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m Hamiltonian systems possess a geometric structure,
m enforce the conservation of the energy (and possibly other invariants),

m offer guarantees for long-time stability and physical relevance.

m Full order models (FOMs) are high-dimensional parametrized ODEs derived from PDEs,
m parameters can be geometric, physical, the initial condition, etc.,

m Hamiltonian structure preserved with symplectic (implicit) methods.

m In many-query or real-time settings, solvers often fail to scale for fast resolution or
repeated evaluations across multiple parameters,

m a solution: build a Hamiltonian Reduced Order Model (ROM) trading accuracy for
computational efficiency,

m efficient over a given time and parameter domain.
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Thesis objective

m Develop new model order reduction techniques,

m preserving the Hamiltonian structure,

m with deep learning (neural networks),
m test it against several Hamiltonian models,

m mesh-based models (wave equation, shallow-water system),

m particle-based model (Vlasov-Poisson system).



Hamiltonian systems

Model Order Reduction for Hamiltonian systems
An application to the shallow-water system

Reduced Particle in Cell method for the Vlasov-Poisson system
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Hamiltonian systems
m Hamiltonian PDEs
m Hamiltonian ODEs & properties



Hamiltonian systems
0000

Hamiltonian PDEs

m Evolution of a field u(x, t; u) € V depending on space x € Q C R?, time t € T = [0, T]
and parameters u € ' C RP is given by

ou OH
at —J(U)E(u),

with 0% /du the functional derivative of H with respect to u,
m H : V — R is the Hamiltonian of the system, often the total energy,

m J(u): V — Vis a skew-adjoint operator called the Poisson structure operator.
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Hamiltonian systems
[o] lele}

Hamiltonian PDEs

m In the canonical case, we denote u(x, t; u) = (q(x, t; u), p(x, t; 1)) € R?N the canonical
coordinates with generalized coordinates q(x, t; 1) and conjugate momentum p(x, t; w),

m the Poisson structure operator J becomes

m and the system rewrites
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Hamiltonian systems
[ele] leo}

Hamiltonian PDEs

m Example : linear wave equation (dim. N = 1) on a periodic domain of length 1,

Oeeq(x, t; ) — W?Buq(x, t;u) =0,

with the displacement q(x, t; u) and the parametrized propagation speed u € ' C R
(p=1),
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Hamiltonian systems
[ele] leo}

Hamiltonian PDEs

m Example : linear wave equation (dim. N = 1) on a periodic domain of length 1,

Oeeq(x, t; ) — W?Buq(x, t;u) =0,
with the displacement q(x, t; u) and the parametrized propagation speed u € ' C R

(p=1),
m the Hamiltonian (total energy) is

1 1
Hlq. p) = 5/ (P? + 12 (6q)?) dx.
0
m denoting p(x, t; ) := 0:q(x, t; u), the equation rewrites

Orq(x, t; ) = p(x, t; ),

Bep(x, t; p) = u*Bucq(x, t ).
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Hamiltonian systems
[e]e]e] ]

Hamiltonian PDEs

m Before any reduction technique is applied, the EDP is semi-discretized,
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Hamiltonian systems
[e]e]e] ]

Hamiltonian PDEs

m Before any reduction technique is applied, the EDP is semi-discretized,

m with finite element or finite differences e.g. on a mesh (xi)jeq1
ui(t; w) ~ u(x;, t; )

ny of size h of Q,

1
Ocu(xi, t; ) =~ %[u,vﬂ(t; w) — ui—1(t; )] etc.,

m need to preserve the Hamiltonian structure : 7, becomes a skew-symmetric matrix
(+ Jacobi identity),
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Hamiltonian systems
[e]e]e] ]

Hamiltonian PDEs

m Before any reduction technique is applied, the EDP is semi-discretized,

m with finite element or finite differences e.g. on a mesh (xi)jeq1
ui(t; w) ~ u(x;, t; )

_____ ny of size h of Q,

1
Ocu(xi, t; ) =~ %[u,vﬂ(t; w) — ui—1(t; )] etc.,

m need to preserve the Hamiltonian structure : 7, becomes a skew-symmetric matrix
(+ Jacobi identity),

m In the canonical case, we derive a 2N-dimensional ODE, N > 1

dup(t; p)
dt

= IV Hn(un(t; u)), Tn = (_C;N /(I)V> € Mon(R)

with Hj : R?N — R the (semi-discretized) Hamiltonian.
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Hamiltonian systems
[ ele}

Hamiltonian ODEs & properties

m Full order model = 2N-dimensional ODE of solution u(t; 1) € R?N and Hamiltonian
H: RN SR

du(t; p)
dt

u(0; ) = uinit(w),

= JanVuH(u(t; 1)),

. 0 /
with Jony = (_/N 8/) S M2N(R)v

m and its flow ¢; : R2V — R2N

G (init (1)) = u(t; ).
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Hamiltonian systems
(o] I}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties

m preservation of the Hamiltonian along the flow

%’H(u(t;u)) =0,
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Hamiltonian systems
(o] I}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties
m preservation of the Hamiltonian along the flow
I H(u(t:m) = 0
dt )=
m the flow is a symplectic map

