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m Hamiltonian systems possess a geometric structure,
m enforce the conservation of the energy (and possibly other invariants),

m offer guarantees for long-time stability and physical relevance.

m Full order models (FOMs) are high-dimensional parametrized ODEs derived from PDEs,
m parameters can be geometric, physical, the initial condition, etc.,

m Hamiltonian structure preserved with symplectic (implicit) methods.

m In many-query or real-time settings, solvers often fail to scale for fast resolution or
repeated evaluations across multiple parameters,

m a solution: build a Hamiltonian Reduced Order Model (ROM) trading accuracy for
computational efficiency, with neural networks,

m efficient over a given time and parameter domain.
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Hamiltonian systems
Model Order Reduction for Hamiltonian systems
An application to the shallow-water system

Reduced Particle in Cell method for the Vlasov-Poisson system
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m Hamiltonian ODEs & properties



Hamiltonian systems
@000
Hamiltonian PDEs

m Evolution of a field u(x, t; u) € V depending on space x € Q C R, time t € T = [0, T]
and parameters u € ' C RP is given by

ou OH
ot = j(U)éiu(u)

with dH /du the functional derivative of H with respect to v,
m H : V — R is the Hamiltonian of the system, often the total energy,

B J(u):V — Vis a skew-adjoint operator called the Poisson structure operator.
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Hamiltonian systems
0e00
Hamiltonian PDEs

m In the canonical case, we denote u(x, t; u) = (q(x, t; u), p(x, t; 1)) € R?N the canonical
coordinates with generalized coordinates q(x, t; ) and conjugate momentum p(x, t; ),

m the Poisson structure operator J becomes

0 id
jz(—id 0)'

OH
0:rq = T(q,p),
—=J—(u) <= "
u 0
Oip = —

m and the system rewrites

%(q, p).
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Hamiltonian systems
[e]e] le]
Hamiltonian PDEs

m Example : linear wave equation (dim. N = 1) on a periodic domain of length 1,

Oeeq(x, t; ) — W?Bucq(x, t; ) =0,

with the displacement q(x, t; u) and the parametrized propagation speed u € ' C R
(p=1),
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Hamiltonian systems
[e]e] le]
Hamiltonian PDEs

m Example : linear wave equation (dim. N = 1) on a periodic domain of length 1,

Beeq(x, t; ) — w28 q(x, ti ) =0,
with the displacement q(x, t; u) and the parametrized propagation speed u € ' C R

(p=1),
m the Hamiltonian (total energy) is

1 1
Hla, 0] = / (07 + 12(8¢q)?) dx.
0
m denoting p(x, t; u) .= 0:q(x, t; u), the equation rewrites

0rq(x, t; ) = p(x, t; ),

Bep(x, t; ) = p*Bucq(x, t; ).
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Hamiltonian systems
[e]e]e] ]

Hamiltonian PDEs

m Before any reduction technique is applied, the PDE is semi-discretized,
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Hamiltonian systems
oooe
Hamiltonian PDEs

m Before any reduction technique is applied, the PDE is semi-discretized,
m with finite element or finite differences (of cell size h) u(x, t; u) — up(t; u) € RN

m need to preserve the Hamiltonian structure : J, becomes a skew-symmetric matrix
(+ Jacobi identity),
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Hamiltonian systems
oooe
Hamiltonian PDEs

m Before any reduction technique is applied, the PDE is semi-discretized,
m with finite element or finite differences (of cell size h) u(x, t; u) — up(t; u) € RN

m need to preserve the Hamiltonian structure : J, becomes a skew-symmetric matrix
(+ Jacobi identity),
m In the canonical case, we derive a 2N-dimensional ODE, N > 1

dup(t; p)
dt

= Ve, Jh= () € Man(®

with Hp, : RN — R the (semi-discretized) Hamiltonian.

