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m Hamiltonian systems:
m conserved quantities : total energy, momentum, charge, mass, etc.,
m structure + total energy — dynamics,
m long time stability,
m from a numerical point of view:
m discretized PDEs — large dimension,
m structure-preserving methods — implicit solvers,
m multi-query/real time context on a set of parameters — large computational cost,
m need to reduce the numerical cost — reduced order models:
m computationally efficient,
m small approximation error,

m retains the Hamiltonian structure,

m Shallow-water system as an example throughout the presentation.
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Canonical Hamiltonian ODEs

@00

Definition & properties

m System described by generalized coordinates q(t; ) € RN, N > 1 and generalized
momenta p(t; u) € RY with time t € [0, T] and some parameters u € = C RP,

m 7 : R?M — R is the Hamiltonian, often the total energy of the system,

m g and p are braided together such that

W = V,oH(a(t; w), p(t; 1)),

W =~V H(q(t; ), p(t; 1)),

q(0; 1) = Ginic (1),
p(0; ) = pinit (1),

meg. §g=p, p=V(q) with V a potential.
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Canonical Hamiltonian ODEs
(o] o}

Definition & properties

m Or equivalently described by the state u(t; u) = (q(t; u) p(t; u)) " € R2N such that

W = TV H(u(t; 1)),

u(0; ) = uinit(k),

with Joy = (E'/VN (;I;Iv> € Mon(R) the canonical symplectic matrix.
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Canonical Hamiltonian ODEs
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Definition & properties

m Hamiltonian preserved along trajectories by design

dH(q, p)

dp
P =VoH(q.p) - + VoH(q. p) - p

= VqH(q,p) - p“rl(q. p) —VoH(q,p) - VeH(q,p) =0,

m and many other properties : volume preservation, time reversibility, symplectic flow, etc.,

1 Hairer, Lubich, and Wanner 2006; Lochak 1995; Michel-Dansac 2023; Franck 2024
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Canonical Hamiltonian ODEs
ooe

Definition & properties

m Hamiltonian preserved along trajectories by design

dH(q, p)

dp
P =VoH(q.p) - + VoH(q. p) - p

= VH(q,p)- p“rl(q, p) = VH(q,p) - VoH(q, p) =0,
m and many other properties : volume preservation, time reversibility, symplectic flow, etc.,

m This structure has to be preserved during time integration to guarantee long-time
stability and physical solutions® (not covered) !

tnt+l

u(t"™h p) = u(t"; w) + TonVuH(u(t; w)) dt,

tn

with t7 = nAt.

1 Hairer, Lubich, and Wanner 2006; Lochak 1995; Michel-Dansac 2023; Franck 2024

Guillaume Steimer

Reduced PIC method for the Vlaso



Canonical Hamiltonian ODEs
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Our example : Shallow-water system

m Some Hamiltonian ODEs come from (Hamiltonian) PDEs of solution a field u(t, x; ) on
a domain x € Q

with 7 (u) = (_Ol ; 'g)

m they possess comparable properties? (not covered),

@—ﬂ S w),

m example : the shallow-water system.

2Arnold 1978; Marsden and Ratiu 1999
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Canonical Hamiltonian ODEs
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Our example : Shallow-water system

m Evolution of a free surface of water on a flat bottom,

mx,¢:R?/(LZ?) x [0, T] x = — R are the perturbation from the equilibrium and the
scalar velocity potential, Q2 is a periodic square domain on size L,

mou(x tp)=(x @) (x,t;w)
Ox+V-((1+x)Ve) =0,
1 >
6t¢+§|v¢| +x=0,
m with the Hamiltonian

:1 2 2 d
Hodl =5 [ (@e019er ) o
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Canonical Hamiltonian ODEs
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Our example : Shallow-water system

Figure: Tidal flow in Iceland (©Jan Erik Waider)
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Canonical Hamiltonian ODEs
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Our example : Shallow-water system

m Domain Q = R?/(LZ?) discretized with a mesh (x;, y;);; of N nodes,

m discretized state xs(t; 1), dn(t; ) € RN, (xn)m(t: n) = xi(t: w) = Xx(xi, Y, t: 1)
m finite differences

