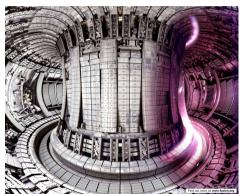


Model order reduction method for Hamiltonian dynamics using deep learning

Raphaël Côte, Emmanuel Franck, Laurent Navoret, Guillaume Steimer and Vincent Vigon



- Hamiltonian systems possess a **geometric structure**,
- enforce the conservation of the energy (and possibly other invariants),
- offer guarantees for long-time stability and physical relevance.

- Hamiltonian systems possess a **geometric structure**,
- enforce the conservation of the energy (and possibly other invariants),
- offer guarantees for long-time stability and physical relevance.

- Full order models (FOMs) are high-dimensional parametrized ODEs derived from PDEs,
- parameters can be geometric, physical, the initial condition, etc.,
- Hamiltonian structure preserved with symplectic (implicit) methods.

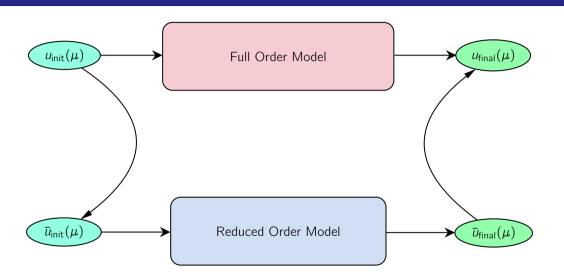
- Hamiltonian systems possess a **geometric structure**,
- enforce the conservation of the energy (and possibly other invariants),
- offer guarantees for long-time stability and physical relevance.

- Full order models (FOMs) are high-dimensional parametrized ODEs derived from PDEs,
- parameters can be geometric, physical, the initial condition, etc.,
- Hamiltonian structure preserved with symplectic (implicit) methods.

- In many-query or real-time settings, solvers often fail to scale for fast resolution or repeated evaluations across multiple parameters,
- a solution: build a Hamiltonian Reduced Order Model (ROM) trading accuracy for computational efficiency, with neural networks,
- efficient over a given time and parameter domain.



Guillaume Steimer IRMA



5/60

Guillaume Steimer IRMA

- 1 Hamiltonian systems
- 2 Model Order Reduction for Hamiltonian systems
- 3 An application to the shallow-water system
- 4 Reduced Particle in Cell method for the Vlasov-Poisson system

6/60

- 1 Hamiltonian systems
 - Hamiltonian PDEs
 - Hamiltonian ODEs & properties
- 2 Model Order Reduction for Hamiltonian systems
- 3 An application to the shallow-water system
- 4 Reduced Particle in Cell method for the Vlasov-Poisson system

■ Evolution of a field $u(x, t; \mu) \in V$ depending on space $x \in \Omega \subset \mathbb{R}^d$, time $t \in \mathcal{T} = [0, T]$ and parameters $\mu \in \Gamma \subset \mathbb{R}^p$ is given by

$$\frac{\partial u}{\partial t} = \mathcal{J}(u) \frac{\delta \mathcal{H}}{\delta u}(u),$$

with $\delta \mathcal{H}/\delta u$ the functional derivative of \mathcal{H} with respect to u,

- lacksquare $\mathcal{H}:V o \mathbb{R}$ is the **Hamiltonian** of the system, often the total energy,
- $\mathcal{J}(u): V \to V$ is a skew-adjoint operator called the **Poisson structure operator**.

- In the canonical case, we denote $u(x, t; \mu) = (q(x, t; \mu), p(x, t; \mu)) \in \mathbb{R}^{2N}$ the canonical coordinates with generalized coordinates $q(x, t; \mu)$ and conjugate momentum $p(x, t; \mu)$,
- \blacksquare the Poisson structure operator $\mathcal J$ becomes

$$\mathcal{J} = \begin{pmatrix} 0 & id \\ -id & 0 \end{pmatrix},$$

and the system rewrites

$$\frac{\partial u}{\partial t} = \mathcal{J}\frac{\delta \mathcal{H}}{\delta u}(u) \iff \begin{cases} \partial_t q = \frac{\delta \mathcal{H}}{\delta p}(q, p), \\ \partial_t p = -\frac{\delta \mathcal{H}}{\delta q}(q, p). \end{cases}$$

 \blacksquare Example: linear wave equation (dim. N=1) on a periodic domain of length 1,

$$\partial_{tt}q(x,t;\mu) - \mu^2 \partial_{xx}q(x,t;\mu) = 0,$$

with the displacement $q(x, t; \mu)$ and the parametrized propagation speed $\mu \in \Gamma \subset \mathbb{R}$ (p = 1).

Example: linear wave equation (dim. N = 1) on a periodic domain of length 1,

$$\partial_{tt}q(x,t;\mu) - \mu^2 \partial_{xx}q(x,t;\mu) = 0,$$

with the displacement $q(x, t; \mu)$ and the parametrized propagation speed $\mu \in \Gamma \subset \mathbb{R}$ (p = 1),

■ the Hamiltonian (total energy) is

$$\mathcal{H}[q,p] = \frac{1}{2} \int_0^1 (p^2 + \mu^2 (\partial_x q)^2) dx.$$

• denoting $p(x, t; \mu) := \partial_t q(x, t; \mu)$, the equation rewrites

$$\begin{cases} \partial_t q(x, t; \mu) = p(x, t; \mu), \\ \partial_t p(x, t; \mu) = \mu^2 \partial_{xx} q(x, t; \mu). \end{cases}$$

■ Before any reduction technique is applied, the PDE is semi-discretized,

11/60

- Before any reduction technique is applied, the PDE is semi-discretized,
- with finite element or finite differences (of cell size h) $u(x, t; \mu) \to u_h(t; \mu) \in \mathbb{R}^{2N}$
- need to preserve the Hamiltonian structure : \mathcal{J}_h becomes a skew-symmetric matrix (+ Jacobi identity),

- Before any reduction technique is applied, the PDE is semi-discretized.
- with finite element or finite differences (of cell size h) $u(x, t; \mu) \to u_h(t; \mu) \in \mathbb{R}^{2N}$
- need to preserve the Hamiltonian structure : \mathcal{J}_h becomes a skew-symmetric matrix (+ Jacobi identity),
- In the canonical case, we derive a 2N-dimensional ODE, $N \gg 1$

$$\frac{du_h(t;\mu)}{dt} = \mathcal{J}_h \nabla \mathcal{H}_h(u_h(t;\mu)), \ \mathcal{J}_h = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix} \in \mathcal{M}_{2N}(\mathbb{R})$$

with $\mathcal{H}_h: \mathbb{R}^{2N} \to \mathbb{R}$ the (semi-discretized) Hamiltonian.