(Dge(u))" Ton (D(u)) = Fon

with D¢; the Jacobian of the flow ¢,
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Hamiltonian systems
(o] I}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties
m preservation of the Hamiltonian along the flow
%’H(u(t; u) =0,
m the flow is a symplectic map
(Dee()" Tonw (Dpe(u)) = Ton
with D¢; the Jacobian of the flow ¢,
m time reversibility, volume preservation,

m etc.,
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Hamiltonian systems
(o] I}

Hamiltonian ODEs & properties

m Hamiltonian ODEs benefits from numerous properties
m preservation of the Hamiltonian along the flow
%’H(u(t; u) =0,
m the flow is a symplectic map
(Dee()" Tonw (Dpe(u)) = Ton
with D¢; the Jacobian of the flow ¢,
m time reversibility, volume preservation,

m etc.,

m provide guarantees for long-time stability, physical relevance.
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Hamiltonian systems
ooe

Hamiltonian ODEs & properties

m Last step : deriving numerical solutions,

1 Hairer et al. 2006.
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Hamiltonian systems

ooe

Hamiltonian ODEs & properties

m Last step : deriving numerical solutions,
m discretization of [0, T] with time steps t” = nAt,

m compute approximated solution at each time step with numerical integration,

tnt+l

u(t™h ) = u(t" ) + JanVuH(u(t; p)) dt.

tn

n+1
m quadrature choice for fttn+ TonV i H(u) dt = numerical scheme,

1 Hairer et al. 2006.
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Hamiltonian systems

ooe

Hamiltonian ODEs & properties

m Last step : deriving numerical solutions,
m discretization of [0, T] with time steps t” = nAt,

m compute approximated solution at each time step with numerical integration,
tn+l
u(t™ ) = u(t"; p) + TonV o H(u(t; 1)) dt.
tﬂ

n+1
m quadrature choice for fttn+ TonV i H(u) dt = numerical scheme,

m need to use a symplectic numerical scheme’® to safequard the system properties : long
time stability, physical relevance, etc.,

m in practice : implicit midpoint or Stormer Verlet.

1 Hairer et al. 2006.
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Model Order Reduction for Hamiltonian systems
m Proper Symplectic Decomposition (PSD)
m Deep learning based Hamiltonian reduction



Reduction for Hamiltonian systems
900000000

Proper Symplectic Decomposition (PSD)

m We consider the symplectic solution manifold

M= {u(t;p)|(t,u) € T xT} C R
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Reduction for Hamiltonian systems
900000000

Proper Symplectic Decomposition (PSD)

m We consider the symplectic solution manifold
M= {u(t;p)|(t,p) €T xT} C RN
m fundamental reduction postulate : M can be approximated by a trial manifold
M = trer(p) + {D[a(t; )] (t, p) € T x T}

with D : R?% — R?N, K < N a reconstruction/decoding operator or decoder,
urer(1) € R?N a reference state, U(t; u) € R?X a reduced state,

m that is
0(t; w) = trer(p) + D [u(t; w)] = u(t; w).
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Reduction for Hamiltonian systems
900000000

Proper Symplectic Decomposition (PSD)

m We consider the symplectic solution manifold
M= {u(t;p)|(t,p) €T xT} C RN
m fundamental reduction postulate : M can be approximated by a trial manifold
M = trer(p) + {D[a(t; )] (t, p) € T x T}

with D : R?% — R?N, K < N a reconstruction/decoding operator or decoder,
urer(1) € R?N a reference state, U(t; u) € R?X a reduced state,

m that is
0(t; p) = urer() + D [0(t; w)] = u(t; ).
m for illustration N = 10°%, K = 30 and dim(I") = 2,
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Reduction for Hamiltonian systems
[o] lelelelelele]e)

Proper Symplectic Decomposition (PSD)

m Assume the trial manifold is a linear subspace

M =span(a;,i € {1,...,2K}) = D[u(t;p)] = Au(t:n), A€ Monox(R)
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Reduction for Hamiltonian systems
[o] lelelelelele]e)

Proper Symplectic Decomposition (PSD)

m Assume the trial manifold is a linear subspace
M =span(aj,i € {1,...,2K}) < D[u(t; p)] = Au(t; u), A€ Moy ok (R)
m constraint that the decoder & — AU is a symplectic map
AT TonA = Tox
m symplectic inverse of the decoder = encoder £
Eu(t;w)]) = ATu(t; 1)

with AT € Mok on(R) such that AT = T AT Jop the symplectic inverse of A
(ATA = hg).
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Reduction for Hamiltonian systems
[ee] lelelelele]e)

Proper Symplectic Decomposition (PSD)

m What is the dynamics of the reduced state (t; ) ?
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Reduction for Hamiltonian systems
[eele] lelelele]e)

Proper Symplectic Decomposition (PSD)

TonV  H(0(t; 1))
]
r(t; u),'\ M ~ span(a;)

M= {u(t;pu)}

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m We define the residual r(t; )

r(t, ) = W — vV uH(O(t; 1))
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Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m We define the residual r(t; )

r(t, ) = W — vV uH(O(t; 1))

m symplectic Galerkin projection = the residual must vanish under the symplectic projection

