depends on a random number generator, which introduces noise that can
degrade the accuracy of the solution [37, 11]. To avoid this issue, we instead use a non-random
number generator based on a Hammersley sequence [38], which effectively reduces simulation
noise. This method is known as a quiet start.

4.3 A Hamiltonian reduction with Proper Symplectic Decompos-
tion prereduction

Taking into consideration that the number of particles N is generally large, the numerical resolu-
tion of the Hamiltonian FOM, given in Eq. (4.7), requires significant computational resources and
time. Hence, obtaining solutions for various parameters µ ∈ Γ and times t can become computa-
tionally intractable. As a consequence, we aim at building a reduced order model, much smaller
in size, that captures the main dynamics for various times t and parameters µ ∈ Γ and that is
more affordable to compute. This reduced order model must also have a Hamiltonian structure.

First, we define the solution manifold

M = {u(t;µ)with t ∈ [0, T], µ ∈ Γ} ⊂ R2N

formed by the values taken by the solutions of the ODE Eq. (4.7). The manifold structure results
from the Cauchy-Lipschitz (Picard-Lindelöf) theorem with parameters under some regularity
assumptions of the Hamiltonian. We assume thatM is well approximated by a trial manifold
M̂ that reads

M̂ =
{
D (ū(t;µ)) with ū(t;µ) ∈ R2K

}
⊂ R2N ,

with a decoding operatorD : R2K → R2N . In addition, we consider its pseudo-inverse operator
E : R2N → R2K , called the encoder, which satisfies the relation

E ◦ D = IdR2K .

4.3 A Hamiltonian reduction with Proper Symplectic Decompostion prereduction 95

In other words, we search for a reduced model that is a 2K-dimensional ODE of solution ū(t;µ).
To do so, we have to determineD and E , we therefore ask for the projection operatorD◦E onto
M̂ to be close to the identity on a data set U ⊂M:

∀u ∈ U, D ◦ E(u) ≈ u.

The data set U is composed of snapshots of the solutions at different times and various parame-
ters, obtained with time integration; it writes

U =
{
u0
µ1
, . . . ,unT

µ1
, . . . ,u0

µP
, . . . ,unT

µP

}
∈M2N,(nT+1)P (R), (4.10)

where uk
µp
≈ u(tk;µp) it the numerical solution at time step k and parameters µp, nT + 1 > 0

is the total number of time steps and P > 0 is the number of sampled parameters. In practice,
parameters are uniformly sampled across Γ. We denote this sample Γtrain := {µp}p∈{1,...,P}.

In addition, we constrain the reduced variables ū(t;µ) to follow the reduced Hamiltonian
dynamics 

d

dt
ū(t;µ) = J2K∇ūH̄ (ū(t;µ)) , in [0, T],

ū(0;µ) = E (uinit(µ)) ,
(4.11)

where H̄ : R2K → R is a reduced Hamiltonian, to be built.
In the following, we present our strategy to construct the encoder and decoder. It is based

on the coupling of the Proper Symplectic Decomposition (PSD), introduced in [29], and the AE-
HNN method proposed in [32], which combines an AutoEncoder (AE) [33] and a Hamiltonian
Neural Network (HNN) [34]. The method will be referred to as PSD-AE-HNN.

4.3.1 PSD-AE-HNN reduction method

The PSD-AE-HNN is a three-step reduction method.
First, the Hamiltonian FOM, which evolves in a 2N -dimensional phase space, is projected

onto an intermediate 2M -dimensional symplectic subspace with M ≪ N using the PSD.
Let A ∈ M2N,2M (R) denote the symplectic matrix obtained from the PSD algorithm, and
A+ ∈M2M,2N (R) be its symplectic inverse, so that A+A = I2M . Together, A and A+ serve as
projection and reconstruction operators between the full and intermediate reduced phase space.
Further details are provided in Sec. 4.3.2.

Second, we further reduce the intermediate 2M -dimensional representation to a low-
dimensional 2K-dimensional subspace, withK ≪M , using an AE. This neural network consists
of an encoder Eθe : R2M → R2K and a decoder Dθd : R2K → R2M , where θe and θd denote the
respective parameters of the encoder and decoder. Additional details on the network architec-
tures and training setup are provided in Sec. 4.3.4. The autoencoder is trained to approximate the
identity mapping, i.e. Dθd ◦ Eθe ≈ id. These networks thus act as nonlinear projectors, mapping
data from the intermediate subspace to the low-dimensional space and back. Consequently, the
full encoder and decoder are defined by

E = Eθe ◦A+, D = A ◦ Dθd ,

where A+ (resp. A) is identified with the map u 7→ A+u (resp. u 7→ Au).
Third, the dynamics of the reduced model is then captured by a third neural network, the

HNN, denoted H̄θh : R2K → R, where θh represents its trainable parameters. It is trained such
that Eq. (4.11) holds when evaluated on the reduced variables:

d

dt
E(u(t;µ)) ≈ J2K∇ūH̄θh (E(u(t;µ))) , in [0, T]

ū(0;µ) = E (uinit(µ))
(4.11)

96 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

u(t1;µ)

A+u(t1;µ)

ū(t1;µ)

ū(t2;µ)

ũ(t2;µ)

Aũ(t2;µ)

HNN Hθh

expand dim.

squeeze
time integration

︸ ︷︷ ︸

︸︷︷︸ encoder Eθe

decoder Dθd

PSD-AE-HNN method

flatten

unflatten

Figure 4.1: PSD-AE-HNN architecture: from FOM solution u(t1;µ), a PSD intermediate reduced
variable A+u(t1;µ) is computed, followed by the reduced state ū(t1;µ) = Eθe(A+u(t1;µ)).
Next, time integration ū(t2;µ) is performed with the HNN gradient, the final state Aũ(t2;µ) =
ADθd(ū(t2;µ)) is recovered with decoder and PSD successive decompression.

A more detailed description of this component is provided in Sec. 4.3.3.
The online process for applying the reduced model is schematized in Fig. 4.1. We start with

a full order solution u(t1;µ) ∈ R2N at time t1. Our goal is to approximate the full order solu-
tion at time t2 > t1, using the reduced model. We first apply the symplectic projection to an
intermediate reduced variable

A+u(t1;µ) ∈ R2M .

The encoder then maps this intermediate representation to a low-dimensional reduced state

ū(t1;µ) = Eθe(A+u(t1;µ)) ∈ R2K .

Since ū(t;µ) evolves according to a Hamiltonian system defined by the HNN, we employ the
Störmer-Verlet integrator described in Eq. (4.9) to advance the solution in time up to time t2. The
required gradients of the learned Hamiltonian are computed via backpropagation, allowing us
to obtain the reduced state ū(t2;µ) at time t2. Finally, the decompression step is performed to
recover an approximation of the full-order solution. The reduced state ū(t2;µ) is first decoded
to the intermediate space via

ũ(t2;µ) = Dθd(ū(t2;µ)).

Finally, we apply the symplectic lift to reconstruct the full-order approximation

Aũ(t2;µ) ≈ u(t2;µ).

There are two main motivations for combining the PSD with the AE-HNN. First, although
the AE-HNN is an efficient data-driven model reduction technique, its computational cost scales
with its input dimension. For large N , this results in neural networks that are too large to train
effectively. Second, since the inputs correspond to particles in phase space, they are inherently
unstructured and may contain noise. The prior reduction via PSD projects the dynamics onto a

4.3 A Hamiltonian reduction with Proper Symplectic Decompostion prereduction 97

lower-dimensional symplectic subspace, resulting in a more structured and compact represen-
tation. This intermediate reduced variable is both easier to learn for the autoencoder and HNN
while also preserving the underlying Hamiltonian structure.

The offline stage of the method, to construct the different elements of the reduced order
model, consists of three main steps:

(i) snapshot generation: we compute a collection of full order solutions at various times and
for different parameter values;

(ii) symplectic basis construction: we apply the PSD algorithm to build the reduced symplec-
tic basis A;

(iii) neural network training: following the approach of [32], we simultaneously train the
second stage of the encoder, Eθe , the first stage of the decoder, Dθd , and the HNN, H̄θh . These
networks are trained using the FOM snapshots projected onto the intermediate subspace via A+.

We dive into both PSD and AE-HNN functioning in the following sections.

4.3.2 PSD reduction

In this section, we briefly introduce the Proper Symplectic Decomposition (PSD) [29]. The goal of
PSD is to approximate the manifoldM⊂ R2N of full order states with a 2M -dimensional linear
subspace. To preserve the Hamiltonian structure of the dynamics, we require the projection to
be symplectic. Under this constraint, the intermediate reduced variable ũ(t;µ) ∈ R2M is defined
by

ũ(t;µ) = A+u(t;µ), (4.12)

where A+ denotes the symplectic inverse of a matrix A ∈ Sp2M,2N (R). This set denotes the
symplectic Stiefel manifold, which consists of all 2N × 2M matrices A satisfying the symplectic
condition

ATJ2NA = J2M .

For any matrix A ∈ Sp2M,2N (R), its symplectic inverse A+ is given by

A+ = JT
2MATJ2N , (4.13)

which satisfies A+A = I2M .
The symplectic matrix A is computed by minimizing the reconstruction error over a set of

training snapshots. That is, A is obtained as the solution to the following optimization problem

min
A∈Sp2M,2N (R)

∥∥U −AA+U
∥∥
F
, (4.14)

where ∥X∥F :=
√∑

i,j |xi,j |2 is the Frobenius norm and U is the snapshot matrix defined in

Eq. (4.10). A direct solution of Eq. (4.14) cannot be obtained. However, with additional assump-
tions outlined in Chap. 2, Sec. 2.3.1, we construct the matrix A using the Complex Singular Value
Decomposition (SVD) algorithm [29]. Since A is a symplectic transformation, it can be checked
that the intermediate reduced variable ũ evolves according to the Hamiltonian dynamics with
Hamiltonian function H ◦A:

d

dt
ũ(t;µ) = J2M∇ũ(H ◦A) (ũ(t;µ)) = J2MAT∇uH (Aū(t;µ)) ,

ũ(0;µ) = A+uinit(µ).
(4.15)

As observed in Sec. 4.4, the value of M required to achieve satisfactory precision is often too
large, which reduces the efficiency of a reduced model based solely on the PSD. Additionally, the
evaluation of the reduced Hamiltonian gradients, AT∇uH (A ·), still depends on the gradient of
the original Hamiltonian function. This results in a computational cost that is higher than that
of the FOM itself. To address this issue, hyper-reduction techniques have been proposed, as in
[16].

98 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

4.3.3 AE-HNN reduction

This section provides a brief overview of the AE-HNN method introduced in [32]. The method
consists of training simultaneously an auto-encoder, composed of Eθe ,Dθd , and a Hamiltonian
Neural Network, H̄θh . The AE consists of a pair of convolutional neural networks, with con-
volutional layers followed by dense layers, while the HNN is implemented as a dense neural
network [39, 33]. The neural network parameters, (θe, θd, θh) ∈ Θ, are determined by solving
an optimization problem of the form

argmin
(θe,θd,θh)∈Θ

L(θe, θd, θh),

where the loss function L is computed using the training dataset Ũ , composed of the snapshots
U projected onto the intermediate subspace

Ũ =
{
ũ0
µ1
, . . . , ũnT

µP

}
=
{
A+u0

µ1
, . . . , A+unT

µP

}
.

A gradient descent algorithm is used to determine optimal parameters.
In the AE-HNN method, the loss function is composed of four different loss terms. The first

term, LAE, forces the AE to be close to the identity map, i.e. Dθd ◦ Eθe ≈ id, on the training
dataset:

LAE(θe, θd) =
∑
ũ∈ Ũ

∥ũ− (Dθd ◦ Eθe) (ũ)∥
2
2 . (4.16)

In practice, a split AE is employed where both the encoder and decoder are made of two neural
networks. The first network processes the generalized positions, while the second network pro-
cesses the generalized velocities. Specifically, the encoder and decoder are structured as follows

Eθe =
(
Eθe,1
Eθe,2

)
, Dθd =

(
Dθd,1

Dθd,2

)
.

The reduced state is then given by

ū(t;µ) =

(
x(t;µ)
v(t;µ)

)
=

(
Eθe,1(x̃(t;µ))
Eθe,2(ṽ(t;µ))

)
and conversely for the decoded state.

The second loss term is defined to constrain the reduced trajectories ū(t;µ) to be close to
those of a Hamiltonian system, as described in Eq. (4.11). In practice, these reduced dynamics
are defined through a time discretization. We therefore introduce the prediction operator

Ps
(
ū, H̄θh

)
which consists in performing s ∈ N∗ iterations of the Störmer-Verlet algorithm (4.9), starting
from the reduced state ū and using the reduced Hamiltonian H̄θh . The number of iterations
considered s, also called the watch duration, is a hyperparameter, which must be set. With this
prediction operator, the second loss function, Lspred, constrains the HNN to accurately capture
the reduced dynamics between the n-th and (n+ s)-th time steps

Lspred(θe, θh) =
∑

ũn,ũn+s∈ Ũ

∥∥ūn+s − Ps
(
ūn; H̄θh

)∥∥2
2
, (4.17)

where ũn, ũn+s ∈ Ũ denotes the sampling of random pairs on the dataset Ũ . Since the full
order Hamiltonian in Eq. (4.5) is separable, the reduced Hamiltonian H̄θh is also assumed to be
separable:

H̄θh(ū) = H̄ kin
θh

(v) + H̄
pot
θh

(x),

4.3 A Hamiltonian reduction with Proper Symplectic Decompostion prereduction 99

which allows for the explicit formulation of the time integrator Ps.
The third part of the loss function aims at ensuring that the reduced trajectories, generated

by the encoder Eθe , preserve the reduced Hamiltonian. The loss function, Lsstab writes:

Lsstab(θe, θh) =
∑

ūn,ūn+s∈ Ū

∥∥H̄θh

(
ūn+s

)
− H̄θh (ū

n)
∥∥2
2
. (4.18)

Finally, the three neural networks are strongly coupled using a loss function, Lspred, which
encapsulates the full prediction from the n-th time step to the n + s-th time step, using the
encoder at the beginning, the decoder at the end and the prediction operator associated with the
reduced model:

Lspred(θe, θd, θh) =
∑

ũn,ũn+s∈ Ũ

∥∥ũn+s −Dθd

(
Ps
(
Eθe(ũn); H̄θh

))∥∥2
2
. (4.19)

To summarize, four different loss functions, given in Eqs. (4.16) to (4.19), are used to train
the AE and the HNN. More precisely, the parameters are determined such as to minimize the
following weighted sum

L(θe, θd, θh) =ωAE LAE(θe, θd) + ωpred Lspred(θe, θh)

+ ωstab Lsstab(θe, θh) + ωpred Lspred(θe, θd, θh),

whereωAE, ωpred, ωstab andωpred are positive weights. The networks are thus jointly trained, with
potentially adversarial goals. Ultimately, Lspred serves as the primary loss function to measure
the performance of the AE-HNN reduction. The other loss functions act as auxiliary functions
to drive the training process.

