Reduced Particle in Cell method for the Vlasov-Poisson system using auto-encoder and Hamiltonian neural network

Raphaël Côte*, Emmanuel Franck***, Laurent Navoret***,

<u>Guillaume Steimer</u>*** (speaker)

and Vincent Vigon***

* IRMA, UMR 7501, University of Strasbourg and CNRS, Strasbourg, France

** INRIA Nancy-Grand Est, Strasbourg, France

NODYCON 2025, June 22-25, 2025

- ▶ Particle-based discretization of a kinetic plasma model
 - ▶ large number of particles : many degrees of freedom,
 - ► costly solver for particles interactions (Lorentz force),
 - ▶ multi-query context on a set of parameters (physical, geometric,...),

- ▶ Particle-based discretization of a kinetic plasma model
 - ▶ large number of particles : many degrees of freedom,
 - ► costly solver for particles interactions (Lorentz force),
 - ▶ multi-query context on a set of parameters (physical, geometric,...),
- ► + Hamiltonian structure : numerical stability,

- ► Particle-based discretization of a kinetic plasma model
 - ▶ large number of particles : many degrees of freedom,
 - ► costly solver for particles interactions (Lorentz force),
 - ▶ multi-query context on a set of parameters (physical, geometric,...),
- ► + Hamiltonian structure : numerical stability,
- build a reduced model to reduce numerical costs
 - ► close to the original model, balance speed and precision,
 - ▶ with a Hamiltonian structure,
 - using neural networks.

System described by the distribution $f(t, x, v; \mu)$ with time $t \in \mathcal{T} = (0, T]$, position $x \in \Omega_x = \mathbb{R}/2\pi\mathbb{Z}$, velocity $v \in \Omega_v \subset \mathbb{R}$ and parameters $\mu \in \Xi \subset \mathbb{R}^p$, p > 0, charge q and mass m,

$$\begin{cases} \partial_t f(t,x,v;\mu) + v \partial_x f(t,x,v;\mu) + \frac{q}{m} E(t,x;\mu) \partial_v f(t,x,v;\mu) = 0, & \text{in } \Omega_x \times \Omega_v \times \mathcal{T}, \\ \partial_x E(t,x;\mu) = \rho(t,x;\mu), & \text{in } \Omega_x \times \mathcal{T}, \end{cases}$$

where $\rho(t, x; \mu) = q \int_{\Omega_{\tau}} f(t, x, v; \mu) dv$ is the electric density,

- \blacktriangleright $E(t,x;\mu)$ is the electric field, derives from electric potential $\phi(t,x;\mu): -\partial_x \phi = E$,
- ► the Poisson equation rewrites

$$-\partial_{xx}\phi(t,x;\mu)=\rho(t,x;\mu).$$

▶ Solution approximated with $N \gg 1$ particles $(x_k(t), v_k(t))$ in the phase space

$$f_N(t,x,v;\mu) = \sum_{k=1}^N \omega \, \delta(x-x_k(t)) \, \delta(v-v_k(t))$$

► results in a 2N-dimensional ODE

$$egin{cases} rac{d}{dt}X(t;\mu) = V(t;\mu), & ext{in } \mathcal{T} \ rac{d}{dt}V(t;\mu) = rac{q}{m}E(X(t;\mu);\mu) & ext{in } \mathcal{T}, \end{cases}$$

where $(X)_k = x_k, (V)_k = v_k$,

▶ electric field computed with a mesh : Particle-In-Cell (PIC) method¹.

▶ Full order model of solution $u = (X V)^T \in \mathbb{R}^{2N}$

$$\frac{d}{dt}u(t;\mu)=J_{2N}\nabla_{u}\mathcal{H}(u(t;\mu))$$

with
$$J_{2N} = \begin{pmatrix} 0_N & I_N \\ -I_N & 0_N \end{pmatrix}$$
,

 $ightharpoonup \mathcal{H}: \mathbb{R}^{2N} \to \mathbb{R}$ is the Hamiltonian (total energy)

$$\mathcal{H}(u(t;\mu)) = \underbrace{\frac{1}{2}V^TV}_{\text{kinetic energy}} + \underbrace{\frac{1}{2m}q^2\omega\Lambda^0(X(t;\mu))L^{-1}\Lambda^0(X(t;\mu))^T\mathbb{1}_N}_{\text{potential energy}}$$

with Λ^0 a particle-to-grid mapping, L a discrete Laplacian matrix,

ightharpoonup symplectic structure \rightarrow numerical stability, physical solutions².

