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Introduction

Hamiltonian systems:

conserved quantities : total energy, momentum, charge, mass, etc.,

structure + total energy → dynamics,

long time stability,

from a numerical point of view:

discretized PDEs → large dimension,

structure-preserving methods → implicit solvers,

multi-query/real time context on a set of parameters → large computational cost,

need to reduce the numerical cost → reduced order models:

computationally efficient,

small approximation error,

retains the Hamiltonian structure,

Shallow-water system as an example throughout the presentation.
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

1 Canonical Hamiltonian ODEs
Definition & properties
Our example : Shallow-water system

2 Model Order Reduction (MOR)
Proper Symplectic Decomposition (PSD)
Symplectic Discrete Empirical Interpolation Method (SDEIM)

3 Conclusion & perspectives

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Definition & properties

System described by generalized coordinates q(t;µ) ∈ RN ,N ≫ 1 and generalized
momenta p(t;µ) ∈ RN with time t ∈ [0,T ] and some parameters µ ∈ Ξ ⊂ Rp,

H : R2N → R is the Hamiltonian, often the total energy of the system,

q and p are braided together such that

dq(t;µ)
dt

= ∇pH(q(t;µ), p(t;µ)),

dp(t;µ)
dt

= −∇qH(q(t;µ), p(t;µ)),

q(0;µ) = qinit(µ),

p(0;µ) = pinit(µ),

e.g. q̇ = p, ṗ = V (q) with V a potential.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Definition & properties

Or equivalently described by the state u(t;µ) = (q(t;µ) p(t;µ))T ∈ R2N such that
du(t;µ)

dt
= J2N∇uH(u(t;µ)),

u(0;µ) = uinit(µ),

with J2N =

(
0N IN
−IN 0N

)
∈M2N(R) the canonical symplectic matrix.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Definition & properties

Hamiltonian preserved along trajectories by design

dH(q, p)
dt

= ∇qH(q, p) ·
dq
dt
+∇pH(q, p) ·

dp
dt

= ∇qH(q, p) · ∇pH(q, p)−∇pH(q, p) · ∇qH(q, p) = 0,

and many other properties : volume preservation, time reversibility, symplectic flow, etc.,

This structure has to be preserved during time integration to guarantee long-time
stability and physical solutions1 (not covered) !

u(tn+1;µ) = u(tn;µ) +

∫ tn+1

tn
J2N∇uH(u(t;µ)) dt,

with tn = n∆t.

1Hairer, Lubich, and Wanner 2006; Lochak 1995; Michel-Dansac 2023; Franck 2024.

Guillaume Steimer INRIA
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Our example : Shallow-water system

Some Hamiltonian ODEs come from (Hamiltonian) PDEs of solution a field u(t, x ;µ) on
a domain x ∈ Ω

∂u
∂t
= J (u)

δH
δu
(u),

with J (u) =
(

0 id

− id 0

)
,

they possess comparable properties2 (not covered),

example : the shallow-water system.

2Arnold 1978; Marsden and Ratiu 1999.

Guillaume Steimer INRIA
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Our example : Shallow-water system

Evolution of a free surface of water on a flat bottom,

χ, φ : R2/(LZ2)× [0,T ]× Ξ→ R are the perturbation from the equilibrium and the
scalar velocity potential, Ω is a periodic square domain on size L,

u(x , t;µ) = (χ φ)T (x , t;µ)
∂tχ+∇ · ((1+ χ)∇φ) = 0,

∂tφ+
1
2
|∇φ|2 + χ = 0,

with the Hamiltonian

H[χ, φ] =
1
2

∫
R2/(LZ2)

(
(1+ χ) |∇φ|2 + χ2

)
dx .

