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Motivation

Hamiltonian systems possess a geometric structure,

enforce the conservation of the energy (and possibly other invariants),

offer guarantees for long-time stability and physical relevance.

Full order models (FOMs) are high-dimensional parametrized ODEs derived from PDEs,

parameters can be geometric, physical, the initial condition, etc.,

Hamiltonian structure preserved with symplectic (implicit) methods.

In many-query or real-time settings, solvers often fail to scale for fast resolution or
repeated evaluations across multiple parameters,

a solution: build a Hamiltonian Reduced Order Model (ROM) trading accuracy for
computational efficiency,

efficient over a given time and parameter domain.
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Thesis objective

Develop new model order reduction techniques,

preserving the Hamiltonian structure,

with deep learning (neural networks),

test it against several Hamiltonian models,

mesh-based models (wave equation, shallow-water system),

particle-based model (Vlasov-Poisson system).
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1 Hamiltonian systems

2 Model Order Reduction for Hamiltonian systems

3 An application to the shallow-water system

4 Reduced Particle in Cell method for the Vlasov-Poisson system
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1 Hamiltonian systems
Hamiltonian PDEs
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Hamiltonian PDEs

Evolution of a field u(x , t;µ) ∈ V depending on space x ∈ Ω ⊂ Rd , time t ∈ T = [0,T ]
and parameters µ ∈ Γ ⊂ Rp is given by

∂u
∂t
= J (u)

δH
δu
(u),

with δH/δu the functional derivative of H with respect to u,

H : V → R is the Hamiltonian of the system, often the total energy,

J (u) : V → V is a skew-adjoint operator called the Poisson structure operator.
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Hamiltonian PDEs

In the canonical case, we denote u(x , t;µ) = (q(x , t;µ), p(x , t;µ)) ∈ R2N the canonical
coordinates with generalized coordinates q(x , t;µ) and conjugate momentum p(x , t;µ),

the Poisson structure operator J becomes

J =
(

0 id

− id 0

)
,

and the system rewrites

∂u
∂t
= J

δH
δu
(u) ⇐⇒


∂tq =

δH
δp
(q, p),

∂tp = −
δH
δq
(q, p).

Guillaume Steimer IRMA



11/69

Hamiltonian systems Reduction for Hamiltonian systems Shallow-water system Reduced PIC for Vlasov-Poisson

Hamiltonian PDEs

Example : linear wave equation (dim. N = 1) on a periodic domain of length 1,

∂ttq(x , t;µ)− µ2∂xxq(x , t;µ) = 0,

with the displacement q(x , t;µ) and the parametrized propagation speed µ ∈ Γ ⊂ R
(p = 1),

the Hamiltonian (total energy) is

H[q, p] =
1
2

∫ 1

0

(
p2 + µ2(∂xq)2

)
dx .

denoting p(x , t;µ) := ∂tq(x , t;µ), the equation rewrites∂tq(x , t;µ) = p(x , t;µ),

∂tp(x , t;µ) = µ2∂xxq(x , t;µ).
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Hamiltonian PDEs

Before any reduction technique is applied, the EDP is semi-discretized,

with finite element or finite differences e.g. on a mesh (xi)i∈{1,...,N} of size h of Ω,
ui(t;µ) ≈ u(xi , t;µ)

∂xu(xi , t;µ) ≈
1
2h
[ui+1(t;µ)− ui−1(t;µ)] , etc.,

need to preserve the Hamiltonian structure : Jh becomes a skew-symmetric matrix
(+ Jacobi identity),

In the canonical case, we derive a 2N-dimensional ODE, N ≫ 1

duh(t;µ)
dt

= Jh∇Hh(uh(t;µ)), Jh =

(
0 IN
−IN 0

)
∈M2N(R)

with Hh : R2N → R the (semi-discretized) Hamiltonian.
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Hamiltonian ODEs & properties