Guillaume Steimer IRMA



Hamiltonian systems
@00

Hamiltonian ODEs & properties

m Full order model = 2N-dimensional ODE of solution u(t; 1) € R?N and Hamiltonian
H:RN SR

du(t; p)
dt

u(0; ) = uinit(1),

= TonVuH(u(t; 1)),

_ I
with Jon = (_O/N g) € Mon(R),

m and its flow ¢ : R?N — R2N

bt (Uinit(w)) == u(t; w).
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Hamiltonian systems
(o] le}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties

m preservation of the Hamiltonian along the flow

%’H(U(t; W) =0,
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Hamiltonian systems
(o] le}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties
m preservation of the Hamiltonian along the flow
i7-[(u(1_“ ) =0
dt )=
m the flow is a symplectic map

(Doe(u))” Tow (Dt (1)) = Fon,

with D¢; the Jacobian of the flow ¢,
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Hamiltonian systems
(o] le}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties
m preservation of the Hamiltonian along the flow
i7-[(u(1_“ ))=0
dt =0
m the flow is a symplectic map
(Dpe(u))” Fon (De(u)) = Tow,
with D¢; the Jacobian of the flow ¢,
m time reversibility, volume preservation,

m etc.,
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Hamiltonian systems
(o] le}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties
m preservation of the Hamiltonian along the flow
i7-[(u(1_“ ))=0
dt =0
m the flow is a symplectic map
(Dpe(u))” Fon (De(u)) = Tow,
with D¢; the Jacobian of the flow ¢,
m time reversibility, volume preservation,

m etc.,

m provide guarantees for long-time stability, physical relevance.
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Hamiltonian systems
ooe

Hamiltonian ODEs & properties

m Last step : deriving numerical solutions,

1 Hairer et al. 2006.
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Hamiltonian systems

ooe

Hamiltonian ODEs & properties

m Last step : deriving numerical solutions,
m discretization of [0, T] with time steps t” = nAt,

m compute approximated solution at each time step with numerical integration,

tn+1

u(t™w) = u(t™ p) + TonVuH(u(t; k) dt.

tn

n+1
m quadrature choice for fttn TonV H(u) dt = numerical scheme,

1 Hairer et al. 2006.
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Hamiltonian systems
ooe

Hamiltonian ODEs & properties

m Last step : deriving numerical solutions,
m discretization of [0, T] with time steps t” = nAt,

m compute approximated solution at each time step with numerical integration,
tn+1
u(t™ ) = u(t" ) + TonV i H(u(t; w)) dt.
tﬂ

n+1
m quadrature choice for fttn TonV H(u) dt = numerical scheme,

m need to use a symplectic numerical scheme?® to safeguard the system properties : long
time stability, physical relevance, etc.,

m in practice : implicit midpoint or Stormer Verlet.

1 Hairer et al. 2006.
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Model Order Reduction for Hamiltonian systems
m Proper Symplectic Decomposition (PSD)
m Deep learning based Hamiltonian reduction



Reduction for Hamiltonian systems
00000000

Proper Symplectic Decomposition (PSD)

m We consider the symplectic solution manifold

M= {u(t;p)|(t, u) €T xT} c RN
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Reduction for Hamiltonian systems
00000000

Proper Symplectic Decomposition (PSD)

m We consider the symplectic solution manifold
M =A{u(t;p)|(t,p) €T xRN
m fundamental reduction postulate : M can be approximated by a trial manifold

M = thes() +{D [0(: w)] | (£, 1) € T x T}

with D : R?% — R?N K < N a reconstruction/decoding operator or decoder,
Uref() € R?V a reference state, (t; u) € R?< a reduced state,

m that is
0(t; ) = urer(p) + D [u(t; w)] = u(t; u).
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Reduction for Hamiltonian systems
00000000

Proper Symplectic Decomposition (PSD)

m We consider the symplectic solution manifold
M =A{u(t;p)|(t,p) €T xRN

m fundamental reduction postulate : M can be approximated by a trial manifold

—

M = thes() +{D [0(: w)] | (£, 1) € T x T}

with D : R?% — R?N K < N a reconstruction/decoding operator or decoder,
Uref() € R?V a reference state, (t; u) € R?< a reduced state,

m thatis
0t ) = trer() + D [O(t; w)] ~ u(t; ).
m for illustration N = 10%, K = 30 and dim(I") = 2,

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
[o] lelelelele]e]

Proper Symplectic Decomposition (PSD)

m Assume the trial manifold is a linear subspace

M= span(a;, i € {1,...,2K}) <= Dlu(t;u)] = Au(t;u), A€ Mayok(R)
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Reduction for Hamiltonian systems
[o] lelelelele]e]