OP(Xi, yj, ... )~ [O(Xit1, Yjo o) — O(Xi—1, 5, ... )], etc,,

1
2Ax
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Canonical Hamiltonian ODEs
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Our example : Shallow-water system

m Domain Q = R?/(LZ?) discretized with a mesh (x;, y;);; of N nodes,

m discretized state xs(t; 1), dn(t; ) € RN, (xn)m(t: n) = xi(t: w) = Xx(xi, Y, t: 1)
m finite differences

OP(Xi, yj, ... )~ i [O(Xit1, Yjo o) — O(Xi—1, 5, ... )], etc,,

m we obtain a high dimensional Hamiltonian ODE of solution up = (Xn, $n)

1= =i\ i — b1\ 2
H(Xn, &) = > Z ((1+X/J) [<¢+112Ax¢1j) i (¢J+12A;1511>

ij=0

+X,2J> ,

({;}Xh = =D« ([1 4+ xn] ® Dxdpn) — Dy ([1 + xn] © Dyn) .

1
b0 = =5 | (D) + (D, 8] = i,

with Dy, D, € Mon(R) finite difference matrices,
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Canonical Hamiltonian ODEs

[e]e]

Our example : Shallow-water system

m Domain Q = R?/(LZ?) discretized with a mesh (x;, y;);; of N nodes,

m discretized state xs(t; 1), dn(t; ) € RN, (xn)m(t: n) = xi(t: w) = Xx(xi, Y, t: 1)
m finite differences

OP(Xi, yj, ... )~ i [O(Xit1, Yjo o) — O(Xi—1, 5, ... )], etc,,

m we obtain a high dimensional Hamiltonian ODE of solution up = (Xn, $n)

1= =i\ i — b1\ 2
H(Xn, &) = > Z ((1+X/J) [<¢+112Ax¢1j) i (¢J+12A;1511>

ij=0

+X,2J> ,

d
—xp = —Dy ([1 + Xh] ® Dx¢h) — Dy ([1 + Xh] © Dy¢h) )

¥
1
b0 = =5 | (D) + (D, 8] = i,
with Dy, D, € Mon(R) finite difference matrices,
m cost of O(N?) for each (t,u) € T x =.
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Canonical Hamiltonian ODEs
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Our example : Shallow-water system

Example 1

Guillaume Steimer

Reduced PIC method for the Vlasov-Poisson system
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Model Order Reduction (MOR)
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Proper Symplectic Decomposition (PSD)

m Consider the solution manifold
M= {u(t;u)|(t,w) €0, T] x =} c R?",
m is well approximated by a vector subspace span(a;,i € {1,..., 2K}, K < N
M = {Au(t;p) | (t,w) € [0, T] x =}

with A = [a1]. . .]aak] € Mo 2k (R),

m U(t; w) is the reduced state such that u(t; 1) ~ An(t; ).

Guillaume Steimer
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Model Order Reduction (MOR)
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Proper Symplectic Decomposition (PSD)

m We constraint & — AT (= u) to be a symplectic map
AT TonA = Tok
m bonus : symplectic inverse AT such that ATA = by
AT = TN AT Ton

m compression/decompress pattern
RQN [N R2K [N R2N
u(tiw)  +——  o(tu) =Atu(t,u) +— AT(tu) =0(t; p)

m What is the dynamics of T(t; u)?

Guillaume Steimer

ced PIC method the Vlas



Model Order Reduction (MOR)
[e]e] lele]ele)

Proper Symplectic Decomposition (PSD)

Symplectic Galerkin projection

TonV H(O(t; w))
] —
r(t: u),'\ M : span(a;)

M ={u(t;u)}
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Model Order Reduction (MOR)
[e]e]e] le]ele)

Proper Symplectic Decomposition (PSD)

m Consider the residual r(t; 1) of the reconstructed solution

_ du(tip)

r(t;w) : pm

— Ton Vo H(O(t; 1))

Guillaume Steimer
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Model Order Reduction (MOR)
[e]e]e] le]ele)

