

Model order reduction of Hamiltonian systems

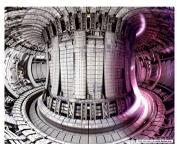
G. Steimer¹²

MAThEOR Days 2025, 15th july 2025

¹University of Strasbourg, CNRS, Inria, IRMA, F-67000 Strasbourg, France

²IRMA, University of Strasbourg, CNRS UMR 7501, 7 rue René Descartes, 67084 Strasbourg, France





- Hamiltonian systems:
 - conserved quantities: total energy, momentum, charge, mass, etc.,
 - lacktriangle structure + total energy ightarrow dynamics,
 - long time stability,

- Hamiltonian systems:
 - conserved quantities: total energy, momentum, charge, mass, etc.,
 - structure + total energy → dynamics,
 - long time stability,
- from a numerical point of view:
 - discretized PDEs → large dimension,
 - structure-preserving methods → implicit solvers,
 - lacktriangle multi-query/real time context on a set of parameters ightarrow large computational cost,

- Hamiltonian systems:
 - conserved quantities: total energy, momentum, charge, mass, etc.,
 - structure + total energy → dynamics,
 - long time stability,
- from a numerical point of view:
 - discretized PDEs → large dimension,
 - structure-preserving methods → implicit solvers,
 - multi-query/real time context on a set of parameters → large computational cost,
- \blacksquare need to reduce the numerical cost \rightarrow reduced order models:
 - computationally efficient,
 - small approximation error,
 - retains the Hamiltonian structure,

- Hamiltonian systems:
 - conserved quantities: total energy, momentum, charge, mass, etc.,
 - structure + total energy → dynamics,
 - long time stability,
- from a numerical point of view:
 - discretized PDEs → large dimension,
 - structure-preserving methods → implicit solvers,
 - multi-query/real time context on a set of parameters → large computational cost,
- lacktriangle need to reduce the numerical cost ightarrow reduced order models:
 - computationally efficient,
 - small approximation error,
 - retains the Hamiltonian structure,
- Shallow-water system as an example throughout the presentation.

- 1 Canonical Hamiltonian ODEs
 - Definition & properties
 - Our example : Shallow-water system
- 2 Model Order Reduction (MOR)
 - Proper Symplectic Decomposition (PSD)
 - Symplectic Discrete Empirical Interpolation Method (SDEIM)
- 3 Conclusion & perspectives

- 1 Canonical Hamiltonian ODEs
 - Definition & properties
 - Our example : Shallow-water system
- 2 Model Order Reduction (MOR)
 - Proper Symplectic Decomposition (PSD)
 - Symplectic Discrete Empirical Interpolation Method (SDEIM)
- 3 Conclusion & perspectives

- System described by generalized coordinates $q(t; \mu) \in \mathbb{R}^N$, $N \gg 1$ and generalized momenta $p(t; \mu) \in \mathbb{R}^N$ with time $t \in [0, T]$ and some parameters $\mu \in \Xi \subset \mathbb{R}^p$,
- lacksquare $\mathcal{H}:\mathbb{R}^{2N}
 ightarrow \mathbb{R}$ is the Hamiltonian, often the total energy of the system,
- \blacksquare q and p are braided together such that

$$\begin{cases} \frac{dq(t;\mu)}{dt} = \nabla_p \mathcal{H}(q(t;\mu), p(t;\mu)), \\ \frac{dp(t;\mu)}{dt} = -\nabla_q \mathcal{H}(q(t;\mu), p(t;\mu)), \\ q(0;\mu) = q_{\text{init}}(\mu), \\ p(0;\mu) = p_{\text{init}}(\mu), \end{cases}$$

• e.g. $\dot{q} = p$, $\dot{p} = V(q)$ with V a potential.

• Or equivalently described by the state $u(t;\mu)=(q(t;\mu)\;p(t;\mu))^T\in\mathbb{R}^{2N}$ such that

$$\begin{cases} \frac{du(t;\mu)}{dt} = \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(u(t;\mu)), \\ u(0;\mu) = u_{\mathsf{init}}(\mu), \end{cases}$$

with
$$\mathcal{J}_{2N}=\begin{pmatrix} 0_N & I_N \\ -I_N & 0_N \end{pmatrix}\in\mathcal{M}_{2N}(\mathbb{R})$$
 the canonical symplectic matrix.