Afr(t;u) =0,
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Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m We define the residual r(t; )

r(t, ) = W — vV uH(O(t; 1))

m symplectic Galerkin projection = the residual must vanish under the symplectic projection
Afr(t;u) =0,

m results in a Hamiltonian reduced model

w = Tk Ve H(G(t; 1)),

a(0; w) = At uinie(w),

with the reduced Hamiltonian H = H o A,
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Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian 7 = H o A,
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Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian 7 = H o A,

m the method provides both reduced states and reduced dynamics,
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Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian H = H o A,
m the method provides both reduced states and reduced dynamics,

m called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),
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Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian H = H o A,
m the method provides both reduced states and reduced dynamics,

m called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),

m PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),
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Reduction for Hamiltonian systems
0000e0000

Proper Symplectic Decomposition (PSD)

m Hamiltonian reduced model

du(t; )
dt

0(0; u) = A" uinie (1),

= Jox VaH(a(t; 1)),

with the reduced Hamiltonian H = H o A,
m the method provides both reduced states and reduced dynamics,

m called the Proper Symplectic Decomposition (PSD) = linear method for symplectic
reduction, from Peng and Mohseni (2016),

m PSD = symplectic variant of the Proper Orthogonal Decomposition (POD),
® warning: no complexity improvement in general, need for hyper-reduction techniques

(Discrete Empirical Interpolation Method (DEIM), etc., not discussed).

Guillaume Steimer IRMA



Hamiltonian systems Reduction for Hamiltonian systems duced PIC for Vlasov-Pc
o :

Proper Symplectic Decomposition (PSD)

Full Order Model

%u(t; p) = JonVuH(u(t; 1))

encoder & decoder D

+ — 7] - p—
u—r ATu=10 U— AT~ u

d Reduced Order Model
Ea(f? w) = Jok VaH(u(t; 1))

H=HoA

Guillaume Steimer
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Reduction for Hamiltonian systems
000000800

Proper Symplectic Decomposition (PSD)

m How to build A ? The solution manifold M is unknown !

2 Lange 2010.

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
000000800

Proper Symplectic Decomposition (PSD)

m How to build A ? The solution manifold M is unknown !

m Solution: from numerical solution snapshots/samples
U= [u(ti;p) .. u(tpipp)] € Moy p(R),
m A minimizes the reconstruction error on the snapshots,

min  ||U—AATU||-
AT TonA=Tok

2 Lange 2010.
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Reduction for Hamiltonian systems
000000800

Proper Symplectic Decomposition (PSD)

m How to build A ? The solution manifold M is unknown !

m Solution: from numerical solution snapshots/samples
U= [u(ti;p) .. u(tpipp)] € Moy p(R),
m A minimizes the reconstruction error on the snapshots,

min  ||U—AATU||-
AT TonA=Tok

m in practice, the Singular Value Decomposition (SVD)? of U on a modified
minimization problem is used.

2 Lange 2010.
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Reduction for Hamiltonian systems
000000080

Proper Symplectic Decomposition (PSD)

m The SVD of U is a decomposition of the form
U= wxv*

with W € Usn(C), V € Up(C) unitary matrices, > = (0});; € Mon p(C) a rectangular
diagonal matrix, V* is the conjugate-transpose of V/,

m W,V columns are orthonormal bases called left and right singular vectors, respectively,
(0;);; are singular values,

3Peng and Mohseni 2016.
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Reduction for Hamiltonian systems
000000080

Proper Symplectic Decomposition (PSD)

m The SVD of U is a decomposition of the form
U= wxv*

with W € Usn(C), V € Up(C) unitary matrices, > = (0});; € Mon p(C) a rectangular
diagonal matrix, V* is the conjugate-transpose of V/,

m W,V columns are orthonormal bases called left and right singular vectors, respectively,
(0;);; are singular values,

m best rank r approximation of U:
U =w,z, vy

with W, = W[, r], V, = V[, : r], X, = diag(oy, ..., 0/),
m A depends on3 Wk.

3Peng and Mohseni 2016.
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Reduction for Hamiltonian systems
00000000

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?
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Reduction for Hamiltonian systems
00000000

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?

m Offline/online decomposition:
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Reduction for Hamiltonian systems
00000000

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?

m Offline/online decomposition:

m offline stage: computationally expensive, parametrically independent, performed once
(building models, precompute quantities e.g. snapshots, reduced basis A, choose K, etc.),
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Reduction for Hamiltonian systems
00000000

Proper Symplectic Decomposition (PSD)

m How to make it efficient ?

m Offline/online decomposition:

m offline stage: computationally expensive, parametrically independent, performed once
(building models, precompute quantities e.g. snapshots, reduced basis A, choose K, etc.),

m online stage: fast computation, done for every new parameter, use offline precomputation
to accelerate the reduced simulation.

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
90000000000

Deep learning based Hamiltonian reduction

m Statements on the linear model order reduction:

m works well in linear and quasi-linear regimes,

m interpolation/approximation strategies (DEIM, etc.)* in nonlinear regimes,

m struggles in strongly nonlinear regimes,

m idea : replace the encoder, decoder, and eventually the reduced model by neural
networks, as presented in Cote, Franck, Navoret, S., and Vigon (2025).

