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▶ Particle-based discretization of a kinetic plasma model

▶ large number of particles : many degrees of freedom,

▶ costly solver for particles interactions (Lorentz force),

▶ multi-query context on a set of parameters (physical, geometric,. . . ),

▶ + Hamiltonian structure : numerical stability,

▶ build a reduced model to reduce numerical costs

▶ close to the original model, balance speed and precision,

▶ with a Hamiltonian structure,

▶ using neural networks.
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▶ System described by the distribution f (t, x , v ;µ) with time t ∈ T = (0,T ],
position x ∈ Ωx = R/2πZ, velocity v ∈ Ωv ⊂ R and parameters
µ ∈ Ξ ⊂ Rp, p > 0, charge q and mass m,{
∂t f (t, x , v ;µ) + v∂x f (t, x , v ;µ) +

q
mE (t, x ;µ)∂v f (t, x , v ;µ) = 0, in Ωx × Ωv × T ,

∂xE (t, x ;µ) = ρ(t, x ;µ), in Ωx × T ,

where ρ(t, x ;µ) = q
∫
Ωv

f (t, x , v ;µ) dv is the electric density,

▶ E (t, x ;µ) is the electric field, derives from electric potential ϕ(t, x ;µ) : −∂xϕ = E ,

▶ the Poisson equation rewrites

−∂xxϕ(t, x ;µ) = ρ(t, x ;µ).

Vlasov-Poisson model
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▶ Solution approximated with N ≫ 1 particles (xk(t), vk(t)) in the phase space

fN(t, x , v ;µ) =
N∑

k=1

ω δ (x − xk(t)) δ (v − vk(t))

▶ results in a 2N-dimensional ODE
d

dt
X (t;µ) = V (t;µ), in T

d

dt
V (t;µ) = q

mE (X (t;µ);µ) in T ,

where (X )k = xk , (V )k = vk ,

▶ electric field computed with a mesh : Particle-In-Cell (PIC) method1.

1Kraus et al. 2017.

Particle-based discretization
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▶ Full order model of solution u = (X V )T ∈ R2N

d

dt
u(t;µ) = J2N∇uH(u(t;µ))

with J2N =

(
0N IN
−IN 0N

)
,

▶ H : R2N → R is the Hamiltonian (total energy)

H(u(t;µ)) =
1
2
V TV︸ ︷︷ ︸

kinetic energy

+
1

2m
q2ωΛ0(X (t;µ))L−1Λ0(X (t;µ))T1N︸ ︷︷ ︸

potential energy

with Λ0 a particle-to-grid mapping, L a discrete Laplacian matrix,

▶ symplectic structure → numerical stability, physical solutions2.
2Hairer, Lubich, and Wanner 2006; Cabral and Brandão Dias 2023.

Full order model
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▶ Starting with 2N-dimensional, N ≫ 1 ODE

d

dt
u(t;µ) = J2N∇uH(u(t;µ))

▶ with a cost of O(N) for each (t, µ) ∈ T × Ξ is prohibitive,

▶ idea : find a reduced state ū(t) ∈ R2K ,K ≪ N solution of

d

dt
ū(t;µ) = J2K∇ūH̄(ū(t;µ))

with a cost of O(K ) or O(K 2) and a nice map ū(t) 7→ u(t).

Model order reduction
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▶ Idea : two step projection3

R2N R2M R2K

u(t;µ) ũ(t;µ) ū(t;µ)

▶ with an intermediate state of size 2M,K < M ≪ N e.g. K = 4,M = 121,

▶ first projection = linear operator A ∈ M2N,2M(R) such that

u = Aũ, ũ = A+u,

▶ second projection = autoencoder neural network (Eθ,Dθ)

ū = Eθ(ũ), ũ ≈ Dθ(ū),

▶ reduced model captured with a Hamiltonian Neural Network (HNN)4 H̄θ.

3Fresca and Manzoni 2022.
4Greydanus, Dzamba, and Yosinski 2019; Côte et al. 2025.23/06/2025 7
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u(t1;µ)
A+u(t1;µ)

u(t1;µ)

u(t2;µ)

ũ(t2;µ)
Aũ(t2;µ)

HNN H̄θ

expand dim.

squeeze
time integration

︸ ︷︷ ︸
︸︷︷︸ encoder Eθ

decoder Dθ

PSD-AE-HNN method

flatten

unflatten

PSD-AE-HNN architecture
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▶ Proper Symplectic Decomposition (PSD)5 = Hamiltonian variant of the POD,

▶ the projection preserves the Hamiltonian structure,

▶ A ∈ M2N,2M(R) is a symplectic matrix AT J2NA = J2K ,

▶ with a symplectic inverse A+ = JT2KA
T J2N such that

A+A = I2K

▶ built minimizing the reconstruction error

argmin
AT J2NA=J2K

∑
u∈U

∥∥u − AA+u
∥∥
F

on a dataset U with a Singular Value Decomposition (SVD).

5Peng and Mohseni 2016.

Linear projection
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▶ The autoencoder is fitted with the loss LAE

LAE =
∑
u∈U

∥u −Dθ (Eθ (u))∥2
2

▶ Let P be a (symplectic) integrator

ūn+1 ≈ P
(
ūn; H̄θ

)
▶ and three additional losses to couple it with the HNN

Lpred =
∑

un,un+1∈U

∥∥ūn+1 − P
(
ūn; H̄θ

)∥∥2
2 ,

Lstab =
∑

un,un+1∈U

∥∥H̄θ

(
ūn+1)− H̄θ (ū

n)
∥∥2

2 ,

Lpred =
∑

un,un+1∈U

∥∥un+1 −Dθ

(
P
(
ūn; H̄θ

))∥∥2
2 .

Non-linear reduced model
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n)
∥∥2

2 ,

Lpred =
∑

un,un+1∈U

∥∥un+1 −Dθ

(
P
(
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▶ parametrized initial condition µ = (α σ)T ∈ Ξ ⊂ R2

finit(x , v ;µ) =
1
4π

(
1 + α cos

(x
2

))
︸ ︷︷ ︸

finit,x (x ;α)

1
σ
√

2π
exp

(
− v2

2σ2

)
︸ ︷︷ ︸

finit,v (v ;σ)

,

▶ (α, σ) ∈ [0.03, 0.06]× [0.8, 1],

▶ electric energy 1
2 ∥E (x)∥L2 ,

▶ N = 105,M = 121,K = 3 and T = 20.

Example
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Figure: Initial condition finit,x(x ;α) (left), finit,v (v ;σ) (middle) and electric energy (right) for
every µ ∈ Ξ.
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Figure: Mean relative error as a function of time (solid line) for x (left) and v (right),
envelopes represents minimum and maximum errors.
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Figure: Some damping rates predictions for various µ ∈ Ξ.
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▶ The PSD-AE-HNN is a two-stage reduction technique, Hamiltonian by design,

▶ generic, non-intrusive and data-driven method, easy to vectorize,

▶ lack of global convergence guarantees, no systematic way to improve accuracy.

▶ increase simulation time, 2D and 3D extensions,

▶ improve the AE : add some structure, dynamic projection.

Conclusion & perspectives

23/06/2025 15



▶ Full paper available at https://hal.science/hal-05116555

Thank you !
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