Numerical experiment

An agent-based model for cell collective dynamics

L. NAVORET ¹ <u>R. SUBLET</u> ¹ M. SZOPOS²

¹IRMA, Université of Strasbourg

²MAP5, Université Paris Cité

May 24th 2024

Introduction

Context: ANR MAPEFLU project in collaboration with biophysicists (IGBMC, Strasbourg) and biologists (Institut Pasteur).

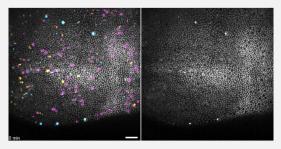


Figure: Villars et Letort et al., 2023, BiorXiv

Objectif: Design a mathematical and computational model to study the role of apoptosis (*i.e.* programmed cell death) on collective cells dynamics.

- I. Mathematical model
- II. Numerical discretization
- III. Numerical experiment

Numerical experiment

I. Mathematical model

- Positions and velocity dynamics
- Polarity dynamics
- ► Well-posedness
- ► Apoptosis in the model

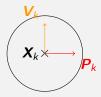
II. Numerical discretization

III. Numerical experiment

Model

There are *N* cells that evolve in a 2*D* space Ω . Each cell has a position $\mathbf{X}_k \in \mathbb{R}^2$, a velocity $\mathbf{V}_k \in \mathbb{R}^2$, a polarity $\mathbf{P}_k \in \mathbb{S}^1$, which described the preferred direction, and a radius $\mathbf{R}_k(t) \in [0, R_{\max}]$.

- ▶ positions: $\boldsymbol{X} = (\boldsymbol{X}_k)_k \in \mathbb{R}^{2N}$
- ▶ velocities: $V = (V_k)_k \in \mathbb{R}^{2N}$
- ▶ polarities: $P = (P_k)_k \in (\mathbb{S}^1)^N$
- radii of the cells: $\boldsymbol{R} = (\boldsymbol{R}_k)_k \in [0, R_{\max}]^N$
- ▶ apoptosis states: $\boldsymbol{\alpha} = (\boldsymbol{\alpha}_k)_k \in \{0,1\}^N$



Numerical experiment

Model ingredient

The following model includes three ingredients

- Vicsek-type interaction¹
- ► contact forces²
- soft attraction-repulsion forces³

Adapted from a model validated against experimental data⁴.

¹T. Vicsek, A. Czirók, E. Ben-Jacob, *et al.*, "Novel type of phase transition in a system of self-driven particles," *Phys. Rev. Lett.*, vol. 75, no. 6, p. 1226, 1995.

²B. Maury and J. Venel, "A discrete contact model for crowd motion," *ESAIM Math. Model. Numer. Anal.*, vol. 45, no. 1, pp. 145–168, 2011.

³C. Beatrici, C. Kirch, S. Henkes, *et al.*, "Comparing individual-based models of collective cell motion in a benchmark flow geometry," *Soft Matter*, vol. 19, no. 29, pp. 5583–5601, 2023.

⁴S. L. Vecchio, O. Pertz, M. Szopos, *et al.*, "Spontaneous rotations in epithelia as an interplay between cell polarity and boundaries," *Nature Physics*, 2024.

Equations on X, V and P

Positions dynamics

$$\frac{d\boldsymbol{X}_k(t)}{dt} = \boldsymbol{V}_k(t).$$

Velocities dynamics:

$$\boldsymbol{V} = \operatorname{Proj}_{\mathcal{C}_{\boldsymbol{X}}}(c\boldsymbol{P} + \gamma \boldsymbol{F}(\boldsymbol{X}))$$

Polarity dynamics:

$$d\boldsymbol{P}_{k} = \operatorname{Proj}_{\boldsymbol{P}_{k}^{\perp}} \left(\mu(\overline{\boldsymbol{P}}_{k} - \boldsymbol{P}_{k}) dt + \delta \left(\frac{\boldsymbol{V}_{k}}{\|\boldsymbol{V}_{k}\|} - \boldsymbol{P}_{k} \right) dt + \sqrt{2D} (dB_{t})_{k} \right)$$

Equation on V: soft attraction-repulsion force

$$\textit{\textbf{V}} = \mathsf{Proj}_{\mathcal{C}_{\textit{\textbf{X}}}}(\textit{c}\textit{\textbf{P}} + \gamma\textit{\textbf{F}}(\textit{\textbf{X}}))$$

 $\mathbf{F} = (\mathbf{F}_k)_{k=1,...,N}$ is described by:

$$m{F}_k(m{X}) = \sum_{j, ig\|m{X}_k - m{X}_jig\| \leqslant R_{ ext{int}}^{ ext{ar}}}
abla_{m{X}_k} W(\|m{X}_k - m{X}_j\|)$$

We consider the following interaction potential [3]:

$$W(r) = -\kappa \left(\frac{r^2}{2} - \frac{r^3}{3D_c}\right)$$

 γ is the inverse friction coefficient κ is the rigidity constant R_{int}^{ar} is the radius of cells polarity interaction D_c is the diameter of cells comfort zone.