4Peng and Mohseni 2016; Hesthaven et al. 2024.
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Hamiltonian systems Reduction for Hamiltonian systems duced PIC for Vlasov-Pc
0800000600 :

Deep learning based Hamiltonian reduction

Full Order Model

%u(t; p) = JonVuH(u(t; 1))

encoder £ decoder

ussATT=1 OATE U

; Reduced Order Model
S0t = Tk VaH (T(t; 1))
H=HoA
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Reduction for Hamiltonian systems
[e]e] lelelelele]e]e]

Deep learning based Hamiltonian reduction

m Neural network = parametric function gy of parameters 6 € O,
m gg = composition of ¢ simple functions g; : R" — R+ = |ayer,

99 =9c©O- 001,

meg.:
m dense layer gi(x) =0 (W[i]X + b[i]) with W € My, o (R), b1 € R+,
= convolutional layer g;(x) = o (W x x 4 bI) with  a convolution with a kernel W,

m o non-linear function, & = { WU, bl j € {1,--- c}}.
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Reduction for Hamiltonian systems

00@0000000

Deep learning based Hamiltonian reduction

m Neural network = parametric function gy of parameters 6 € ©,
m g fitted to a target function g : gy ~ g,

m on snapshots U, according to a cost function / loss L,

6* = argmingeo £(g, 9s),

e.g. £(9.96) = Y ueu llg(u) — go(u)ll3,
m with a gradient descent (Adam algorithm...),
o1 = 61 — nlIoL(g, gow),

with the learning rate nl¥,

m called the neural network training.
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Reduction for Hamiltonian systems

[e]e]e] le]ele]e]e]e)

Deep learning based Hamiltonian reduction

m Compression/decompression managed by a (convolutional) AutoEncoder® (AE) = pair of
neural networks & : R2VN — R2K D, : R2X — RN such that Dy 0 & ~ id,

m compression E(u) = & and decompression Dy(T) = u,

m fitted with the loss Lag

Lae =Y llu—Dg (& ()l

uel

m no direct symplecticity constraint in the architecture or the loss.

5Goodfellow et al. 2016.
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Reduction for Hamiltonian systems
[e]e]ele] Telele]le]e]

Deep learning based Hamiltonian reduction

m What happens to the reduced model ?

d 2 _
30 = L (D, (D) Vo)1 [Do(D)] = Tow Va ()
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Reduction for Hamiltonian systems
[e]e]ele] Telele]le]e]

Deep learning based Hamiltonian reduction

m What happens to the reduced model ?

d 2 _
30 = L (D, (D) Vo)1 [Do(D)] = Tow Va ()

m supplant it with a Hamiltonian Neural Network (HNN) #Hg : R?X — R from Greydanus,
Dzamba, and Yosinski (2019),

F0(ti 1) = ok VaHe((t; 1))

U(0; w) = Eg(thinit (),

m reduced model is Hamiltonian by design.

Guillaume Steimer IRMA



Hamiltonian systems Reduction for Hamiltonian systems duced PIC for Vlasov-Pc
00000800600 :

Deep learning based Hamiltonian reduction

Full Order Model

%u(t; p) = JonVuH(u(t; 1))

encoder & decoder Dy

0 Do(T) = u

u—E(u)=1u

Reduced Order Model
U(t; w) = Jok VaHe(T(t; 1))

&l

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics 7

[%-(t; w) = ToxVaHo(T(t: 1))

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics 7

{%D(t; p) = Jox VaHe(u(t; 1))

m prediction operator P = a step from a symplectic scheme (e.g. midpoint):

P (UHJ,)L_[Q) ~ Dn+1 — 59(U”+1)

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics 7

[%U(t; w) = j2KV[,7‘_le(U(t; /J'))j

m prediction operator P = a step from a symplectic scheme (e.g. midpoint):
P (UHJ,)L_[Q) ~ Dn+1 — 59(U”+1)

m we add 3 losses: _ 5
Lyred = Z [at =P (@ Ho) "

unurtte U
Lap= > |[H @) =R @),
u”,u"HEU
Lua= X ™ = Dy (P (@)
u",u”“eU
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Reduction for Hamiltonian systems
0000008000

Deep learning based Hamiltonian reduction

m How to learn the reduced dynamics 7

[%U(t; w) = j2KV[,7‘_le(U(t; /J'))j

m prediction operator P = a step from a symplectic scheme (e.g. midpoint):
P (UHJ,)L_[Q) ~ Dn+1 — 59(U”+1)

m we add 3 losses: _ 5
Lyred = Z [at =P (@ Ho) "

unurtte U
Lap= > |[H @) =R @),
u”,u"HEU
Lua= X ™ = Dy (P (@)
u",u”“eU

m remark : losses linked to AE inputs/outputs — constrain AE-HNN.