²Hairer, Lubich, and Wanner 2006; Cabral and Brandão Dias 2023.

► Starting with 2*N*-dimensional, $N \gg 1$ ODE

$$\frac{d}{dt}u(t;\mu)=J_{2N}\nabla_{u}\mathcal{H}(u(t;\mu))$$

- ▶ with a cost of $\mathcal{O}(N)$ for each $(t, \mu) \in \mathcal{T} \times \Xi$ is prohibitive,
- lacktriangle idea : find a reduced state $ar{u}(t) \in \mathbb{R}^{2K}, K \ll N$ solution of

$$rac{d}{dt}ar{u}(t;\mu) = J_{2K}
abla_{ar{u}}ar{\mathcal{H}}(ar{u}(t;\mu))$$

with a cost of $\mathcal{O}(K)$ or $\mathcal{O}(K^2)$ and a nice map $\bar{u}(t) \mapsto u(t)$.

NODYCON 2025

► Idea : two step projection³

$$\mathbb{R}^{2N} \longrightarrow \mathbb{R}^{2M} \longrightarrow \mathbb{R}^{2K}$$

$$u(t;\mu) \longmapsto \tilde{u}(t;\mu) \longmapsto \bar{u}(t;\mu)$$

lacktriangle with an intermediate state of size $2M, K < M \ll N$ e.g. K = 4, M = 121,

³Fresca and Manzoni 2022.

²³/₀ Greydanus, Dzamba, and Yosinski 2019; Côte et al. 2025.

NODYCON 2025

► Idea : two step projection³

$$\mathbb{R}^{2N} \longrightarrow \mathbb{R}^{2M} \longrightarrow \mathbb{R}^{2K}$$

$$u(t; \mu) \longmapsto \tilde{u}(t; \mu) \longmapsto \bar{u}(t; \mu)$$

- lacktriangle with an intermediate state of size $2M, K < M \ll N$ e.g. K = 4, M = 121,
- ▶ first projection = linear operator $A \in \mathcal{M}_{2N,2M}(\mathbb{R})$ such that

$$u = A\tilde{u}, \quad \tilde{u} = A^+u,$$

lacktriangle second projection = autoencoder neural network $(\mathcal{E}_{ heta}, \mathcal{D}_{ heta})$

$$ar{u} = \mathcal{E}_{ heta}(ilde{u}), \quad ilde{u} pprox \mathcal{D}_{ heta}(ar{u}),$$

³Fresca and Manzoni 2022.

^{23/0} Greydanus, Dzamba, and Yosinski 2019; Côte et al. 2025.

► Idea : two step projection³

$$\mathbb{R}^{2N} \longrightarrow \mathbb{R}^{2M} \longrightarrow \mathbb{R}^{2K}$$

$$u(t; \mu) \longmapsto \tilde{u}(t; \mu) \longmapsto \bar{u}(t; \mu)$$

- lacktriangle with an intermediate state of size $2M, K < M \ll N$ e.g. K = 4, M = 121,
- ▶ first projection = linear operator $A \in \mathcal{M}_{2N,2M}(\mathbb{R})$ such that

$$u = A\tilde{u}, \quad \tilde{u} = A^+u,$$

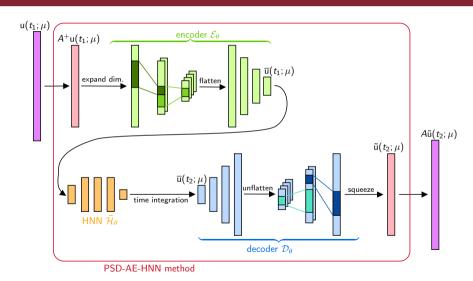
• second projection = autoencoder neural network $(\mathcal{E}_{\theta}, \mathcal{D}_{\theta})$

$$ar{u} = \mathcal{E}_{ heta}(ilde{u}), \quad ilde{u} pprox \mathcal{D}_{ heta}(ar{u}),$$

ightharpoonup reduced model captured with a Hamiltonian Neural Network (HNN)⁴ $\bar{\mathcal{H}}_{\theta}$.