Equation on **V**: contact interactions

$$V = \operatorname{Proj}_{\mathcal{C}_{X}}(cP + \gamma F(X))$$

Set of admissible velocities :

$$\mathcal{C}_{\boldsymbol{X}} = \{ \boldsymbol{V} \in \mathbb{R}^{2N} | \forall i < j, \ D_{i,j}(\boldsymbol{X}) = 0 \implies \nabla D_{i,j}(\boldsymbol{X}) \cdot \boldsymbol{V} \ge 0, \\ \forall i, \ D_b(\boldsymbol{X}_i) = 0 \implies \nabla D_b(\boldsymbol{X}_i) \cdot \boldsymbol{V}_i \ge 0 \}.$$

- ► $D_{i,j}(\mathbf{X}) = \|\mathbf{X}_i \mathbf{X}_j\| \mathbf{R}_i \mathbf{R}_j$ the distance between the *i*-th and *j*-th cells.
- ► $D_b(\mathbf{X}_i) = \inf_{\mathbf{y} \in \partial \Omega} \|\mathbf{y} \mathbf{X}_i\| \mathbf{R}_i$ the distance between the *i*-th cell and the boundary.

$$\frac{\partial \Omega}{D_b(\boldsymbol{X}_i)} \xrightarrow{\boldsymbol{P}_i \uparrow \boldsymbol{V}_i} D_{ij}(\boldsymbol{X}) \xrightarrow{\boldsymbol{P}_j \uparrow \boldsymbol{V}_j} \boldsymbol{X}_j}$$

Equation on **P**: Vicsek-like model

$$d\boldsymbol{P}_{k} = \operatorname{Proj}_{\boldsymbol{P}_{k}^{\perp}} \circ \left(\mu(\overline{\boldsymbol{P}}_{k} - \boldsymbol{P}_{k}) dt + \delta \left(\frac{\boldsymbol{V}_{k}}{\|\boldsymbol{V}_{k}\|} - \boldsymbol{P}_{k} \right) dt + \sqrt{2D} (d\boldsymbol{B}_{t})_{k} \right)$$

► Alignment of the polarity (Vicsek-type interactions [1]): $\overline{P}_{k} = \frac{\sum_{j, ||x_{j} - x_{k}|| \leq R_{int}^{po} P_{j}}{\left\|\sum_{j, ||x_{j} - x_{k}|| \leq R_{int}^{po} P_{j}\right\|}$

- Relaxation to the velocity direction: $\frac{V_k}{\|V_k\|}$
- Gaussian white random noise: dB_t
- Projection on \boldsymbol{P}_k^{\perp} so that the polarity remains of norm 1
- $R_{\rm int}^{\rm po}$ is the radius of polarity
- μ and δ are relaxation parameters
- D is the angular diffusion

Well-posedness: reformulation of the systems

- ▶ Polar formula for the polarity: $P_k = (\cos(\theta_k), \sin(\theta_k))^T$
- ► The equation on *P* becomes:

$$\frac{d\theta_k}{dt} \begin{pmatrix} -\sin(\theta_k) \\ \cos(\theta_k) \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} -\sin(\theta_k) \\ \cos(\theta_k) \end{pmatrix} \cdot \begin{pmatrix} \mu \bar{\boldsymbol{P}}_k + \delta \frac{\boldsymbol{V}_k}{\|\boldsymbol{V}_k\|} \end{bmatrix} \begin{bmatrix} -\sin(\theta_k) \\ \cos(\theta_k) \end{pmatrix}$$

• denoting $\bar{\theta}_k$ and ψ_k the angles of the vectors \bar{P}_k and $V_k / \|V_k\|$

$$\frac{d\theta_k}{dt} = \mu \sin(\bar{\theta}_k - \theta_k) + \delta \sin(\psi_k - \theta_k).$$

► The system becomes:
$$\frac{d}{dt}(\boldsymbol{X},\theta) = \operatorname{Proj}_{\mathcal{C}_{\boldsymbol{X}} \times \mathbb{R}^{N}} \boldsymbol{U}(\boldsymbol{X},\theta)$$

$$\boldsymbol{U}(\boldsymbol{X},\theta)_{j} = \begin{cases} c (\cos \theta_{j}, \sin \theta_{j})^{T} + \gamma \mathsf{F}_{j}(\boldsymbol{X}), & \text{if } 1 \leq j \leq N, \\ \mu \sin(\overline{\theta}_{j-N} - \theta_{j-N}) + \delta \sin(\psi_{j-N} - \theta_{j-N}), & \text{if } N+1 \leq j \leq 2N \end{cases}$$