■ Hamiltonian preserved along trajectories by design

$$\frac{d\mathcal{H}(q,p)}{dt} = \nabla_q \mathcal{H}(q,p) \cdot \frac{dq}{dt} + \nabla_p \mathcal{H}(q,p) \cdot \frac{dp}{dt}
= \nabla_q \mathcal{H}(q,p) \cdot \nabla_p \mathcal{H}(q,p) - \nabla_p \mathcal{H}(q,p) \cdot \nabla_q \mathcal{H}(q,p) = 0,$$

and many other properties: volume preservation, time reversibility, symplectic flow, etc.,

■ Hamiltonian preserved along trajectories by design

$$\frac{d\mathcal{H}(q,p)}{dt} = \nabla_q \mathcal{H}(q,p) \cdot \frac{dq}{dt} + \nabla_p \mathcal{H}(q,p) \cdot \frac{dp}{dt}
= \nabla_q \mathcal{H}(q,p) \cdot \nabla_p \mathcal{H}(q,p) - \nabla_p \mathcal{H}(q,p) \cdot \nabla_q \mathcal{H}(q,p) = 0,$$

- and many other properties: volume preservation, time reversibility, symplectic flow, etc.,
- This structure has to be preserved during time integration to guarantee long-time stability and physical solutions¹ (not covered)!

$$u(t^{n+1};\mu)=u(t^n;\mu)+\int_{t^n}^{t^{n+1}}\mathcal{J}_{2N}\nabla_u\mathcal{H}(u(t;\mu))\,dt,$$

with $t^n = n\Delta t$.

Guillaume Steimer

¹Hairer, Lubich, and Wanner 2006; Lochak 1995; Michel-Dansac 2023; Franck 2024.

■ Some Hamiltonian ODEs come from (Hamiltonian) PDEs of solution a field $u(t, x; \mu)$ on a domain $x \in \Omega$

$$\frac{\partial u}{\partial t} = \mathcal{J}(u) \frac{\delta \mathcal{H}}{\delta u}(u),$$

with
$$\mathcal{J}(u) = \begin{pmatrix} 0 & id \\ -id & 0 \end{pmatrix}$$
,

- they possess comparable properties² (not covered),
- example : the shallow-water system.

- Our example : Shallow-water system
 - Evolution of a free surface of water on a flat bottom,
 - χ , ϕ : $\mathbb{R}^2/(L\mathbb{Z}^2) \times [0, T] \times \Xi \to \mathbb{R}$ are the perturbation from the equilibrium and the scalar velocity potential, Ω is a periodic square domain on size L,
 - $u(x, t; \mu) = (\chi \phi)^T (x, t; \mu)$

$$\begin{cases} \partial_t \chi + \nabla \cdot ((1+\chi) \nabla \phi) = 0, \\ \partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + \chi = 0, \end{cases}$$

with the Hamiltonian

$$\mathcal{H}[\chi,\phi] = \frac{1}{2} \int_{\mathbb{R}^2/(L\mathbb{Z}^2)} \left((1+\chi) |\nabla \phi|^2 + \chi^2 \right) dx.$$

Figure: Tidal flow in Iceland (©Jan Erik Waider)

INRIA

- Domain $\Omega = \mathbb{R}^2/(L\mathbb{Z}^2)$ discretized with a mesh $(x_i, y_j)_{i,j}$ of N nodes,
- discretized state $\chi_h(t;\mu)$, $\phi_h(t;\mu) \in \mathbb{R}^N$, $(\chi_h)_m(t;\mu) = \chi_{i,j}(t;\mu) \approx \chi(x_i,y_j,t;\mu)$
- finite differences

$$\partial_{\mathsf{x}}\phi(\mathsf{x}_i,\mathsf{y}_j,\dots) \approx \frac{1}{2\Delta\mathsf{x}}\left[\phi(\mathsf{x}_{i+1},\mathsf{y}_j,\dots)-\phi(\mathsf{x}_{i-1},\mathsf{y}_j,\dots)\right],\,\,\mathrm{etc.},$$