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
O000000e00

Deep learning based Hamiltonian reduction

m Reduced variables and reduced dynamics constructed separately (# PSD) + lack of a
symplectic AE,

m solution: joint training of AE and HNN,
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Reduction for Hamiltonian systems

0000000 e00

Deep learning based Hamiltonian reduction

m Reduced variables and reduced dynamics constructed separately (# PSD) + lack of a
symplectic AE,

m solution: joint training of AE and HNN,

m the 4 losses are weighted and coupled during training

mgin wAE LAe(8) + wpred Lored(6) + Wagzp Lszan (6) + Wored Lorea (),

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
O000000e00

Deep learning based Hamiltonian reduction

m the 4 losses are weighted and coupled during training
mein WaE LAg(0) + Wpred Lored (0) + Wemap Lotz (0) + Wored Lored (0),

meg wag =1, Wyreg =10, wggp =1%x107%,  Wprea =1

— train
— validation

learning rate

4] — leaming rate

2000 4000 6000 8000 0 2000 4000 6000 8000
step step

(a) Training loss function (blue) and validation loss function (red) history. (b) All the weighted loss functions as functions of the training step.

Figure: Example of loss history during a training, overlaid with the evolution of the learning rate
(green).
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Reduction for Hamiltonian systems
0000000080

Deep learning based Hamiltonian reduction

m Key elements on neural networks construction

m large set of hyperparameters (architecture, layer number, layer size, activation function,
Newton solver, etc.)

m chosen from experience, grid search or random search,

m and training

m scheduled learning rate, warm restart,

m AE pretraining, variable loss weights.

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
0000000080

Deep learning based Hamiltonian reduction

m Updated offline stage:

m build full order model, reduced model, select hyperparameters and a minimal reduced
dimension K for correct accuracy,

m train the AE and HNN together with full order snapshots as dataset.

Guillaume Steimer IRMA



Reduction for Hamiltonian systems
000000000 e

Deep learning based Hamiltonian reduction

AE-HNN online stage

u(0:p) -

encoder &

expand dim.

—_r |

flatten
—

(T, w)

] O™

u(0; )

unflatten
Iy

decoder Dy

squeeze

AF-HNN method
Guillaume Steimer

o(Tp)

IRMA



An application to the shallow-water system



Shallow-water system
0000000000

Deep learning based Hamiltonian reduction

m Evolution of a free surface of water on a flat bottom,

mx ¢:R?/(LZ?) x [0, T] x I — R are the perturbation from the equilibrium and the
scalar velocity potential, Q2 is a periodic square domain on size L,

mou(x, )= (x¢0)(x, tw)
Ox+V-((14+x)Ve) =0,
1 2
at¢+§|v¢| +x=0,
m with the Hamiltonian

1
Mt =3 [ (a0 Vo) e
2 Jre/(z2)

Guillaume Steimer IRMA



Shallow-water system

O®@00000000

Deep learning based Hamiltonian reduction

m Domain Q = R?/(LZ?) discretized with a mesh (x;, y;)i; of N nodes,

m discretized state x,(t; ), dn(t; 1) € RN, (xn)m(t; 1) = xij(t: ) = x(x;, yj. t: )

Guillaume Steimer IRMA
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Deep learning based Hamiltonian reduction

m Domain Q = R?/(LZ?) discretized with a mesh (x;, y;)i; of N nodes,
m discretized state xs(t; 1), dn(t; ) € RN, (xn)m(t: n) = xi,(t: w) = Xx(xi, Y, t: 1)

m with finite differences — high dimensional Hamiltonian ODE of solution up = (X, ¢n)

M-1 . c— . A\ 2 L. S 2
H(Xn, dn) = % Z ((1 + Xij) KW) + (W) +X,2J> :

ij=0

d
JpXn = =Dy ([1 + xn] ©® Dx¢n) — Dy ([1 +xn] © Dydp) .

d 1 2 2
b0 = =5 (D) + (D, 6] = i,
with Dy, D, € Mon(R) finite difference matrices,
m cost of O(N?) for each (t,u) € T xT.
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Shallow-water system
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Deep learning based Hamiltonian reduction

m Discretization with M = 64 cells per direction, final time T = 15, time step
At = 1x1073, implicit midpoint numerical scheme,

m parametrized initial condition with two parameters u = (o, 8) € I =[0.2,0.5] x [1,1.7]

Xine (1) = aexp (~Bx7x) . e (x; 1) = 0.
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Deep learning based Hamiltonian reduction

m Numerical solution with a symplectic scheme
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Deep learning based Hamiltonian reduction

m With a non symplectic scheme
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Deep learning based Hamiltonian reduction

(t=15.a=02.8=10) #(t=0,0=02,8=1.0)

x(t=0.a=02.6=10) Xit=5.a=02.8=10) (t=10,a=02,6=10)

4 #(t=0.0=05,8=17)

§(t=5.0=02.6=10) $(t=10,a=02,6=1.0)

§it=5.0=05.8=17) $it=10,a=05,8=17)

x(t=10,a=05,8=17) x(t=15,a=05,8=17)

x(t=0,a=05.8=17) xit=5.a=05.8=17)

(@) x(t; )

Figure: Solutions (x, ¢) at different times t € {0, 5, 10, 15} for
(o, B) € {(0.2,1),(0.5,1.8)}.
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Deep learning based Hamiltonian reduction

m [ =][0.2,0.5] x [1,1.7] sampled with 20 snapshots regularly spaced in the segment
[(0.2,1),(0.5,1.7)],
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Deep learning based Hamiltonian reduction

m [ =][0.2,0.5] x [1,1.7] sampled with 20 snapshots regularly spaced in the segment
[(0.2,1),(0.5,1.7)],

m K =4 (from N = 642 = 4096), chosen minimal while preserving sufficient accuracy,
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Shallow-water system