Full order model = 2N-dimensional ODE of solution u(t;µ) ∈ R2N and Hamiltonian
H : R2N → R 

du(t;µ)
dt

= J2N∇uH(u(t;µ)),

u(0;µ) = uinit(µ),

with J2N =

(
0 IN
−IN 0

)
∈M2N(R),

and its flow φt : R2N → R2N

φt(uinit(µ)) := u(t;µ).
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Hamiltonian ODEs & properties

Hamiltonian ODEs benefits from numerous properties

preservation of the Hamiltonian along the flow

d
dt
H(u(t;µ)) = 0,

the flow is a symplectic map

(Dφt(u))
T J2N (Dφt(u)) = J2N

with Dφt the Jacobian of the flow φt ,

time reversibility, volume preservation,

etc.,

provide guarantees for long-time stability, physical relevance.
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Hamiltonian ODEs & properties

Last step : deriving numerical solutions,

discretization of [0,T ] with time steps tn = n∆t,

compute approximated solution at each time step with numerical integration,

u(tn+1;µ) = u(tn;µ) +

∫ tn+1

tn
J2N∇uH(u(t;µ)) dt.

quadrature choice for
∫ tn+1

tn J2N∇uH(u) dt = numerical scheme,

need to use a symplectic numerical scheme1 to safeguard the system properties : long
time stability, physical relevance, etc.,

in practice : implicit midpoint or Störmer Verlet.

1Hairer et al. 2006.
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1 Hamiltonian systems

2 Model Order Reduction for Hamiltonian systems
Proper Symplectic Decomposition (PSD)
Deep learning based Hamiltonian reduction

3 An application to the shallow-water system

4 Reduced Particle in Cell method for the Vlasov-Poisson system
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Proper Symplectic Decomposition (PSD)

We consider the symplectic solution manifold

M = {u(t;µ) | (t, µ) ∈ T × Γ} ⊂ R2N

fundamental reduction postulate : M can be approximated by a trial manifold

M̂ := uref(µ) + {D [ū(t;µ)] | (t, µ) ∈ T × Γ}

with D : R2K → R2N ,K ≪ N a reconstruction/decoding operator or decoder,
uref(µ) ∈ R2N a reference state, ū(t;µ) ∈ R2K a reduced state,

that is
û(t;µ) = uref(µ) +D [ū(t;µ)] ≈ u(t;µ).

for illustration N = 105,K = 30 and dim(Γ) = 2,

Guillaume Steimer IRMA
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Proper Symplectic Decomposition (PSD)

Assume the trial manifold is a linear subspace

M̂ = span(ai , i ∈ {1, . . . , 2K}) ⇐⇒ D [ū(t;µ)] = Aū(t;µ) , A ∈M2N,2K (R)

constraint that the decoder ū 7→ Aū is a symplectic map

ATJ2NA = J2K

symplectic inverse of the decoder = encoder E

E [u(t;µ)] = A+u(t;µ)

with A+ ∈M2K ,2N(R) such that A+ = J T
2KATJ2N the symplectic inverse of A

(A+A = I2K ).

Guillaume Steimer IRMA
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Proper Symplectic Decomposition (PSD)

What is the dynamics of the reduced state ū(t;µ) ?
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Proper Symplectic Decomposition (PSD)

M = {u(t;µ)}

M̂ = span(ai)

û(t;µ)

dt û(t;µ)

J2N∇uH(û(t;µ))

r(t;µ)
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Proper Symplectic Decomposition (PSD)

We define the residual r(t;µ)

r(t;µ) =
dû(t;µ)

dt
− J2N∇uH(û(t;µ))

symplectic Galerkin projection = the residual must vanish under the symplectic projection

A+r(t;µ) = 0,

results in a Hamiltonian reduced model
dū(t;µ)

dt
= J2K∇ūH̄(ū(t;µ)),

ū(0;µ) = A+uinit(µ),

with the reduced Hamiltonian H̄ = H ◦ A,
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Proper Symplectic Decomposition (PSD)

Hamiltonian reduced model
dū(t;µ)

dt
= J2K∇ūH̄(ū(t;µ)),

ū(0;µ) = A+uinit(µ),

with the reduced Hamiltonian H̄ = H ◦ A,

the method provides both reduced states and reduced dynamics,

called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),

PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),

warning: no complexity improvement in general, need for hyper-reduction techniques
(Discrete Empirical Interpolation Method (DEIM), etc., not discussed).
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ū(0;µ) = A+uinit(µ),

with the reduced Hamiltonian H̄ = H ◦ A,

the method provides both reduced states and reduced dynamics,

called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),

PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),

warning: no complexity improvement in general, need for hyper-reduction techniques
(Discrete Empirical Interpolation Method (DEIM), etc., not discussed).