Proper Symplectic Decomposition (PSD)

m Assume the trial manifold is a linear subspace
M =span(a;,i € {1,...,2K}) <= D[a(t;u)] = Au(t; 1), A € Mowok(R)
m constraint that the decoder & — AU is a symplectic map
AT TonA = Tox
m symplectic inverse of the decoder = encoder £
Elu(t;w)] =Atu(t; p)

with AT € Mok on(R) such that AT = T AT Ty the symplectic inverse of A
(A+A = hk).
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Reduction for Hamiltonian systems
[e]e] lelelele]e]

Proper Symplectic Decomposition (PSD)

m What is the dynamics of the reduced state T(t; u) ?
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Reduction for Hamiltonian systems
[eele] lelelele]

Proper Symplectic Decomposition (PSD)

TonV o H(U(t; 1))
I —~
AN M = span(a)

M= {u(t; )}
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Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m We define the residual r(t; u)

i) = P20 79 o )
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Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m We define the residual r(t; u)

i) = P20 79 o )

m symplectic Galerkin projection = the residual must vanish under the symplectic projection

Atr(t;u) =0,
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Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m We define the residual r(t; u)

i) = P20 79 o )

m symplectic Galerkin projection = the residual must vanish under the symplectic projection
Atr(t;u) =0,

m results in a Hamiltonian reduced model

du(t; )
dt

0(0; 1) = At tinie (1),

= Tk Vo (T(t; u)),

with the reduced Hamiltonian H = H o A,
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Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian 7 = H o A,
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Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian 7 = H o A,

m the method provides both reduced states and reduced dynamics,

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian H = #H o A,
m the method provides both reduced states and reduced dynamics,

m called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),
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Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian H = #H o A,
m the method provides both reduced states and reduced dynamics,

m called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),

m PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),
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Reduction for Hamiltonian systems
[eelele] Telele]

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian H = #H o A,
m the method provides both reduced states and reduced dynamics,

m called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),

m PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),
®m warning: no complexity improvement in general, need for hyper-reduction techniques

(Discrete Empirical Interpolation Method (DEIM), etc., not discussed).
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Hamiltonian systems Reduction for Hamiltonian systems SF em uced PIC for Vlasov-P«
o (

Proper Symplectic Decomposition (PSD)

Full Order Model

%u(t; /_1,) = j2NVU'H(U(f; /vL))

encoder £ decoder D

+ - —_ —
um ATu=1 U— A~ u

i Reduced Order Model
EU(E w) = Jox VaH(T(t; w))

H=HoA
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Reduction for Hamiltonian systems
00000080

Proper Symplectic Decomposition (PSD)

m How to build A ? The solution manifold M is unknown !

2 Lange 2010.
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Reduction for Hamiltonian systems
00000080

Proper Symplectic Decomposition (PSD)

m How to build A ? The solution manifold M is unknown !

m Solution: from numerical solution snapshots/samples
U= [u(tiipm) ... u(teipp)] € Moy p(R),
® A minimizes the reconstruction error on the snapshots,

min _ ||U—AATU|
AT TonA=Tok

2 Lange 2010.
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Reduction for Hamiltonian systems
00000080

Proper Symplectic Decomposition (PSD)

m How to build A ? The solution manifold M is unknown !

m Solution: from numerical solution snapshots/samples

U= [u(ti;p) ... u(tpipp)] € Moy p(R),
® A minimizes the reconstruction error on the snapshots,

min _ ||U—AATU|
AT TonA=Tok

m in practice, the Singular Value Decomposition (SVD)? of U on a modified
minimization problem is used.