0O00000e000

Deep learning based Hamiltonian reduction

m [ =][0.2,0.5] x [1,1.7] sampled with 20 snapshots regularly spaced in the segment
[(0.2,1),(0.5,1.7)],

m K =4 (from N = 642 = 4096), chosen minimal while preserving sufficient accuracy,

m inputs u(t; u) = (x, ¢)7 (t; u) € R?N are structured — convolutional autoencoder,
~ 10° parameters, used once,

m HNN = small dense neural network ~ 10* parameters / PSD ~ 10* parameters.
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Shallow-water system
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Deep learning based Hamiltonian reduction

t=0 = t=10 t=15
ms 003 000 002 005 008 ou 000 005 010 015 020 025 zm 0.05

u L__A

Xret

par

Figure: Solutions x(t; u) at different times t € {0, 5, 10,15} on p = (0.51,1.72) ¢ I with K = 4,
reference solution (top line), AE-HNN solution (middle line) and PSD solution (bottom line).

Xeso

) [ H
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Deep learning based Hamiltonian reduction

m Offline time : AE-HNN training ~ 1h / PSD ~ 2-3min (+ snapshots ~ 30min),
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Deep learning based Hamiltonian reduction

m Offline time : AE-HNN training ~ 1h / PSD ~ 2-3min (+ snapshots ~ 30min),

m online time :

m full order model : 101s,
m (DEIM hyper-reduced) PSD reduced model with K = 30 (comparable error) : 57s,

m AE-HNN reduced model : 27s,
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Shallow-water system

0000000080

Deep learning based Hamiltonian reduction

m Offline time : AE-HNN training ~ 1h / PSD ~ 2-3min (+ snapshots ~ 30min),

m online time :

m full order model : 101s,
m (DEIM hyper-reduced) PSD reduced model with K = 30 (comparable error) : 57s,

m AE-HNN reduced model : 27s,

m Limited performance and explainability: different hardware CPU/GPU, different libraries
Numpy/ Tensorflow, developer expertise.
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Deep learning based Hamiltonian reduction

m convolutional AE: nonlinear projection, convolutions take into account spatial structure,
m HNN based reduced model : Hamiltonian by design,

m joint AE-HNN training: compensates for the absence of a symplectic AE,
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Deep learning based Hamiltonian reduction

m convolutional AE: nonlinear projection, convolutions take into account spatial structure,
m HNN based reduced model : Hamiltonian by design,
m joint AE-HNN training: compensates for the absence of a symplectic AE,
m strengths:
m improved precision compared to the PSD,

m great speed: neural networks are efficiently parallelized on GPUs,
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Shallow-water system
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Deep learning based Hamiltonian reduction

m convolutional AE: nonlinear projection, convolutions take into account spatial structure,
m HNN based reduced model : Hamiltonian by design,
m joint AE-HNN training: compensates for the absence of a symplectic AE,
m strengths:
m improved precision compared to the PSD,
m great speed: neural networks are efficiently parallelized on GPUs,
m weaknesses:
m increasing K is not enough to systematically improve precision,

m lack of errors bounds, no clear guarantees of global convergence.

Guillaume Steimer IRMA



Reduced Particle in Cell method for the Vlasov-Poisson system
m The Vlasov-Poisson system & Particle In Cell (PIC) method
m PSD-AE-HNN framework
m Results



Reduced PIC for Vlasov-Poisson

The Vlasov-Poisson system & Particle In Cell (PIC) method

m System described by the distribution f(t, x, v; ) with time t € 7 = [0, T], position

x € Qx =R/27Z, velocity v € Q, C R and parameters 4 € T C RP, p > 0, charge g and
mass m,

Orf(t, x, vi ) + vOxf(t, x, v;u) + %E(t,x; w)o, f(t,x,v,u) =0,
OE(t, x; ) = p(t, x; 1),

where p(t, x; u) = quV f(t, x, v;u)dv is the electric density,

m E(t, x; u) is the (self-induced) electric field, derives from electric potential ¢(t, x; i) :
—-0¢=E,

m the Poisson equation rewrites
_axx¢(tv X ,Ll,) = ,O(t, X, IJ),

m admits an Hamiltonian structure with a Lie-Poisson bracket® (not detailed).
6 Casas et al. 2017.
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Reduced PIC for Vlasov-Poisson

The Vlasov-Poisson system & Particle In Cell (PIC) method

m Solution approximated with N >> 1 particles (x,(t), vk(t)) in the phase space

N
fu(t x, vim) = wé (x —xc(t))8 (v — vi(t))
k=1
m results in a 2N-dimensional ODE
9 st 1) = vi(t: 1)
dt h 1:u’ — Vh vl‘l’ v
—Vh(ti) = %E(xh(t;u);u).
where (xp)k = Xk, (Vn)k = Wk,

m electric field computed with a mesh : (Hamiltonian) Particle-In-Cell (PIC) method
from Kraus, Kormann, Morrison, and Sonnendriicker (2017).
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Reduced PIC for Vlasov-Poisson