Guillaume Steimer IRMA



21/69

Hamiltonian systems Reduction for Hamiltonian systems Shallow-water system Reduced PIC for Vlasov-Poisson

Proper Symplectic Decomposition (PSD)

Hamiltonian reduced model
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Proper Symplectic Decomposition (PSD)

û(T ;µ)

ū(T ;µ)

decoder D
ū 7→ Aū ≈ u

u(0;µ)

ū(0;µ)

encoder E
u 7→ A+u = ū

Full Order Model
d
dt

u(t;µ) = J2N∇uH(u(t;µ))

Reduced Order Model
d
dt

ū(t;µ) = J2K∇ūH̄(ū(t;µ))
H̄ = H ◦ A
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Proper Symplectic Decomposition (PSD)

How to build A ? The solution manifoldM is unknown !

Solution: from numerical solution snapshots/samples

U =
[
u(t1;µ1) . . . u(tP ;µP)

]
∈M2N,P(R),

A minimizes the reconstruction error on the snapshots,

min
ATJ2NA=J2K

∥∥U − AA+U
∥∥

F

in practice, the Singular Value Decomposition (SVD)2 of U on a modified
minimization problem is used.

2Lange 2010.
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How to build A ? The solution manifoldM is unknown !

Solution: from numerical solution snapshots/samples

U =
[
u(t1;µ1) . . . u(tP ;µP)

]
∈M2N,P(R),

A minimizes the reconstruction error on the snapshots,

min
ATJ2NA=J2K

∥∥U − AA+U
∥∥

F

in practice, the Singular Value Decomposition (SVD)2 of U on a modified
minimization problem is used.

2Lange 2010.
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Proper Symplectic Decomposition (PSD)

The SVD of U is a decomposition of the form

U =WΣV ∗

with W ∈ U2N(C),V ∈ UP(C) unitary matrices, Σ = (σi)i ,i ∈M2N,P(C) a rectangular
diagonal matrix, V ∗ is the conjugate-transpose of V ,

W ,V columns are orthonormal bases called left and right singular vectors, respectively,
(σi)i ,i are singular values,

best rank r approximation of U:

Ur =WrΣrV ∗r

with Wr =W [:, : r ],Vr = V [:, : r ],Σr = diag(σ1, . . . , σr ),

A depends on3 WK .

3Peng and Mohseni 2016.
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Proper Symplectic Decomposition (PSD)

How to make it efficient ?

Offline/online decomposition:

offline stage: computationally expensive, parametrically independent, performed once
(building models, precompute quantities e.g. snapshots, reduced basis A, choose K , etc.),

online stage: fast computation, done for every new parameter, use offline precomputation
to accelerate the reduced simulation.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Statements on the linear model order reduction:

works well in linear and quasi-linear regimes,

interpolation/approximation strategies (DEIM, etc.)4 in nonlinear regimes,

struggles in strongly nonlinear regimes,

idea : replace the encoder, decoder, and eventually the reduced model by neural
networks, as presented in Côte, Franck, Navoret, S., and Vigon (2025).