- Domain $\Omega = \mathbb{R}^2/(L\mathbb{Z}^2)$ discretized with a mesh $(x_i, y_j)_{i,j}$ of N nodes,
- discretized state $\chi_h(t;\mu)$, $\phi_h(t;\mu) \in \mathbb{R}^N$, $(\chi_h)_m(t;\mu) = \chi_{i,j}(t;\mu) \approx \chi(x_i,y_j,t;\mu)$
- finite differences

$$\partial_x \phi(x_i, y_j, \dots) \approx \frac{1}{2\Delta x} \left[\phi(x_{i+1}, y_j, \dots) - \phi(x_{i-1}, y_j, \dots) \right], \text{ etc.},$$

• we obtain a high dimensional Hamiltonian ODE of solution $u_h = (\chi_h, \phi_h)$

$$\mathcal{H}(\chi_{h}, \phi_{h}) = \frac{1}{2} \sum_{i,j=0}^{M-1} \left((1 + \chi_{i,j}) \left[\left(\frac{\phi_{i+1,j} - \phi_{i-1,j}}{2\Delta x} \right)^{2} + \left(\frac{\phi_{i,j+1} - \phi_{i,j-1}}{2\Delta y} \right)^{2} \right] + \chi_{i,j}^{2} \right),$$

$$\begin{cases} \frac{d}{dt} \chi_{h} = -D_{x} \left([1 + \chi_{h}] \odot D_{x} \phi_{h} \right) - D_{y} \left([1 + \chi_{h}] \odot D_{y} \phi_{h} \right), \\ \frac{d}{dt} \phi_{h} = -\frac{1}{2} \left[(D_{x} \phi_{h})^{2} + (D_{y} \phi_{h})^{2} \right] - \chi_{h}, \end{cases}$$

with D_x , $D_y \in \mathcal{M}_{2N}(\mathbb{R})$ finite difference matrices,

- Domain $\Omega = \mathbb{R}^2/(L\mathbb{Z}^2)$ discretized with a mesh $(x_i, y_j)_{i,j}$ of N nodes,
- discretized state $\chi_h(t;\mu)$, $\phi_h(t;\mu) \in \mathbb{R}^N$, $(\chi_h)_m(t;\mu) = \chi_{i,j}(t;\mu) \approx \chi(x_i,y_j,t;\mu)$
- finite differences

$$\partial_x \phi(x_i, y_j, \dots) \approx \frac{1}{2\Delta x} \left[\phi(x_{i+1}, y_j, \dots) - \phi(x_{i-1}, y_j, \dots) \right], \text{ etc.},$$

• we obtain a high dimensional Hamiltonian ODE of solution $u_h = (\chi_h, \phi_h)$

$$\mathcal{H}(\chi_h, \phi_h) = \frac{1}{2} \sum_{i,j=0}^{M-1} \left((1 + \chi_{i,j}) \left[\left(\frac{\phi_{i+1,j} - \phi_{i-1,j}}{2\Delta x} \right)^2 + \left(\frac{\phi_{i,j+1} - \phi_{i,j-1}}{2\Delta y} \right)^2 \right] + \chi_{i,j}^2 \right),$$

$$\begin{cases} \frac{d}{dt} \chi_h = -D_x \left([1 + \chi_h] \odot D_x \phi_h \right) - D_y \left([1 + \chi_h] \odot D_y \phi_h \right), \\ \frac{d}{dt} \phi_h = -\frac{1}{2} \left[(D_x \phi_h)^2 + (D_y \phi_h)^2 \right] - \chi_h, \end{cases}$$

with D_x , $D_y \in \mathcal{M}_{2N}(\mathbb{R})$ finite difference matrices,

• cost of $\mathcal{O}(N^2)$ for each $(t, \mu) \in \mathcal{T} \times \Xi$.