■ Full order model = 2N-dimensional ODE of solution $u(t;\mu) \in \mathbb{R}^{2N}$ and Hamiltonian $\mathcal{H} : \mathbb{R}^{2N} \to \mathbb{R}$

$$\begin{cases} \frac{du(t;\mu)}{dt} = \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(u(t;\mu)), \\ u(0;\mu) = u_{\text{init}}(\mu), \end{cases}$$

with
$$\mathcal{J}_{2N}=egin{pmatrix} 0 & I_N \ -I_N & 0 \end{pmatrix} \in \mathcal{M}_{2N}(\mathbb{R}),$$

lacksquare and its flow $\phi_t: \mathbb{R}^{2N} o \mathbb{R}^{2N}$

$$\phi_t(u_{\mathsf{init}}(\mu)) := u(t; \mu).$$

Hamiltonian ODEs & properti

Hamiltonian systems

0000

- Hamiltonian ODEs benefits from numerous properties
 - preservation of the Hamiltonian along the flow

$$\frac{d}{dt}\mathcal{H}(u(t;\mu))=0,$$

0000

- Hamiltonian ODEs benefits from numerous properties
 - preservation of the Hamiltonian along the flow

$$\frac{d}{dt}\mathcal{H}(u(t;\mu))=0,$$

■ the flow is a symplectic map

$$(D\phi_t(u))^T \mathcal{J}_{2N}(D\phi_t(u)) = \mathcal{J}_{2N},$$

with $D\phi_t$ the Jacobian of the flow ϕ_t ,

0000

- Hamiltonian ODEs benefits from numerous properties
 - preservation of the Hamiltonian along the flow

$$\frac{d}{dt}\mathcal{H}(u(t;\mu))=0,$$

■ the flow is a symplectic map

$$(D\phi_t(u))^T \mathcal{J}_{2N}(D\phi_t(u)) = \mathcal{J}_{2N},$$

with $D\phi_t$ the Jacobian of the flow ϕ_t ,

- time reversibility, volume preservation,
- etc.,

0000

- Hamiltonian ODEs benefits from numerous properties
 - preservation of the Hamiltonian along the flow

$$\frac{d}{dt}\mathcal{H}(u(t;\mu))=0,$$

■ the flow is a symplectic map

$$(D\phi_t(u))^T \mathcal{J}_{2N}(D\phi_t(u)) = \mathcal{J}_{2N},$$

with $D\phi_t$ the Jacobian of the flow ϕ_t ,

- time reversibility, volume preservation,
- etc.,
- provide guarantees for long-time stability, physical relevance.

■ Last step: deriving numerical solutions,

¹Hairer et al. 2006.

- Last step : deriving numerical solutions,
- discretization of [0, T] with time steps $t^n = n\Delta t$,
- compute approximated solution at each time step with numerical integration,

$$u(t^{n+1};\mu)=u(t^n;\mu)+\int_{t^n}^{t^{n+1}}\mathcal{J}_{2N}\nabla_u\mathcal{H}(u(t;\mu))\,dt.$$

• quadrature choice for $\int_{t^n}^{t^{n+1}} \mathcal{J}_{2N} \nabla_u \mathcal{H}(u) dt$ = numerical scheme,

- Hamiltonian ODEs & properties
 - Last step : deriving numerical solutions,
 - discretization of [0, T] with time steps $t^n = n\Delta t$,
 - compute approximated solution at each time step with numerical integration,

$$u(t^{n+1};\mu)=u(t^n;\mu)+\int_{t^n}^{t^{n+1}}\mathcal{J}_{2N}\nabla_u\mathcal{H}(u(t;\mu))\,dt.$$

- quadrature choice for $\int_{t^n}^{t^{n+1}} \mathcal{J}_{2N} \nabla_u \mathcal{H}(u) dt$ = numerical scheme,
- need to use a symplectic numerical scheme¹ to safeguard the system properties : long time stability, physical relevance, etc.,
- in practice : implicit midpoint or Störmer Verlet.

¹Hairer et al. 2006.

- 1 Hamiltonian systems
- 2 Model Order Reduction for Hamiltonian systems
 - Proper Symplectic Decomposition (PSD)
 - Deep learning based Hamiltonian reduction
- 3 An application to the shallow-water system
- 4 Reduced Particle in Cell method for the Vlasov-Poisson system

■ We consider the symplectic solution manifold

$$\mathcal{M} = \{ u(t; \mu) \mid (t, \mu) \in \mathcal{T} \times \Gamma \} \subset \mathbb{R}^{2N}$$

■ We consider the symplectic solution manifold

$$\mathcal{M} = \{ u(t; \mu) \mid (t, \mu) \in \mathcal{T} \times \Gamma \} \subset \mathbb{R}^{2N}$$

lacksquare fundamental reduction postulate : ${\cal M}$ can be **approximated by a trial manifold**

$$\widehat{\mathcal{M}} := u_{\mathsf{ref}}(\mu) + \{ \mathcal{D} \left[\bar{u}(t; \mu) \right] | (t, \mu) \in \mathcal{T} \times \Gamma \}$$

with $\mathcal{D}: \mathbb{R}^{2K} \to \mathbb{R}^{2N}$, $K \ll N$ a reconstruction/decoding operator or **decoder**, $u_{\text{ref}}(\mu) \in \mathbb{R}^{2N}$ a reference state, $\bar{u}(t; \mu) \in \mathbb{R}^{2K}$ a **reduced state**,

that is

$$\hat{u}(t;\mu) = u_{\text{ref}}(\mu) + \mathcal{D}\left[\bar{u}(t;\mu)\right] \approx u(t;\mu).$$

$$\mathcal{M} = \{ u(t; \mu) \mid (t, \mu) \in \mathcal{T} \times \Gamma \} \subset \mathbb{R}^{2N}$$

lacksquare fundamental reduction postulate : ${\cal M}$ can be **approximated by a trial manifold**

$$\widehat{\mathcal{M}} := u_{\mathsf{ref}}(\mu) + \{ \mathcal{D} \left[\bar{u}(t; \mu) \right] | (t, \mu) \in \mathcal{T} \times \Gamma \}$$

with $\mathcal{D}: \mathbb{R}^{2K} \to \mathbb{R}^{2N}$, $K \ll N$ a reconstruction/decoding operator or **decoder**, $u_{\text{ref}}(\mu) \in \mathbb{R}^{2N}$ a reference state, $\bar{u}(t; \mu) \in \mathbb{R}^{2K}$ a **reduced state**,

that is

$$\hat{u}(t;\mu) = u_{\text{ref}}(\mu) + \mathcal{D}\left[\bar{u}(t;\mu)\right] \approx u(t;\mu).$$

• for illustration $N = 10^5$, K = 30 and dim(Γ) = 2,

Assume the trial manifold is a linear subspace

$$\widehat{\mathcal{M}} = \operatorname{span}(a_i, i \in \{1, \dots, 2K\}) \iff \mathcal{D}\left[\overline{u}(t; \mu)\right] = A\overline{u}(t; \mu), A \in \mathcal{M}_{2N, 2K}(\mathbb{R})$$

$$\widehat{\mathcal{M}} = \operatorname{span}(a_i, i \in \{1, \dots, 2K\}) \iff \mathcal{D}\left[\overline{u}(t; \mu)\right] = A\overline{u}(t; \mu), A \in \mathcal{M}_{2N, 2K}(\mathbb{R})$$

 \blacksquare constraint that the decoder $\bar{u} \mapsto A\bar{u}$ is a symplectic map

$$A^{\mathsf{T}}\mathcal{J}_{2N}A = \mathcal{J}_{2K}$$

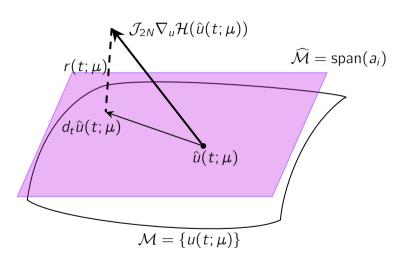
 \blacksquare symplectic inverse of the decoder = encoder \mathcal{E}

$$\mathcal{E}\left[u(t;\mu)\right] = A^{+}u(t;\mu)$$

with $A^+ \in \mathcal{M}_{2K,2N}(\mathbb{R})$ such that $A^+ = \mathcal{J}_{2K}^T A^T \mathcal{J}_{2N}$ the symplectic inverse of A $(A^+A = I_{2K})$.