4Peng and Mohseni 2016; Hesthaven et al. 2024.
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Deep learning based Hamiltonian reduction

û(T ;µ)

ū(T ;µ)

decoder �D
((((((ū 7→ Aū ≈ u

u(0;µ)

ū(0;µ)

encoder �E
(((((((
u 7→ A+u = ū

Full Order Model
d
dt

u(t;µ) = J2N∇uH(u(t;µ))

Reduced Order Model
d
dt

ū(t;µ) = J2K∇ū��̄H(ū(t;µ))
(((((H̄ = H ◦ A
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Deep learning based Hamiltonian reduction

Neural network = parametric function gθ of parameters θ ∈ Θ,

gθ = composition of c simple functions gi : Rni → Rni+1 = layer,

gθ = gc ◦ · · · ◦ g1,

e.g.:

dense layer gi(x) = σ
(
W [i ]x + b[i ]

)
with W [i ] ∈Mni+1,ni (R), b

[i ] ∈ Rni+1 ,

convolutional layer gi(x) = σ
(
W [i ] ∗ x + b[i ]

)
with ∗ a convolution with a kernel W [i ],

σ non-linear function, θ =
{
W [i ], b[i ], i ∈ {1, · · · , c}

}
.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Neural network = parametric function gθ of parameters θ ∈ Θ,

gθ fitted to a target function g : gθ ∼ g,

on snapshots U, according to a cost function / loss L,

θ∗ = argminθ∈Θ L(g, gθ),

e.g. L(g, gθ) =
∑

u∈U ∥g(u)− gθ(u)∥22,

with a gradient descent (Adam algorithm...),

θ[k+1] = θ[k] − η[k]∇θL(g, gθ[k]),

with the learning rate η[k],

called the neural network training.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Compression/decompression managed by a (convolutional) AutoEncoder5 (AE) = pair of
neural networks Eθ : R2N → R2K ,Dθ : R2K → R2N such that Dθ ◦ Eθ ≈ id,

compression Eθ(u) = ū and decompression Dθ(ū) ≈ u,

fitted with the loss LAE

LAE =
∑
u∈U

∥u −Dθ (Eθ (u))∥2 ,

no direct symplecticity constraint in the architecture or the loss.

5Goodfellow et al. 2016.
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Deep learning based Hamiltonian reduction

What happens to the reduced model ?

d
dt

ū = J2K [DDθ(ū)]
T ∇Dθ(ū)H [Dθ(ū)]

?
= J2K∇ūH̄(ū)

supplant it with a Hamiltonian Neural Network (HNN) H̄θ : R2K → R from Greydanus,
Dzamba, and Yosinski (2019),

d
dt ū(t;µ) = J2K∇ūH̄θ(ū(t;µ))

ū(0;µ) = Eθ(uinit(µ)),

reduced model is Hamiltonian by design.

Guillaume Steimer IRMA
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dt ū(t;µ) = J2K∇ūH̄θ(ū(t;µ))
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Deep learning based Hamiltonian reduction

û(T ;µ)

ū(T ;µ)

decoder Dθ
ū 7→ Dθ(ū) ≈ u

u(0;µ)

ū(0;µ)

encoder Eθ
u 7→ Eθ(u) = ū

Full Order Model
d
dt

u(t;µ) = J2N∇uH(u(t;µ))

Reduced Order Model
d
dt

ū(t;µ) = J2K∇ūH̄θ(ū(t;µ))
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Deep learning based Hamiltonian reduction

How to learn the reduced dynamics ?

d
dt ū(t;µ) = J2K∇ūH̄θ(ū(t;µ))

prediction operator P = a step from a symplectic scheme (e.g. midpoint):

P
(
ūn; H̄θ

)
≈ ūn+1 = Eθ(un+1)

we add 3 losses:
Lpred =

∑
un,un+1∈U

∥∥ūn+1 − P
(
ūn; H̄θ

)∥∥2
,

Lstab =
∑

un,un+1∈U

∥∥H̄θ (ūn+1)− H̄θ (ūn)
∥∥2
,

Lpred =
∑

un,un+1∈U

∥∥un+1 −Dθ
(
P
(
ūn; H̄θ

))∥∥2
.

remark : losses linked to AE inputs/outputs → constrain AE-HNN.