The Vlasov-Poisson system & Particle In Cell (PIC) method

m Full order model of solution u = (xv)’ € R2V

Spu(t ) = nVuH(u(t; b))

with Joy = (E?’N é“,’v >

m H : R?N — R is the Hamiltonian (total energy)

H(u(t; w)) = %VTV +%q%ﬂ\o(x(t;u))Lfl/\O(x(t;u))T]lN
—

kinetic energy potential energy

with A° a particle-to-grid mapping, L a discrete Laplacian matrix.
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Reduced PIC for Vlasov-Poisson
@00

PSD-AE-HNN framework

m We cannot apply our AE-HNN framework with inputs u(t; u) € RN : particles are not
structured and N too large,
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Reduced PIC for Vlasov-Poisson

@00

PSD-AE-HNN framework

m We cannot apply our AE-HNN framework with inputs u(t; u) € RN : particles are not
structured and N too large,

m idea : preprocess u(t; ) — U(t; u) € R?M M < N while keeping the symplectic
structure,

m solution: use the PSD coupled with the AE-HNN method for a two steps
encoder/decoder, Franck, Navoret, Vigon, Cote, and S. (2025).
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Reduced PIC for Vlasov-Poisson
(o] o}

PSD-AE-HNN framework

m Two steps projection

R2N RZM RQK
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M <K Neg. K=4 M =121,
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Reduced PIC for Vlasov-Poisson
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PSD-AE-HNN framework

m Two steps projection

R2N RZM RQK
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M <K Neg. K=4 M =121,
m first projection = linear operator A € Moy am(R) from the PSD such that

u=Al, U=A"u,
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Reduced PIC for Vlasov-Poisson
(o] o}

PSD-AE-HNN framework

m Two steps projection

R2N RZM RQK
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M <K Neg. K=4 M =121,
m first projection = linear operator A € Moy am(R) from the PSD such that

u=Al, U=A"y,
m second projection = autoencoder (Eg, Dy)

0=_E(0), 0~Dy(0),
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Reduced PIC for Vlasov-Poisson
(o] o}

PSD-AE-HNN framework

m Two steps projection

R2N RZM RQK
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M <K Neg. K=4 M =121,
m first projection = linear operator A € Moy am(R) from the PSD such that

u=Al, U=A"y,
m second projection = autoencoder (Eg, Dy)
L_J:(c,‘g([l), B%'DQ(U),

m reduced model captured with a HNN %,
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Reduced PIC for Vlasov-Poisson
(o] o}

PSD-AE-HNN framework

m Two steps projection

R2N RZM RQK
At & _
u(t; w) — O(t; w) —— a(t; w)

m with an intermediate state of size 2M, K < M <K Neg. K=4 M =121,

first projection = linear operator A € Mop 2 (R) from the PSD such that
u=AL, b=A"u,

m second projection = autoencoder (&, D)

0=E&(0), U~ Dy(b),

reduced model captured with a HNN %,
offline stage: first PSD then AE-HNN training.
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PSD-AE-HNN framework

PSD-AE-HNN online stage

U(O;_u)

Reduced PIC for Vlasov-Poisson
[ele] }

A*u(O;u) encoder & N
u(0; )
Ali(T; 1)
(T w) M
u(T; )
|:| |:| |:| |:| I:l e |:||:| unfatten @ squeeze 1,
L decoder Dy, Y, o

PSD-AE-HNN method
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Reduced PIC for Vlasov-Poisson
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Results

m Landau damping : parametrized initial condition u = (a, o)™ € I C R?

1 X 1 V2
finit (X, Vi ) = A (1+acos (5)) o exp 552 )

finitx (X;0) finit,v (Vo)

m (a,0) €l =[0.03,0.06] x [0.8,1],
m quantity of interest : damping rate of the electric energy 3 || E(x)]| 2,
m N=10°and T =20,At =25 x 1073,

m [ =[0.03,0.06] x [0.8, 1] is sampled over a regular grid of size 8 x 8 = 64.
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Reduced PIC for Vlasov-Poisson

O@000000000

Results

0.51
0.084 1
102
0.4+
0.0821 10-3
) T 03 S g
4 0.080 o -
£ < ==
| 5 02 10-
0.078
0.1 10°°
0.076
1077
0.0
0.0 25 5.0 7.5 10.0 125 =10 -5 0 5 10 [} 5 10 15 20
T v t

Figure: Initial distribution finit x(x; ) (left), finie.v(x; o) (middle) and evolution of the electric energy
%||E||2 (x(t; w); u)) (right) for every u € e,
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Reduced PIC for Vlasov-Poisson

[e]e] lelele]elole]e]e]

Results

m How to choose M(= 121) ?
m For example, according to the decay of the snapshots matrix singular values

+ singular values

i

° \
——

0 500 1000 1500 2000 2500 3000 3500

Figure: Singular values (o7); decay.

m in practice:
m sufficiently small to ensure a fast projection,
m sufficiently large to provide an intermediate space rich enough for the AE-HNN method.
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Reduced PIC for Vlasov-Poisson
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Results

m How to choose K(= 3 =dim(I") + 1) ? Smallest possible with a sufficient precision,

10° 10°
10714 _
10714 "
510724 e
= ]
7] (5]
102
1073
—3
1043 10

Figure: Mean relative error as a function of time (solid line) for x (left) and v (right), envelopes

represents minimum and maximum errors.
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for Hamiltonian ems \ = Reduced PIC for Vlasov-Poisson