Example 1

00000

Our example : Shallow-water system

- 1 Canonical Hamiltonian ODEs
 - Definition & properties
 - Our example : Shallow-water system
- 2 Model Order Reduction (MOR)
 - Proper Symplectic Decomposition (PSD)
 - Symplectic Discrete Empirical Interpolation Method (SDEIM)
- 3 Conclusion & perspectives

Consider the solution manifold

$$\mathcal{M} := \{ u(t; \mu) \mid (t, \mu) \in [0, T] \times \Xi \} \subset \mathbb{R}^{2N},$$

■ is well approximated by a vector subspace span(a_i , $i \in \{1, ..., 2K\}$), $K \ll N$

$$\widehat{\mathcal{M}} = \{ A \overline{u}(t; \mu) \, | \, (t, \mu) \in [0, T] \times \Xi \}$$

with
$$A = [a_1|...|a_{2K}] \in \mathcal{M}_{2N,2K}(\mathbb{R})$$
,

 $\bar{u}(t;\mu)$ is the reduced state such that $u(t;\mu) \approx A\bar{u}(t;\mu)$.

■ We constraint $\bar{u} \to A\bar{u} (\approx u)$ to be a symplectic map

$$A^{\mathsf{T}}\mathcal{J}_{2N}A = \mathcal{J}_{2K}$$

• bonus : symplectic inverse A^+ such that $A^+A = I_{2K}$

$$A^+ := \mathcal{J}_{2K}^T A^T \mathcal{J}_{2N}$$

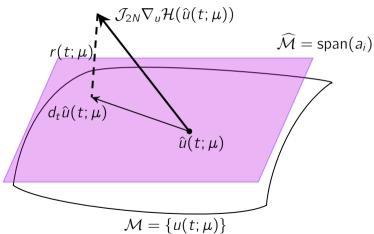
compression/decompress pattern

$$\mathbb{R}^{2N} \xrightarrow{} \mathbb{R}^{2K} \xrightarrow{} \mathbb{R}^{2N}$$

$$u(t;\mu) \longmapsto \bar{u}(t;\mu) := A^{+}u(t;\mu) \longmapsto A\bar{u}(t;\mu) = \hat{u}(t;\mu)$$

■ What is the dynamics of $\bar{u}(t; \mu)$?

Symplectic Galerkin projection



←□ → ←□ → ← = → ← = → へへ 17/30

Guillaume Steimer INRIA

• Consider the residual $r(t; \mu)$ of the reconstructed solution

$$r(t;\mu) := \frac{d\hat{u}(t;\mu)}{dt} - \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu))$$

• Consider the residual $r(t; \mu)$ of the reconstructed solution

$$r(t;\mu) := \frac{d\hat{u}(t;\mu)}{dt} - \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu))$$

■ it vanishes on the reduced subspace span $(a_i, i \in \{1, ..., 2K\})$ = symplectic Galerkin projection

$$\begin{split} 0 &= A^{+}r(t;\mu), \\ &= A^{+}A\frac{d\bar{u}(t;\mu)}{dt} - A^{+}\mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu)), \\ &= \frac{d\bar{u}(t;\mu)}{t} - \mathcal{J}_{2K}\nabla_{\bar{u}}\mathcal{H}(A\bar{u}(t;\mu)), \end{split}$$

• Consider the residual $r(t; \mu)$ of the reconstructed solution

$$r(t;\mu) := \frac{d\hat{u}(t;\mu)}{dt} - \mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu))$$

■ it vanishes on the reduced subspace span $(a_i, i \in \{1, ..., 2K\})$ = symplectic Galerkin projection

$$\begin{split} 0 &= A^{+}r(t;\mu), \\ &= A^{+}A\frac{d\bar{u}(t;\mu)}{dt} - A^{+}\mathcal{J}_{2N}\nabla_{u}\mathcal{H}(\hat{u}(t;\mu)), \\ &= \frac{d\bar{u}(t;\mu)}{t} - \mathcal{J}_{2K}\nabla_{\bar{u}}\mathcal{H}(A\bar{u}(t;\mu)), \end{split}$$

so that the reduced dynamics is still Hamiltonian

$$\frac{d\bar{u}(t;\mu)}{dt} = \mathcal{J}_{2K}\nabla_{\bar{u}}\bar{\mathcal{H}}(\bar{u}(t;\mu)) \text{ with } \bar{\mathcal{H}} := \mathcal{H} \circ A.$$

Guillaume Steimer INRIA

■ How to build $A \approx \text{span}(a_i, i \in \{1, ..., 2K\})$? The solution manifold \mathcal{M} is often unknown!

Guillaume Steimer

³Peng and Mohseni 2016.