Guillaume Steimer IRMA
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∥∥2
,

Lpred =
∑

un,un+1∈U

∥∥un+1 −Dθ
(
P
(
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Deep learning based Hamiltonian reduction

Reduced variables and reduced dynamics constructed separately ( ̸= PSD) + lack of a
symplectic AE,

solution: joint training of AE and HNN,

the 4 losses are weighted and coupled during training

min
θ

ωAE LAE(θ) + ωpred Lpred(θ) + ωstab Lstab(θ) + ωpred Lpred(θ),

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

the 4 losses are weighted and coupled during training

min
θ

ωAE LAE(θ) + ωpred Lpred(θ) + ωstab Lstab(θ) + ωpred Lpred(θ),

e.g. ωAE = 1, ωpred = 10, ωstab = 1×10−4, ωpred = 1

(a) Training loss function (blue) and validation loss function (red) history. (b) All the weighted loss functions as functions of the training step.

Figure: Example of loss history during a training, overlaid with the evolution of the learning rate
(green).
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Deep learning based Hamiltonian reduction

Key elements on neural networks construction

large set of hyperparameters (architecture, layer number, layer size, activation function,
Newton solver, etc.)

chosen from experience, grid search or random search,

and training

scheduled learning rate, warm restart,

AE pretraining, variable loss weights.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Updated offline stage:

build full order model, reduced model, select hyperparameters and a minimal reduced
dimension K for correct accuracy,

train the AE and HNN together with full order snapshots as dataset.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

AE-HNN online stage

u(0;µ)

ū(0;µ)

ū(T ;µ)

û(T ;µ)

HNN H̄θ

expand dim.

squeeze

time integration

flatten

unflatten

︸ ︷︷ ︸

︸︷︷︸ encoder Eθ

decoder Dθ
AE-HNN method

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Evolution of a free surface of water on a flat bottom,

χ, φ : R2/(LZ2)× [0,T ]× Γ→ R are the perturbation from the equilibrium and the
scalar velocity potential, Ω is a periodic square domain on size L,

u(x , t;µ) = (χ, φ)T (x , t;µ)
∂tχ+∇ · ((1+ χ)∇φ) = 0,

∂tφ+
1
2
|∇φ|2 + χ = 0,

with the Hamiltonian

H[χ, φ] =
1
2

∫
R2/(LZ2)

(
(1+ χ) |∇φ|2 + χ2

)
dx .

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Domain Ω = R2/(LZ2) discretized with a mesh (xi , yj)i ,j of N nodes,

discretized state χh(t;µ), φh(t;µ) ∈ RN , (χh)m(t;µ) = χi ,j(t;µ) ≈ χ(xi , yj , t;µ)

with finite differences → high dimensional Hamiltonian ODE of solution uh = (χh, φh)

H(χh, φh) =
1
2

M−1∑
i ,j=0

(
(1+ χi ,j)

[(
φi+1,j − φi−1,j

2∆x

)2

+

(
φi ,j+1 − φi ,j−1

2∆y

)2
]
+ χ2

i ,j

)
,


d
dt
χh = −Dx ([1+ χh]⊙Dxφh)−Dy ([1+ χh]⊙Dyφh) ,

d
dt
φh = −

1
2

[
(Dxφh)

2 + (Dyφh)
2
]
− χh,

with Dx ,Dy ∈M2N(R) finite difference matrices,

cost of O(N2) for each (t, µ) ∈ T × Γ.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction
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Deep learning based Hamiltonian reduction

Discretization with M = 64 cells per direction, final time T = 15, time step
∆t = 1×10−3, implicit midpoint numerical scheme,

parametrized initial condition with two parameters µ = (α, β) ∈ Γ = [0.2, 0.5]× [1, 1.7]

χinit(x ;µ) = α exp
(
−β xT x

)
, φinit(x ;µ) = 0.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Numerical solution with a symplectic scheme

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

With a non symplectic scheme

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

(a) χ(t;µ) (b) φ(t;µ)

Figure: Solutions (χ, φ) at different times t ∈ {0, 5, 10, 15} for various parameters
(α, β) ∈ {(0.2, 1), (0.5, 1.8)}.
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Deep learning based Hamiltonian reduction

Γ = [0.2, 0.5]× [1, 1.7] sampled with 20 snapshots regularly spaced in the segment
[(0.2, 1) , (0.5, 1.7)],

K = 4 (from N = 642 = 4096), chosen minimal while preserving sufficient accuracy,

inputs u(t;µ) = (χ, φ)T (t;µ) ∈ R2N are structured → convolutional autoencoder,
∼ 106 parameters, used once,

HNN = small dense neural network ∼ 104 parameters / PSD ∼ 104 parameters.