2 Lange 2010.
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Reduction for Hamiltonian systems
O000000e

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?
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Reduction for Hamiltonian systems
O000000e

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?

m Offline/online decomposition:
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Reduction for Hamiltonian systems
O000000e

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?

m Offline/online decomposition:

m offline stage: computationally expensive, parametrically independent, performed once
(building models, precompute quantities e.g. snapshots, reduced basis A, choose K, etc.),
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Reduction for Hamiltonian systems
O000000e

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?

m Offline/online decomposition:

m offline stage: computationally expensive, parametrically independent, performed once
(building models, precompute quantities e.g. snapshots, reduced basis A, choose K, etc.),

m online stage: fast computation, done for every new parameter, use offline precomputation
to accelerate the reduced simulation.
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Reduction for Hamiltonian systems
9000000000

Deep learning based Hamiltonian reduction

m Statements on the linear model order reduction:

m works well in linear and quasi-linear regimes,

m interpolation/approximation strategies (DEIM, etc.)® in nonlinear regimes,

m struggles in strongly nonlinear regimes,

m idea : replace the encoder, decoder, and eventually the reduced model by neural
networks, as presented in Cote, Franck, Navoret, S., and Vigon (2025).

3Peng and Mohseni 2016; Hesthaven et al. 2024.
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Hamiltonian systems Reduction for Hamiltonian systems SF em uced PIC for Vlasov-P«

Deep learning based Hamiltonian reduction

Full Order Model

%u(t; /_1,) = j2NVU'H(U(f; /vL))

encoder £ decoder

U AT=1 D AT U

d Reduced Order Model
EU(E w) = Jox VaH(T(t; 1))
H=HoA
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Reduction for Hamiltonian systems
[e]e] lelelelele]e]e]

Deep learning based Hamiltonian reduction

m Neural network = parametric function gy of parameters 6 € O,

m gg = composition of ¢ simple functions g; : R" — R+ = |ayer,

99 =9c©- 001,

meg.
m dense layer gi(x) = o (W[’]x + b[’]) with Wl e Moy (R), bl e R+,

m convolutional layer g;(x) = o (W xx + bll) with  a convolution with a kernel W',

m o non-linear function, § = { WU, bll i e {1,--- c}}.
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Reduction for Hamiltonian systems

00@0000000

Deep learning based Hamiltonian reduction

m Neural network = parametric function g, of parameters 6 € O,
m gy fitted to a target function g : gy ~ g,

m on snapshots U, according to a cost function / loss L,

9* = argm|n9€e ‘C(gr ge)'

e.9. £(9.90) = >ueu l9(u) = go(u)|3,
m with a gradient descent (Adam algorithm...),
ol = 61 — nlIvoL(g. gow),

with the learning rate nl¥,

m called the neural network training.
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Reduction for Hamiltonian systems
[e]e]e] lelelele]e]e]

Deep learning based Hamiltonian reduction

m Compression/decompression managed by a (convolutional) AutoEncoder* (AE) = pair of
neural networks & : R?V — R?X, D, : R?K — RN such that Dy o & =~ id,

m compression E(u) = T and decompression Dy(T) ~ u,

m fitted with the loss Lag

Lae =Y llu—Dg (& ()l

uel

m no direct symplecticity constraint in the architecture or the loss.

4Goodfellow et al. 2016.
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Reduction for Hamiltonian systems
[e]e]ele] Telelele]e]

Deep learning based Hamiltonian reduction

m What happens to the reduced model ?

d ? _
27 = 2k D0, (0] Vo, [De(0)] = Tox V(1)
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Reduction for Hamiltonian systems
[e]e]ele] Telelele]e]

Deep learning based Hamiltonian reduction

m What happens to the reduced model ?

d ? _
27 = 2k D0, (0] Vo, [De(0)] = Tox V(1)

m supplant it with a Hamiltonian Neural Network (HNN) %4 : R?% — R from Greydanus,
Dzamba, and Yosinski (2019),

(‘jjtu(t; u) = Jox VaHe(u(t; 1))

u(0; p) = Eg(tinit (1)),

m reduced model is Hamiltonian by design.
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Hamiltonian systems Reduction for Hamiltonian systems SF em uced PIC for Vlasov-P«
00 :

Deep learning based Hamiltonian reduction

Full Order Model

%u(t; /_1,) = j2NVU'H(U(f; /vL))

encoder & decoder Dy

U Dg(0) = u

ur—E(u)=1u

J Reduced Order Model
EU(E 1) = Jox VaHe(u(t; 1))
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Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics ?

(%U(t; p) = Jox VaHe(a(t; 1))
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Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics ?