Proper Symplectic Decomposition (PSD)

■ What is the dynamics of the reduced state $\bar{u}(t;\mu)$?



• We define the residual $r(t; \mu)$

$$r(t;\mu) = \frac{d\hat{u}(t;\mu)}{dt} - \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu))$$

$$r(t;\mu) = \frac{d\hat{u}(t;\mu)}{dt} - \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu))$$

■ symplectic Galerkin projection = the residual must vanish under the symplectic projection

$$A^+ r(t; \mu) = 0,$$

■ We define the residual $r(t; \mu)$

$$r(t;\mu) = \frac{d\hat{u}(t;\mu)}{dt} - \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu))$$

symplectic Galerkin projection = the residual must vanish under the symplectic projection

$$A^+r(t;\mu)=0,$$

results in a Hamiltonian reduced model

$$egin{cases} rac{dar{u}(t;\mu)}{dt} = \mathcal{J}_{2K}
abla_{ar{u}}ar{\mathcal{H}}(ar{u}(t;\mu)), \ ar{u}(0;\mu) = A^+u_{\mathsf{init}}(\mu), \end{cases}$$

with the reduced Hamiltonian $\bar{\mathcal{H}} = \mathcal{H} \circ A$,

Hamiltonian reduced model

$$egin{aligned} \left\{ egin{aligned} rac{dar{u}(t;\mu)}{dt} &= \mathcal{J}_{2K}
abla_{ar{u}} ar{\mathcal{H}}(ar{u}(t;\mu)), \ ar{u}(0;\mu) &= \mathcal{A}^+ u_{ ext{init}}(\mu), \end{aligned}
ight.$$

with the reduced Hamiltonian $\bar{\mathcal{H}} = \mathcal{H} \circ A$,

$$egin{cases} rac{dar{u}(t;\mu)}{dt} = \mathcal{J}_{2K}
abla_{ar{u}} ar{\mathcal{H}}(ar{u}(t;\mu)), \ ar{u}(0;\mu) = A^+ u_{ ext{init}}(\mu), \end{cases}$$

with the reduced Hamiltonian $\bar{\mathcal{H}} = \mathcal{H} \circ A$,

the method provides both reduced states and reduced dynamics,

$$egin{aligned} \left\{ egin{aligned} rac{dar{u}(t;\mu)}{dt} &= \mathcal{J}_{2\mathcal{K}}
abla_{ar{u}}ar{\mathcal{H}}(ar{u}(t;\mu)), \ ar{u}(0;\mu) &= \mathcal{A}^+u_{\mathsf{init}}(\mu), \end{aligned}
ight.$$

with the reduced Hamiltonian $\bar{\mathcal{H}} = \mathcal{H} \circ A$.

- the method provides both reduced states and reduced dynamics,
- called the **Proper Symplectic Decomposition (PSD)** = linear method for symplectic reduction, from Peng and Mohseni (2016),

$$egin{aligned} \left\{ egin{aligned} rac{dar{u}(t;\mu)}{dt} &= \mathcal{J}_{2\mathcal{K}}
abla_{ar{u}}ar{\mathcal{H}}(ar{u}(t;\mu)), \ ar{u}(0;\mu) &= \mathcal{A}^+u_{\mathsf{init}}(\mu), \end{aligned}
ight.$$

with the reduced Hamiltonian $\bar{\mathcal{H}} = \mathcal{H} \circ A$.

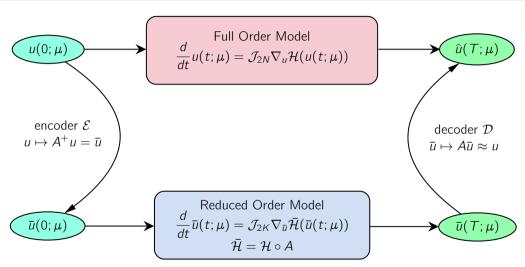
- the method provides both reduced states and reduced dynamics,
- called the Proper Symplectic Decomposition (PSD) = linear method for symplectic reduction, from Peng and Mohseni (2016),
- PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),

$$egin{cases} rac{dar{u}(t;\mu)}{dt} = \mathcal{J}_{2K}
abla_{ar{u}} ar{\mathcal{H}}(ar{u}(t;\mu)), \ ar{u}(0;\mu) = A^+ u_{ ext{init}}(\mu), \end{cases}$$

with the reduced Hamiltonian $\bar{\mathcal{H}} = \mathcal{H} \circ A$,

- the method provides both reduced states and reduced dynamics,
- called the Proper Symplectic Decomposition (PSD) = linear method for symplectic reduction, from Peng and Mohseni (2016),
- PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),
- warning: no complexity improvement in general, need for hyper-reduction techniques (Discrete Empirical Interpolation Method (DEIM), etc., not discussed).

Proper Symplectic Decomposition (PSD)



21/60

Guillaume Steimer IRMA

Proper Symplectic Decomposition (PSD)

■ How to build A? The solution manifold \mathcal{M} is unknown!

- \blacksquare How to build A? The solution manifold M is unknown!
- Solution: from numerical solution snapshots/samples

$$U = [u(t_1; \mu_1) \quad \dots \quad u(t_P; \mu_P)] \in \mathcal{M}_{2N,P}(\mathbb{R}),$$

A minimizes the reconstruction error on the snapshots,

$$\min_{A^{T}\mathcal{J}_{2N}A=\mathcal{J}_{2K}}\left\|U-AA^{+}U\right\|_{F}$$

- How to build A? The solution manifold \mathcal{M} is unknown!
- Solution: from numerical solution snapshots/samples

$$U = [u(t_1; \mu_1) \quad \dots \quad u(t_P; \mu_P)] \in \mathcal{M}_{2N,P}(\mathbb{R}),$$

A minimizes the reconstruction error on the snapshots,

$$\min_{A^{T}\mathcal{J}_{2N}A=\mathcal{J}_{2K}} \left\| U - AA^{+}U \right\|_{F}$$

■ in practice, the **Singular Value Decomposition** $(SVD)^2$ of U on a modified minimization problem is used.

21.ange 2010.

Proper Symplectic Decomposition (PSD)

■ How to make it efficient?

23/60

■ How to make it efficient ?

■ Offline/online decomposition:

How to make it efficient?

Offline/online decomposition:

offline stage: computationally expensive, parametrically independent, performed once (building models, precompute quantities e.g. snapshots, reduced basis A, choose K, etc.), ■ How to make it efficient ?

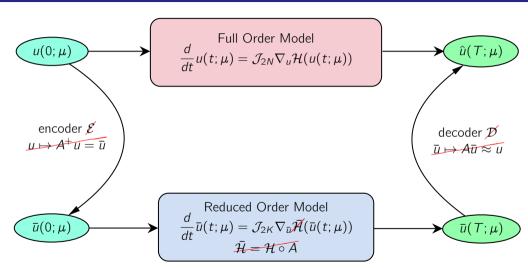
Offline/online decomposition:

- **offline stage**: computationally expensive, parametrically independent, performed once (building models, precompute quantities e.g. snapshots, reduced basis *A*, choose *K*, etc.),
- online stage: fast computation, done for every new parameter, use offline precomputation to accelerate the reduced simulation.