Proper Symplectic Decomposition (PSD)

m Consider the residual r(t; 1) of the reconstructed solution

) = U v (s )
® it vanishes on the reduced subspace span(a;, i € {1,...,2K}) = symplectic Galerkin
projection
0=A"r(t;u),
= a AT, e e it ),
= M — JoxVoH(AU(t; 1)),
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Model Order Reduction (MOR)
[e]e]e] le]ele)

Proper Symplectic Decomposition (PSD)

m Consider the residual r(t; 1) of the reconstructed solution

du(t; R
)= P et )
m it vanishes on the reduced subspace span(a;,i € {1, ..., 2K}) = symplectic Galerkin
projection
0=A"r(t;u),
du(t
= AA “(dt B) A TV A0 ),
du(t; _
= # — Dok VaH(AU(L; 1)),
m so that the reduced dynamics is still Hamiltonian
du(t; u)

Pra Tk VoH(U(t; w)) with H := H o A.

Guillaume Steimer
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Model Order Reduction (MOR)
[e]e]e]e] lele)

Proper Symplectic Decomposition (PSD)

m How to build A~ span(a;,i € {1,...,2K}) ? The solution manifold M is often
unknown !

3Peng and Mohseni 2016
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Model Order Reduction (MOR)
[e]e]e]e] lele)

Proper Symplectic Decomposition (PSD)

m How to build A~ span(a;,i € {1,...,2K}) ? The solution manifold M is often
unknown !

m On snapshots U of full order solution
U=[u(tiip) .. u(ts ps)] € Moys(R),
we minimize the reconstruction error

min  ||U—AATU||,,
AT JonA=Tok

3Peng and Mohseni 2016
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Model Order Reduction (MOR)
[e]e]e]e] lele)

Proper Symplectic Decomposition (PSD)

m How to build A~ span(a;,i € {1,...,2K}) ? The solution manifold M is often
unknown !

m On snapshots U of full order solution
U=[u(tiip) .. u(ts ps)] € Moys(R),
we minimize the reconstruction error

min  ||U—AATU||,,
AT JonA=Tok

m approached solution computed via Singular Value Decomposition (SVD) = Proper
Symplectic Decomposition (PSD)3.

3Peng and Mohseni 2016
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Model Order Reduction (MOR)
[e]e]e]e]e] le)

Proper Symplectic Decomposition (PSD)

m In practice, offline/online decomposition for efficient computation,

m offline : build full model and reduced model, precompute quantities (snapshots, matrix A,
etc.), parameter independent, done once,

m online : quickly solve the reduced model with new parameters, using precomputed
quantities, done for every new parameter,

m K chosen as a tradeoff between speed and precision.

Guillaume Steimer
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Model Order Reduction (MOR)
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Proper Symplectic Decomposition (PSD)

m We set T = 20 and parametrize the initial condition with
w=(aB)" =[0.2,0.5] x [1,1.7] given by

Xinie (X; 1) = acexp (—0x7 ) Ginie(x: ) = 0,

m we sample p = 20 snapshots and we build A offline,

m we test on a new parameter y = (0.51 1.72) 7.

Example 2

Guillaume Steimer
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Model Order Reduction (MOR)
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

m The reduced model is

du(t; u)

g Tk VaH(T(t; p)) with H :=H o A.

4Per\g and Mohseni 2016
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Model Order Reduction (MOR)
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

m The reduced model is

du(t; )

g Tk VaH(T(t; p)) with H :=H o A.

m the field V;#H depends on V,4 — no numerical cost improvement !

4Per\g and Mohseni 2016
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Model Order Reduction (MOR)
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

m The reduced model is

du(t; )

g Tk VaH(T(t; p)) with H :=H o A.

m the field V;#H depends on V,4 — no numerical cost improvement !

m idea : approximate V,H with a PSD-like method = Symplectic Discrete Empirical
Interpolation Method (SDEIM)*.

4Per\g and Mohseni 2016

Guillaume Steimer

ced PIC method the Vlas



Model Order Reduction (MOR)
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

m split V, 7 into a linear part D € Moy(R) and a non-linear part hy : R*V — R2V
V. H(u) = Du+ hy(u)
m the reduced model is

d
U= Dk ATV 4z H(ATD) = Jox (AT DAYT + Jox AT hy(AT)

m linear part : D = AT DA is computed offline — online cost of O(K),

m non-linear part : ¥y = AT o hy o A of cost O(N?).