(%U(t; p) = Jox VaHe(a(t; 1))

m prediction operator P = a step from a symplectic scheme (e.g. midpoint):

P (0" He) ~ 0" = E(u"tT)
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Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics ?

( %U(t; w) = szVaﬁe(U(t; “)) }

m prediction operator P = a step from a symplectic scheme (e.g. midpoint):
P (0" He) ~ 0" = E(u"tT)

m we add 3 losses:

Lomo= > |[o" =P @),

un,uttle U
Lam= . |He(@™)—Ho@)|",
unurtle U
Epred = Z Hun+1 — Do (P (Dn;ﬁg))"2.
ur,urtle U
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Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics ?

( %U(t; w) = szVaﬁe(U(t; “)) }

m prediction operator P = a step from a symplectic scheme (e.g. midpoint):
P (0" He) ~ 0" = E(u"tT)

m we add 3 losses:

Lomo= > |[o" =P @),

un,uttle U
Lam= . |He(@™)—Ho@)|",
unurtle U
Epred = Z Hun+1 — Do (P (Dn;ﬁg))"2.
ur,urtle U

m remark : losses linked to AE inputs/outputs — constrain AE-HNN.
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Reduction for Hamiltonian systems
0O000000e00

Deep learning based Hamiltonian reduction

m Reduced variables and reduced dynamics constructed separately (# PSD) + lack of a
symplectic AE,

m solution: joint training of AE and HNN,
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Reduction for Hamiltonian systems
0O000000e00

Deep learning based Hamiltonian reduction

m Reduced variables and reduced dynamics constructed separately (# PSD) + lack of a
symplectic AE,

m solution: joint training of AE and HNN,

m the 4 losses are weighted and coupled during training

mgin wae Lae(0) + wpred Lored (0) + wamp Lazn (0) + Wpred Lored (6),
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Reduction for Hamiltonian systems
0O000000e00

Deep learning based Hamiltonian reduction

m the 4 losses are weighted and coupled during training
mein wae Lae(0) + wyred Lored (0) + Wagzp, Lazan () + Wored Lpred (6),

med wag =1, Wpma =10, wig =1X107% Wyed =1

— tain =
—— validation 107 | pred  —— pred
i AE — sfab

2 o
g 104 otos &
o g o
£ 3 £
£ . 07 E
& m g
06
10°¢
—— learning rate 05
o 2000 4000 6000 8000 2000 4000 6000 8000
step step
(a) Training loss function (blue) and validation loss function (red) history. (b) All the weighted loss functions as functions of the training step.

Figure: Example of loss history during a training, overlaid with the evolution of the learning rate
(green).

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
0000000080

Deep learning based Hamiltonian reduction

m Key elements on neural networks construction

m large set of hyperparameters (architecture, layer number, layer size, activation function,
Newton solver, etc.)

m chosen from experience, grid search or random search,

m and training

m scheduled learning rate, warm restart,

m AE pretraining, variable loss weights.
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Reduction for Hamiltonian systems
0000000080

Deep learning based Hamiltonian reduction

m Updated offline stage:

m build full order model, reduced model, select hyperparameters and a minimal reduced
dimension K for correct accuracy,

m train the AE and HNN together with full order snapshots as dataset.
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Reduction for Hamiltonian systems
000000000 e

Deep learning based Hamiltonian reduction

AE-HNN online stage

u(0; 1
( to ) 4 encoder & )
u(0; u)
expand dim. flatten
T g={|||LI0
| (T )
u(T;p)
unflatten squeeze
0 O] —>@ =
S decoder Dy ) =

AE-HNN method
Guillaume Steimer IRMA




An application to the shallow-water system



Shallow-water system

00000

Deep learning based Hamiltonian reduction

m Evolution of a free surface of water on a flat bottom,

mx,¢:R?/(LZ?) x [0, T] x I — R are the perturbation from the equilibrium and the
scalar velocity potential, 2 is a periodic square domain on size L,

moulx, tpw)=(x¢)"(x t;w)

Oex+V-((1+x)Ve) =0,
1
at¢>+§|v¢>|2+x:o,

m with the Hamiltonian
1

Hlx. ¢l = 3

/ ((1 +x)|Vo]? + x2) dx.
R2/(LZ2)
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Shallow-water system
(o] Jelele]