23/06 Greydanus, Dzamba, and Yosinski 2019; Côte et al. 2025.

³Fresca and Manzoni 2022.



Linear projection

- ▶ Proper Symplectic Decomposition $(PSD)^5$ = Hamiltonian variant of the POD,
- ▶ the projection preserves the Hamiltonian structure,
- ▶ $A \in \mathcal{M}_{2N,2M}(\mathbb{R})$ is a symplectic matrix $A^T J_{2N} A = J_{2K}$,
- with a symplectic inverse $A^+ = J_{2K}^T A^T J_{2N}$ such that

$$A^+A = I_{2K}$$

▶ built minimizing the reconstruction error

$$\underset{A^TJ_{2N}A=J_{2K}}{\arg\min} \sum_{u \in U} \left\| u - AA^+u \right\|_F$$

on a dataset U with a Singular Value Decomposition (SVD).

▶ The autoencoder is fitted with the loss \mathcal{L}_{AE}

$$\mathcal{L}_{\mathsf{AE}} = \sum_{u \in U} \left\| u - \mathcal{D}_{\theta} \left(\mathcal{E}_{\theta} \left(u \right) \right) \right\|_{2}^{2}$$

▶ The autoencoder is fitted with the loss \mathcal{L}_{AE}

$$\mathcal{L}_{\mathsf{AE}} = \sum_{u \in U} \left\| u - \mathcal{D}_{\theta} \left(\mathcal{E}_{\theta} \left(u
ight)
ight) \right\|_{2}^{2}$$

ightharpoonup Let $\mathcal P$ be a (symplectic) integrator

$$ar{u}^{n+1} pprox \mathcal{P}\left(ar{u}^n; ar{\mathcal{H}}_{ heta}
ight)$$

▶ The autoencoder is fitted with the loss \mathcal{L}_{AE}

$$\mathcal{L}_{\mathsf{AE}} = \sum_{u \in U} \left\| u - \mathcal{D}_{\theta} \left(\mathcal{E}_{\theta} \left(u \right) \right) \right\|_{2}^{2}$$

ightharpoonup Let $\mathcal P$ be a (symplectic) integrator

$$ar{u}^{n+1} pprox \mathcal{P}\left(ar{u}^n; ar{\mathcal{H}}_{ heta}
ight)$$

▶ and three additional losses to couple it with the HNN

$$\begin{split} \mathcal{L}_{\mathsf{p}\overline{\mathsf{r}}\mathsf{e}\mathsf{d}} &= \sum_{u^n,u^{n+1}\in\,U} \left\|\bar{u}^{n+1} - \mathcal{P}\left(\bar{u}^n;\bar{\mathcal{H}}_{\theta}\right)\right\|_2^2, \\ \mathcal{L}_{\mathsf{s}\overline{\mathsf{t}}\mathsf{a}\mathsf{b}} &= \sum_{u^n,u^{n+1}\in\,U} \left\|\bar{\mathcal{H}}_{\theta}\left(\bar{u}^{n+1}\right) - \bar{\mathcal{H}}_{\theta}\left(\bar{u}^n\right)\right\|_2^2, \\ \mathcal{L}_{\mathsf{pred}} &= \sum_{u^n,u^{n+1}\in\,U} \left\|u^{n+1} - \mathcal{D}_{\theta}\left(\mathcal{P}\left(\bar{u}^n;\bar{\mathcal{H}}_{\theta}\right)\right)\right\|_2^2. \end{split}$$

▶ parametrized initial condition $\mu = (\alpha \ \sigma)^T \in \Xi \subset \mathbb{R}^2$

$$f_{\text{init}}(x, v; \mu) = \underbrace{\frac{1}{4\pi} \left(1 + \alpha \cos\left(\frac{x}{2}\right) \right)}_{f_{\text{init}, x}(x; \alpha)} \underbrace{\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{v^2}{2\sigma^2}\right)}_{f_{\text{init}, v}(v; \sigma)},$$