4.3.4 Hyperparameters tuning

This section specifies the hyperparameters of the models and describes how they are selected.
They are chosen based on two main criteria. First, the reduced model must closely approximate
the full model, with the difference measured by the losses, while minimizing the reduced dimen-
sion K . Second, the networks, particularly the HNN, must remain lightweight in terms of the
number of parameters to ensure fast computation. Note that the AE is less critical in terms of
size, as it is only called once during the online phase.

Regarding the PSD part, the main hyperparameter is the intermediate subspace dimension
M . A smaller value of M results in a more significant reduction and reduces the computation
time, while a larger value of M provides a richer subspace for the subsequent training the AE-
HNN, but with increased computation time. In practice, we select an M value such that the
PSD reconstruction error is slightly less than the target accuracy of the reduced model. In the
following test cases, a typical value is M = 121 for a final time T = 20 and M = 256 when
T = 40.

Secondly, the AE-HNN part involves hyperparameters for defining the architecture of the
neural networks. As explained in Sec. 4.3.3, the encoder consists of two convolutional neural
networks when considering a split AE. Each network starts with an input of size M , which is
fed through a series of 1D convolutional layers with a stride of 3, a kernel size of 3, and valid
padding each. The number of filters is progressively multiplied by the stride between layers,
starting with 12 filters. The final output is flattened and passed through a series of dense layers,
whose sizes gradually decrease, ultimately leading to a single dense layer of output size K . The
activation function is applied throughout the encoder, except for the output layer, which uses
a linear activation function. The decoder is designed as a mirror image of the encoder, where

100 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

the 1D convolutions are replaced with 1D transposed convolutions. Lastly, the HNN is a simple
multi-layer perceptron with an input size of 2K and an output size of 1. The activation function
in the HNN may differ from that used in the AE.

The AE-HNN also requires some hyperparameters to be fixed for the training. The chosen
optimization method is the Adam algorithm [40], which is an adaptive stochastic gradient descent
method. The learning rate follows the rule

ρk = (0.99)k/150 ρ0,

where the division operator denotes integer division and k is the training step. Additionally, we
can reset the decay, i.e. set k = 0, if the loss function reaches a plateau. The purpose of this reset
strategy is to escape poor local minima by introducing a sudden, larger learning rate. In most
cases, we start training with a large ρ0 = 10−3 to accelerate the convergence. Then, we diminish
it to ρ0 = 5×10−4 or so for fine-tuning. The training process depends on the watch duration
s. It is be set to s = 8 and then be reasonably increased up to s = 32 to improve predictions.
Finally,training is divided in two stages. First, the AE is trained alone by setting

ωAE = 1, ωpred = ωstab = ωpred = 0.

Then, after the loss has reached a value in the range [5×10−3, 1×10−2], the AE and the HNN
are trained together by setting

ωAE = 1, ωpred = 10, ωstab = 1×10−4, ωpred = 1.

Table 4.1 recapitulates the hyperparameters used for the different test cases of the next section.

linear Landau damping nonlinear Landau damping two stream instability

AE nb of convolution blocks
(encoder)

2 2 2

dense layers (encoder) [150, 100, 50, 25] [250, 150, 100, 50, 25] [150, 100, 50, 25]
activation functions ELU ELU ELU

HNN dense layers [48, 24, 24, 24, 12] [96, 48, 48, 48, 24] [48, 24, 24, 24, 12]
activation functions softplus softplus softplus

watch duration s 16 10→ 22 16→ 32

Table 4.1: Hyper-parameters. Activation functions are used except for the last layer of the neural
networks. ELU refers to the function elu(x) = x1x>0+(ex−1)1x<0 and softplus to the function
softplus(x) = log(1 + ex). For the autoencoder (AE), the number of convolution blocks and the
sizes of the hidden of layers are those of the encoder. The decoder is constructed in a mirror way.

Remark. In practice, pre-processing is applied to the neural network inputs. While such functions
could be learned by the first layers of the network, manually selecting them significantly improves
both the training and prediction processes. Considering the SVD of the snapshot matrix U defined
in Eq. (4.10),

U = WΣV ∗,

with W and V unitary matrices, V ∗ is the conjugate transpose of V and Σ a diagonal matrix of
diagonal values (σk)k sorted in descending order, the encoder input is pre-processed with the function

(ũ)k 7→ σ
−1/2
k (ũ)k,

where (ũ)k is the k-th coefficient of the intermediate reduced variable ũ. The idea is to balance the
influence of each singular PSD vector in the intermediate reduced basis, thereby allowing the AE to
capture the most important modes without overly neglecting the other modes.

4.4 Numerical results 101

4.4 Numerical results

In this section, the PSD-AE-HNN reduction of the PIC method is tested on three classical plasma
physics dynamics: the linear Landau damping, the nonlinear Landau damping, and the two-
stream instability test cases.

The parameterized initial distributions of the particles takes the following form

finit(x, v;µ) = finit,x(x;α) finit,v(v;σ),

with parameters µ = (α, σ)T ∈ Γ ⊂ R2. The initial position distribution is a perturbed uniform
distribution

finit,x(x;α) =
k

2π
(1 + α cos(k x)) , (4.20)

defined over Ωx =
[
0, 2πk

)
, where k > 0 is a fixed wave number. The parameter α > 0 is the

perturbation amplitude. The initial velocity distribution finit,v(v;σ), defined over Ωv = [−6, 6],
is given by a Gaussian

finit,v(v;σ) =
1

σ
√
2π

exp

(
− v2

2σ2

)
, (4.21)

for the Landau test cases, and by the sum of two Gaussian

finit,v(v;σ) =
1

2σ
√
2π

[
exp

(
−(v − 3)2

2σ2

)
+ exp

(
−(v + 3)2

2σ2

)]
, (4.22)

for the two stream instability test case, where σ > 0 stands for the standard deviation of the
Gaussian distributions.

The P training parameters µ ∈ Γtrain are selected on a
√
P ×

√
P grid over Γ. The model

is then evaluated on a fine 20 × 20 grid Γtest ⊂ Γ. For each parameter µ, the reference FOM
solution is denoted

Xref
µ =

{
x0
µ, . . . ,x

nT
µ

}
, V ref

µ =
{
v0
µ, . . . ,v

nT
µ

}
,

while the solution obtained by the PSD-AE-HNN method is denoted

X test
µ =

{
x̂0
µ, . . . , x̂

nT
µ

}
, V test

µ =
{
v̂0
µ, . . . , v̂

nT
µ

}
.

We recall that it is obtained through the compression of the initial condition, its complete inte-
gration over [0, T] using the HNN followed by its decompression. We measure the relative errors
on a single parameter µ for all time steps

errX,µ =

∥∥X test
µ −Xref

µ

∥∥
F∥∥Xref

µ

∥∥
F

, errV,µ =

∥∥V test
µ − V ref

µ

∥∥
F∥∥V ref

µ

∥∥
F

,

and the mean relative errors at a single time t over all µ ∈ Γtest

errmean
X,t = mean

(∥∥xt
µ − x̂t

µ

∥∥
F∥∥xt

µ

∥∥
F

, µ ∈ Γtest

)
, errmean

V,t = mean

(∥∥vt
µ − v̂t

µ

∥∥
F∥∥vt

µ

∥∥
F

, µ ∈ Γtest

)
.

In addition, we also compute the associated maximal and minimal errors.

102 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

4.4.1 Linear Landau damping

We first consider the linear Landau damping test cases, with initial distributions (4.20)-(4.21)
and k = 0.5, N = 105 particles, nx = 48 spatial discretization points. The final time equals
T = 20 and the time step is set to ∆t = 2.5×10−3. The parameter domain is taken equal to
Γ = [0.03, 0.06]× [0.8, 1]: the size of the perturbation is thus kept small. For the training dataset,
we consider P = 64 parameters. The variation of the initial distribution and the electric energy
damping as a function of µ is shown in Fig. 4.2. Each color represents a different parameter in
Γtrain, and black lines are the envelopes of all the colored curves.

Figure 4.2: (Linear Landau damping) Initial distribution finit,x(x;α) (left), finit,v(x;σ) (middle)
and evolution of the electric energy 1

2∥E∥2 (x(t;µ);µ)) (right) for every µ ∈ Γtrain.

The intermediate reduced variable size is set to M = 121 and the complex SVD algorithm is
used to build the first linear mapping. After completion of the training process with the architec-
ture from Tab. 4.1, we evaluate our model on µ ∈ Γtest. To begin with, we vary K ∈ {2, 3, 4} and
observe relative errors as a function of time in Fig. 4.3. A larger K leads to smaller errors. For
instance, with K = 2, errmean

X,t is around 2×10−2, while it is around 1×10−3 for K = 4 . With
this architecture, a reduced dimension K = 3 is satisfactory. To obtain more precise results, we
would have to modify the architecture presented in Tab. 4.1 for a larger one. In the following,
we set K = 3.

In Fig. 4.4, we then look at the relatives errors errX,µ, errV,µ as a function of the parameters.
The errors errX,µ, errV,µ are of the order 6×10−3 and 3×10−2, respectively. In this specific case,
we note that the maximal error is obtained inside the parameters domain for the positions and
on the boundary for the velocities.

4.4 Numerical results 103

Figure 4.3: (Linear Landau damping) Mean error as a function of time errmean
X,t (left,solid line)

and errmean
V,t (right, solid) for µ ∈ Γtest. Each color stands for a value of K ∈ {2, 3, 4}, dashed

lines are errmean
X,t , errmean

V,t evaluated on the training set Γtrain, the envelopes represent minimal
and maximal errors errmin

X,t , errmax
X,t (left) and errmin

V,t , errmax
V,t .

Figure 4.4: (Linear Landau damping) Errors as a function of the reduction parameters errX,µ (left)
and errV,µ (right), triangular points represent the same error evaluated on the training set Γtrain.

Next, we investigate the correctness of the damping rate. In theory, the electric energy
1
2∥E∥2 (x(t;µ);µ) decays exponentially in time with a constant damping rate, that depends on
the standard deviation σ of the Maxwellian initial distribution finit,v and not on the amplitude α
of the initial perturbation in space finit,x [41]. This property is captured by the reduced model, as
observed in Fig. 4.5. Thus, damping rates predictions are precise with an absolute error of about
5×10−3. In practice, the compression generates an error that causes the decay rate to fluctuate
as a function of α, but this fluctuation remains very small. Similarly, we can see that the reduced
model slightly underestimates decay rates.

104 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

Figure 4.5: (Linear Landau damping) Electric energy 1
2∥E∥2 (x(t;µ);µ) , µ ∈ Γtest exponential

damping rates of the FOM (left), the ROM (center) and absolute error (right).

We evaluate the performance of our method compared to the PSD-only approach in Fig. 4.6.
We test both methods with K ∈ {3, 6, 12, 24, 48}, and evaluate them at two parameter sets:
µ = (0.035, 0.84) ∈ [0.03, 0.06] × [0.8, 1] and µ = (0.029, 1.01) /∈ [0.03, 0.06] × [0.8, 1].
The damping rate, shown in Fig. 4.6b, indicates that K ≈ 30 modes are required to match the
performance of K = 3 modes in the PSD-AE-HNN approach. However, as illustrated in Fig. 4.6a,
the relative error in particle positions does not show significant differences. This highlights that
the PSD method struggles to capture small-scale dynamics, that are crucial for preserving electric
energy oscillations and damping, although it still performs well for large-scale dynamics.

4.4 Numerical results 105

(a) Errors errid
X,t

(b) Electric energies 1
2∥E∥2 (x(t;µ);µ))

Figure 4.6: (Linear Landau damping) Comparison of the PSD reduced model against our method
with K = 3, errid

X,t =
∥∥xt

µ − x̂t
µ

∥∥
F
/
∥∥xt

µ

∥∥
F

for a given µ = (0.035, 0.84) (left) and µ =
(0.029, 1.01) (right).

4.4.2 Nonlinear Landau damping

In this test case, we keep the same initial distribution as in the previous section but consider
a parametric domain, Γ = [0.46, 0.5] × [0.96, 1], with larger spatial perturbation amplitudes.
We consider×105 particles, nx = 64 spatial discretization points. The final time and the time
step are respectively set to T = 40 and ∆t = 2.5×10−3. For the training dataset, we sample
(α σ)T ∈ Γ pairs over an 8 × 8 regular grid over Γ forming P = 64 pairs Γtrain. In Fig. 4.7, we
plot the evolution of the initial distribution and the electric energy for all µ ∈ Γtrain. Each color
represents a different value of µ and the envelopes are shown in black.

106 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

Figure 4.7: (Nonlinear Landau damping) Initial distribution finit,x(x;α) (left), finit,v(x;σ) (mid-
dle) and evolution of the electric energy 1

2∥E∥2 (x(t;µ);µ) (right) for every µ ∈ Γtrain.

Given the increased complexity compared with the linear Landau damping, the intermediate
reduced dimension is set to M = 256. The trained architecture is specified in Tab. 4.1. The
reduced dimension is fixed equal to K = 4. The relative errors as a function of time are depicted
in Fig. 4.8. The errors in positions and velocities are both on the order of 1×10−2.

Figure 4.8: (Nonlinear Landau damping) Mean error as a function of time errmean
X,t (left,solid line)

and errmean
V,t (right, solid) for µ ∈ Γtest for K = 4. Dashed lines are errmean

X,t , errmean
V,t evaluated on

the training set Γtrain, the envelopes represents minimal and maximal errors errmin
X,t , errmax

X,t (left)
and errmin

V,t , errmax
V,t (right).

Subsequently, the relative errors as a function of µ are shown in Fig. 4.9. The errors are
around 2×10−2 for the positions and 5×10−2 for the velocities. As expected, errorr mainly
concentrate on the boundary of the parameter domain.

4.4 Numerical results 107

Figure 4.9: (Nonlinear Landau damping) Errors as a function of the reduction parameters errX,µ

(left) and errV,µ (right), triangular points represent the same error evaluated on the training set
Γtrain.