Numerical experiment

Differential inclusion

$$rac{d}{dt}(oldsymbol{X}, heta) = \operatorname{Proj}_{\mathcal{C}_{oldsymbol{X}} imes \mathbb{R}^{N}}oldsymbol{U}(oldsymbol{X}, heta)$$

• The polar cone of $C_{\boldsymbol{X}} \times \mathbb{R}^N$ is $\mathcal{N}_{\boldsymbol{X}} \times \{0\}$ and

$$\operatorname{Proj}_{\mathcal{C}_{\boldsymbol{X}} \times \mathbb{R}^{N}} + \operatorname{Proj}_{\mathcal{N}_{\boldsymbol{X}} \times \{0\}} = \operatorname{Id}$$

- ▶ We obtain: $\frac{d}{dt}(\boldsymbol{X}, \theta) = \boldsymbol{U}(\boldsymbol{X}, \theta) \operatorname{Proj}_{\mathcal{N}_{\boldsymbol{X}} \times \{0\}} \boldsymbol{U}(\boldsymbol{X}, \theta)$
- Differential inclusion:

$$rac{d(oldsymbol{X}, heta)}{dt} + \mathcal{N}_{oldsymbol{X}} imes \{0\}
i oldsymbol{U}(oldsymbol{X}, heta)$$

Well-posedness result

Proposition

Let $Q = \{ \mathbf{X} \in \mathbb{R}^{2N} \mid \forall i < j, D_{ij}(\mathbf{X}) \ge 0 \}$ be the set of admissible configurations. We suppose that U is Lipschitz and bounded. Then, for any initial data $(\mathbf{X}_0, \theta_0) \in Q \times \mathbb{R}^N$ and any time T > 0, there exists a unique absolutely continuous solutionon the interval (0, T) to the system

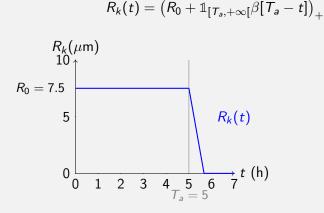
$$egin{cases} \displaystyle rac{d(oldsymbol{X}, heta)}{dt} + \mathcal{N}_{oldsymbol{X}} imes \{0\}
i oldsymbol{U}(oldsymbol{X}, heta), \ (oldsymbol{X}, heta)(0) = (oldsymbol{X}_0, heta_0). \end{cases}$$

Generalization of results from J. Venel's thesis⁵

⁵J. Venel, "Modélisation mathématique et numérique de mouvements de foule," Ph.D. dissertation, Université Paris Sud-Paris XI, 2008.

Apoptosis

Apoptosis occurs at time T_a , the apoptotic state becomes $\alpha_k = 1$, the cell radius decreases



Modification of the interactions

additional polarity relaxation towards the apoptotic cells:

$$d\boldsymbol{P}_{k} = \operatorname{Proj}_{\boldsymbol{P}_{k}^{\perp}} \circ \left(\mu(\overline{\boldsymbol{P}}_{k} - \boldsymbol{P}_{k}) dt + \delta \left(\frac{\boldsymbol{V}_{k}}{\|\boldsymbol{V}_{k}\|} - \boldsymbol{P}_{k} \right) dt + \overline{\nu(\boldsymbol{M}_{k} - \boldsymbol{P}_{k}) dt} + \sqrt{2D} (d\boldsymbol{B}_{t})_{k} \right)$$

with $\boldsymbol{M}_{k} = \sum_{j, \|X_{j} - X_{k}\| \leqslant R_{int}^{po}} \alpha_{j} \frac{(X_{j} - X_{k})}{\|(X_{j} - X_{k})\|}$

apoptotic cells exert stronger attraction-repulsion force:

$$\boldsymbol{F}_k(\boldsymbol{X}) = \sum_{j, \left\|\boldsymbol{X}_k - \boldsymbol{X}_j\right\| \leqslant R_{\mathsf{int}}^{\mathsf{ar}}} \nabla_{\boldsymbol{X}_k} W_j(\left\|\boldsymbol{X}_k - \boldsymbol{X}_j\right\|)$$

with
$$W_j(r) = -\left[\left((1-\alpha_j)\kappa + \alpha_j\kappa_{apop}\right)\right]\left(\frac{r^2}{2} - \frac{r^3}{3D_c}\right)$$

I. Mathematical model

II. Numerical discretization

- Discretization of the position and velocity
- Discretization of the polarity
- ► Apoptosis part in the discretization