23/60

- - Statements on the linear model order reduction:
 - works well in linear and quasi-linear regimes,
 - interpolation/approximation strategies (DEIM, etc.)³ in nonlinear regimes,
 - struggles in strongly nonlinear regimes,
 - idea : replace the encoder, decoder, and eventually the reduced model by neural networks, as presented in Côte, Franck, Navoret, S., and Vigon (2025).

³Peng and Mohseni 2016: Hesthaven et al. 2024.



25/60

Guillaume Steimer IRMA

- Neural network = **parametric function** g_{θ} of parameters $\theta \in \Theta$,
- g_{θ} = composition of c simple functions $g_i : \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ = layer,

$$g_{ heta}=g_{c}\circ\cdots\circ g_{1}$$
,

- e.g.:
 - lacksquare dense layer $g_i(x) = \sigma\left(W^{[i]}x + b^{[i]}\right)$ with $W^{[i]} \in \mathcal{M}_{n_{i+1},n_i}(\mathbb{R}), b^{[i]} \in \mathbb{R}^{n_{i+1}}$,
 - convolutional layer $g_i(x) = \sigma\left(W^{[i]} * x + b^{[i]}\right)$ with * a convolution with a kernel $W^{[i]}$,
- \bullet σ non-linear function, $\theta = \{W^{[i]}, b^{[i]}, i \in \{1, \dots, c\}\}.$

- Neural network = **parametric function** g_{θ} of parameters $\theta \in \Theta$,
- g_{θ} fitted to a target function $g: g_{\theta} \sim g$,
- \blacksquare on snapshots U, according to a cost function / loss \mathcal{L} ,

$$heta^* = \operatorname{argmin}_{ heta \in \Theta} \mathcal{L}(g, g_{ heta}),$$

e.g.
$$\mathcal{L}(g, g_{\theta}) = \sum_{u \in U} \|g(u) - g_{\theta}(u)\|_{2}^{2}$$
,

■ with a gradient descent (Adam algorithm...),

$$heta^{[k+1]} = heta^{[k]} - \eta^{[k]}
abla_{ heta} \mathcal{L}(g, g_{ heta^{[k]}}),$$

with the learning rate $\eta^{[k]}$,

called the neural network training.

■ Compression/decompression managed by a (convolutional) AutoEncoder⁴ (AE) = pair of neural networks $\mathcal{E}_{\theta}: \mathbb{R}^{2N} \to \mathbb{R}^{2K}$, $\mathcal{D}_{\theta}: \mathbb{R}^{2K} \to \mathbb{R}^{2N}$ such that $\mathcal{D}_{\theta} \circ \mathcal{E}_{\theta} \approx \mathrm{id}$.

• compression $\mathcal{E}_{\theta}(u) = \bar{u}$ and decompression $\mathcal{D}_{\theta}(\bar{u}) \approx u$,

 \blacksquare fitted with the loss $\mathcal{L}_{\mathsf{AE}}$

$$\mathcal{L}_{\mathsf{AE}} = \sum_{u \in U} \|u - \mathcal{D}_{ heta}\left(\mathcal{E}_{ heta}\left(u\right)\right)\|^{2}$$
 ,

■ no direct symplecticity constraint in the architecture or the loss.

⁴Goodfellow et al. 2016

■ What happens to the reduced model?

$$\frac{d}{dt}\bar{u} = J_{2K} \left[D_{\mathcal{D}_{\theta}}(\bar{u}) \right]^T \nabla_{\mathcal{D}_{\theta}(\bar{u})} \mathcal{H} \left[\mathcal{D}_{\theta}(\bar{u}) \right] \stackrel{?}{=} \mathcal{J}_{2K} \nabla_{\bar{u}} \bar{\mathcal{H}}(\bar{u})$$

■ What happens to the reduced model ?

$$\frac{d}{dt}\bar{u} = J_{2K} \left[D_{\mathcal{D}_{\theta}}(\bar{u}) \right]^{T} \nabla_{\mathcal{D}_{\theta}(\bar{u})} \mathcal{H} \left[\mathcal{D}_{\theta}(\bar{u}) \right] \stackrel{?}{=} \mathcal{J}_{2K} \nabla_{\bar{u}} \bar{\mathcal{H}}(\bar{u})$$

■ supplant it with a Hamiltonian Neural Network (HNN) $\bar{\mathcal{H}}_{\theta}: \mathbb{R}^{2K} \to \mathbb{R}$ from Greydanus, Dzamba, and Yosinski (2019),

$$egin{aligned} \left\{ egin{aligned} rac{d}{dt}ar{u}(t;\mu) &= \mathcal{J}_{2K}
abla_{ar{u}}ar{\mathcal{H}}_{ heta}(ar{u}(t;\mu)) \ ar{u}(0;\mu) &= \mathcal{E}_{ heta}(u_{\mathsf{init}}(\mu)), \end{aligned}
ight.$$

reduced model is Hamiltonian by design.

 $\bar{u}(0;\mu)$

Reduced Order Model $rac{d}{dt}ar{u}(t;\mu) = \mathcal{J}_{2K}
abla_{ar{u}}ar{\mathcal{H}}_{ heta}(ar{u}(t;\mu))$

Deep learning based Hamiltonian reduction

■ How to learn the reduced dynamics?

$$\overline{\left(rac{d}{dt}ar{u}(t;\mu)=\mathcal{J}_{2\mathsf{K}}
abla_{ar{u}}ar{\mathcal{H}}_{ heta}(ar{u}(t;\mu)
ight)}$$

■ How to learn the reduced dynamics ?

$$\left(egin{array}{c} rac{d}{dt}ar{u}(t;\mu)=\mathcal{J}_{2\mathsf{K}}
abla_{ar{u}}ar{\mathcal{H}}_{ heta}(ar{u}(t;\mu))
ight)$$

■ prediction operator \mathcal{P} = a step from a symplectic scheme (e.g. midpoint):

$$\mathcal{P}\left(\bar{u}^n; \bar{\mathcal{H}}_{\theta}\right) \approx \bar{u}^{n+1} = \mathcal{E}_{\theta}(u^{n+1})$$

■ How to learn the reduced dynamics?

$$rac{d}{dt}ar{u}(t;\mu)=\mathcal{J}_{2\mathcal{K}}
abla_{ar{u}}ar{\mathcal{H}}_{ heta}(ar{u}(t;\mu))$$

• prediction operator \mathcal{P} = a step from a symplectic scheme (e.g. midpoint):

$$\mathcal{P}\left(\bar{u}^n; \bar{\mathcal{H}}_{\theta}\right) pprox \bar{u}^{n+1} = \mathcal{E}_{\theta}(u^{n+1})$$

we add 3 losses:

$$\begin{split} \mathcal{L}_{\overline{\text{pred}}} &= \sum_{u^n, u^{n+1} \in U} \left\| \bar{u}^{n+1} - \mathcal{P}\left(\bar{u}^n; \bar{\mathcal{H}}_{\theta}\right) \right\|^2, \\ \mathcal{L}_{\overline{\text{stab}}} &= \sum_{u^n, u^{n+1} \in U} \left\| \bar{\mathcal{H}}_{\theta}\left(\bar{u}^{n+1}\right) - \bar{\mathcal{H}}_{\theta}\left(\bar{u}^n\right) \right\|^2, \\ \mathcal{L}_{\text{pred}} &= \sum_{u^n, u^{n+1} \in U} \left\| u^{n+1} - \mathcal{D}_{\theta}\left(\mathcal{P}\left(\bar{u}^n; \bar{\mathcal{H}}_{\theta}\right)\right) \right\|^2. \end{split}$$