Deep learning based Hamiltonian reduction

m Finite differences discretization with M = 64 cells per direction, final time T = 15, time
step At = 1x 1073, implicit midpoint numerical scheme,

m parametrized initial condition with two parameters u = (o, 8) € [ =[0.2,0.5] x [1,1.7]

Xinie (X; 1) = 0cexp (~BxTx) . Giie(xi ) = 0.
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Shallow-water system
[e]e] le]e]

Deep learning based Hamiltonian reduction

(t=0.a=02.8=10) Xt=5.a=02.8=10) X(t=10.a202.6=10) J=15.a=028=10 Ht=0a=02=10) _ _$t=5a=028=10) _gt=10.a=024=10 4(t=15.a=02.8=1.0)

1

X(t=0,a=05.8=17) X(t=5.0=05.8=17) .

#t=0,a=05,8=17) §it=5.0=05.8=17) #t=15.0=05.8=17)

(a) x(t: ) (b) ¢(t; 1)

Figure: Solutions (x, ¢) at different times t € {0, 5, 10, 15} for various parameters
(a,B) € {(0.2,1),(0.5,1.8)}.

IRMA

Guillaume Steimer



Shallow-water system
00080

Deep learning based Hamiltonian reduction

m [ =][0.2,0.5] x [1,1.7] sampled with 20 snapshots regularly spaced in the segment
[(0.2,1),(0.5,1.7)],
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Shallow-water system
00080

Deep learning based Hamiltonian reduction

m [ =][0.2,0.5] x [1,1.7] sampled with 20 snapshots regularly spaced in the segment
[(0.2,1),(0.5,1.7)],
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Deep learning based Hamiltonian reduction

m [ =][0.2,0.5] x [1,1.7] sampled with 20 snapshots regularly spaced in the segment
[(0.2,1),(0.5,1.7)],

m K =4 (from N = 642 = 4096), chosen minimal while preserving sufficient accuracy,

m inputs u(t; u) = (x, )" (t; u) € R?N are structured — convolutional autoencoder,
~ 10° parameters, used once,

m HNN = small dense neural network ~ 10% parameters / PSD ~ 10* parameters.
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Deep learning based Hamiltonian reduction
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Figure: Solutions x(t; u) at different times t € {0, 5, 10,15} on p = (0.51,1.72) ¢ I with K = 4,
reference solution (top line), AE-HNN solution (middle line) and PSD solution (bottom line).
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The Vlasov-Poisson system & Particle In Cell (PIC) method

m System described by the distribution f(t, x, v; u) with time t € 7 = [0, T], position
x € Q, =R/27Z, velocity v € 2, C R and parameters i € ' C RP, p > 0, charge g and

mass m,
Oef(t, x, viu) + vOrf(t,x, viu) + %E(t,x; w)o,f(t, x,v;u) =0,
OcE(t, x;p) = p(t, x; ),

where p(t, x; u) = quv f(t,x,v;u)dv is the electric density,

m E(t, x; ) is the (self-induced) electric field, derives from electric potential ¢(t, x; i) :
_6x¢ =FE,

m the Poisson equation rewrites

- qub(th;ll') = ,O(t.X; M),

m admits an Hamiltonian structure with a Lie-Poisson bracket® (not detailed).

5Casas et al. 2017.
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The Vlasov-Poisson system & Particle In Cell (PIC) method

m Solution approximated with N >> 1 particles (xx(t), vk(t)) in the phase space

N
n(t, x, v;u) = Zwé (x = xk(t)) 0 (v — w(t))
k=1
m results in a 2/N-dimensional ODE

d t I t.