- \bullet $(\alpha, \sigma) \in [0.03, 0.06] \times [0.8, 1],$
- ▶ electric energy $\frac{1}{2} \|E(x)\|_{L^2}$,
- $ightharpoonup N = 10^5, M = 121, K = 3 \text{ and } T = 20.$

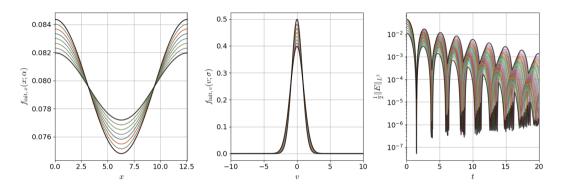


Figure: Initial condition $f_{\text{init},x}(x;\alpha)$ (left), $f_{\text{init},\nu}(v;\sigma)$ (middle) and electric energy (right) for every $\mu \in \Xi$.

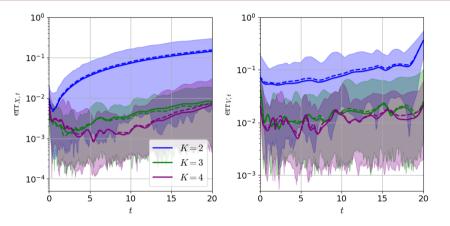


Figure: Mean relative error as a function of time (solid line) for x (left) and v (right), envelopes represents minimum and maximum errors.

13

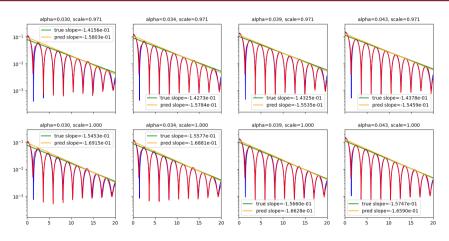


Figure: Some damping rates predictions for various $\mu \in \Xi$.

14

- ► The PSD-AE-HNN is a two-stage reduction technique, Hamiltonian by design,
- ▶ generic, non-intrusive and data-driven method, easy to vectorize,
- ▶ lack of global convergence guarantees, no systematic way to improve accuracy.

- ▶ increase simulation time, 2D and 3D extensions,
- ▶ improve the AE : add some structure, dynamic projection.

► Full paper available at https://hal.science/hal-05116555

Thank you!

- Cabral, Hildeberto E. and Lúcia Brandão Dias (2023). *Normal forms and stability of Hamiltonian systems*. Vol. 218. Applied Mathematical Sciences. With a foreword by Kenneth Meyer. Springer, Cham, pp. xxi+337. ISBN: 978-3-031-33045-2. DOI: 10.1007/978-3-031-33046-9.
- Côte, Raphaël et al. (2025). "Hamiltonian reduction using a convolutional auto-encoder coupled to a Hamiltonian neural network". In: Commun. Comput. Phys. 37.2, pp. 315–352. ISSN: 1815-2406,1991-7120. DOI: 10.4208/cicp.0A-2023-0300.
- Fresca, Stefania and Andrea Manzoni (2022). "POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition". In: *Comput. Methods Appl. Mech. Engrg.* 388, Paper No. 114181, 27. ISSN: 0045-7825,1879-2138. DOI: 10.1016/j.cma.2021.114181.

NODYCON 2025

- Greydanus, Sam, Misko Dzamba, and Jason Yosinski (2019). "Hamiltonian neural networks". In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates Inc. DOI: 10.48550/arXiv.1906.01563.
- Hairer, Ernst, Christian Lubich, and Gerhard Wanner (2006). *Geometric numerical integration*. Second. Vol. 31. Springer Series in Computational Mathematics. Structure-preserving algorithms for ordinary differential equations. Springer-Verlag, Berlin, pp. xviii+644. ISBN: 978-3-540-30663-4.
- Kraus, M. et al. (2017). "GEMPIC: geometric electromagnetic particle-in-cell methods". In: *J. Plasma Phys.* 83.4. ISSN: 1469-7807. DOI: 10.1017/s002237781700040x.
- Peng, Liqian and Kamran Mohseni (2016). "Symplectic model reduction of Hamiltonian systems". In: SIAM J. Sci. Comput. 38.1, A1–A27. ISSN: 1064-8275,1095-7197. DOI: 10.1137/140978922.