■ How to learn the reduced dynamics?

$$rac{d}{dt}ar{u}(t;\mu)=\mathcal{J}_{2\mathcal{K}}
abla_{ar{u}}ar{\mathcal{H}}_{ heta}(ar{u}(t;\mu))$$

■ prediction operator \mathcal{P} = a step from a symplectic scheme (e.g. midpoint):

$$\mathcal{P}\left(\bar{u}^n; \bar{\mathcal{H}}_{\theta}\right) pprox \bar{u}^{n+1} = \mathcal{E}_{\theta}(u^{n+1})$$

we add 3 losses:

$$\begin{split} \mathcal{L}_{\text{p\overline{re}d}} &= \sum_{u^n, u^{n+1} \in U} \left\| \bar{u}^{n+1} - \mathcal{P}\left(\bar{u}^n; \bar{\mathcal{H}}_{\theta}\right) \right\|^2, \\ \mathcal{L}_{\overline{\text{stab}}} &= \sum_{u^n, u^{n+1} \in U} \left\| \bar{\mathcal{H}}_{\theta}\left(\bar{u}^{n+1}\right) - \bar{\mathcal{H}}_{\theta}\left(\bar{u}^n\right) \right\|^2, \\ \mathcal{L}_{\text{pred}} &= \sum_{u^n, u^{n+1} \in U} \left\| u^{n+1} - \mathcal{D}_{\theta}\left(\mathcal{P}\left(\bar{u}^n; \bar{\mathcal{H}}_{\theta}\right)\right) \right\|^2. \end{split}$$

 \blacksquare remark : losses linked to AE inputs/outputs \rightarrow constrain AE-HNN.

■ Reduced variables and reduced dynamics constructed separately (≠ PSD) + lack of a symplectic AE,

solution: joint training of AE and HNN,

■ Reduced variables and reduced dynamics constructed separately (≠ PSD) + lack of a symplectic AE,

solution: joint training of AE and HNN,

■ the 4 losses are weighted and coupled during training

$$\min_{\boldsymbol{\theta}} \quad \omega_{\mathsf{AE}} \, \mathcal{L}_{\mathsf{AE}}(\boldsymbol{\theta}) + \omega_{\mathsf{p\overline{red}}} \, \mathcal{L}_{\mathsf{p\overline{red}}}(\boldsymbol{\theta}) + \omega_{\mathsf{s\overline{tab}}} \, \mathcal{L}_{\mathsf{s\overline{tab}}}(\boldsymbol{\theta}) + \omega_{\mathsf{pred}} \, \mathcal{L}_{\mathsf{pred}}(\boldsymbol{\theta}),$$

■ the 4 losses are weighted and coupled during training

$$\min_{\theta} \quad \omega_{\mathsf{AE}} \, \mathcal{L}_{\mathsf{AE}}(\theta) + \omega_{\mathsf{p\overline{red}}} \, \mathcal{L}_{\mathsf{p\overline{red}}}(\theta) + \omega_{\mathsf{s\overline{tab}}} \, \mathcal{L}_{\mathsf{s\overline{tab}}}(\theta) + \omega_{\mathsf{pred}} \, \mathcal{L}_{\mathsf{pred}}(\theta),$$

$$lacksquare$$
 e.g. $\omega_{\mathsf{AE}}=1$, $\omega_{\mathsf{pred}}=10$, $\omega_{\mathsf{stab}}=1 \times 10^{-4}$, $\omega_{\mathsf{pred}}=1$

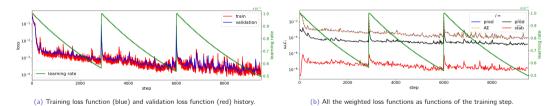


Figure: Example of loss history during a training, overlaid with the evolution of the learning rate (green).

31/60

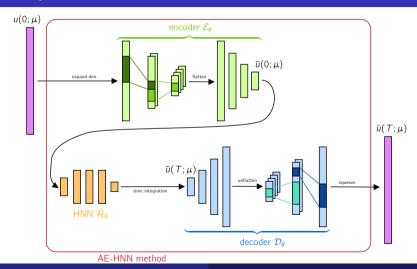
- Key elements on neural networks construction
 - large set of hyperparameters (architecture, layer number, layer size, activation function, Newton solver, etc.)
 - chosen from experience, grid search or random search,
- and training
 - scheduled learning rate, warm restart,
 - AE pretraining, variable loss weights.

Updated offline stage:

 build full order model, reduced model, select hyperparameters and a minimal reduced dimension K for correct accuracy.

■ train the AE and HNN together with full order snapshots as dataset.

AE-HNN online stage



- 1 Hamiltonian systems
- 2 Model Order Reduction for Hamiltonian systems
- 3 An application to the shallow-water system
- 4 Reduced Particle in Cell method for the Vlasov-Poisson system

- Evolution of a free surface of water on a flat bottom,
- χ , ϕ : $\mathbb{R}^2/(L\mathbb{Z}^2) \times [0, T] \times \Gamma \to \mathbb{R}$ are the perturbation from the equilibrium and the scalar velocity potential, Ω is a periodic square domain on size L,
- $\mathbf{u}(\mathbf{x},t;\mu) = (\mathbf{\chi},\phi)^{\mathsf{T}}(\mathbf{x},t;\mu)$

$$\begin{cases} \partial_t \chi + \nabla \cdot ((1+\chi) \nabla \phi) = 0, \\ \partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + \chi = 0, \end{cases}$$

with the Hamiltonian

$$\mathcal{H}[\chi,\phi] = \frac{1}{2} \int_{\mathbb{R}^2/(L\mathbb{Z}^2)} \left((1+\chi) |\nabla \phi|^2 + \chi^2 \right) dx.$$

35/60

■ Finite differences discretization with M=64 cells per direction, final time T=15, time step $\Delta t=1\times 10^{-3}$, implicit midpoint numerical scheme.

Shallow-water system

parametrized initial condition with two parameters $\mu = (\alpha, \beta) \in \Gamma = [0.2, 0.5] \times [1, 1.7]$

$$\chi_{\text{init}}(x; \mu) = \alpha \exp(-\beta x^T x), \quad \phi_{\text{init}}(x; \mu) = 0.$$

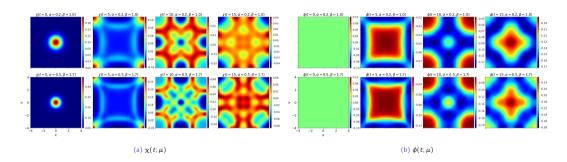


Figure: Solutions (χ, ϕ) at different times $t \in \{0, 5, 10, 15\}$ for various parameters $(\alpha, \beta) \in \{(0.2, 1), (0.5, 1.8)\}.$

37/60

Guillaume Steimer IRMA

 $\Gamma = [0.2, 0.5] \times [1, 1.7]$ sampled with 20 snapshots regularly spaced in the segment [(0.2, 1), (0.5, 1.7)],

38/60

- $\Gamma = [0.2, 0.5] \times [1, 1.7]$ sampled with 20 snapshots regularly spaced in the segment [(0.2, 1), (0.5, 1.7)],
- K = 4 (from $N = 64^2 = 4096$), chosen minimal while preserving sufficient accuracy,

- $\Gamma = [0.2, 0.5] \times [1, 1.7]$ sampled with 20 snapshots regularly spaced in the segment [(0.2, 1), (0.5, 1.7)].
- K = 4 (from $N = 64^2 = 4096$), chosen minimal while preserving sufficient accuracy,
- inputs $u(t; \mu) = (\chi, \phi)^T (t; \mu) \in \mathbb{R}^{2N}$ are structured \to **convolutional** autoencoder, $\sim 10^6$ parameters, used once,
- ullet HNN = small dense neural network $\sim 10^4$ parameters / PSD $\sim 10^4$ parameters.