EX”( ) = vi(t ),

d

Zvn(ti) = LECa(t p): ),

where (xp)k = Xk, (Vn)k = Vi,

m electric field computed with a mesh : (Hamiltonian) Particle-In-Cell (PIC) method
from Kraus, Kormann, Morrison, and Sonnendriicker (2017).
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The Vlasov-Poisson system & Particle In Cell (PIC) method

m Full order model of solution u = (xv)’ € R2V

%u(t;u) = LnVeH(u(t; 1))

with Joy = (E’/VN (/)I;I\I>

m A : R?MY — R is the Hamiltonian (total energy)

1 1
H(u(t, 1) = EVTV + %qzw/\o(X)L_l/\O(x)T]lN
——

kinetic energy potential energy

with A% a particle-to-grid mapping, L a discrete Laplacian matrix.
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PSD-AE-HNN framework

m We cannot apply our AE-HNN framework with inputs u(t; u) € R?V : particles are not
structured and N too large,

Guillaume Steimer IRMA



Reduced PIC for Vlasov-Poisson
@00

PSD-AE-HNN framework

m We cannot apply our AE-HNN framework with inputs u(t; u) € R?V : particles are not
structured and N too large,

m idea : preprocess u(t; ) — U(t; u) € R?M M < N while keeping the symplectic
structure,

m solution: use the PSD coupled with the AE-HNN method for a two steps
encoder/decoder, Franck, Navoret, Vigon, Cote, and S. (2025).
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PSD-AE-HNN framework

m Two steps projection

R2N R2M R2K
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M K Neg. K=4 M =121,
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PSD-AE-HNN framework

m Two steps projection

R2N R2M R2K
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M K Neg. K=4 M =121,
m first projection = linear operator A € Moy 2m(R) from the PSD such that

u=Al, ©U=A"uy,
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PSD-AE-HNN framework

m Two steps projection

R2N R2M R2K
At E
u(t; w) — O(t; w) —— a(t; w)
m with an intermediate state of size 2M, K < M K Neg. K=4 M =121,
m first projection = linear operator A € Moy 2m(R) from the PSD such that

u=Al, ©U=A"uy,
m second projection = autoencoder (g, Dy)

u=2E&(l), U=De(n),
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PSD-AE-HNN framework

m Two steps projection

R2N R2M R2K
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M K Neg. K=4 M =121,
m first projection = linear operator A € Moy 2m(R) from the PSD such that

u=Al, ©U=A"uy,
m second projection = autoencoder (g, Dy)
u=2E&(l), U=De(n),

m reduced model captured with a HNN H,,
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PSD-AE-HNN framework

m Two steps projection

R2N R2M R2K
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M K Neg. K=4 M =121,

first projection = linear operator A € Moy 2m(R) from the PSD such that

m second projection = autoencoder (g, Dy)
u=2E&(l), U=De(n),

m reduced model captured with a HNN H,,
offline stage: first PSD then AE-HNN training.
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PSD-AE-HNN framework

PSD-AE-HNN online stage

U(O;_u)

Reduced PIC for Vlasov-Poisson

ooe

ATu(0; u)

—>

encoder &

u(0; )

u(T;w)

Ie—i

H unflatten I @

decoder Dy,

squeeze

o(T;w)

PSD-AE-HNN method

AU(T; )
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Results

m Landau damping : parametrized initial condition u = (o, 0)7 € I C R?

v = g (1 aeos (3)) e (-27)

fmit,x(X;a) finit,v(V;d)

m linear case (o, 0) € ' =[0.03,0.06] x [0.8, 1],
m quantity of interest : damping rate of the electric energy 3 ||E(x)| 2,
B N=10%and T =20,At =2.5x 1073,

m [ =[0.03,0.06] x [0.8, 1] is sampled over a regular grid of size 8 x 8 = 64.
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fiait, (3 a)
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Figure: Initial distribution fiyiex(x; @) (left), finev(x; o) (middle) and
LI|Ell2 (x(t; w); 1)) (right) for every p € ",
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evolution of the electric energy
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Results

m How to choose M(= 121) ?
m For example, according to the decay of the snapshots matrix singular values

- singular values

i

° \
—

0 500 1000 1500 2000 2500 3000 3500

Figure: Singular values (o;); decay.

m in practice:
m sufficiently small to ensure a fast projection,
m sufficiently large to provide an intermediate space rich enough for the AE-HNN method.
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Results

m How to choose K(= 3 =dim(I") + 1) ? Smallest possible with a sufficient precision,

10° 10°
10714 .
10—1,
510724 e
= g
7] (5]
1072
1073
—3
1043 10

Figure: Mean relative error as a function of time (solid line) for x (left) and v (right), envelopes

represents minimum and maximum errors.
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. i Lo =
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r4.0
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Figure: Errors as a function of the reduction parameters for x (left) and v (right).
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Reduced PIC for Vlasov-Poisson
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alpha=0.043, scale=0.971