Then, in Fig. 4.10, we compare the exponential damping and growth rates of the electric
energy in ROM with those in FOM.. As observed in Fig. 4.7, we expect a constant damping rate
when t < 10 then a constant growth rate when t > 20. Fig. 4.10a shows that the mean error on
the damping rate is about 7×10−3 and the error is maximal for the smallest values of α. Fig. 4.10b
shows that the mean error on the growth rate is about 3×10−3. On the other hand, unlike the
linear case, the dependency of the rates to the two parameters is less well captured.

108 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

(a) Damping rate.

(b) Growth rate.

Figure 4.10: (Nonlinear Landau damping) Electric energy 1
2∥E∥2 (x(t;µ);µ) , µ ∈ Γtest expo-

nential damping rates (top) and growth rates (bottom) of the FOM (left), the ROM (center) and
absolute error (right).

Next, we compare the evolution of the distribution f(t, x, v;µ) from the reference model
with the predictions of its reduced model in Fig. 4.11. While small differences are observed, the
overall dynamics are well captured.

4.4 Numerical results 109

Figure 4.11: (Nonlinear Landau damping) Solution f(t, x, v;µ) (top) and fpred(t, x, v;µ) (bottom)
for t ∈ {10, 25, 40} and µ = (0.465, 0.986).

In Fig. 4.12, we then compare the precision of the method with the PSD-only approach for
two test parameters µ = (0.465, 0.986) and µ = (0.48, 0.995). To match the performance of
our method, about K = 100 PSD modes are required, both for the particle distribution errors
(Fig. 4.12a) and for the electric energy (Fig. 4.12b). In this test case, our approach is particularly
effective for the positions and velocities associated with the last oscillations of the simulation.

110 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

(a) Errors errid
X,t

(b) Electric energies 1
2∥E∥2 (x(t;µ);µ)

Figure 4.12: (Nonlinear Landau damping) Comparison of the PSD reduced model against our
method with K = 4, errid

X,t =
∥∥xt

µ − x̂t
µ

∥∥
F
/
∥∥xt

µ

∥∥
F

for a given µ = (0.465, 0.986) (left) and
µ = (0.48, 0.995) (right).

Finally, we assess the importance of using a HNN in our PSD-AE-HNN method, compared to
a flux-approximating neural approach. For this, we replace the HNN in Sec. 4.3 with a standard
neural network F̄θf , which approximates the flux of the reduced model:

d

dt
ū(t;µ) = F̄θf (ū(t;µ)) , in [0, T],

ū(0;µ) = E (uinit(µ)) .

We also replace, in the prediction operator Ps, the symplectic Störmer-Verlet by the standard
Runge-Kutta 2 scheme. The stability loss weight is set to ωstab = 0 as it cannot be evaluated and
the remaining parameters are unchanged. The trained model is tested on µ = (0.48, 0.995) ∈ Γ,
and the results are shown in Fig. 4.13. The errors increase strongly over time, and the electric
energy growth is not accurately captured—unlike our PSD-AE-HNN method, which performs
accurately in comparison. Unlike an approach based solely on PSD, where the reduced model

4.4 Numerical results 111

is Hamiltonian and the encoder and decoder are symplectic, here only the reduced model is
Hamiltonian. This last case shows that simply preserving the structure in the reduced space is
sufficient to improve long-term stability.

Figure 4.13: (Nonlinear Landau damping) PSD-AE-Flux prediction for a single test parameter
µ compared to the PSD-AE-HNN method. Errors as a function of time errid

X,t, errid
V,t (left) and

predicted electric energy 1
2∥E∥2 (x(t;µ);µ)).

4.4.3 Two-stream instability

In this third test case, we consider the initial distributions (4.20)-(4.22), with the sum of two
Gaussians in velocity, and k = 0.2. The number of particles equals N = 1.5×105 and there
are nx = 64 spatial discretization points. The final time equals T = 20 and the time step
∆t = 2.5×10−3. The parameter domain is taken equal to Γ = [0.009, 0.011]× [0.98, 1.02] and
the training set is composed P = 36 distinct pairs. This training set is more scattered compared
to the other test cases. For comparison purposes, the authors in [16] use 300 snapshots for the
same test case. The variation in the initial distribution and electric energy is shown in Fig. 4.14.

Figure 4.14: (Two stream instability) Initial distribution finit,x(x;α) (left), finit,v(x;σ) (middle)
and evolution of the electric energy 1

2∥E∥2 (x(t;µ);µ)) (right) for every µ ∈ Γtrain.

The intermediate reduced dimension and the final reduced dimensions are set to M = 121
and K = 4. The AE-HNN networks is trained with the architecture presented in Tab. 4.1. We

112 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

inspect relatives errors as a function of time in Fig. 4.15: errmean
X,t is about 2×10−3 and errmean

V,t is
on the order of 1×10−2.

Figure 4.15: (Two stream instability) Mean error as a function of time errmean
X,t (left,solid line) and

errmean
V,t (right, solid) for µ ∈ Γtest. Dashed lines are errmean

X,t , errmean
V,t evaluated on the train-

ing set Γtrain, the envelopes represents minimal and maximal errors errmin
X,t , errmax

X,t (left) and
errmin

V,t , errmax
V,t .

Next, we observe the relative errors as a function of µ in Fig. 4.16. The error in positions,
errX,µ, is approximately 5×10−3, and the error in velocities, errV,µ, is around 2×10−2. We notice
only a slight increase in error as α increases, attributed to the sparsity of the training set. Overall,
errors remain low, and the reduced dynamics are learned effectively.

Figure 4.16: (Two stream instability) Errors as a function of the reduction parameters errX,µ (left)
and errV,µ (right), triangular points represent the same error evaluated on the training set Γtrain.

Then, we plot the evolution of the distribution f(t, x, v;µ) of the FOM at different times in
comparison with the ROM predicted distribution fpred(t, x, v;µ) in Fig. 4.17. The dynamics are

4.4 Numerical results 113

correctly captured from the initial stream shearing to the development of a central vortex.

Figure 4.17: (Two stream instability) f(t, x, v;µ) (top) and fpred(t, x, v;µ) (bottom) for t ∈
{10, 15, 20} and µ = (0.0095, 0.99).

Eventually, we compare the method with K = 4 to the PSD with K ∈ {4, 8, 16, 32} in
Fig. 4.18 for µ = (0.01, 1) (left) and (0.0105, 0.985) (right). In Fig. 4.18b, we observe the electric
energy 1

2∥E∥2 (x(t;µ);µ), where its dynamics are well replicated with our method. We would
need K = 30 modes with the PSD to obtain comparable results. In Fig. 4.18a, we study the rela-
tive errors errid

X,t and conclude that our method with a dimension of K = 4 achieves comparable
results in terms of precision with the PSD and K = 30 modes.

114 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

(a) Errors errid
X,t

(b) Electric energies 1
2∥E∥2 (x(t;µ);µ))

Figure 4.18: (Two stream instability) Comparison of the PSD reduced model against our method
with K = 4, errid

X,t =
∥∥xt

µ − x̂t
µ

∥∥
F
/
∥∥xt

µ

∥∥
F

for a given µ = (0.01, 1) (left) and µ =
(0.0105, 0.985) (right).

4.4.4 Computation gain

In this section, we evaluate the computation time for each model and test case from Secs. 4.4.1
to 4.4.3. To compare the performance of the reduced model, it is essential to identify a full model
with equivalent accuracy. To achieve this, the number of particles will be varied. This approach
will help us to assess that our method offers superior performance compared to a simple reduction
in the number of particles. Therefore, we will not discuss the execution time of the PSD-only
reduced model described in Eq. (4.15), as it is expected to result in a longer execution time without
any hyper-reduction techniques.

In this study, we focus on a specific quantity of interest for each test case and evaluate the
computation time for a single parameter, µ, across varying particle numbers, N . It is important
to note that PIC simulations tend to exhibit noise when the particle count is low, leading to a
non-monotonic relationship between the error and the particle number, N , with respect to the

4.4 Numerical results 115

quantity of interest.
The code is implemented in Python, with the majority of operations utilizing the NumPy

library. However, neural networks and training processes are implemented using the TensorFlow
framework. A single AMD Ryzen 9 5900X CPU is employed for computation. It is important
to note that this runtime test does not fully reflect the strengths of our method for two main
reasons: (i) it is run on a CPU rather than a GPU, which significantly limits the efficiency of
neural network evaluations; and (ii) it considers only a single initial condition, which prevents
us from showcasing the neural network’s ability to handle multiple inputs efficiently through
vectorization.

For the linear Landau damping from Sec. 4.4.1, we set µ = (0.035, 0.84). We focus on the
estimation of the damping rate to test our method. As shown in Fig. 4.19a, we estimate a PIC
simulation with N = 7× 104 particles to be as precise as our PSD-AE-HNN method. From
Fig. 4.20a, the PSD-AE-HNN is 4.63 times faster than the prior.

Then, we focus on the nonlinear Landau damping test case with µ = (0.465, 0.986). We
consider the damping and growth rates as the quantities of interest. As shown in Fig. 4.19b, the
equivalent PIC simulation requires N = 3×104 particles and the speedup is about 1.95.

Finally, we are interested in the evolution of the electric energy for the two-stream instabil-
ity. We set µ = (0.0105, 0.985) and observe that we need about N = 3×104 particles for a
comparable precision to our method in Fig. 4.19c giving an acceleration of 2.10.

From a theoretical point of view and discarding the projection cost, one integration step
requires O(N+n2

x) operations. From [32], our reduced model cost is about O(
∑L

k=1 n
(k−1)n(k))

where n(k) is n-th layer width i.e. number of units of the HNN. In addition, as n(k) is of the order
of K2, the cost is O(K4) which makes it competitive as it does not depend on N nor nx.

116 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

(a) (Linear Landau damping) µ = (0.035, 0.84). Dashed lines represent the linear damping.

(b) (Nonlinear Landau damping) µ = (0.465, 0.986). Dashed lines represent the linear damping and
growth.

(c) (Two-stream instability) µ = (0.0105, 0.985).

Figure 4.19: Electric energy as a function of time for various N and the PSD-AE-HNN reduced
model. Solid lines represent the energies.

4.4 Numerical results 117

PIC PSD-AE-HNN
N 1×105 7×104 3.5×104 1×104

damping rate (×10−2) −8.44 −8.42 −8.39 −6.66 −8.41

time (s) 25.05 11.40 6.13 2.00 2.46

speedup 0.46 1 1.86 5.70 4.63

(a) Linear Landau damping

PIC PSD-AE-HNN
N 1×105 3×104 1.5×104 7.5×103

damping rate (×10−1) -3.23 -3.23 -3.23 -3.26 -3.31

growth rate (×10−2) 8.55 8.55 8.22 7.89 8.60

time (s) 53.45 11.13 6.03 3.37 5.71

speedup 0.21 1 1.85 3.30 1.95

(b) Nonlinear Landau damping

PIC PSD-AE-HNN
N 1.5×105 3×104 2×104 1×104

time (s) 59.30 5.34 3.68 2.08 2.54

speedup 0.09 1 1.45 2.57 2.10

(c) Two-stream instability

Figure 4.20: Computation time and numerical acceleration for each test case.

118 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

4.5 Conclusion

We have introduced a new Hamiltonian reduction method to reduce the number of particles in a
particle-based discretization of the Vlasov-Poisson equation. This method uses a two-step map-
ping that combines Proper Symplectic Decomposition (PSD) for linear reduction with an autoen-
coder (AE) for additional nonlinear compression. PSD significantly reduces the dimensionality
of the problem, while AE further compresses the data in a nonlinear manner. The reduced dy-
namics are then captured by a Hamiltonian neural network (HNN), ensuring the preservation
of the Hamiltonian structure. The PSD-AE-HNN approach shows strong performance in linear
and nonlinear test cases compared to the PSD method and offers good computational efficiency.
Overall, the method is data-driven, non-intrusive, and highly adaptable.

One issue that arises is how to improve the quality of the approximation. In projection-based
methods such as PSD, increasing the reduced dimensionK leads to an increase in accuracy. There
is no systematic process of this type for the proposed method. Instead, improvements can come
from tuning the hyperparameters of the neural networks (e.g., the number of layers, size of the
layers, activation functions) and refining the learning strategy.

The results should be extended to cover PIC simulations in two or three spatial and velocity
dimensions. A substantial increase in network size should not be necessary for the AE-HNN
component, as convolutional layers can be used. In contrast, the PSD may require further re-
finement. Additionally, future extensions could also involve integrating time-adaptive model
reduction techniques as proposed in [15].

Acknowledgements. This research was funded in part by l’Agence Nationale de la Recherche
(ANR), project ANR-21-CE46-0014 (Milk).

References 119

References

[1] E. Franck et al. “Reduced Particle in Cell method for the Vlasov-Poisson system using auto-
encoder and Hamiltonian neural”. working paper or preprint. June 2025. url: https:
//hal.science/hal-05116555.

[2] C. Birdsall and A. Langdon. Plasma Physics via Computer Simulation. Series in Plasma
Physics and Fluid Dynamics. Taylor & Francis, 2018. isbn: 9780750310253. doi: 10.1201/
9781315275048.

[3] P. L. Pritchett. “Particle-in-Cell Simulation of Plasmas— A Tutorial”. In: Space Plasma Sim-
ulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 1–24. isbn: 978-3-540-
36530-3. doi: 10.1007/3-540-36530-3_1.

[4] H. R. Lewis. “Energy-Conserving Numerical Approximations for Vlasov Plasmas”. In: J.
Comput. Phys. 1 (1970), pp. 136–141. doi: 10.1016/0021-9991(70)90012-4.

[5] G. Chen, L. Chacón, and D. C. Barnes. “An energy- and charge-conserving, implicit, elec-
trostatic particle-in-cell algorithm”. In: J. Comput. Phys. 230.18 (2011), pp. 7018–7036. issn:
0021-9991,1090-2716. doi: 10.1016/j.jcp.2011.05.031.

[6] J. E. Marsden and A. Weinstein. “The Hamiltonian structure of the Maxwell-Vlasov equa-
tions”. In: Phys. D 4.3 (1982), pp. 394–406. issn: 0167-2789,1872-8022. doi: 10.1016/0167-
2789(82)90043-4.

[7] Y. He et al. “Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations”. In: Phys.
Plasmas 23.9 (2016), p. 092108. issn: 1070-664X. doi: 10.1063/1.4962573.