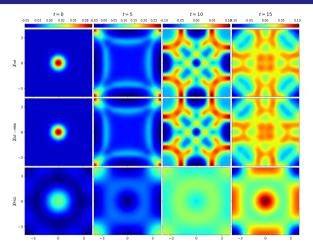


Figure: Solutions $\chi(t;\mu)$ at different times $t \in \{0,5,10,15\}$ on $\mu = (0.51,1.72) \notin \Gamma$ with K = 4, reference solution (top line), AE-HNN solution (middle line) and PSD solution (bottom line).

- 1 Hamiltonian systems
- 2 Model Order Reduction for Hamiltonian systems
- 3 An application to the shallow-water system
- 4 Reduced Particle in Cell method for the Vlasov-Poisson system
 - The Vlasov-Poisson system & Particle In Cell (PIC) method
 - PSD-AE-HNN framework
 - Results

■ System described by the distribution $f(t, x, v; \mu)$ with time $t \in \mathcal{T} = [0, T]$, position $x \in \Omega_x = \mathbb{R}/2\pi\mathbb{Z}$, velocity $v \in \Omega_v \subset \mathbb{R}$ and parameters $\mu \in \Gamma \subset \mathbb{R}^p$, p > 0, charge q and mass m.

$$\begin{cases} \partial_t f(t,x,v;\mu) + v \partial_x f(t,x,v;\mu) + \frac{q}{m} E(t,x;\mu) \partial_v f(t,x,v;\mu) = 0, \\ \partial_x E(t,x;\mu) = \rho(t,x;\mu), \end{cases}$$

where $\rho(t, x; \mu) = q \int_{\Omega} f(t, x, v; \mu) dv$ is the electric density,

- $E(t, x; \mu)$ is the (self-induced) electric field, derives from electric potential $\phi(t, x; \mu)$: $-\partial_{\mathsf{v}}\phi = E$.
- the Poisson equation rewrites

$$-\partial_{xx}\phi(t,x;\mu)=\rho(t,x;\mu),$$

■ admits an Hamiltonian structure with a Lie-Poisson bracket⁵ (not detailed).

5 Casas et al. 2017

■ Solution approximated with $N \gg 1$ particles $(x_k(t), v_k(t))$ in the phase space

$$f_N(t,x,v;\mu) = \sum_{k=1}^N \omega \, \delta\left(x - x_k(t)\right) \delta\left(v - v_k(t)\right)$$

results in a 2N-dimensional ODE

$$\begin{cases} \frac{d}{dt}x_h(t;\mu) = v_h(t;\mu), \\ \frac{d}{dt}v_h(t;\mu) = \frac{q}{m}E(x_h(t;\mu);\mu), \end{cases}$$

where
$$(x_h)_k = x_k$$
, $(v_h)_k = v_k$,

electric field computed with a mesh: (Hamiltonian) Particle-In-Cell (PIC) method from Kraus, Kormann, Morrison, and Sonnendrücker (2017).

$$\frac{d}{dt}u(t;\mu) = J_{2N}\nabla_u \mathcal{H}(u(t;\mu))$$

with
$$J_{2N} = \begin{pmatrix} 0_N & I_N \\ -I_N & 0_N \end{pmatrix}$$
,

 $\blacksquare \mathcal{H}: \mathbb{R}^{2N} \to \mathbb{R}$ is the Hamiltonian (total energy)

$$\mathcal{H}(u(t;\mu)) = \underbrace{\frac{1}{2}v^{T}v}_{\text{kinetic energy}} + \underbrace{\frac{1}{2m}q^{2}\omega\Lambda^{0}(x)L^{-1}\Lambda^{0}(x)^{T}\mathbb{1}_{N}}_{\text{potential energy}}$$

with Λ^0 a particle-to-grid mapping, L a discrete Laplacian matrix.

■ We cannot apply our AE-HNN framework with inputs $u(t; \mu) \in \mathbb{R}^{2N}$: particles are not structured and N too large,

■ We cannot apply our AE-HNN framework with inputs $u(t; \mu) \in \mathbb{R}^{2N}$: particles are not structured and N too large,

■ idea : preprocess $u(t; \mu) \mapsto \tilde{u}(t; \mu) \in \mathbb{R}^{2M}$, $M \ll N$ while keeping the symplectic structure,

solution: use the PSD coupled with the AE-HNN method for a two steps encoder/decoder, Franck, Navoret, Vigon, Côte, and S. (2025). ■ Two steps projection

$$\mathbb{R}^{2N} \xrightarrow{} \mathbb{R}^{2M} \xrightarrow{} \mathbb{R}^{2K}$$

$$u(t;\mu) \xrightarrow{A^{+}} \tilde{u}(t;\mu) \xrightarrow{\mathcal{E}_{\theta}} \bar{u}(t;\mu)$$

• with an intermediate state of size 2M, $K < M \ll N$ e.g. K = 4, M = 121,

■ Two steps projection

$$\mathbb{R}^{2N} \xrightarrow{} \mathbb{R}^{2M} \xrightarrow{} \mathbb{R}^{2K}$$

$$u(t; \mu) \xrightarrow{A^{+}} \tilde{u}(t; \mu) \xrightarrow{\mathcal{E}_{\theta}} \bar{u}(t; \mu)$$

- with an intermediate state of size 2M, $K < M \ll N$ e.g. K = 4, M = 121,
- first projection = linear operator $A \in \mathcal{M}_{2N,2M}(\mathbb{R})$ from the PSD such that

$$u = A\tilde{u}, \quad \tilde{u} = A^+u,$$

PSD-AE-HNN framework

■ Two steps projection

$$\mathbb{R}^{2N} \xrightarrow{} \mathbb{R}^{2M} \xrightarrow{} \mathbb{R}^{2K}$$

$$u(t; \mu) \xrightarrow{A^{+}} \tilde{u}(t; \mu) \xrightarrow{\mathcal{E}_{\theta}} \bar{u}(t; \mu)$$

- with an intermediate state of size 2M, $K < M \ll N$ e.g. K = 4, M = 121,
- first projection = linear operator $A \in \mathcal{M}_{2N,2M}(\mathbb{R})$ from the PSD such that

$$u = A\tilde{u}, \quad \tilde{u} = A^+u,$$

■ second projection = autoencoder $(\mathcal{E}_{\theta}, \mathcal{D}_{\theta})$

$$\bar{u} = \mathcal{E}_{\theta}(\tilde{u}), \quad \tilde{u} \approx \mathcal{D}_{\theta}(\bar{u}),$$