- How to build $A \approx \text{span}(a_i, i \in \{1, ..., 2K\})$? The solution manifold \mathcal{M} is often unknown!
- \blacksquare On snapshots U of full order solution

$$U = [u(t_1; \mu_1) \quad \dots \quad u(t_s; \mu_s)] \in \mathcal{M}_{2N,s}(\mathbb{R}),$$

we minimize the reconstruction error

$$\min_{A^T \mathcal{J}_{2N} A = \mathcal{J}_{2K}} \left\| U - A A^+ U \right\|_F$$
 ,

Guillaume Steimer

- How to build $A \approx \text{span}(a_i, i \in \{1, ..., 2K\})$? The solution manifold \mathcal{M} is often unknown!
- \blacksquare On snapshots U of full order solution

$$U = [u(t_1; \mu_1) \quad \dots \quad u(t_s; \mu_s)] \in \mathcal{M}_{2N,s}(\mathbb{R}),$$

we minimize the reconstruction error

$$\min_{A^{T}\mathcal{J}_{2N}A=\mathcal{J}_{2K}}\left\Vert U-AA^{+}U\right\Vert _{F}$$
 ,

approached solution computed via Singular Value Decomposition (SVD) = Proper Symplectic Decomposition (PSD)³.

³Peng and Mohseni 2016.

Guillaume Steimer INRIA
Reduced PIC method for the Vlasov-Poisson system

■ In practice, offline/online decomposition for efficient computation,

- offline: build full model and reduced model, precompute quantities (snapshots, matrix A, etc.), parameter independent, done once,
- online: quickly solve the reduced model with new parameters, using precomputed quantities, done for every new parameter,

K chosen as a tradeoff between speed and precision.

• We set T=20 and parametrize the initial condition with $\mu=(\alpha\,\beta)^T=[0.2,0.5]\times[1,1.7]$ given by

$$\chi_{\text{init}}(x; \mu) = \alpha \exp(-\beta x^T x), \ \phi_{\text{init}}(x; \mu) = 0,$$

- we sample p = 20 snapshots and we build A offline,
- we test on a new parameter $\mu = (0.51 \ 1.72)^T$.

Example 2

■ The reduced model is

$$\frac{d\bar{u}(t;\mu)}{dt} = \mathcal{J}_{2K}\nabla_{\bar{u}}\bar{\mathcal{H}}(\bar{u}(t;\mu)) \text{ with } \bar{\mathcal{H}} := \mathcal{H} \circ A.$$

■ The reduced model is

$$\frac{d\bar{u}(t;\mu)}{dt} = \mathcal{J}_{2K}\nabla_{\bar{u}}\bar{\mathcal{H}}(\bar{u}(t;\mu)) \text{ with } \bar{\mathcal{H}} := \mathcal{H} \circ A.$$

• the field $\nabla_{\bar{u}}\bar{\mathcal{H}}$ depends on $\nabla_{u}\mathcal{H} \to \text{no numerical cost improvement }!$

■ The reduced model is

$$\frac{d\bar{u}(t;\mu)}{dt} = \mathcal{J}_{2K}\nabla_{\bar{u}}\bar{\mathcal{H}}(\bar{u}(t;\mu)) \text{ with } \bar{\mathcal{H}} := \mathcal{H} \circ A.$$

lacksquare the field $abla_{ar{
u}} ar{\mathcal{H}}$ depends on $abla_u \mathcal{H} o$ no numerical cost improvement !

■ idea : approximate $\nabla_u \mathcal{H}$ with a PSD-like method = Symplectic Discrete Empirical Interpolation Method (SDEIM)⁴.

■ split $\nabla_u \mathcal{H}$ into a linear part $D \in \mathcal{M}_{2N}(\mathbb{R})$ and a non-linear part $h_N : \mathbb{R}^{2N} \to \mathbb{R}^{2N}$

$$\nabla_u \mathcal{H}(u) = Du + h_N(u)$$

■ the reduced model is

$$\frac{d}{dt}\bar{u} = J_{2K}A^T\nabla_{A\bar{u}}\mathcal{H}(A\bar{u}) = J_{2K}(A^TDA)\bar{u} + J_{2K}A^Th_N(A\bar{u})$$

- linear part : $\bar{D} = A^T DA$ is computed offline \rightarrow online cost of $\mathcal{O}(K)$,
- non-linear part : $\psi_N = A^T \circ h_N \circ A$ of cost $\mathcal{O}(N^2)$.