[8] H. Qin et al. “Canonical symplectic particle-in-cell method for long-term large-scale sim-
ulations of the Vlasov–Maxwell equations”. In: Nucl. Fusion 56.1 (2015), p. 014001. doi:
10.1088/0029-5515/56/1/014001.

[9] J. Xiao et al. “Explicit high-order non-canonical symplectic particle-in-cell algorithms for
Vlasov-Maxwell systems”. In: Phys. Plasmas 22.11 (2015), p. 112504. issn: 1070-664X. doi:
10.1063/1.4935904.

[10] M. Kraus et al. “GEMPIC: geometric electromagnetic particle-in-cell methods”. In: J.
Plasma Phys. 83.4 (2017). issn: 1469-7807. doi: 10.1017/s002237781700040x.

[11] Y. Barsamian. “Pic-Vert : a particle-in-cell implementation for multi-core architectures”.
Theses. Université de Strasbourg, Oct. 2018. url: https://theses.hal.science/
tel-02168151.

[12] T. Tyranowski and M. Kraus. “Symplectic model reduction methods for the Vlasov equa-
tion”. In: Contrib. Plasma Phys. 63.5-6 (2023), e202200046. issn: 0863-1042. doi: 10.1002/
ctpp.202200046.

[13] A. Nouy. “Low-rank tensor methods for model order reduction”. In: Handbook of uncer-
tainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017, pp. 857–882. isbn: 978-3-319-12385-
1. doi: 10.1007/978-3-319-12385-1_21.

[14] C. Gräßle, M. Hinze, and S. Volkwein. “Model order reduction by proper orthogonal de-
composition”. In: Volume 2 Snapshot-Based Methods and Algorithms. Ed. by P. Benner et al.
Model Order Reduction. De Gruyter, 2021, pp. 47–96. isbn: 9783110671490. doi: 10.1515/
9783110671490-002.

[15] J. S. Hesthaven, C. Pagliantini, and G. Rozza. “Reduced basis methods for time-dependent
problems”. In: Acta Numer. 31 (2022), pp. 265–345. issn: 0962-4929,1474-0508. doi: 10.
1017/S0962492922000058.

https://hal.science/hal-05116555
https://hal.science/hal-05116555
https://doi.org/10.1201/9781315275048
https://doi.org/10.1201/9781315275048
https://doi.org/10.1007/3-540-36530-3_1
https://doi.org/10.1016/0021-9991(70)90012-4
https://doi.org/10.1016/j.jcp.2011.05.031
https://doi.org/10.1016/0167-2789(82)90043-4
https://doi.org/10.1016/0167-2789(82)90043-4
https://doi.org/10.1063/1.4962573
https://doi.org/10.1088/0029-5515/56/1/014001
https://doi.org/10.1063/1.4935904
https://doi.org/10.1017/s002237781700040x
https://theses.hal.science/tel-02168151
https://theses.hal.science/tel-02168151
https://doi.org/10.1002/ctpp.202200046
https://doi.org/10.1002/ctpp.202200046
https://doi.org/10.1007/978-3-319-12385-1_21
https://doi.org/10.1515/9783110671490-002
https://doi.org/10.1515/9783110671490-002
https://doi.org/10.1017/S0962492922000058
https://doi.org/10.1017/S0962492922000058

120 Chapter 4 Hamiltonian reduced Particle-in-Cell method with autoencoder and HNN

[16] J. S. Hesthaven, C. Pagliantini, and N. Ripamonti. “Adaptive symplectic model order reduc-
tion of parametric particle-based Vlasov-Poisson equation”. In: Math. Comp. 93.347 (2024),
pp. 1153–1202. issn: 0025-5718,1088-6842. doi: 10.1090/mcom/3885.

[17] S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical
interpolation”. In: SIAM J. Sci. Comput. 32.5 (2010), pp. 2737–2764. issn: 1064-8275,1095-
7197. doi: 10.1137/090766498.

[18] G. Tissot et al. “Model reduction using Dynamic Mode Decomposition”. en. In: Comptes
Rendus. Mécanique 342.6-7 (2014), pp. 410–416. doi: 10.1016/j.crme.2013.12.011.

[19] P. Schmid. “Dynamic mode decomposition of numerical and experimental data”. In: J. Fluid
Mech. 656 (2010), pp. 5–28. doi: 10.1017/S0022112010001217.

[20] K. Kormann and E. Sonnendrücker. “Sparse grids for the Vlasov–Poisson equation”. In:
Sparse Grids and Applications, 2014. Ed. by Garcke, Jochen and Pflüger, Dirk. Lecture
Notes in Computational Science and Engineering. Springer International Publishing, 2016,
pp. 163–190. isbn: 978-3-319-28262-6. doi: 10.1007/978-3-319-28262-6_7.

[21] V. Ehrlacher and D. Lombardi. “A dynamical adaptive tensor method for the Vlasov-
Poisson system”. In: J. Comput. Phys. 339 (2017), pp. 285–306. issn: 0021-9991,1090-2716.
doi: 10.1016/j.jcp.2017.03.015.

[22] L. Einkemmer and I. Joseph. “A mass, momentum, and energy conservative dynamical low-
rank scheme for the Vlasov equation”. In: J. Comput. Phys. 443 (2021), Paper No. 110495,
16. issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2021.110495.

[23] L. Einkemmer and C. Lubich. “A low-rank projector-splitting integrator for the Vlasov-
Poisson equation”. In: SIAM J. Sci. Comput. 40.5 (2018), B1330–B1360. issn: 1064-8275,1095-
7197. doi: 10.1137/18M116383X.

[24] S. Bhattacharjee and K. Matous. “A nonlinear manifold-based reduced order model for mul-
tiscale analysis of heterogeneous hyperelastic materials”. In: J. Comput. Phys. 313 (2016),
pp. 635–653. issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2016.01.040.

[25] B. Sonday et al. “Manifold learning techniques and model reduction applied to dissipative
PDEs”. In: arXiv e-prints (2010), arXiv–1011. doi: 10.48550/arXiv.1011.5197.

[26] Y. Kim et al. “A fast and accurate physics-informed neural network reduced order model
with shallow masked autoencoder”. In: J. Comput. Phys. 451 (2022), Paper No. 110841, 29.
issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2021.110841.

[27] K. Lee and K. T. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders”. In: J. Comput. Phys. 404 (2020), pp. 108973, 32.
issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2019.108973.

[28] E. Franck et al. “Hyperbolic reduced model for Vlasov-Poisson equation with Fokker-
Planck collision”. In: ESAIM: ProcS 77 (2024), pp. 213–228. doi: 10 . 1051 / proc /
202477213.

[29] L. Peng and K. Mohseni. “Symplectic model reduction of Hamiltonian systems”. In: SIAM J.
Sci. Comput. 38.1 (2016), A1–A27. issn: 1064-8275,1095-7197. doi: 10.1137/140978922.

[30] P. Buchfink, S. Glas, and B. Haasdonk. “Symplectic model reduction of Hamiltonian sys-
tems on nonlinear manifolds and approximation with weakly symplectic autoencoder”. In:
SIAM J. Sci. Comput. 45.2 (2023), A289–A311. issn: 1064-8275,1095-7197. doi: 10.1137/
21M1466657.

https://doi.org/10.1090/mcom/3885
https://doi.org/10.1137/090766498
https://doi.org/10.1016/j.crme.2013.12.011
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1007/978-3-319-28262-6_7
https://doi.org/10.1016/j.jcp.2017.03.015
https://doi.org/10.1016/j.jcp.2021.110495
https://doi.org/10.1137/18M116383X
https://doi.org/10.1016/j.jcp.2016.01.040
https://doi.org/10.48550/arXiv.1011.5197
https://doi.org/10.1016/j.jcp.2021.110841
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1051/proc/202477213
https://doi.org/10.1051/proc/202477213
https://doi.org/10.1137/140978922
https://doi.org/10.1137/21M1466657
https://doi.org/10.1137/21M1466657

References 121

[31] S. Fresca and A. Manzoni. “POD-DL-ROM: enhancing deep learning-based reduced order
models for nonlinear parametrized PDEs by proper orthogonal decomposition”. In: Com-
put. Methods Appl. Mech. Engrg. 388 (2022), Paper No. 114181, 27. issn: 0045-7825,1879-
2138. doi: 10.1016/j.cma.2021.114181.

[32] R. Côte et al. “Hamiltonian reduction using a convolutional auto-encoder coupled to a
Hamiltonian neural network”. In: Commun. Comput. Phys. 37.2 (2025), pp. 315–352. issn:
1815-2406,1991-7120. doi: 10.4208/cicp.OA-2023-0300.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. url: http:
//www.deeplearningbook.org.

[34] S. Greydanus, M. Dzamba, and J. Yosinski. “Hamiltonian neural networks”. In: Proceedings
of the 33rd International Conference on Neural Information Processing Systems. Ed. by H.
Wallach et al. Vol. 32. Curran Associates Inc., 2019. doi: 10.48550/arXiv.1906.01563.

[35] F. Casas et al. “High-order Hamiltonian splitting for the Vlasov-Poisson equations”. In: Nu-
mer. Math. 135.3 (2017), pp. 769–801. issn: 0029-599X,0945-3245. doi: 10.1007/s00211-
016-0816-z.

[36] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration. Second. Vol. 31.
Springer Series in Computational Mathematics. Structure-preserving algorithms for or-
dinary differential equations. Springer-Verlag, Berlin, 2006, pp. xviii+644. isbn: 978-3-540-
30663-4.

[37] J. Denavit and J. Walsh. “Nonrandom initializations of particle codes”. In: Plasma Phys.
Control. Fusion 6.6 (1981), pp. 209–223.

[38] J. M. Hammersley and D. C. Handscomb. “Random, Pseudorandom, and Quasirandom
Numbers”. In: Monte Carlo Methods. Dordrecht: Springer Netherlands, 1964, pp. 25–42.
isbn: 978-94-009-5819-7. doi: 10.1007/978-94-009-5819-7_3.

[39] M. Kubat. “Neural networks: a comprehensive foundation by Simon Haykin, Macmillan,
1994, ISBN 0-02-352781-7.” In: Knowl. Eng. Rev. 13.4 (1999), pp. 409–412. doi: 10.1017/
S0269888998214044.

[40] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: arXiv preprint
arXiv:1412.6980 (2014). doi: 10.48550/arXiv.1412.6980.

[41] G. Berge. “Landau damping in a plasma”. Lectures given at The University of Bergen,
Norway. 1969.

https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/10.4208/cicp.OA-2023-0300
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/arXiv.1906.01563
https://doi.org/10.1007/s00211-016-0816-z
https://doi.org/10.1007/s00211-016-0816-z
https://doi.org/10.1007/978-94-009-5819-7_3
https://doi.org/10.1017/S0269888998214044
https://doi.org/10.1017/S0269888998214044
https://doi.org/10.48550/arXiv.1412.6980

Chapter 5

Hyperbolic reduced model for
Vlasov-Poisson equation with
Fokker-Planck collision

This chapter has been published as a proceedings in ESAIM: Proceedings and Surveys, as outcome
of a research project at the CEMRACS 2022 summer school on Transport in Physics, Biology and
Urban Traffic.

E. Franck, I. Lannabi, Y. Nasseri, L. Navoret, G. Parasiliti Rantone, and G. Steimer. “Hyperbolic
reduced model for Vlasov-Poisson equation with Fokker-Planck collision”. In: ESAIM: ProcS 77
(2024), pp. 213–228. doi: 10.1051/proc/202477213, entrytype=myverbose

Abstract

This paper proposes a reduced model to simulate the one-dimensional Vlasov-Poisson equation
with the nonlinear Fokker-Planck operator. The model provides the space-time dynamics of a few
macroscopic quantities constructed following the Reduced Order Method (ROM) in the velocity
variable: the compression is thus applied to the semi-discretization of the Vlasov equation. To
gain efficiency, a Discrete Empirical Interpolation Method (DEIM) is applied to the compressed
nonlinear Fokker-Planck operator. The size of the resulting reduced model is chosen empirically
according to the Knudsen number. Furthermore, we propose a correction to the reduced collision
operator that ensures the reduced moments to satisfy an Euler-type system. Numerical simula-
tions of the reduced model show that the model can capture the plasma dynamics in different
collisional regimes and initial conditions at a low cost.

122

https://doi.org/10.1051/proc/202477213

5.1 Introduction 123

Chapter’s contents
5.1 Introduction . 123
5.2 Reduced model in velocity for 1D Vlasov-Poisson-Fokker-Planck . . . 124

5.2.1 Vlasov-Poisson-Fokker-Planck model 124

5.2.2 Semi-discretized model in velocity . 125

5.2.3 Reduced model . 127

5.3 Hyper-reduction and corrections of the reduced collision operator . . 128
5.3.1 DEIM hyper-reduction . 128

5.3.2 Preservation of reduced moments . 128

5.3.3 Reduced Maxwellian distributions . 129

5.3.4 Reduced moment equations . 130

5.4 Numerical results . 131
5.4.1 Reduction for given parameters . 131

5.4.2 Preservation of Maxwellian distributions 133

5.4.3 Generalization to other parameters . 134

5.5 Conclusion . 136
References . 136
A Numerical discretization details . 137

A.1 Discretization of the full model . 137

A.2 Discretization of the reduced model . 138

B Solution to the minimization problem 138

5.1 Introduction

The Vlasov-Poisson-Fokker-Planck equation is a model for the transport of the distribution func-
tion of charged particles in the six-dimensional position-velocity phase space. The nonlinear
Fokker-Planck operator describes the short-range binary interactions between charged parti-
cles, called collisions. The weight of collisions in the dynamics is measured by the dimensionless
Knudsen number ε, the scaled mean-free path between collisions: a small Knudsen number cor-
responds to a collisional regime.

Simulations of such dynamics are very computationally demanding. Indeed, since phase
space is of dimension six, simulations require a lot of memory and cpu resources. In addition,
capturing collisional dynamics leads to numerical constraints on the time step and/or phase-
space discretization. Indeed, the Fokker-Planck operator is a diffusive operator in the velocity
variable: stability conditions for explicit numerical schemes have very stringent stability condi-
tions when the Knudsen number ε is small. We refer to [2, 3] and references therein.

In order to avoid full model simulations, a classical strategy is to design reduced models that
are valid in some parameter regimes. Typically, these reduced models provide the space-time
dynamics of macroscopic quantities, which are integrated quantities over the velocity variables.
For instance, the Euler system, satisfied by the density, the momentum, and the energy, can be
obtained with the moment method and is valid in the strong collisional regime (ε ≪ 1). The
Navier-Stokes equations can be considered for lower Knudsen numbers with ε < 10−2. Models
with more moments have been designed in order to be valid at higher Knudsen number regimes.