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Our example : Shallow-water system

Figure: Tidal flow in Iceland (©Jan Erik Waider)
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Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Our example : Shallow-water system

Domain Ω = R2/(LZ2) discretized with a mesh (xi , yj)i ,j of N nodes,
discretized state χh(t;µ), φh(t;µ) ∈ RN , (χh)m(t;µ) = χi ,j(t;µ) ≈ χ(xi , yj , t;µ)
finite differences

∂xφ(xi , yj , . . . ) ≈
1

2∆x
[φ(xi+1, yj , . . . )− φ(xi−1, yj , . . . )] , etc.,

we obtain a high dimensional Hamiltonian ODE of solution uh = (χh, φh)

H(χh, φh) =
1
2

M−1∑
i ,j=0

(
(1+ χi ,j)

[(
φi+1,j − φi−1,j

2∆x

)2

+

(
φi ,j+1 − φi ,j−1

2∆y

)2
]
+ χ2

i ,j

)
,


d
dt
χh = −Dx ([1+ χh]⊙Dxφh)−Dy ([1+ χh]⊙Dyφh) ,

d
dt
φh = −

1
2

[
(Dxφh)

2 + (Dyφh)
2
]
− χh,

with Dx ,Dy ∈M2N(R) finite difference matrices,
cost of O(N2) for each (t, µ) ∈ T × Ξ.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Proper Symplectic Decomposition (PSD)

Consider the solution manifold

M := {u(t;µ) | (t, µ) ∈ [0,T ]× Ξ} ⊂ R2N ,

is well approximated by a vector subspace span(ai , i ∈ {1, . . . , 2K}),K ≪ N

M̂ = {Aū(t;µ) | (t, µ) ∈ [0,T ]× Ξ}

with A = [a1|. . .|a2K ] ∈M2N,2K (R),

ū(t;µ) is the reduced state such that u(t;µ) ≈ Aū(t;µ).

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Proper Symplectic Decomposition (PSD)

We constraint ū → Aū (≈ u) to be a symplectic map

ATJ2NA = J2K

bonus : symplectic inverse A+ such that A+A = I2K

A+ := J T
2KATJ2N

compression/decompress pattern

R2N R2K R2N

u(t;µ) ū(t;µ) := A+u(t;µ) Aū(t;µ) = û(t;µ)

What is the dynamics of ū(t;µ)?

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Proper Symplectic Decomposition (PSD)

Symplectic Galerkin projection

M = {u(t;µ)}

M̂ = span(ai)

û(t;µ)

dt û(t;µ)

J2N∇uH(û(t;µ))

r(t;µ)

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Proper Symplectic Decomposition (PSD)

Consider the residual r(t;µ) of the reconstructed solution

r(t;µ) :=
dû(t;µ)

dt
− J2N∇uH(û(t;µ))

it vanishes on the reduced subspace span(ai , i ∈ {1, . . . , 2K}) = symplectic Galerkin
projection

0 = A+r(t;µ),

= A+A
dū(t;µ)

dt
− A+J2N∇uH(û(t;µ)),

=
dū(t;µ)

t
− J2K∇ūH(Aū(t;µ)),

so that the reduced dynamics is still Hamiltonian

dū(t;µ)
dt

= J2K∇ūH̄(ū(t;µ)) with H̄ := H ◦ A.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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dū(t;µ)

t
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Proper Symplectic Decomposition (PSD)

How to build A ≈ span(ai , i ∈ {1, . . . , 2K}) ? The solution manifoldM is often
unknown !

On snapshots U of full order solution

U =
[
u(t1;µ1) . . . u(ts ;µs)

]
∈M2N,s(R),

we minimize the reconstruction error

min
ATJ2NA=J2K

∥∥U − AA+U
∥∥

F ,

approached solution computed via Singular Value Decomposition (SVD) = Proper
Symplectic Decomposition (PSD)3.

3Peng and Mohseni 2016.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Proper Symplectic Decomposition (PSD)

In practice, offline/online decomposition for efficient computation,

offline : build full model and reduced model, precompute quantities (snapshots, matrix A,
etc.), parameter independent, done once,

online : quickly solve the reduced model with new parameters, using precomputed
quantities, done for every new parameter,

K chosen as a tradeoff between speed and precision.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Proper Symplectic Decomposition (PSD)

We set T = 20 and parametrize the initial condition with
µ = (α β)T = [0.2, 0.5]× [1, 1.7] given by

χinit(x ;µ) = α exp
(
−βxT x

)
, φinit(x ;µ) = 0,

we sample p = 20 snapshots and we build A offline,

we test on a new parameter µ = (0.51 1.72)T .