A
—— 'true slope=-1.4273e-01 — true slope=-1.4325¢-01 — true slope=-1.4378e-01
pred slope=-1,5784e-01 pred slope=-1,5535e-01 pred slope=-1,5459e-01
alpha=0.030, scale=1.000 alpha=0.034, scale=1.000 alpha=0.039, scale=1.000 alpha=0.043, scale=1.000
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Figure: Some damping rates predictions for various u € ', K = 3.
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-0.14
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damping rate
absolute error

-0.10

-0.08

Figure: Electric energy 1||Ell2 (x(t; u); u), i € I exponential damping rates of the FOM (left), the
ROM (center) and absolute error (right), K = 3.
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Results

4= (0.035,0.84) n=(0029,101) ___
— PSD K=3
PSD, K =6
—— PSD,K=12
—— PSD,K=24
—— PSD,K=48
- PSD-AE-HNN,K =3

| E(t, 2 o)l 2

10*7 4
0 5 10 15 20 0 5 10 15 20
¢ ¢

Figure: Electric energies $||E|l2 (x(t; 1)) of the PSD reduced model against our method for
u = (0.035,0.84) €T (left) and u = (0.029,1.01) ¢ I (right), K = 3.

m equivalent precision with K = 30 PSD modes.
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Results

m small HNN ~ 103 parameters : competitive,

m offline time :

m full order PIC : 25s,
m PIC with comparable accuracy (N =7 x 10%) : 11s,

m PSD-AE-HNN reduced model : 2s,

m Difficult to quantify acceleration: hardware, software, noise, developper expertise.
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m Nonlinear case T =40, =[0.46,0.5] x [0.96,1], K = 4,

0.41
100,
1071’
0.31
= 10724
=02 2
-'é = 10 34
Z
1074’
0.1
10*5,
0.0 1 10754
00 25 50 7.5 100 125 -10 5 0 5 10 0 10 20 30 40
T v t

Figure: Initial distribution finie x(x; o) (left), fimt.v(x;a) (middle) and evolution of the electric energy
LIE |2 (x(t; w); w)) (right) for every u € ",
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Figure: Errors as a function of the reduction parameters for x (left) and v (right).
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(a) Damping rate.
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Reduced PIC for Vlasov-Poisson
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Figure: Electric energy %||E|l2 (x(t; u); 1), 1 € T exponential damping and growth rates of the FOM
(left), the ROM (center) and absolute error (right), K = 4.
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Results

m What happens if we ignore the Hamiltonian structure ?
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Results

m What happens if we ignore the Hamiltonian structure ?

m Learn directly the vector field of the reduced dynamics

St = F(o(tiw)
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—— erl{ ,, Flux -== ref
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—— e}, Flux AR, =
) —— PSD-AE-HNN, K=4
04+ === err‘fé—_[.HNN
erri{,l‘[.HNN ,:i -y
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B il
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Figure: PSD-AE-Flux prediction for a single test parameter u compared to the PSD-AE-HNN
method. Errors as a function of time (left) and predicted electric energy 1||E||2 (x(t; 1))).

m its prediction quickly drifts from the reference.
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Conclusion & perspectives

m Generic, non-intrusive and data-driven method
m PSD preprocess with a symplectic intermediate space,
m convolutional AE: nonlinear projection, take into account spatial structure,
m HNN based reduced model : Hamiltonian by design,
m joint AE-HNN training: compensates for the absence of a symplectic AE,
m strengths:
m improved precision compared to the PSD,
m great speed: neural networks are efficiently parallelized on GPUs,
m weaknesses:
m increasing K is not enough to systematically improve precision,

m lack of errors bounds, no clear guarantees of global convergence.



Conclusion & perspectives

m New test cases, two-dimensional cases,

® main improvement : systematically enhance the accuracy of the reduced model
(currently: manual hyperparameter tuning) with automation, Bayesian optimization,
genetic algorithm, sensitivity analysis on hyperparameters ?

m primary limitation : AE and HNN have potentially competing objectives, design a
symplectic AE® ?

6Brantner and Kraus 2023.
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