Another possible approach is to consider reduced models based on data as proposed by the
Reduced Order Modeling (ROM). The method consists in constructing an adapted basis in which

124 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

the solution can be well approximated with few components. The basis is computed through a
Proper Orthogonal decomposition applied to samples of the unknown in the considered physical
regime. The reduced model is then obtained with a projection Galerkin method. We refer to
[4] for more references. This method has been applied for particle discretization of the Vlasov-
Poisson system [5] with a reduction in both space and velocity. In order to efficiently tackle
Eulerian discretization in the six-dimensional phase space, low-rank tensor bases have been pro-
posed [6, 7], as well as their dynamical version [8].

Here we propose a mixed method where the ROM approach only compresses the dynamics
in the velocity variable. Like moment models, the resulting reduced model provides the spatial
dynamics of the reduced quantities. Therefore, the method provides a model independent of the
spatial discretization of the computational domain. In order to provide a first assessment of the
method, this study focuses on the one-dimensional dynamics.

The nonlinear collision operator leads to a reduced operator that would require to alternate
between reduced and full dimensional data. To avoid these costly computations, we propose to
use the Discrete Empirical Interpolation Method (DEIM) [9]. We also propose a correction of the
reduced collision operator to ensure that it preserves reduced moments (like mass, momentum,
and energy). Therefore, the reduced moments associated with the reduced data will satisfy an
Euler-type equation.

This article is structured as follows. Sec. 5.2 introduces the Vlasov-Poisson-Fokker-Planck
model, its semi-discretization in velocity, and the reduced model obtained after using the ROM
approach in velocity. In Sec. 5.3, we recall the DEIM strategy to reduce the computational com-
plexity for the nonlinear reduced collision operator. Then we present a correction to it such that
it preserves the moments. Finally, in Sec. 5.4, we assess the capability of the reduced model in
capturing nonlinear and linear dynamics. To this aim, we perform a Landau damping test case
with different Knudsen numbers and perturbation amplitudes.

5.2 Reduced model in velocity for 1D Vlasov-Poisson-Fokker-
Planck

5.2.1 Vlasov-Poisson-Fokker-Planck model

We consider the one-dimensional Vlasov-Poisson-Fokker-Planck dynamics that describes the
evolution of a statistical distribution of charged particles in position-velocity phase-space, with
long-range interactions through the self-induced electric field and short-range interactions. We
define f(t, x, v) as the distribution of particles at time t ⩾ 0 in the phase space (x, v) ∈ [0, L]×R
and the system reads:

∂tf(t, x, v) + v ∂xf(t, x, v) + ∂xϕ(t, x) ∂vf(t, x, v) =
1

ε
Q(f)(t, x, v), (5.1)

−∂2
xϕ(t, x) =

1

L

∫
[0,L]×R

f(t, y, v) dydv −
∫
R
f(t, x, v)dv, (5.2)

whereϕ(t, x) denotes the electric potential. The electric field is defined by the relation: E(t, x) =
−∂xϕ(t, x).

The right-hand side of the equation models collision interactions: Q(f) models the short-
range interactions, and the positive parameter ε represents the collision timescale. This collision
operator is local in space and acts only on the velocity variable. Here, we consider a nonlinear
Fokker-Planck collision operator given by:

Q(f) = ∂v

(
(v − uf)f + Tf ∂vf

)
,

5.2 Reduced model in velocity for 1D Vlasov-Poisson-Fokker-Planck 125

where ρf (t, x), uf (t, x) and Tf (t, x) denote the particle density (in space), the velocity, and the
temperature, respectively, and are defined by:

ρf (t, x) =

∫
R
f(t, x, v) dv, ρf (t, x)uf (t, x) =

∫
R
v f(t, x, v) dv, (5.3)

and

pf (t, x) = ρf (t, x)Tf (t, x) =

∫
R
(v − uf (t, x))

2f(t, x, v)dv. (5.4)

The collision operator can be rewritten as:

Q(f) = Tf ∂v

(
Mf ∂v

(
f

Mf

))
, (5.5)

where Mf (v) = Mρf ,uf ,Tf
(v) is the so-called Maxwellian distribution defined by:

Mρ,u,T (v) =
ρ√
2πT

e−
(v−u)2

2T . (5.6)

This expression of Q shows that the equilibrium of the collision operator (satisfying Q(f) = 0)
is precisely the Maxwellian distribution.

To reduce the complexity of model (5.1)-(5.2), we want to project the velocity distribution
function on a basis adapted to the desired physical parameters. For this purpose, we start by
considering a finite-dimensional approximation of the dynamics.

5.2.2 Semi-discretized model in velocity

We perform a semi-discretization in velocity of the Vlasov-Poisson equations (5.1)-(5.2) using a
finite difference method. We take a velocity interval [−vmax, vmax] and an odd number of nodes
Nv : vi = (i− (Nv − 1)/2)∆v with ∆v = 2vmax/(Nv − 1) and i ∈ {0, Nv − 1}. The unknown
vector f(t, x) = (f(t, x, v0), . . . , f(t, x, vNv−1)) satisfies the following semi-discretized Vlasov
equation:

∂tf(t, x) +A∂xf(t, x) + (∂xϕ(t, x))D f(t, x) =
1

ε
Q∆v(f(t, x)), (5.7)

−∆ϕ(t, x) =
1

L

∫
[0,L]

∆v 1T f(t, x) dx−∆v 1T f(t, x), (5.8)

where A = Diag(v) denotes the diagonal matrix of size Nv with the vector v = (v0, . . . , vNv−1)
on the diagonal. Matrix D refers to the matrix associated with the centered finite difference of
the velocity derivative with Dirichlet boundary conditions:

D =
1

2∆v



0 1 0 · · · 0

−1
...

0
. 0

...
. 1

0 · · · 0 −1 0


.

Symbol 1 denotes the vector (1, . . . , 1)T ∈ RNv . Eq. (5.7) is a hyperbolic system with a source
term.

126 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

For the discretization of the collision operator, we consider the scheme proposed in [2] that
is explicit, preserves the density, momentum, and energy, and dissipates entropy. Based on the
following expression of the nonlinear Fokker-Planck collision operator,

Q(f) = T ∂v

(
f ∂v log

(f

Mf

))
,

the discretization can be written as:

Q∆v(f)j =
fj+ 1

2

(
log
(

fj+1

(Mf)j+1

)
− log

(
fj

(Mf)j

))
∆v2

−
fj− 1

2

(
log
(

fj
(Mf)j

)
− log

(
fj−1

(Mf)j−1

))
∆v2

,

where f 1
2
= fNv− 1

2
= 0 and fj+ 1

2
is the entropic average:

for j = 1, . . . , Nv − 2, fj+ 1
2
=

{
fj+1−fj

log(fj+1)−log(fj)
, if fj+1 ̸= fj ,

fj , otherwise .
(5.9)

The discretization involves the discrete Maxwellian, which equals the evaluation of the
Maxwellian at the velocity grid point, Mf = (Mρf ,ũf ,(ρ̃f T̃f)/ρf

(vj))j , where ρ̃f , ũf , T̃f refer to
the modified discrete moments:

ρ̃f =

Nv−2∑
j=1

∆v fj+ 1
2
,

ρ̃f ũf =

Nv−2∑
j=1

∆v vj+ 1
2
fj+ 1

2
+ Tf (fNv − f1),

ρ̃f T̃f =

Nv−2∑
j=1

∆v (vj+ 1
2
− ũf)

2 fj+ 1
2
+ ρ̃fTf

(
fNv(vNv+

1
2
− ũf) + f1(v 1

2
− ũf)

)
,

and where ρf , uf , Tf refer to the classical discrete moments associated with the discrete distri-
bution f defined by:

ρf = ∆v 1T f ,

ρf uf = ∆v 1TDiag(v)f ,

ρf u
2
f + ρfTf = ∆v 1TDiag(v)2f .

We also define the moment matrix m:

m =

mρ

mρu

mw

 =

 ∆v 1T

∆v 1TDiag(v)
∆v 1TDiag(v)2

 ∈M3,Nv(R).

As already said, the discrete moments ρf and ρfuf are conserved by the scheme. We also note
that this discrete collision operator vanishes on the discrete Maxwellian with the modified mean
velocity and temperature.

5.2 Reduced model in velocity for 1D Vlasov-Poisson-Fokker-Planck 127

5.2.3 Reduced model

We now apply the ROM methodology. Using a Proper Orthogonal Decomposition (POD), we first
generate a reduced basis of size K ≪ Nv from samples of the distribution function and define
the linear decompression operator Φ, that we apply to a reduced vector f̂ to get the full vector
f , and the compression operator ΦT , that we apply to the full vector f to get a reduced vector
f̂ :

f ∈ RNv ΦT

−→ f̂ ∈ RK Φ−→ f̃ ∈ RNv .

Then we perform a Galerkin projection to obtain the reduced model on the reduced quantity f̂ .

Reduced basis and compression/decompression operators. We first consider Ns samples
of the distribution in time and space obtained from the numerical simulations of the model of
the previous section. Spatial discretization is done using finite volume schemes, and the time
discretization is done using an explicit first-order scheme. We refer to Appendix Sec. A for more
details. The sample matrix is then given by:

X = [f1(t1, x1), . . . , fn(tn, xn)] ∈MNv ,Ns(R),

where (fi)i are obtained from Ns possible different initial data and different Knudsen numbers
and (ti, xi) are chosen randomly. The linear decompression operator Φ ∈ MNv ,k(R) is defined
such that the compression-decompression error on the samples is minimized:

min
Φ∈MNv,K(R)
ΦTΦ=Id

∥∥X − ΦΦTX
∥∥2
F
, (5.10)

where ∥A∥F =
√∑

ij A
2
ij denotes the Frobenius norm for matrices. In practice, the columns of

Φ are given by the first K eigenvectors of the matrix XTX ∈MNv(R). These first K eigenvec-
tors define the reduced basis.

Reduced model by Galerkin projection. Applying the Galerkin projection method to equa-
tions (5.7)-(5.8) consists in inserting the ansatz f = Φf̂ into the equation, applying the projection
ΦT and then using the identity ΦTΦ = Id. We get the following model on the reduced variable
f̂ :

∂tf̂(t, x) + Â ∂xf̂(t, x) + (∂xϕ(t, x)) D̂ f̂(t, x) =
1

ε
Q̂∆v(f̂), (5.11)

−∆ϕ(t, x) = m̂ρf̂(t, x), (5.12)

where matrices Â, D̂,mρ are respectively of size K ×K , K ×K and 1×K and given by:

Â = ΦTDiag(v)Φ, D̂ = ΦTDΦ, m̂ρ = ∆v 1TΦ,

and the reduced collision operator is defined by:

Q̂∆v(f̂) = ΦTQ∆v(Φf̂(t, x)). (5.13)

This system is a hyperbolic system of size K with two source terms: the first term is linear and
comes from the transport in the velocity variable, while the other one is nonlinear and comes
from the collision operator.

128 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

5.3 Hyper-reduction and corrections of the reduced collision op-
erator

The nonlinear collision operator (5.13) requires to evaluate the collision operator Q∆v on the
full vector Φf̂ of size Nv . Since this could be quite numerically expensive, several techniques
called hyper-reduction have been developed. In the present work, we propose to use the classical
Discrete Empirical Interpolation Method method [9].

The original discrete collision operator has been constructed to preserve mass, momentum,
and energy. Such properties are crucial to capture the appropriate physical dynamics. We aim to
ensure the same properties on the reduced collision operator. We thus define reduced moments
and an associated corrected collision operator that preserves them.

5.3.1 DEIM hyper-reduction

Let us briefly describe the DEIM method. Using the Proper Orthogonal Decomposition on sam-
ples of the nonlinear collision operator Q∆v(f) (without reduction), the method first generates
a basis made of KQ vectors of size Nv : let ΦQ the matrix of size Nv × KQ that gathers these
vectors. Then for any f̂ , we are looking at coefficients c(f̂) ∈ RKQ such that:

Q∆v(Φf̂) ≈ ΦQ c(f̂), (5.14)

The coefficients are chosen such that KQ rows are indeed equalities (hence the name interpola-
tion):

P T
Q Q∆v(Φf̂) = P T

Q ΦQ c(f̂), (5.15)

where PQ is a selection matrix of size Nv × KQ, whose columns are made of canonical basis
vectors. The selection of these KQ rows is made iteratively with a greedy-like algorithm. In
particular, PQ is determined such that the matrix P T

Q ΦQ is invertible. Hence plugging back
(5.15) into (5.14), we get the following approximation:

Q∆v(Φf̂) ≈ ΦQ(P
T
QΦQ)

−1P T
QQ∆v(Φf̂),

and finally the operator ΦTQ∆v(Φf̂) in expression (5.13) is replaced by

Q̂DEIM
∆v (f̂) = ΦTΦQ(P

T
QΦQ)

−1P T
QQ∆v(Φf̂),

We refer to [9] for more details. The computational gain of this method comes from the fact that
only the KQ selected rows (among Nv) of Q∆v(Φf̂) are actually computed.

5.3.2 Preservation of reduced moments

The reduced collision operator does not a priori satisfy the preservation of the reduced moments
nor vanishes on discrete Maxwellians. We propose to slightly change the discrete collision op-
erator to enforce these two properties, as already proposed in [10]. Similar corrections have
been proposed in the context of spectral methods [11], discontinuous Galerkin methods [12] or
discrete-velocity methods [13].

We first introduced the reduced moment operator as follows:

m̂ =

 m̂ρ

m̂ρu

m̂w

 =

 ∆v 1T

∆v 1TΦ(ΦTDiag(v)Φ)
1
2∆v 1TΦ(ΦTDiag(v)Φ)2

 ∈M3,K(R). (5.16)

Note that this definition differs from the moment operator mΦ, which would be the natural
definition since it first decompresses up to the full size and then applies the classical moment

5.3 Hyper-reduction and corrections of the reduced collision operator 129

operator. Instead, the considered reduced moment operator first multiplies the reduced discrete
distribution f̂ ∈ RK by the reduced velocity operator (ΦTDiag(v)Φ), then decompresses and
finally integrates. With such a definition, we have the relations:

m̂ρu = m̂ρÂ, m̂w =
1

2
m̂ρuÂ. (5.17)

which will be useful in obtaining a good structure of the reduced moments equation.
We modify the reduced collision operator Q̂∆v by taking the closest vector Q̂ such that m̂Q̂ =

0. We thus define the corrected collision operator Q̂c
∆v as the solution to the minimizing problem:

Q̂c
∆v(Φf̂) = argmin

Q̂∈RK s.t. m̂Q̂=0

∥ΦT Q̂−Q∆v(Φf̂)∥2.