■ Two steps projection

$$\mathbb{R}^{2N} \xrightarrow{} \mathbb{R}^{2M} \xrightarrow{} \mathbb{R}^{2K}$$

$$u(t; \mu) \xrightarrow{A^{+}} \tilde{u}(t; \mu) \xrightarrow{\mathcal{E}_{\theta}} \bar{u}(t; \mu)$$

- with an intermediate state of size 2M, $K < M \ll N$ e.g. K = 4, M = 121,
- first projection = linear operator $A \in \mathcal{M}_{2N,2M}(\mathbb{R})$ from the PSD such that

$$u = A\tilde{u}, \quad \tilde{u} = A^+u,$$

■ second projection = autoencoder $(\mathcal{E}_{\theta}, \mathcal{D}_{\theta})$

$$\bar{u} = \mathcal{E}_{\theta}(\tilde{u}), \quad \tilde{u} \approx \mathcal{D}_{\theta}(\bar{u}),$$

 \blacksquare reduced model captured with a HNN $\bar{\mathcal{H}}_{\theta}$,

$$\mathbb{R}^{2N} \xrightarrow{} \mathbb{R}^{2M} \xrightarrow{} \mathbb{R}^{2K}$$

$$u(t; \mu) \xrightarrow{A^{+}} \tilde{u}(t; \mu) \xrightarrow{\mathcal{E}_{\theta}} \bar{u}(t; \mu)$$

- with an intermediate state of size 2M, $K < M \ll N$ e.g. K = 4, M = 121,
- first projection = linear operator $A \in \mathcal{M}_{2N,2M}(\mathbb{R})$ from the PSD such that

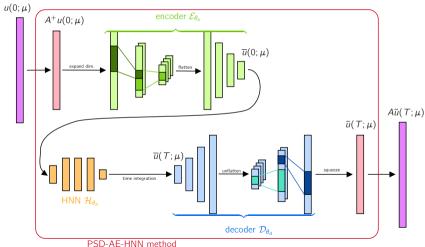
$$u = A\tilde{u}, \quad \tilde{u} = A^+u,$$

■ second projection = autoencoder $(\mathcal{E}_{\theta}, \mathcal{D}_{\theta})$

$$\bar{u} = \mathcal{E}_{\theta}(\tilde{u}), \quad \tilde{u} \approx \mathcal{D}_{\theta}(\bar{u}),$$

- reduced model captured with a HNN $\bar{\mathcal{H}}_{\theta}$,
- offline stage: first PSD then AE-HNN training.

PSD-AE-HNN online stage



46/60

■ Landau damping: parametrized initial condition $\mu = (\alpha, \sigma)^T \in \Gamma \subset \mathbb{R}^2$

$$f_{\mathsf{init}}(x, v; \mu) = \underbrace{\frac{1}{4\pi} \left(1 + \alpha \cos\left(\frac{x}{2}\right) \right)}_{f_{\mathsf{init}, v}(x; \alpha)} \underbrace{\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{v^2}{2\sigma^2}\right)}_{f_{\mathsf{init}, v}(v; \sigma)},$$

- linear case $(\alpha, \sigma) \in \Gamma = [0.03, 0.06] \times [0.8, 1]$,
- quantity of interest : damping rate of the electric energy $\frac{1}{2} \|E(x)\|_{L^2}$,
- $N = 10^5$ and T = 20, $\Delta t = 2.5 \times 10^{-3}$,
- $\Gamma = [0.03, 0.06] \times [0.8, 1]$ is sampled over a regular grid of size $8 \times 8 = 64$.

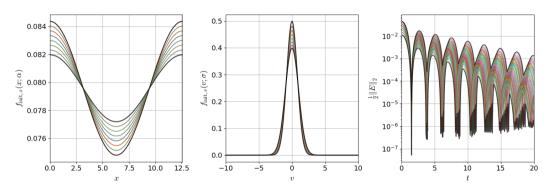


Figure: Initial distribution $f_{\text{init},x}(x;\alpha)$ (left), $f_{\text{init},\nu}(x;\sigma)$ (middle) and evolution of the electric energy $\frac{1}{2}\|E\|_2(x(t;\mu);\mu))$ (right) for every $\mu\in\Gamma^{\text{train}}$.

48/60

Guillaume Steimer IRMA

000000000000

- - How to choose M(=121) ?
 - For example, according to the decay of the snapshots matrix singular values

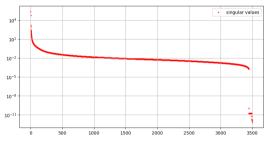


Figure: Singular values $(\sigma_i)_i$ decay.

- in practice:
 - sufficiently small to ensure a fast projection,
 - sufficiently large to provide an intermediate space rich enough for the AE-HNN method.

0000000000000

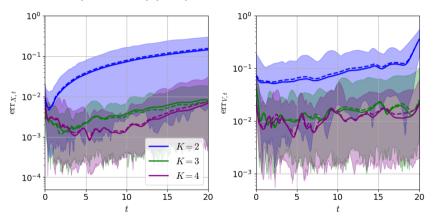


Figure: Mean relative error as a function of time (solid line) for x (left) and v (right), envelopes represents minimum and maximum errors.

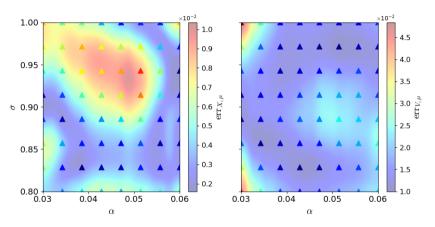


Figure: Errors as a function of the reduction parameters for x (left) and v (right).

Guillaume Steimer IRMA

10 15

000000000000

15 20

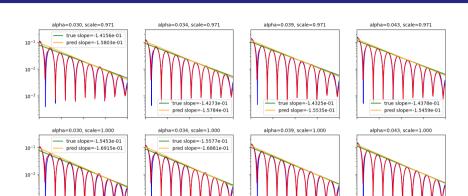


Figure: Some damping rates predictions for various $\mu \in \Gamma$, K = 3.

10 15

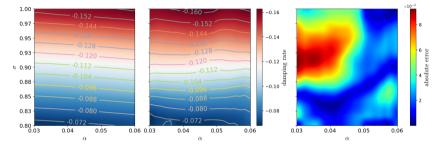


Figure: Electric energy $\frac{1}{2} \|E\|_2 (x(t; \mu); \mu)$, $\mu \in \Gamma$ exponential damping rates of the FOM (left), the ROM (center) and absolute error (right), K = 3.

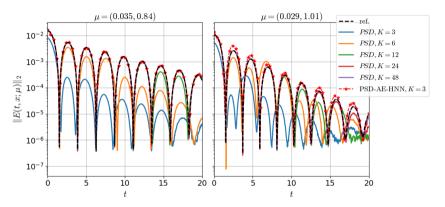


Figure: Electric energies $\frac{1}{2}||E||_2(x(t;\mu)))$ of the PSD reduced model against our method for $\mu = (0.035, 0.84) \in \Gamma$ (left) and $\mu = (0.029, 1.01) \notin \Gamma$ (right), K = 3.

• equivalent precision with K = 30 PSD modes.

- small HNN $\sim 10^3$ parameters : competitive,
- offline time :
 - full order PIC: 25s,
 - PIC with comparable accuracy $(N = 7 \times 10^4)$: 11s,
 - PSD-AE-HNN reduced model: 2s,
- Difficult to quantify acceleration: hardware, software, noise, developper expertise.