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Figure: Solutions χ(t;µ) at different times t ∈ {0, 5, 10, 15} on µ = (0.51, 1.72) /∈ Γ with K = 4,
reference solution (top line), AE-HNN solution (middle line) and PSD solution (bottom line).

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

Offline time : AE-HNN training ∼ 1h / PSD ∼ 2-3min (+ snapshots ∼ 30min),

online time :

full order model : 101s,

(DEIM hyper-reduced) PSD reduced model with K = 30 (comparable error) : 57s,

AE-HNN reduced model : 27s,

Limited performance and explainability: different hardware CPU/GPU, different libraries
Numpy/Tensorflow, developer expertise.

Guillaume Steimer IRMA



45/69

Hamiltonian systems Reduction for Hamiltonian systems Shallow-water system Reduced PIC for Vlasov-Poisson

Deep learning based Hamiltonian reduction

Offline time : AE-HNN training ∼ 1h / PSD ∼ 2-3min (+ snapshots ∼ 30min),

online time :

full order model : 101s,

(DEIM hyper-reduced) PSD reduced model with K = 30 (comparable error) : 57s,

AE-HNN reduced model : 27s,

Limited performance and explainability: different hardware CPU/GPU, different libraries
Numpy/Tensorflow, developer expertise.

Guillaume Steimer IRMA



45/69

Hamiltonian systems Reduction for Hamiltonian systems Shallow-water system Reduced PIC for Vlasov-Poisson

Deep learning based Hamiltonian reduction

Offline time : AE-HNN training ∼ 1h / PSD ∼ 2-3min (+ snapshots ∼ 30min),

online time :

full order model : 101s,

(DEIM hyper-reduced) PSD reduced model with K = 30 (comparable error) : 57s,

AE-HNN reduced model : 27s,

Limited performance and explainability: different hardware CPU/GPU, different libraries
Numpy/Tensorflow, developer expertise.

Guillaume Steimer IRMA



46/69

Hamiltonian systems Reduction for Hamiltonian systems Shallow-water system Reduced PIC for Vlasov-Poisson

Deep learning based Hamiltonian reduction

convolutional AE: nonlinear projection, convolutions take into account spatial structure,

HNN based reduced model : Hamiltonian by design,

joint AE-HNN training: compensates for the absence of a symplectic AE,

strengths:

improved precision compared to the PSD,

great speed: neural networks are efficiently parallelized on GPUs,

weaknesses:

increasing K is not enough to systematically improve precision,

lack of errors bounds, no clear guarantees of global convergence.

Guillaume Steimer IRMA
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The Vlasov-Poisson system & Particle In Cell (PIC) method

System described by the distribution f (t, x , v ;µ) with time t ∈ T = [0,T ], position
x ∈ Ωx = R/2πZ, velocity v ∈ Ωv ⊂ R and parameters µ ∈ Γ ⊂ Rp, p > 0, charge q and
mass m, ∂t f (t, x , v ;µ) + v∂x f (t, x , v ;µ) +

q
m

E(t, x ;µ)∂v f (t, x , v ;µ) = 0,

∂xE(t, x ;µ) = ρ(t, x ;µ),

where ρ(t, x ;µ) = q
∫
Ωv

f (t, x , v ;µ) dv is the electric density,
E(t, x ;µ) is the (self-induced) electric field, derives from electric potential φ(t, x ;µ) :
−∂xφ = E ,
the Poisson equation rewrites

−∂xxφ(t, x ;µ) = ρ(t, x ;µ),

admits an Hamiltonian structure with a Lie-Poisson bracket6 (not detailed).
6Casas et al. 2017.
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The Vlasov-Poisson system & Particle In Cell (PIC) method