The solution to this minimization problem is given by:

Q̂c
∆v(Φf̂) = ΦTQ∆v(Φf̂)− m̂T (m̂m̂T)−1m̂ΦTQ∆v(Φf̂). (5.18)

The proof can be found in Sec. B. Naturally, we can apply the DEIM strategy presented in the
previous section to this corrected collision operator. Namely,

Q̂cDEIM
∆v (Φf̂) = Q̂DEIM

∆v (f̂)− m̂T (m̂m̂T)−1m̂Q̂DEIM
∆v (f̂). (5.19)

5.3.3 Reduced Maxwellian distributions

Given a set of momentsµ ∈ R3, we denoteM(µ) = Mρ,u,T the discrete Maxwellian distribution,
where ρ, u, T are defined such that µ = (ρ, ρu, ρu2/2 + ρT/2)T . We then defined the reduced
Maxwellian M̂(µ) associated with reduced momentsµ as the closest to the full MaxwellianM(µ)
after decompression:

M̂(µ) = argmin
f̂∈RK s.t. m̂f̂ =µ

∥Φf̂ −M(µ)∥2. (5.20)

As in the previous section, the solution to this minimization problem denoted is given by:

M̂(µ) = ΦTM(µ) + m̂T (m̂m̂T)−1
(
µ− m̂ΦTM(µ)

)
.

If µ is associated with the reduced moments of f̂ , then we get the following expression:

M̂(m̂f̂) = ΦTM(m̂f̂) + m̂T (m̂m̂T)−1
(
m̂f̂ − m̂ΦTM(m̂f̂)

)
. (5.21)

The reduced collision operator is not guaranteed to vanish for reduced Maxwellians. We thus
propose to consider the following second correction:

Q̂c2
∆v(Φf̂) =

(
∥f̂ − M̂(m̂f̂)∥
∥f̂ − M̂(m̂f̂)∥+ δ

)
Q̂c

∆v(Φf̂), (5.22)

with δ > 0.
As for the collision operator, we can apply the DEIM method to avoid the computation of

M(µ) appearing in (5.21) and which is evaluated in the full space. We consider samples of the
Maxwellian distribution and construct a reduced basis of size KM and gather it into the matrix
ΦM of dimension Nv ×KM . Then we consider the following reduced Maxwellian:

M̂DEIM(m̂f̂) = ΦT
(
ΦM (P T

MΦM)−1)P T
MM(m̂f̂)

)
+ m̂T (m̂m̂T)−1

(
m̂f̂ − m̂ΦT

(
ΦM (P T

MΦM)−1P T
MM(m̂f̂)

))
,

130 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

where PM is a matrix of size Nv × KM which selects KM rows of M. Then combining the
above definition of the reduced Maxwellian with the second corrected reduced collisional oper-
ator (5.23), the reduced collision operator writes:

Q̂c2DEIM
∆v (Φf̂) =

(
∥f̂ − M̂DEIM(m̂f̂)∥
∥f̂ − M̂DEIM(m̂f̂)∥+ δ

)
Q̂cDEIM

∆v (Φf̂). (5.23)

5.3.4 Reduced moment equations

In this part, we show that the equation on the reduced moments is an Euler-type system. Indeed,
let us consider the semi-discretized reduced equation as

∂tf̂ + Â ∂xf̂ + (∂xϕ) D̂ f̂ =
1

ε
Q̂c

∆v(Φf̂), (5.24)

where Q̂(2) is the corrected reduced collision kernel defined in (5.23). As this operator has van-
ishing reduced moments, we have:

∂t(m̂f̂) + ∂x(m̂Âf̂) + (∂xϕ) m̂D̂ f̂ = 0,

which is equivalent to the system of equations:
∂t(m̂ρf̂) + ∂x(m̂ρÂf̂) + (∂xϕ) m̂ρD̂ f̂ = 0,

∂t(m̂ρuf̂) + ∂x(m̂ρuÂf̂) + (∂xϕ) m̂ρuD̂ f̂ = 0,

∂t(m̂w f̂) + ∂x(m̂wÂf̂) + (∂xϕ) m̂wD̂ f̂ = 0,

(5.25)

Next, thanks to relations (5.17), we get the following property:

Property 5.3.1. Denoting (ρ̂, ρ̂û, ŵ)T = m̂f̂ , system (5.25) becomes the following Euler-Poisson
type system: 

∂tρ̂+ ∂x(ρ̂û) = −(∂xϕ) m̂ρD̂ f̂ ,

∂t(ρ̂û) + ∂x(ρ̂û
2 + p̂) = −(∂xϕ) m̂ρuD̂ f̂ ,

∂tŵ + ∂x(ŵû+ p̂û+ q̂) = −(∂xϕ) m̂wD̂ f̂ ,

(5.26)

where p̂ is such that ŵ = ρ̂û2/2 + p̂/2 and

q̂ =
1

2
∆v 1TΦ

(
Â− û Id

)3
f̂ . (5.27)

Proof. Indeed, using relations (5.17), the fluxes of the reduced density and momentum write:

m̂ρÂf̂ = m̂ρuÂf̂ = ρ̂û,

m̂ρuÂf̂ = 2 m̂w f̂ = 2ŵ = ρ̂û2 + p̂.

Then the flux of the reduced energy is given by:

m̂wÂM̂ =
1

2
∆v 1TΦÂ3M̂

=
1

2
∆v 1TΦ(Â− û Id + û Id)3M̂

=
1

2
∆v 1TΦ

[
(Â− û Id)3 + 3û(Â− û Id)2 + 3û2(Â− û Id) + û3 Id

]
M̂

= q̂ +
3

2
ûp̂+ 0 +

1

2
ρ̂û3

= q̂ + ûp̂+ ŵû,

5.4 Numerical results 131

where, in the second last equality, we used the definition of q̂ given in (5.27) and the identities:

∆v 1TΦ(Â− û Id)f̂ = ρ̂û− ρ̂û = 0,

∆v 1TΦ(Â− ûId)2f̂ = ∆v 1TΦ(Â2 − 2ûÂ+ û2Id)M̂

= 2ŵ − 2ρ̂û2 + ρ̂û2

= p̂.

Inserting these expressions of fluxes into (5.25), we obtain (5.26).

Consequently, the particular choice of the reduced moments (5.16) ensures the recovery of an
Euler-Poisson type system. Note, however, that the heat flux is a priori non-zero, and there is a
priori no conservation of mass.

5.4 Numerical results

We test the reduced order model developed in this paper on the Landau damping test case as
considered in [14]. This test consists in considering the following initial distribution:

f(0, x, v) =
1√
2π

exp(−v2/2) (1 + α cos(kx)), x ∈
[
0, 2π/k

]
, v ∈ [−vmax, vmax],

with k = 0.5, vmax = 6. We setα ∈ [0.01, 0.2] and ε ∈ [0.01, 10] in order to assess the method on
both nonlinear Landau damping (large α) and collisional regime (small ε). The Vlasov-Poisson-
Fokker-Planck model is discretized with Nx = Nv = 128.

5.4.1 Reduction for given parameters

In this section, we consider the following parameters: (ε, α) ∈ {0.01, 0.1, 1, 10} ×
{0.01, 0.1, 0.2}. For each pair (ε, α), the reduced model is built on Ns = 200 uniform sam-
ples. Then we will discuss the reduced dimensions K , KM , and KQ needed to recover the right
dynamics. The final time is taken equal to T = 40 in this test and δ = 1× 10−10.

Fig. 5.1 shows the singular value distributions corresponding to the samples matricesNs×Ns

of the distribution function f , the Maxwellian M(mf) and the collision operator Q(f) for the
different choices of (ε, α). We remark that the singular values associated with the Maxwellian
(in green dots) decrease fast down to 10−11 regardless (ε, α). In red dots, the singular values of
the distribution function decrease slowly for large α and are similar to those of the Maxwellians
for small ε. Similarly, the singular values for the collision operator (in blue dots) increase with
both α and ε. For instance, with ε = 10, they reach a plateau of 10−5 for α = 0.01, 10−3 for
α = 0.1 and 10−2 for α = 0.2. Consequently, the model becomes stiffer with larger values of
α and ε. Moreover, vertical lines in Fig. 5.1 represent the threshold values in order to obtain
correct damping results: only eigenvectors with associated singular values below the threshold
are considered in the reduced model. These values are reported in Tab. 5.1.

Fig. 5.2 shows the evolution of the L2 norm of the electric field:

|E(t, .)|L2 =

√∫ 2π
k

0
(−∂xϕ(t, x))2 dx,

for some pairs (ε, α) obtained with the reduced model, in log scale, and obtained with both
the reduced and the kinetic models. Comparing the results obtained with the reduced model to
those obtained with the kinetic model, we observe that a good damping rate is recovered using

132 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

the reduced model. Also, we check that the DEIM and corrected moments do not deteriorate the
results.

In conclusion, the reduced model provides good results for various ranges of parameters ε
and α and enables a drastic reduction of unknowns.

(a) ε = 0.01, α = 0.01. (b) ε = 0.01, α = 0.1. (c) ε = 0.01, α = 0.2.

(d) ε = 0.1, α = 0.01. (e) ε = 0.1, α = 0.1. (f) ε = 0.1, α = 0.2.

(g) ε = 1, α = 0.01. (h) ε = 1, α = 0.1. (i) ε = 1, α = 0.2.

(j) ε = 10, α = 0.01. (k) ε = 10, α = 0.1. (l) ε = 10, α = 0.2.

Figure 5.1: Singular values (σi)i of the samples matrix for the distribution function f , the
Maxwellian M and the collision operator Q.

5.4 Numerical results 133

ε
α

0.01 0.1 0.2

0.01 (K,KQ,KM) = (6, 6, 6) (K,KQ,KM) = (9, 9, 9) (K,KQ,KM) = (15, 10, 10)
0.1 (K,KQ,KM) = (5, 3, 3) (K,KQ,KM) = (9, 5, 5) (K,KQ,KM) = (10, 7, 7)
1 (K,KQ,KM) = (7, 7, 7) (K,KQ,KM) = (7, 7, 7) (K,KQ,KM) = (7, 7, 7)
10 (K,KQ,KM) = (11, 11, 11) (K,KQ,KM) = (11, 11, 11) (K,KQ,KM) = (11, 11, 11)

Table 5.1: Number of eigenvectors kept for the solution space (K), the Maxwellian (KM) and
the collision operator (KQ).

(a) ε = α = 0.01,CFL = 0.0025. (b) ε = 1, α = 0.1,CFL = 0.1. (c) ε = 10, α = 0.2,CFL = 0.5.

Figure 5.2: Logarithm of the L2 norm of the electric field |E(t, .)|L2 as a function of time for the
reference solution, reduced model, with DEIM and DEIM with corrected moments.

5.4.2 Preservation of Maxwellian distributions

In Sec. 5.3.3, we proposed a second correction of the reduced collisional operator (see Eq. (5.23)),
which forces it to vanish for reduced Maxwellians thanks to a prefactor. The correction is pa-
rameterized by δ ⩾ 0. This correction is aimed at preserving Maxwellian distributions in time,
up to the compression-decompression error. To assess the effectiveness of this correction, we
consider an homogeneous test case with a Maxwellian initial distribution:

∂tf(t, x, v) =
1

ε
Q(f)(t, x, v), x ∈

[
0, 2π/k

]
, v ∈ [−vmax, vmax],

f(0, x, v) =
1√
2π

e−
v2

2 ,

with the parameter ε ∈ {0.01, 0.1, 1, 10} on the time interval [0, T] with T = 20. A specific
reduced model is built for each ε using Ns = 200 uniform samples and reduced dimensions
(K,KQ,KM) = (11, 11, 11). We then compare the solution obtained using the reduced models
at time T with the exact solution f(T, x, v) = f(0, x, v), when using different values of the
parameter δ involved in the correction: from δ = 0, which corresponds to no correction, to
δ = 1× 10−2. In Fig. 5.3, we observe the L2 error for the four different reduced models built for
each ε. While for ε = 10, the correction improves the result by a factor 5 only, the error can be
reduced by a factor 1000 when ε = 1.

For a smaller ε = 0.1, the second correction is even more important as the reduced model
without correction (δ = 0) leads to a large error of order 5× 10−1, while the correction reduces
the error to about 2× 10−8 for δ larger than 1× 10−7. Additionally, for ε = 0.01, when δ values
range between 0 and 10−5, the error remains constant and relatively high. Conversely, the error
improves as delta exceeds 10−4.

134 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

Figure 5.3: L2 error of the DEIM with second correction reduced model as a function of δ

5.4.3 Generalization to other parameters

In Sec. 5.4.1, a different reduced model has been constructed for each set of parameters. Here,
we explore the ability to construct a reduced model valid in a full range of the parameters. This
generalization property is a key feature: the reduced model could then be used for parameters
that are not involved in the construction of the reduced model, without the need to carry out
the full kinetic simulations. Here, we would like to build a reduced model valid for all the values
(ε, α) in the domain D = [1, 10]× [0.01, 0.1]. Therefore, we consider 25 pairs (ε, α), randomly
chosen in D and the reduced models is built using 30 samples per pairs (ε, α), resulting into
Ns = 750 samples. The final time equals T = 20. We set δ = 1× 10−10.

According to singular value distributions of the sample matrices (see Fig. 5.4), we set K =
KM = KQ = 10. In Fig. 5.4, on the right, is depicted the electric energy field for (ε, α) = (5, 5×
10−2) ∈ D. We observe that the dynamics are well recovered for each algorithm (with/without
DEIM or corrected moments). We also compute the relative L2 error between the solution of the
reduced model after decompression Φf̂ and the solution of the underlying kinetic model f at the
final time T . Furthermore we compute the L2 norm of the electric field over the time interval
[0, T] in Tab. 5.2. We observe that each algorithm performs well. Moreover, the error is larger
for the corrected DEIM ROM method.

(a) Singular values (σi)i of the snapshots matrix
from the solution u, the Maxwellian M and the

collision operator Q.

(b) Electric energy as a function of time for the
reference solution and each reduced model.

Figure 5.4: Singular values distributions (left) and logarithm of the norm of the electric field
|E(t, .)|L2 as a function of time for (ε, α) = (5, 5× 10−2) ∈ D.