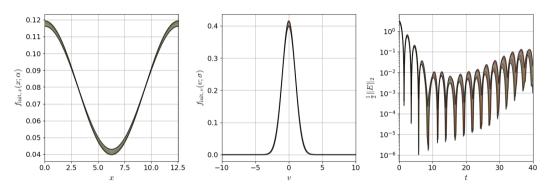


Figure: Initial distribution $f_{\text{init},x}(x;\alpha)$ (left), $f_{\text{init},v}(x;\sigma)$ (middle) and evolution of the electric energy $\frac{1}{2}\|E\|_2(x(t;\mu);\mu))$ (right) for every $\mu \in \Gamma^{\text{train}}$.

54/60

Guillaume Steimer IRMA

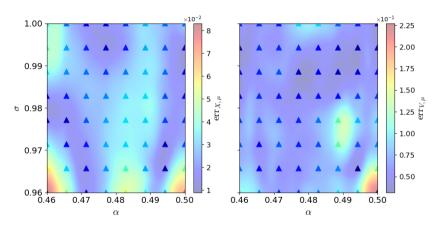


Figure: Errors as a function of the reduction parameters for x (left) and v (right).

<u>ŏŏŏooooo•ooo</u>

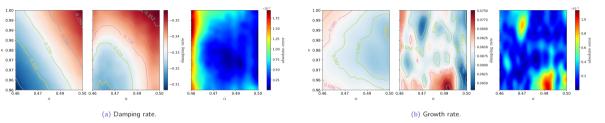


Figure: Electric energy $\frac{1}{2}||E||_2(x(t;\mu);\mu)$, $\mu \in \Gamma$ exponential damping and growth rates of the FOM (left), the ROM (center) and absolute error (right), K = 4.

Results

■ What happens if we ignore the Hamiltonian structure?

56/60

■ What happens if we ignore the Hamiltonian structure?

■ Learn directly the vector field of the reduced dynamics

$$rac{d}{dt}ar{u}(t;\mu)=ar{\mathcal{F}}_{ heta}(ar{u}(t;\mu))$$

00000000000

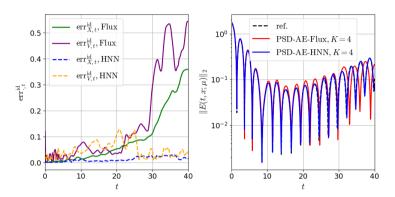


Figure: PSD-AE-Flux prediction for a single test parameter μ compared to the PSD-AE-HNN method. Errors as a function of time (left) and predicted electric energy $\frac{1}{2}||E||_2(x(t;\mu))$).

• its prediction quickly drifts from the reference.

56/60

- Generic, non-intrusive and data-driven method
 - PSD preprocess with a symplectic intermediate space,
 - convolutional AE: nonlinear projection, take into account spatial structure,
 - HNN based reduced model : Hamiltonian by design,
 - joint AE-HNN training: compensates for the absence of a symplectic AE,

- Generic, non-intrusive and data-driven method
 - PSD preprocess with a symplectic intermediate space,
 - convolutional AE: nonlinear projection, take into account spatial structure,
 - HNN based reduced model : Hamiltonian by design,
 - joint AE-HNN training: compensates for the absence of a symplectic AE,
- strengths:
 - improved precision compared to the PSD,
 - great speed: neural networks are efficiently parallelized on GPUs,

- Generic, non-intrusive and data-driven method
 - PSD preprocess with a symplectic intermediate space,
 - convolutional AE: nonlinear projection, take into account spatial structure,
 - HNN based reduced model : Hamiltonian by design,
 - joint AE-HNN training: compensates for the absence of a symplectic AE,

strengths:

- improved precision compared to the PSD,
- great speed: neural networks are efficiently parallelized on GPUs,

weaknesses:

- lacktriangleright is not enough to systematically improve precision,
- lack of errors bounds, no clear guarantees of global convergence.

■ New test cases, two-dimensional cases,

main improvement: systematically enhance the accuracy of the reduced model (currently: manual hyperparameter tuning) with automation, Bayesian optimization, genetic algorithm, sensitivity analysis on hyperparameters?

primary limitation : AE and HNN have potentially competing objectives, design a symplectic AE⁶ ?

⁶Brantner and Kraus 2023.

Bibliography I

- Brantner, Benedikt and Michael Kraus (2023). Symplectic Autoencoders for Model Reduction of Hamiltonian Systems. DOI: 10.48550/arXiv.2312.10004. arXiv: 2312.10004 [cs.LG].
- Casas, Fernando, Nicolas Crouseilles, Erwan Faou, and Michel Mehrenberger (2017). "High-order Hamiltonian splitting for the Vlasov-Poisson equations". In: *Numer. Math.* 135.3, pp. 769–801. ISSN: 0029-599X,0945-3245. DOI: 10.1007/s00211-016-0816-z.
- Côte, Raphaël, Emmanuel Franck, Laurent Navoret, G. S., and Vincent Vigon (2025). "Hamiltonian reduction using a convolutional auto-encoder coupled to a Hamiltonian neural network". In: *Commun. Comput. Phys.* 37.2, pp. 315–352. ISSN: 1815-2406,1991-7120. DOI: 10.4208/cicp.DA-2023-0300.
- Franck, Emmanuel, Laurent Navoret, Vincent Vigon, Raphaël Côte, and G. S. (June 2025). "Reduced Particle in Cell method for the Vlasov-Poisson system using auto-encoder and Hamiltonian neural". working paper or preprint. URL: https://hal.science/hal-05116555.
- Goodfellow, I., Y. Bengio, and A. Courville (2016). *Deep Learning*. MIT Press. URL: http://www.deeplearningbook.org.

Bibliography II

- Greydanus, Sam, Misko Dzamba, and Jason Yosinski (2019). "Hamiltonian neural networks". In: *Proceedings of the 33rd International Conference on Neural Information Processing Systems*. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates Inc. DOI: 10.48550/arXiv.1906.01563.
- Hairer, Ernst, Christian Lubich, and Gerhard Wanner (2006). *Geometric numerical integration*. Second. Vol. 31. Springer Series in Computational Mathematics. Structure-preserving algorithms for ordinary differential equations. Springer-Verlag, Berlin, pp. xviii+644. ISBN: 978-3-540-30663-4.
- Hesthaven, Jan S., Cecilia Pagliantini, and Nicolò Ripamonti (2024). "Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation". In: *Math. Comp.* 93.347, pp. 1153–1202. ISSN: 0025-5718,1088-6842. DOI: 10.1090/mcom/3885.
- Kraus, Michael, Katharina Kormann, Philip J. Morrison, and Eric Sonnendrücker (2017). "GEMPIC: geometric electromagnetic particle-in-cell methods". In: *J. Plasma Phys.* 83.4. ISSN: 1469-7807. DOI: 10.1017/s002237781700040x.

Bibliography III

- Lange, Kenneth (2010). "Singular Value Decomposition". In: *Numerical analysis for statisticians*. Second. Statistics and Computing. Springer, New York, pp. 129–142. ISBN: 978-1-4419-5945-4. DOI: 10.1007/978-1-4419-5945-4_9.
- Peng, Liqian and Kamran Mohseni (2016). "Symplectic model reduction of Hamiltonian systems". In: *SIAM J. Sci. Comput.* 38.1, A1–A27. ISSN: 1064-8275,1095-7197. DOI: 10.1137/140978922.