Example 2

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

The reduced model is

dū(t;µ)
dt

= J2K∇ūH̄(ū(t;µ)) with H̄ := H ◦ A.

the field ∇ūH̄ depends on ∇uH → no numerical cost improvement !

idea : approximate ∇uH with a PSD-like method = Symplectic Discrete Empirical
Interpolation Method (SDEIM)4.

4Peng and Mohseni 2016.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system



22/32

Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Symplectic Discrete Empirical Interpolation Method (SDEIM)

The reduced model is
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= J2K∇ūH̄(ū(t;µ)) with H̄ := H ◦ A.
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Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Symplectic Discrete Empirical Interpolation Method (SDEIM)

split ∇uH into a linear part D ∈M2N(R) and a non-linear part hN : R2N → R2N

∇uH(u) = Du + hN(u)

the reduced model is

d
dt

ū = J2KAT∇AūH(Aū) = J2K (ATDA)ū + J2KAThN(Aū)

linear part : D̄ = ATDA is computed offline → online cost of O(K),

non-linear part : ψN = AT ◦ hN ◦ A of cost O(N2).

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system



24/32

Canonical Hamiltonian ODEs Model Order Reduction (MOR) Conclusion & perspectives

Symplectic Discrete Empirical Interpolation Method (SDEIM)

We form a snapshot matrix of ψN

Uψ =
(
ψN [u(t1;µ1)] . . . ψN [u(ts ;µs)]

)
∈M2N,s(R),

and build an SVD approximation

ψN(u) ≈ Aψψ̂(u),

this system is over-determined : unique solution ψ̂(u) on m ≪ N spatial indices
{i1, . . . , im} (computed via an algorithm, not discussed),

ψ̂(u) uniquely determined with

PTψN(u) =
(
PTAψ

)
ψ̂(u)

with the selection matrix P =
(
ei1 . . . eim

)
, ei is the i-th column of the identity matrix.

Guillaume Steimer INRIA

Reduced PIC method for the Vlasov-Poisson system
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

ψ̂(u) uniquely determined with

PTψN(u) =
(
PTAψ

)
ψ̂(u)

we derive the approximation

ψN(u) ≈ Aψψ̂(u) = Aψ
(
PTAψ

)−1︸ ︷︷ ︸
W

PTψN(u),

and the reduced model is

d
dt

ū = J2KAT∇AūH(Aū) = J2K D̄ū + J2KWhm(Aū)

with W computed offline,

hm = PT ◦ hN ◦ A = nonlinear part of the Hamiltonian gradient evaluated on m ≪ N
points : the cost does not depend on N anymore !
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

On the shallow-water system

∇uH(u) =

(
1
2

[
(Dxφ)

2 + (Dyφ)
2
]
+ χ

−Dx ([1+ χ]⊙Dxφ)−Dy ([1+ χ]⊙Dyφ)

)
,

=

(
0 −D2

x −D2
y

−I 0

)
u + J2N

(
1
2

[
(Dxφ)

2 + (Dyφ)
2
]

−Dx (χ⊙Dxφ)−Dy (χ⊙Dxφ)

)
︸ ︷︷ ︸

hN

,

hm = hm = PT ◦ hN ◦ A is essentially to find an effective way to compute

PTDxA u

can be difficult in practice !
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

We set K = 20 and m = 60.

Example 3
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

1 Canonical Hamiltonian ODEs
Definition & properties
Our example : Shallow-water system

2 Model Order Reduction (MOR)
Proper Symplectic Decomposition (PSD)
Symplectic Discrete Empirical Interpolation Method (SDEIM)

3 Conclusion & perspectives
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The Proper Symplectic Decomposition (PSD) is a data-driven projection-based model
order reduction technique,

efficiency guaranteed by offline/online decomposition,

limited to linear and quasi-linear regimes (SDEIM strategy),

not competitive in strongly nonlinear regimes : alternative strategies based on neural
networks5 ?

5Côte et al. 2025; Franck et al. 2025.
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