Solution approximated with N ≫ 1 particles (xk(t), vk(t)) in the phase space

fN(t, x , v ;µ) =
N∑

k=1

ω δ (x − xk(t)) δ (v − vk(t))

results in a 2N-dimensional ODE
d
dt

xh(t;µ) = vh(t;µ),

d
dt

vh(t;µ) =
q
m

E(xh(t;µ);µ),

where (xh)k = xk , (vh)k = vk ,

electric field computed with a mesh : (Hamiltonian) Particle-In-Cell (PIC) method
from Kraus, Kormann, Morrison, and Sonnendrücker (2017).
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The Vlasov-Poisson system & Particle In Cell (PIC) method

Full order model of solution u = (x v)T ∈ R2N

d
dt

u(t;µ) = J2N∇uH(u(t;µ))

with J2N =

(
0N IN
−IN 0N

)
,

H : R2N → R is the Hamiltonian (total energy)

H(u(t;µ)) =
1
2
vT v︸ ︷︷ ︸

kinetic energy

+
1

2m
q2ωΛ0(x(t;µ))L−1Λ0(x(t;µ))T1N︸ ︷︷ ︸

potential energy

with Λ0 a particle-to-grid mapping, L a discrete Laplacian matrix.
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PSD-AE-HNN framework

We cannot apply our AE-HNN framework with inputs u(t;µ) ∈ R2N : particles are not
structured and N too large,

idea : preprocess u(t;µ) 7→ ũ(t;µ) ∈ R2M ,M ≪ N while keeping the symplectic
structure,

solution: use the PSD coupled with the AE-HNN method for a two steps
encoder/decoder, Franck, Navoret, Vigon, Côte, and S. (2025).
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PSD-AE-HNN framework

Two steps projection

R2N R2M R2K

u(t;µ) ũ(t;µ) ū(t;µ)
A+· Eθ

with an intermediate state of size 2M,K < M ≪ N e.g. K = 4,M = 121,

first projection = linear operator A ∈M2N,2M(R) from the PSD such that

u = Aũ, ũ = A+u,

second projection = autoencoder (Eθ,Dθ)

ū = Eθ(ũ), ũ ≈ Dθ(ū),

reduced model captured with a HNN H̄θ,
offline stage: first PSD then AE-HNN training.
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u = Aũ, ũ = A+u,

second projection = autoencoder (Eθ,Dθ)
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PSD-AE-HNN framework

PSD-AE-HNN online stage

u(0;µ)
A+u(0;µ)

u(0;µ)

u(T ;µ)

ũ(T ;µ)
Aũ(T ;µ)

HNN Hθh

expand dim.

squeeze

time integration

flatten

unflatten

︸ ︷︷ ︸

︸︷︷︸ encoder Eθe

decoder Dθd
PSD-AE-HNN method
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Results

Landau damping : parametrized initial condition µ = (α, σ)T ∈ Γ ⊂ R2

finit(x , v ;µ) =
1
4π

(
1+ α cos

(x
2

))
︸ ︷︷ ︸

finit,x (x ;α)

1

σ
√

2π
exp

(
−

v2

2σ2

)
︸ ︷︷ ︸

finit,v (v ;σ)

,

(α, σ) ∈ Γ = [0.03, 0.06]× [0.8, 1],

quantity of interest : damping rate of the electric energy 1
2 ∥E(x)∥L2 ,

N = 105 and T = 20,∆t = 2.5× 10−3,

Γ = [0.03, 0.06]× [0.8, 1] is sampled over a regular grid of size 8× 8 = 64.
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Results

Figure: Initial distribution finit,x(x ;α) (left), finit,v (x ;σ) (middle) and evolution of the electric energy
1
2∥E∥2 (x(t;µ);µ)) (right) for every µ ∈ Γtrain.
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Results

How to choose M(= 121) ?
For example, according to the decay of the snapshots matrix singular values

Figure: Singular values (σi)i decay.

in practice:
sufficiently small to ensure a fast projection,
sufficiently large to provide an intermediate space rich enough for the AE-HNN method.
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Results