Guillaume Steimer

ced PIC method the Vlas



Model Order Reduction (MOR)
[o]e] lelele]

Symplectic Discrete Empirical Interpolation Method (SDEIM)

m We form a snapshot matrix of ¥y

Up = (Yn [u(tip)] o o [u(ts; ps)]) € Mans(R),

m and build an SVD approximation

Y () = Ayp(u),

Guillaume Steimer

uced PIC method for the Vlasov-



Model Order Reduction (MOR)
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

m We form a snapshot matrix of ¥y

Up = (Yn [u(tip)] o o [u(ts; ps)]) € Mans(R),

m and build an SVD approximation
Yn(u) ~ Ay (u),

m this system is over-determined : unique solution zﬁ(u) on m < N spatial indices
{i,...,Im} (computed via an algorithm, not discussed),
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Model Order Reduction (MOR)
[o]e] lelele]

Symplectic Discrete Empirical Interpolation Method (SDEIM)

m We form a snapshot matrix of ¥y
Up = (Yn [u(tip)] o o [u(ts; ps)]) € Mans(R),
m and build an SVD approximation
Yn(u) ~ Ay(u),

m this system is over-determined : unique solution zﬁ(u) on m < N spatial indices
{i,...,Im} (computed via an algorithm, not discussed),

m ¥ (u) uniquely determined with
PTyn(u) = (PTAy) (u)

with the selection matrix P = (e,-1 e,'m), e is the i-th column of the identity matrix.

Guillaume Steimer

Reduced PIC methos



Model Order Reduction (MOR)
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

[ ’L?)\(U) uniquely determined with

PTyn(u) = (PTAy) (u)

Guillaume Steimer
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Model Order Reduction (MOR)
O00e00

Symplectic Discrete Empirical Interpolation Method (SDEIM)

[ ’L?)\(U) uniquely determined with
P yn(u) = (PTAy) ¥(u)
m we derive the approximation

() = Ag(u) = Ay (PTAy) " P o (u),
N—_————

w

Guillaume Steimer
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Model Order Reduction (MOR)
O00e00

Symplectic Discrete Empirical Interpolation Method (SDEIM)

[ ’L?)\(U) uniquely determined with

P yn(u) = (PTAy) ¥(u)
m we derive the approximation
Wn(u) ~ Ayu) = Ay (PTAY) " PT(u),
w

m and the reduced model is
d _
EU = ATV aaH(AT) = Jox DU + Joy Wh,,(ATI)

with W computed offline,

m h, = P7 ohyoA = nonlinear part of the Hamiltonian gradient evaluated on m < N
points : the cost does not depend on N anymore !

Guillaume Steimer
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Model Order Reduction (MOR)

0000eO0

Symplectic Discrete Empirical Interpolation Method (SDEIM)

m On the shallow-water system

V() = 5[(D0) + (0,07 +x
‘ ~Dx([1+X]© Dx¢) — D, (L +x]© D,9))

(0 -D2-D? 3 |(D«9)? + (Dy9)°
B (_l 0 ) vt <_D>< (2X{® Dy¢) — D, (x Cl Dx¢)> ’

hn

B hy, =h,=PT ohyoAis essentially to find an effective way to compute
PTDAu

can be difficult in practice !

Guillaume Steimer
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Model Order Reduction (MOR)
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Symplectic Discrete Empirical Interpolation Method (SDEIM)

m We set K =20 and m = 60.

Example 3

Guillaume Steimer
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Conclusion & perspectives

Symplectic Discrete Empirical Interpolation Method (SDEIM)

El Conclusion & perspectives
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Conclusion & perspectives
0

m The Proper Symplectic Decomposition (PSD) is a data-driven projection-based model
order reduction technique,

m efficiency guaranteed by offline/online decomposition,

m limited to linear and quasi-linear regimes (SDEIM strategy),

m not competitive in strongly nonlinear regimes : alternative strategies based on neural
networks® ?

5Céte et al. 2025; Franck et al. 2025
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