5.4 Numerical results 135

ROM DEIM corrected DEIM

Φf̂(T) 5.36× 10−4 5.62× 10−4 5.66× 10−4

|E(t, .)|L2 1.73× 10−2 1.85× 10−2 2.63× 10−2

Table 5.2: relative L2 errors, (ε, α) = (5, 5× 10−2) ∈ D.

In addition, we aim to test the reduced model outside its learned domain. We set a final
time of simulation Ttest = 25 > T and consider (ε, α) ∈ Dtest ̸⊂ D. We choose Dtest =
{0.1, 0.5, 1, 10, 15, 20} × {0.2, 0.3} to have more nonlinear damping with both collisional and
non-collisional regime. The obtained relative L2 errors on Φf̂ at time Ttest and on the norm of
the electric field on the time interval [0, Ttest] are given in Tab. 5.3. Overall, each ROM method
provides good results with (t, (α, ε)) ∈ [0, T]×D and shows good generalization performance
with (t, (α, ε)) ∈ [T, Ttest]×Dtest. For instance, even with ε = 0.1 and 20, solution errors remain
bounded by 2× 10−1, 2× 10−2 respectively. Going outside the training set, the precision of the
models decrease slowly and we still have correctness on both solutions and electric energies.

Going further, we notice that our corrected DEIM ROM performs better when ε < 1. That
is due to the fact that its moments are corrected, such as to obtain an Euler-type system. For
example, let us observe the energy damping with (ε, α) = (0.1, 0.3) in Fig. 5.5a. While the ROM
and DEIM ROM drift from the reference solution, the corrected DEIM ROM remains close to it.
In Fig. 5.5b, we observe that it is no more the case with larger ε.

In conclusion, we have shown that our corrected moments DEIM performs better for small
Knudsen numbers ε ⩽ 1 and is better to be used instead of the usual DEIM. Conversely, this
correction is not effective with large ε > 1 and the latter is better to be used.

α Method ε

0.1 0.5 1 10 15 20

0.2
ROM 1.41× 10−1 5.58× 10−2 3.55× 10−2 6.02× 10−3 4.44× 10−1 6.89× 10−3

DEIM 1.36× 10−1 5.56× 10−2 3.59× 10−2 6.26× 10−3 5.48× 10−3 8.20× 10−3

cDEIM 1.53× 10−2 1.42× 10−2 1.34× 10−2 6.09× 10−3 5.93× 10−3 7.30× 10−3

0.3
ROM 1.94× 10−1 1.18× 10−1 9.62× 10−2 2.15× 10−2 1.75× 10−2 1.62× 10−2

DEIM 1.98× 10−1 1.21× 10−1 9.84× 10−2 2.23× 10−2 1.97× 10−2 1.95× 10−2

cDEIM 3.99× 10−2 4.78× 10−2 3.93× 10−2 1.55× 10−2 1.57× 10−2 1.64× 10−2

(a) relative errors on Φf̂(Ttest).

α Method ε

0.1 0.5 1 10 15 20

0.2
ROM 5.98× 10−1 3.30× 10−1 2.15× 10−1 2.68× 10−2 5.75× 10−2 6.96× 10−2

DEIM 5.79× 10−1 3.27× 10−1 2.12× 10−1 2.69× 10−2 6.52× 10−2 7.92× 10−2

cDEIM 5.42× 10−2 7.35× 10−2 7.83× 10−2 6.75× 10−2 8.92× 10−2 9.30× 10−2

0.3
ROM 6.37× 10−1 4.77× 10−1 3.65× 10−1 6.32× 10−2 5.88× 10−2 6.18× 10−2

DEIM 6.29× 10−1 4.80× 10−1 3.65× 10−1 6.14× 10−2 5.79× 10−2 6.36× 10−2

cDEIM 1.03× 10−1 1.49× 10−1 1.54× 10−1 1.05× 10−1 1.05× 10−1 1.03× 10−1

(b) relative errors on |E(t, .)|L2 over [0, Ttest].

Table 5.3: relative L2 errors, (α, ε) ∈ Dtest.

136 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

(a) (ε, α) = (0.1, 0.3) (b) (ε, α) = (20, 0.3)

Figure 5.5: Logarithm of the norm of the electric field as a function of time for several
(t, µ) ∈ [0, Ttest]×Dµ

test.

5.5 Conclusion

In this paper, we have proposed a reduced order modeling approach in velocity applied to the
Vlasov-Poisson-Fokker-Planck equation. This results in a hyperbolic system with source terms
approximating the dynamics for a given initial data and a given Knudsen number or a range of
initial data and Knudsen numbers. The numerical results show that both collisional and non-
collisional regimes can be approximated with a reduced system of size ≈ 10. We also note
that we can consider a smaller reduced system in a collisional regime. Inversely, the system
size should be larger to capture nonlinear dynamics. We have introduced a corrected reduced
collision operator that preserves moments. In addition to ensuring some mathematical structure
of the reduced moment equations, it numerically provides better results in collisional regimes.
Finally, to extend the generalization range of the method, we would have to turn to nonlinear
reduction methods like quadratic ones [15] or autoencoder reduction [16].

References

[1] E. Franck et al. “Hyperbolic reduced model for Vlasov-Poisson equation with Fokker-
Planck collision”. In: ESAIM: ProcS 77 (2024), pp. 213–228. doi: 10 . 1051 / proc /
202477213.

[2] C. Buet, S. Dellacherie, and R. Sentis. “Numerical solution of an ionic Fokker-Planck equa-
tion with electronic temperature”. In: SIAM J. Numer. Anal. 39.4 (2001), pp. 1219–1253. issn:
0036-1429,1095-7170. doi: 10.1137/S0036142999359669.

[3] I. Almuslimani and N. Crouseilles. “Conservative stabilized Runge-Kutta methods for the
Vlasov-Fokker-Planck equation”. In: J. Comput. Phys. 488 (2023), Paper No. 112241, 21.
issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2023.112241.

[4] J. S. Hesthaven, C. Pagliantini, and G. Rozza. “Reduced basis methods for time-dependent
problems”. In: Acta Numer. 31 (2022), pp. 265–345. issn: 0962-4929,1474-0508. doi: 10.
1017/S0962492922000058.

[5] J. S. Hesthaven, C. Pagliantini, and N. Ripamonti. “Adaptive symplectic model order reduc-
tion of parametric particle-based Vlasov-Poisson equation”. In: Math. Comp. 93.347 (2024),
pp. 1153–1202. issn: 0025-5718,1088-6842. doi: 10.1090/mcom/3885.

https://doi.org/10.1051/proc/202477213
https://doi.org/10.1051/proc/202477213
https://doi.org/10.1137/S0036142999359669
https://doi.org/10.1016/j.jcp.2023.112241
https://doi.org/10.1017/S0962492922000058
https://doi.org/10.1017/S0962492922000058
https://doi.org/10.1090/mcom/3885

A Numerical discretization details 137

[6] F. Cassini and L. Einkemmer. “Efficient 6D Vlasov simulation using the dynamical low-
rank framework Ensign”. In: Comput. Phys. Commun. 280 (2022), Paper No. 108489, 12.
issn: 0010-4655,1879-2944. doi: 10.1016/j.cpc.2022.108489.

[7] V. Ehrlacher and D. Lombardi. “A dynamical adaptive tensor method for the Vlasov-
Poisson system”. In: J. Comput. Phys. 339 (2017), pp. 285–306. issn: 0021-9991,1090-2716.
doi: 10.1016/j.jcp.2017.03.015.

[8] W. Guo, J. F. Ema, and J.-M. Qiu. “A local macroscopic conservative (LoMaC) low rank
tensor method with the discontinuous Galerkin method for the Vlasov dynamics”. In:
Commun. Appl. Math. Comput. 6.1 (2024), pp. 550–575. issn: 2096-6385,2661-8893. doi:
10.1007/s42967-023-00277-7.

[9] S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical
interpolation”. In: SIAM J. Sci. Comput. 32.5 (2010), pp. 2737–2764. issn: 1064-8275,1095-
7197. doi: 10.1137/090766498.

[10] S. Riffaud. “Reduced-order models: convergence between scientific computing and data
for fluid mechanics”. PhD thesis. Université de Bordeaux, 2020.

[11] I. M. Gamba and S. H. Tharkabhushanam. “Spectral-Lagrangian methods for collisional
models of non-equilibrium statistical states”. In: J. Comput. Phys. 228.6 (2009), pp. 2012–
2036. issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2008.09.033.

[12] C. Zhang and I. M. Gamba. “A conservative discontinuous Galerkin solver for the space
homogeneous Boltzmann equation for binary interactions”. In: SIAM J. Numer. Anal. 56.5
(2018), pp. 3040–3070. issn: 0036-1429,1095-7170. doi: 10.1137/16M1104792.

[13] G. Dimarco and R. Loubere. “Towards an ultra efficient kinetic scheme. Part II: The high
order case”. In: J. Comput. Phys. 255 (2013), pp. 699–719. issn: 0021-9991,1090-2716. doi:
10.1016/j.jcp.2013.07.017.

[14] A. Crestetto, N. Crouseilles, and M. Lemou. “Kinetic/fluid micro-macro numerical schemes
for Vlasov-Poisson-BGK equation using particles”. In: Kinet. Relat. Models 5.4 (2012),
pp. 787–816. issn: 1937-5093,1937-5077. doi: 10.3934/krm.2012.5.787.

[15] R. Geelen, S. Wright, and K. Willcox. “Operator inference for non-intrusive model reduc-
tion with quadratic manifolds”. In: Comput. Methods Appl. Mech. Engrg. 403 (2023), Paper
No. 115717, 24. issn: 0045-7825,1879-2138. doi: 10.1016/j.cma.2022.115717.

[16] K. Lee and K. T. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders”. In: J. Comput. Phys. 404 (2020), pp. 108973, 32.
issn: 0021-9991,1090-2716. doi: 10.1016/j.jcp.2019.108973.

A Numerical discretization details

A.1 Discretization of the full model

Eq. (5.7) is a hyperbolic system with a source term whose transport parts can be solved using a
finite volume method, while the Poisson Eq. (5.8) is discretized with a finite difference method.
The n-th iteration of the scheme reads:

−
ϕn
i+1 − 2ϕn

i − ϕn
i−1

∆x2
=

1

L

Nx−1∑
i=0

∆x∆v(1, . . . , 1)T fni −∆v(1, . . . , 1)T fni ,

fn+1
i − fni

∆t
+

fn
i+ 1

2

− fn
i− 1

2

∆x
+

(
ϕn
i+1 − ϕn

i−1

2∆x

)
D fni =

1

ε
Q∆v(f

n)i

https://doi.org/10.1016/j.cpc.2022.108489
https://doi.org/10.1016/j.jcp.2017.03.015
https://doi.org/10.1007/s42967-023-00277-7
https://doi.org/10.1137/090766498
https://doi.org/10.1016/j.jcp.2008.09.033
https://doi.org/10.1137/16M1104792
https://doi.org/10.1016/j.jcp.2013.07.017
https://doi.org/10.3934/krm.2012.5.787
https://doi.org/10.1016/j.cma.2022.115717
https://doi.org/10.1016/j.jcp.2019.108973

138 Chapter 5 Hyperbolic reduced model for Vlasov-Poisson-Fokker-Planck

where fn
i+ 1

2

is an upwind approximation with respect to the velocity given by:

fn
i+ 1

2

= Diag(v)
fni+1 + fni

2
− Diag(|v|)

fni+1 − fni
2

.

To obtain better accuracy in space, we use a MUSCL method in the upwind flux. The transport
scheme in space and velocity induces a CFL stability condition:

∆t ≤ min
(∆x

vmax
,

∆v

maxi

∣∣∣ϕn
i+1−ϕn

i−1

2∆x

∣∣∣
)
.

The explicit treatment of the collision operator results in an additional constraint: ∆t ≤ εC∆v2

with C > 0 related to the discrete Maxwellian distributions [2]. In practice, we take ∆t suffi-
ciently small in order to ensure the stability of the numerical simulations. Recently, high-order
Runge Kutta methods have been proposed to relax the constraint [3].

A.2 Discretization of the reduced model

Since the reduced model is a hyperbolic system, we use a finite volume scheme. Since the trans-
port is linear, we consider the upwind scheme, whose fluxes write:

f̂n
i+ 1

2

= Â
f̂ni+1 + f̂ni

2
− |Â|

f̂ni+1 − f̂ni
2

. (5.28)

As for the kinetic solver, we use a MUSCL strategy to obtain second order accuracy.

B Solution to the minimization problem

Property B.1. Let Φ ∈MK,Nv , with ΦTΦ = Id, m̂ ∈M3,K of full rank. Then the unique solution
to the least-square problem:

N̂ c = argmin
N̂∈RK s.t. m̂N̂ = b

∥ΦN̂ −N∥2,

is given by:
N̂ c = ΦTN + m̂T (m̂m̂T)−1

(
b− m̂ΦTN

)
.

Proof. Φ being of full rank, the least-square problem under constraints has a unique solution
denoted N̂ c. Let f(N̂) = ∥ΦN̂ −N∥2. Its gradient is given by:

∇f(N̂) = 2(ΦTΦN̂ − ΦTN) = 2(N̂ − ΦTN).

Applying the Lagrange multiplier method, there exists λ ∈ RK such that

2(N̂ c − ΦTN) + m̂Tλ = 0, (5.29)

m̂N̂ c = b. (5.30)

Then multiplying (5.29) by m̂ and using (5.30), we get the value of λ:

λ = −2(m̂m̂T)−1(b− m̂ΦTN).

Then, reporting this value into (5.29), we obtain the expected solution.

Chapter 6

Conclusion & perspectives

In this thesis, we have developed new Hamiltonian model order reduction methods, based on
deep learning. In Chap. 2, we presented the basics of Hamiltonian dynamics, starting from the
framework of Hamiltonian Partial Differential Equations (PDEs). These PDEs govern numerous
physical systems, such as wave dynamics, fluid dynamics and plasma physics, where energy con-
servation and symplectic structure play a central role. Indeed, knowing the Hamiltonian function
together with the symplectic form, expressed via a Poisson bracket or equivalently a skew-adjoint
operator, ensures the conservation of several quantities, including the Hamiltonian itself and the
underlying symplectic structure. When enough quantities are conserved, the system becomes
integrable and its dynamics can be described using a limited number of variables, known as
degrees of freedom.