lacksquare We form a snapshot matrix of ψ_N

$$U_{\psi} = ig(\psi_{N}\left[u(t_{1};\mu_{1})
ight] \quad \dots \quad \psi_{N}\left[u(t_{s};\mu_{s})
ight]ig) \in \mathcal{M}_{2N,s}(\mathbb{R}),$$

and build an SVD approximation

$$\psi_N(u) \approx A_{\psi} \widehat{\psi}(u),$$

lacksquare We form a snapshot matrix of ψ_N

$$U_{\psi} = (\psi_{N}[u(t_{1}; \mu_{1})] \dots \psi_{N}[u(t_{s}; \mu_{s})]) \in \mathcal{M}_{2N,s}(\mathbb{R}),$$

and build an SVD approximation

$$\psi_N(u) \approx A_{\psi} \widehat{\psi}(u),$$

■ this system is over-determined : unique solution $\widehat{\psi}(u)$ on $m \ll N$ spatial indices $\{i_1, \ldots, i_m\}$ (computed via an algorithm, not discussed),

lacktriangle We form a snapshot matrix of ψ_N

$$U_{\psi} = (\psi_N[u(t_1; \mu_1)] \dots \psi_N[u(t_s; \mu_s)]) \in \mathcal{M}_{2N,s}(\mathbb{R}),$$

and build an SVD approximation

$$\psi_N(u) \approx A_{\psi} \widehat{\psi}(u),$$

- this system is over-determined : unique solution $\widehat{\psi}(u)$ on $m \ll N$ spatial indices $\{i_1, \ldots, i_m\}$ (computed via an algorithm, not discussed),
- $\widehat{\psi}(u)$ uniquely determined with

$$P^{\mathsf{T}}\psi_{\mathsf{N}}(u) = \left(P^{\mathsf{T}}A_{\psi}\right)\widehat{\psi}(u)$$

with the selection matrix $P = (e_{i_1} \ldots e_{i_m})$, e_i is the *i*-th column of the identity matrix.

 $\widehat{\psi}(u)$ uniquely determined with

$$P^{\mathsf{T}}\psi_{N}(u) = (P^{\mathsf{T}}A_{\psi})\widehat{\psi}(u)$$

 $\widehat{\psi}(u)$ uniquely determined with

$$P^{\mathsf{T}}\psi_{\mathsf{N}}(u) = \left(P^{\mathsf{T}}A_{\psi}\right)\widehat{\psi}(u)$$

we derive the approximation

$$\psi_N(u) \approx A_{\psi} \widehat{\psi}(u) = \underbrace{A_{\psi} \left(P^{\top} A_{\psi}\right)^{-1}}_{W} P^{\top} \psi_N(u),$$

 $\widehat{\psi}(u)$ uniquely determined with

$$P^{\mathsf{T}}\psi_{\mathsf{N}}(u) = \left(P^{\mathsf{T}}A_{\psi}\right)\widehat{\psi}(u)$$

we derive the approximation

$$\psi_N(u) \approx A_{\psi} \widehat{\psi}(u) = \underbrace{A_{\psi} \left(P^{\top} A_{\psi}\right)^{-1}}_{W} P^{\top} \psi_N(u),$$

and the reduced model is

$$\frac{d}{dt}\bar{u} = J_{2K}A^{T}\nabla_{A\bar{u}}\mathcal{H}(A\bar{u}) = J_{2K}\bar{D}\bar{u} + J_{2K}Wh_{m}(A\bar{u})$$

with W computed offline,

■ $h_m = P^T \circ h_N \circ A$ = nonlinear part of the Hamiltonian gradient evaluated on $m \ll N$ points : the cost does not depend on N anymore !