How to choose K(= 3 = dim(Γ) + 1) ? Smallest possible with a sufficient precision,

Figure: Mean relative error as a function of time (solid line) for x (left) and v (right), envelopes
represents minimum and maximum errors.
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Results

Figure: Errors as a function of the reduction parameters for x (left) and v (right).
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Results

Figure: Some damping rates predictions for various µ ∈ Γ, K = 3.
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Results

Figure: Electric energy 1
2∥E∥2 (x(t;µ);µ) , µ ∈ Γ exponential damping rates of the FOM (left), the

ROM (center) and absolute error (right), K = 3.
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Results

Figure: Electric energies 1
2∥E∥2 (x(t;µ))) of the PSD reduced model against our method for

µ = (0.035, 0.84) ∈ Γ (left) and µ = (0.029, 1.01) /∈ Γ (right), K = 3.

equivalent precision with K = 30 PSD modes.
Guillaume Steimer IRMA
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Results

small HNN ∼ 103 parameters : competitive,

offline time :

full order PIC : 25s,

PIC with comparable accuracy (N = 7× 104) : 11s,

PSD-AE-HNN reduced model : 2s,

Difficult to quantify acceleration: hardware, software, noise, developper expertise.
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Results

What happens if we ignore the Hamiltonian structure ?

Learn directly the vector field of the reduced dynamics

d
dt

ū(t;µ) = F̄θ(ū(t;µ))

test on the (nonlinear) Landau damping :
T = 20→ 40,Γ = [0.46, 0.5]× [0.96, 1],K = 4, other parameters unchanged.
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Results

Figure: PSD-AE-Flux prediction for a single test parameter µ compared to the PSD-AE-HNN
method. Errors as a function of time (left) and predicted electric energy 1

2∥E∥2 (x(t;µ))).

its prediction quickly drifts from the reference.
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Results

Reduction in the number of particles of a PIC discretization of the Vlasov Poisson
equation,

two-step mapping combining the PSD and the CAE for an efficient nonlinear
compression,

strong performance in each test case and good computational efficiency,

same strengths/limitations as the AE-HNN.
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Conclusion & perspectives

We developed generic and non-intrusive reduction methods:

data-driven : adapt to the structure at hand and learns tailored mappings - without
manipulating governing equations,

neural networks : computationally intensive training, very efficient reduced dynamics
prediction, highly parallelizable on GPUs,

joint training strategy : a workaround to the construction of nonlinear symplectic
projections,

their weaknesses are common in scientific machine learning applications:

neural network training = high-dimensional minimization process (non convex, local
minima, no clear guarantee of global convergence),

hyperparameters tuning remains quite empirical,

no systematic way to improve accuracy, few available results on errors bounds7.

7Brivio et al. 2024. 63/69
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Conclusion & perspectives

Main improvement : systematically enhance the accuracy of the reduced model
(currently: manual hyperparameter tuning) with automation, Bayesian optimization,
genetic algorithm, sensitivity analysis on hyperparameters ?

primary limitation : AE and HNN have potentially competing objectives, design a
symplectic AE7 ?

As of now, we learned canonical Hamiltonian systems: possible extensions to
non-canonical Hamiltonian systems8 or even dissipative systems with port-Hamiltonian9

or GFINNs10 frameworks.

7Brantner and Kraus 2023.
8Choudhary et al. 2021; Gruber and Tezaur 2023; Jin et al. 2023.
9Desai et al. 2021.

10Zhang et al. 2022. 63/69
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Detailed PIC

Compute electric density on the grid

ρngrid = Λ
0(x(t;µ))T1N .

Guillaume Steimer IRMA
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Detailed PIC

Solve Poisson equation

φn
grid = L−1ρngrid = L−1Λ0(x(t;µ))T1N

L ∈Mnx (R) is a discrete Laplace operator.

Guillaume Steimer IRMA
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Detailed PIC

Interpolate electric field at particles position

E n = ∇Λ0(x)φn
grid = ∇Λ0(x)L−1Λ0(x(t;µ))T1N .

Guillaume Steimer IRMA
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