O000e000000

Results
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r4.0
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Figure: Errors as a function of the reduction parameters for x (left) and v (right).
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Reduced PIC for Vlasov-Poisson
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alpha=0.043, scale=0.971

—— true slope=-1.4156e-01
A pred slope=-1.5803e-01

-

V

—— true slope=-1.4273e-01
pred slope=-1.5784e-01
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pred slope=-1.5535e-01
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pred slope=-1.5459e-01
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—— true slope=-1.5577e-01
pred slope=-1.6881e-01
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Figure: Some damping rates predictions for various u € ', K = 3.
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Reduced PIC for Vlasov-Poisson
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Results
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-0.14
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damping rate
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I
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————— 0.088 ——
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Vi 01072
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Figure: Electric energy 2||E|l2 (x(t; u); 1), i € T exponential damping rates of the FOM (left), the
ROM (center) and absolute error (right), K = 3.
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Reduced PIC for Vlasov-Poisson

[e]e]o]e]e] lelelele]e]
Results

4= (0.035,0.84) 1= (0.029,1.01)

= ref
—— PSD,K=3
PSD, K =6

— PSD,K=12
—— PSDK=24
—— PSD, K =148

- PSD-AE-HNN, K =3

0 5 10 15 20 0 5 10 15 20
¢ ¢

Figure: Electric energies $||E|l2 (x(t; 1)) of the PSD reduced model against our method for
u = (0.035,0.84) € " (left) and = (0.029,1.01) ¢ I (right), K = 3.

m equivalent precision with K = 30 PSD modes.
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Reduced PIC for Vlasov-Poisson
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Results

m small HNN ~ 103 parameters : competitive,

m offline time :

m full order PIC : 25s,
m PIC with comparable accuracy (N =7 x 10%) : 11s,

m PSD-AE-HNN reduced model : 2s,

m Difficult to quantify acceleration: hardware, software, noise, developper expertise.
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Reduced PIC for Vlasov-Poisson
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Results

m What happens if we ignore the Hamiltonian structure ?
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Reduced PIC for Vlasov-Poisson

O000000e000

Results

m What happens if we ignore the Hamiltonian structure ?

m Learn directly the vector field of the reduced dynamics
9 a(t: w) = Fo(a(t: )
P )=S0 b

m test on the (nonlinear) Landau damping :
T =20 — 40, =[0.46,0.5] x [0.96, 1], K = 4, other parameters unchanged.
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Reduced PIC for Vlasov-Poisson
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Results
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Figure: Initial distribution finit x(x; ) (left), finie.v(x; o) (middle) and evolution of the electric energy
%||E||2 (x(t; w); u)) (right) for every u € e,
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Reduced PIC for Vlasov-Poisson
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Figure: PSD-AE-Flux prediction for a single test parameter u compared to the PSD-AE-HNN
method. Errors as a function of time (left) and predicted electric energy 1| E|l> (x(t; 1)))-

m its prediction quickly drifts from the reference.
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Reduced PIC for Vlasov-Poisson
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Results

m Reduction in the number of particles of a PIC discretization of the Vlasov Poisson
equation,

m two-step mapping combining the PSD and the CAE for an efficient nonlinear
compression,
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Results

m Reduction in the number of particles of a PIC discretization of the Vlasov Poisson
equation,

m two-step mapping combining the PSD and the CAE for an efficient nonlinear
compression,

m strong performance in each test case and good computational efficiency,
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Reduced PIC for Vlasov-Poisson
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Results

m Reduction in the number of particles of a PIC discretization of the Vlasov Poisson
equation,

m two-step mapping combining the PSD and the CAE for an efficient nonlinear
compression,

m strong performance in each test case and good computational efficiency,

m same strengths/limitations as the AE-HNN.
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m We developed generic and non-intrusive reduction methods:

m data-driven : adapt to the structure at hand and learns tailored mappings - without
manipulating governing equations,

m neural networks : computationally intensive training, very efficient reduced dynamics
prediction, highly parallelizable on GPUs,

m joint training strategy : a workaround to the construction of nonlinear symplectic
projections,

m their weaknesses are common in scientific machine learning applications:

m neural network training = high-dimensional minimization process (non convex, local
minima, no clear guarantee of global convergence),

m hyperparameters tuning remains quite empirical,

B Nno systematic way to improve accuracy, few available results on errors bounds’.

7 Brivio et al. 2024.
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Conclusion & perspectives

m Main improvement : systematically enhance the accuracy of the reduced model
(currently: manual hyperparameter tuning) with automation, Bayesian optimization,
genetic algorithm, sensitivity analysis on hyperparameters ?

m primary limitation : AE and HNN have potentially competing objectives, design a
symplectic AE” ?

m As of now, we learned canonical Hamiltonian systems: possible extensions to
non-canonical Hamiltonian systems® or even dissipative systems with port-Hamiltonian®
or GFINNs™® frameworks.

7Brantner and Kraus 2023.

8Choudhary et al. 2021; Gruber and Tezaur 2023; Jin et al. 2023
9Desai et al. 2021

10Zhang et al. 2022.
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