To perform numerical simulations, we first semi-discretize them into Hamiltonian Ordinary
Differential Equations (ODEs) by using finite element, finite difference, or particle-based meth-
ods. To preserve the underlying structure, symplectic time discretization schemes must then
be employed. In the end, the discretized system is high-dimensional, potentially nonlinear, and
thus computationally intensive, particularly in control, real-time, or embedded applications. To
address this the Proper Symplectic Decomposition (PSD) has been proposed: this is a symplec-
tic variant of the Proper Orthogonal Decomposition (POD). Assuming the solution manifold is
well approximated by a linear subspace, the PSD yields an appropriate low-dimensional reduced
model. With additional effort, hyper-reduction techniques, such as the Symplectic Discrete Em-
pirical Interpolation Method (SDEIM), enable an practical and effective reduction in computation
time while maintaining a controlled error, particularly in nearly linear regimes.

As presented in Chaps. 3 and 4, the PSD approximation is not well suited to nonlinear dynam-
ics such as the Vlasov-Poisson system, the shallow-water equations or nonlinear wave models.
To address this, we proposed deep learning based approaches tailored to nonlinear Hamiltonian
dynamics. Our first idea was to replace the linear projection with an AutoEncoder (AE), trained
at least to minimize the reconstruction error.

This yields a nonlinear, dynamics-specific projection, but at the expense of losing symplectic-
ity and lacking of an explicit expression for the reduced model. To resolve this issue, we employed
a Hamiltonian Neural Network (HNN) to learn the reduced dynamics while preserving the sym-
plectic structure. Instead of enforcing a weakly symplectic AE via a loss term, we opted for a
coupled training strategy to ensure the reduced dynamics closely approximates the full system,
thus maintaining a limited approximation error. In addition, we employ convolutional AEs to
lighten our model in terms of the number of parameters and, when applicable, to leverage the
spatial structure of the data in the encoding process.

In Chap. 3, we tested the AE-HNN method on various nonlinear test cases and obtained sat-
isfactory results. Our next objective was to extend our reduction method to plasma physics, par-

139

140 Chapter 6 Conclusion & perspectives

ticularly Particle-In-Cell (PIC) simulations of Vlasov-Poisson dynamics, which are widely used in
this field. Unlike previous systems, this numerical model introduces two additional challenges:
solutions are represented as large, unstructured distributions of discrete particles. To tackle this,
we developed a two-stage reduction strategy combining the PSD with our AE-HNN method, as
detailed in Chap. 4, and again observed promising results across several benchmark problems.

We summarize the main strengths and limitations of our methods. To start with, they are
both generic and non-intrusive: they adapt to the structure of the model at hand and learns
tailored mappings—whether the solution involves waves, free surfaces, or reduced basis coeffi-
cients—without directly manipulating the governing equations. This highlights the strength of
data-driven approaches compared with analytical reduction strategies. In addition, constructing
nonlinear symplectic projections remains an active area of research with few available results;
the joint training strategy is a practical workaround. While neural network training is generally
computationally intensive (offline stage), the prediction of reduced dynamics (online stage) is of-
ten sufficiently efficient to be performed on a personal computer. Furthermore, neural network
evaluations are highly parallelizable on GPUs, enabling multiple reduced model evaluations in
parallel.

Next, the weaknesses of our methods are comparable to those in many scientific machine
learning applications. The reduced model’s performance depends on a high-dimensional mini-
mization process in the neural network parameter space, which is non-convex with local min-
ima found iteratively without a clear guarantee of global convergence. While training often
converges to a satisfactory reduced model with sufficient effort, this process remains quite em-
pirical. There are ongoing efforts made to derive error bounds for deep learning-based model
order reduction, as illustrated in [1]. However, such results remain scarce and recent, reflecting
the early stage of this research area. Thus, there is no systematic way to improve the accuracy
of our reduced model yet. Unlike classical reduction methods, where the main factor influenc-
ing accuracy is the dimension/rank of the reduced model, reduction with neural networks offers
many more tunable levers via hyperparameters (number of layers, layer sizes, activation func-
tions, specific loss or optimizers, etc.).

Perspectives The field of structure-preserving model order reduction combined with deep
learning is still in its early stages and remains highly active and rapidly evolving. We discuss
here some directions for future research and possible extensions of this work.

1. A notable improvement would be the ability to systematically enhance the accuracy of the
reduced model, as mentioned earlier. Currently, hyperparameter tuning is performed man-
ually, relying partly on experience. It would be beneficial to automate this step, perhaps
using a genetic algorithm, or to identify key hyperparameters through sensitivity analysis.

2. In practice, the HNN often succeeds in learning a Hamiltonian that effectively captures
the reduced dynamics. Nonetheless, the primary limitation lies in the AE. Minimizing the
reconstruction error alone tends to converge fairly quickly and yields good results. How-
ever, coupling the AE with the HNN requires reconciling potentially competing objectives.
In other words, is it better to minimize reconstruction error at the cost of a reduced space
that hinders the HNN’s learning, or vice versa? We tried adding a weak symplecticity loss
term, as in [2], but it did not improve the results and incurred high computational costs in
our experiments. A major objective would be to design a symplectic AE by construction
that outperforms our current unconstrained AE with an HNN. Some work in this direction
is presented in [3], where SympNets and PSD are combined into a network with a tailored
gradient descent.

References 141

3. The HNN is limited to learning canonical systems, which may be a constraining factor.
Several studies have already focused on learning non-canonical Hamiltonian systems [4,
5, 6]. A promising direction for future work is to extend our approach to these problems.

4. Physics-informed machine learning is not limited to Hamiltonian systems: it generalizes
to dissipative systems, e.g. with port-Hamiltonian systems [7] or GFINNs [8]. It would
be interesting to develop model order reduction techniques for models combining both
Hamiltonian and dissipative components. However, this may prove significantly more
challenging due to the increased number of operators involved.

References

[1] S. Brivio et al. “Error estimates for POD-DL-ROMs: a deep learning framework for reduced
order modeling of nonlinear parametrized PDEs enhanced by proper orthogonal decompo-
sition”. In: Adv. Comput. Math. 50.3 (2024), p. 33. issn: 1572-9044. doi: 10.1007/s10444-
024-10110-1.

[2] P. Buchfink, S. Glas, and B. Haasdonk. “Symplectic model reduction of Hamiltonian sys-
tems on nonlinear manifolds and approximation with weakly symplectic autoencoder”. In:
SIAM J. Sci. Comput. 45.2 (2023), A289–A311. issn: 1064-8275,1095-7197. doi: 10.1137/
21M1466657.

[3] B. Brantner and M. Kraus. Symplectic Autoencoders for Model Reduction of Hamiltonian
Systems. 2023. doi: 10.48550/arXiv.2312.10004. arXiv: 2312.10004 [cs.LG].

[4] A. Choudhary et al. “Forecasting Hamiltonian dynamics without canonical coordinates”.
In: Nonlinear Dyn. 103.2 (2021), pp. 1553–1562. issn: 1573-269X. doi: 10.1007/s11071-
020-06185-2.

[5] A. Gruber and I. Tezaur. “Canonical and noncanonical Hamiltonian operator inference”. In:
Comput. Methods Appl. Mech. Engrg. 416 (2023), Paper No. 116334, 45. issn: 0045-7825,1879-
2138. doi: 10.1016/j.cma.2023.116334.

[6] P. Jin et al. “Learning Poisson systems and trajectories of autonomous systems via Poisson
neural networks”. In: IEEE Trans. Neural Netw. Learn. Syst. 34.11 (2023), pp. 8271–8283.
issn: 2162-237X,2162-2388. doi: 10.1109/tnnls.2022.3148734.

[7] S. A. Desai et al. “Port-Hamiltonian neural networks for learning explicit time-dependent
dynamical systems”. In: Phys. Rev. E 104 (3 2021), p. 034312. doi: 10.1103/PhysRevE.
104.034312.

[8] Z. Zhang, Y. Shin, and G. E. Karniadakis. “GFINNs: GENERIC formalism informed neural
networks for deterministic and stochastic dynamical systems”. In: Philos. Trans. Roy. Soc. A
380.2229 (2022), Paper No. 20210207, 21. issn: 1364-503X,1471-2962. doi: 10.1098/rsta.
2021.0207.

https://doi.org/10.1007/s10444-024-10110-1
https://doi.org/10.1007/s10444-024-10110-1
https://doi.org/10.1137/21M1466657
https://doi.org/10.1137/21M1466657
https://doi.org/10.48550/arXiv.2312.10004
https://arxiv.org/abs/2312.10004
https://doi.org/10.1007/s11071-020-06185-2
https://doi.org/10.1007/s11071-020-06185-2
https://doi.org/10.1016/j.cma.2023.116334
https://doi.org/10.1109/tnnls.2022.3148734
https://doi.org/10.1103/PhysRevE.104.034312
https://doi.org/10.1103/PhysRevE.104.034312
https://doi.org/10.1098/rsta.2021.0207
https://doi.org/10.1098/rsta.2021.0207

Dans cette thèse, nous développons de nouvelles méthodes de réduction d’ordre pour les systèmes
hamiltoniens, en nous appuyant sur des techniques d’apprentissage profond.

Dans les deux premiers chapitres, nous présentons les notions et méthodes essentielles à ce travail. Nous
introduisons d’abord les systèmes hamiltoniens ainsi que leur structure symplectique. Nous décrivons en-
suite un ensemble de méthodes de discrétisation qui préservent cette structure, afin d’aboutir à un modèle
numérique hamiltonien. La préservation de cette structure est cruciale, car elle garantit de nombreuses
propriétés numériques remarquables, telles que la conservation de l’énergie totale, la stabilité à long
terme, la fidélité aux lois physiques, ainsi que la préservation du volume dans l’espace des phases, entre
autres.

Néanmoins, les systèmes d’équations, dits complets, qui nous intéressent sont de grande dimension et
présentent des non-linéarités qui rendent les simulations numériques particulièrement coûteuses. Cela
nous conduit à développer des modèles réduits, c’est-à-dire des modèles de taille beaucoup plus faible,
capables de reproduire la dynamique du système complet. Par ailleurs, nous souhaitons que ces modèles
réduits conservent leur structure hamiltonienne afin de bénéficier des propriétés numériques associées.
Dans ce but, nous élaborons des méthodes de réduction combinant des approches classiques avec
des réseaux de neurones, en particulier des auto-encodeurs convolutifs et des réseaux de neurones
hamiltoniens. Ces composantes sont fortement couplées au moyen de stratégies d’apprentissage, afin
de garantir que le modèle réduit conserve la structure hamiltonienne et reste fidèle à la dynamique du
modèle complet.

Ces méthodes sont développées dans les chapitres trois et quatre, et testées sur différents ensembles
d’équations. Dans un premier temps, nous nous concentrons sur des équations d’ondes 1D, linéaires et
non-linéaires. Nous appliquons ensuite notre méthode à la dynamique des fluides, à travers les équations
de Saint-Venant en 1D et 2D. Enfin, nous réduisons également un modèle Particle-In-Cell hamiltonien de
l’équation de Vlasov-Poisson en 1D-1V, qui modélise la dynamique des plasmas dans un tore.

Le dernier chapitre, quant à lui, est consacré à l’équation de Vlasov-Poisson 1D-1V avec un terme de
collision non-linéaire de Fokker-Planck. Un modèle réduit non hamiltonien y est développé. Ce travail se
concentre sur d’autres propriétés de l’opérateur de collision : on cherche à ce qu’il vérifie un système de
type Euler, qui est proche des régimes fortement collisionnels.

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE
UMR 7501

Université de Strasbourg et CNRS
7 Rue René Descartes

67 084 STRASBOURG CEDEX

Tél. 03 68 85 01 29
Fax 03 68 85 03 28

https://irma.math.unistra.fr
irma@math.unistra.fr

IRMA 2025/004
https://tel.archives-ouvertes.fr/tel-05219770ISSN 0755-3390

Institut de Recherche
Mathématique Avancée

	Introduction
	Contexte & problématique
	Description du manuscrit et contributions
	References

	Hamiltonian systems: numerical methods, reduction and deep learning tools
	A primer on Hamiltonian dynamics
	Hamiltonian systems & numerical methods
	A formal introduction to Hamiltonian PDEs
	Hamiltonian ODEs: definition & properties
	Numerical methods for time integration

	Linear model order reduction for Hamiltonian ODEs
	Proper Symplectic Decomposition
	Building the projection matrix
	Hyper-reduction with symplectic DEIM
	A practical example: the shallow-water system
	Other reduction methods

	Deep learning tools for Hamiltonian model order reduction
	Outline of neural networks
	Learning symplectic flows with Hamiltonian Neural Networks
	Convolutional AutoEncoder for low-dimensional representations

	References

	Hamiltonian reduction using a convolutional autoencoder coupled to an Hamiltonian neural network
	Introduction
	Parameterized Hamiltonian systems and reduction
	Parameterized Hamiltonian dynamics
	Hamiltonian reduced order modeling

	A nonlinear Hamiltonian reduction method
	Reduction with an Auto Encoder (AE)
	Reduced model with a Hamiltonian Neural Network (HNN)
	Strong coupling of the neural networks
	Training hyper-parameters
	Numerical complexity

	Numerical results
	Wave equations
	1D shallow water system
	2D shallow water system

	Conclusion
	References

	Reduced Particle in Cell method for the Vlasov-Poisson system using autoencoder and Hamiltonian neural networks
	Introduction
	Particle discretization of the Vlasov-Poisson equation
	The Vlasov-Poisson equation
	Hamiltonian particle-based discretization
	Time discretization and initialization

	A Hamiltonian reduction with Proper Symplectic Decompostion prereduction
	PSD-AE-HNN reduction method
	PSD reduction
	AE-HNN reduction
	Hyperparameters tuning

	Numerical results
	Linear Landau damping
	Nonlinear Landau damping
	Two-stream instability
	Computation gain

	Conclusion
	References

	Hyperbolic reduced model for Vlasov-Poisson equation with Fokker-Planck collision
	Introduction
	Reduced model in velocity for 1D Vlasov-Poisson-Fokker-Planck
	Vlasov-Poisson-Fokker-Planck model
	Semi-discretized model in velocity
	Reduced model

	Hyper-reduction and corrections of the reduced collision operator
	DEIM hyper-reduction
	Preservation of reduced moments
	Reduced Maxwellian distributions
	Reduced moment equations

	Numerical results
	Reduction for given parameters
	Preservation of Maxwellian distributions
	Generalization to other parameters

	Conclusion
	References
	Numerical discretization details
	Discretization of the full model
	Discretization of the reduced model

	Solution to the minimization problem
	Conclusion & perspectives
	References