On the shallow-water system

$$\nabla_{u}\mathcal{H}(u) = \begin{pmatrix} \frac{1}{2} \left[(D_{x}\phi)^{2} + (D_{y}\phi)^{2} \right] + \chi \\ -D_{x} \left([1+\chi] \odot D_{x}\phi \right) - D_{y} \left([1+\chi] \odot D_{y}\phi \right) \end{pmatrix},$$

$$= \begin{pmatrix} 0 & -D_{x}^{2} - D_{y}^{2} \\ -I & 0 \end{pmatrix} u + J_{2N} \underbrace{\begin{pmatrix} \frac{1}{2} \left[(D_{x}\phi)^{2} + (D_{y}\phi)^{2} \right] \\ -D_{x} \left(\chi \odot D_{x}\phi \right) - D_{y} \left(\chi \odot D_{x}\phi \right) \end{pmatrix}}_{h_{N}},$$

 \bullet $h_m = h_m = P^T \circ h_N \circ A$ is essentially to find an effective way to compute

$$P^T D_{\mathsf{x}} A u$$

can be difficult in practice!

Symplectic Discrete Empirical Interpolation Method (SDEIM)

• We set K = 20 and m = 60.

Example 3

- 1 Canonical Hamiltonian ODEs
 - Definition & properties
 - Our example : Shallow-water system
- 2 Model Order Reduction (MOR)
 - Proper Symplectic Decomposition (PSD)
 - Symplectic Discrete Empirical Interpolation Method (SDEIM)
- 3 Conclusion & perspectives

- The Proper Symplectic Decomposition (PSD) is a data-driven projection-based model order reduction technique,
- efficiency guaranteed by offline/online decomposition,
- limited to linear and quasi-linear regimes (SDEIM strategy),
- not competitive in strongly nonlinear regimes : alternative strategies based on neural networks⁵ ?

⁵Côte et al. 2025: Franck et al. 2025.

Bibliography I

- Arnold, V. I. (1978). *Mathematical methods of classical mechanics*. Vol. 60. Graduate Texts in Mathematics. Translated from the Russian by K. Vogtmann and A. Weinstein. Springer-Verlag, New York-Heidelberg, pp. x+462. ISBN: 0-387-90314-3.
- Côte, Raphaël et al. (2025). "Hamiltonian reduction using a convolutional auto-encoder coupled to a Hamiltonian neural network". In: Commun. Comput. Phys. 37.2, pp. 315–352. ISSN: 1815-2406,1991-7120. DOI: 10.4208/cicp.0A-2023-0300.
- Franck, Emmanuel (2024). "Apprentissage et calcul scientifique". Lecture notes for courses given at the University of Strasbourg. URL: https://sciml.gitlabpages.inria.fr/scimllectures/meta_frontmatter.html.
- Franck, Emmanuel et al. (2025). "Reduced Particle in Cell method for the Vlasov-Poisson system using auto-encoder and Hamiltonian neural networks". preprint. URL: https://hal.science/hal-05116555.

Guillaume Steimer INRIA
Reduced PIC method for the Vlasov-Poisson system

Bibliography II

- Hairer, Ernst, Christian Lubich, and Gerhard Wanner (2006). *Geometric numerical integration*. Second. Vol. 31. Springer Series in Computational Mathematics. Structure-preserving algorithms for ordinary differential equations. Springer-Verlag, Berlin, pp. xviii+644. ISBN: 978-3-540-30663-4.
- Lochak, Pierre (1995). "Stability of Hamiltonian systems over exponentially long times: the near-linear case". In: *Hamiltonian dynamical systems (Cincinnati, OH, 1992)*. Vol. 63. IMA Vol. Math. Appl. Springer, New York, pp. 221–229. ISBN: 0-387-94437-0. DOI: 10.1007/978-1-4613-8448-9\ 16.
- Marsden, Jerrold E. and Tudor S. Ratiu (1999). *Introduction to mechanics and symmetry*. Second. Vol. 17. Texts in Applied Mathematics. A basic exposition of classical mechanical systems. Springer-Verlag, New York, pp. xviii+582. ISBN: 0-387-98643-X. DOI: 10.1007/978-0-387-21792-5.

Guillaume Steimer INRIA

Bibliography III

- Michel-Dansac, Victor (2023). "Structure-preserving methods for Hamiltonian ODEs".

 Lecture notes for a course given the Master 2 Mathématiques Fondamentales at the University of Strasbourg.
- Peng, Liqian and Kamran Mohseni (2016). "Symplectic model reduction of Hamiltonian systems". In: SIAM J. Sci. Comput. 38.1, A1–A27. ISSN: 1064-8275,1095-7197. DOI: 10.1137/140978922.