III. Numerical experiment

Discretization

Let $\Delta t > 0$ be the time step and denote by (\mathbf{X}_k^n) , (\mathbf{V}_k^n) and (\mathbf{P}_k^n) the approximate positions, velocities and polarities at time $t^n = n\Delta t$, $n \in \mathbb{N}$, respectively. The update of \mathbf{X}^n is:

$$X_k^{n+1} = X_k^n + V_k^{n+1} \Delta t.$$

Following the method proposed in⁶:

$$\boldsymbol{V}^{n+1} = \operatorname{Proj}_{\mathcal{C}_{X^n}^{\Delta t}}(\boldsymbol{c}\boldsymbol{P}^{n+1} + \gamma \boldsymbol{F}(\boldsymbol{X}^n)),$$

$$\mathcal{C}_{\boldsymbol{X}^n}^{\Delta t} = \{ \boldsymbol{V} \in (\mathbb{R}^2)^{\boldsymbol{N}} \mid \forall i < j, \ D_{i,j}(\boldsymbol{X}^n) + \Delta t \, \nabla D_{i,j}(\boldsymbol{X}^n) \cdot \boldsymbol{V} \ge 0, \\ \forall i, \ D_b(\boldsymbol{X}^n_i) + \Delta t \, \nabla D_b(\boldsymbol{X}^n_i) \cdot \boldsymbol{V}_i \ge 0 \}.$$

Difficulty: deal with the projection

$$\mathcal{C}_{\boldsymbol{X}^{n}}^{\Delta t} = \{ \boldsymbol{V} \in (\mathbb{R}^{2})^{N} \mid \widetilde{B} \boldsymbol{V} - \widetilde{D} \leqslant 0 \},$$
$$\widetilde{\boldsymbol{D}} = \begin{bmatrix} \boldsymbol{D} \\ \boldsymbol{D}_{b} \end{bmatrix} \in \mathbb{R}^{\frac{N(N-1)}{2} + N}, \quad \widetilde{B} = \begin{bmatrix} B \\ B_{b} \end{bmatrix} \in \mathcal{M}_{\frac{N(N-1)}{2} + N, 2N},$$

⁶B. Maury and J. Venel, "A discrete contact model for crowd motion," *ESAIM Math. Model. Numer. Anal.*, vol. 45, no. 1, pp. 145–168, 2011.

R.SUBLET

An agent-based model for cell collective dynamics

Numerical experiment

Optimization: Uzawa

$$\boldsymbol{V}^{n+1} = \operatorname*{argmin}_{\boldsymbol{V} \in \mathcal{C}_{\boldsymbol{X}^n}^{\Delta t}} \frac{1}{2} \left\| \boldsymbol{V} - c \boldsymbol{P}^{n+1} - \gamma \mathsf{F}(\boldsymbol{X}^n) \right\|^2,$$

The associated Lagrangian functional:

$$\mathcal{L}(\boldsymbol{V},\boldsymbol{\lambda}) = \frac{1}{2} \left\| \boldsymbol{V} - c \boldsymbol{P}^{n+1} - \gamma \mathsf{F}(\boldsymbol{X}^{n}) \right\|^{2} + \boldsymbol{\lambda} \cdot \left(\widetilde{B} \boldsymbol{V} - \widetilde{\boldsymbol{D}} \right),$$

Constructing the sequences $(\mathbf{V}^{(j)})_j$ and $(\boldsymbol{\lambda}^{(j)})_j$ as follows:

1.
$$\boldsymbol{V}^{(0)} = \boldsymbol{V}^{n}, \boldsymbol{\lambda}^{(0)} = 0,$$

2. $\boldsymbol{V}^{(j+1)} = \min_{\boldsymbol{V} \in \mathbb{R}^{2N}} \mathcal{L}(\boldsymbol{V}, \boldsymbol{\lambda}^{j}) = c \boldsymbol{P}^{n+1} + \gamma F(\boldsymbol{X}^{n}) - \widetilde{B}^{T} \boldsymbol{\lambda}^{(j)},$
3. $\boldsymbol{\lambda}^{(j+1)} = \max\left(0, \boldsymbol{\lambda}^{(j)} + \rho\left(\widetilde{B} \boldsymbol{V}^{(j)} - \widetilde{D}\right)\right),$

 $\rho > {\rm 0}$ is the the gradient-descent step of the method.

Semi-implicit scheme⁷ that ensures $\|\boldsymbol{P}_k\| = 1$:

$$\begin{aligned} \boldsymbol{P}_{k}^{n+1} &= \boldsymbol{P}_{k}^{n} + \operatorname{Proj}_{(\boldsymbol{P}_{k}^{n+1/2})^{\perp}} \left(\mu \,\Delta t \, \left(\overline{\boldsymbol{P}}_{k}^{n} - \boldsymbol{P}_{k}^{n} \right) + \delta \,\Delta t \, \left(\frac{\boldsymbol{V}_{k}^{n}}{\|\boldsymbol{V}_{k}^{n}\|} - \boldsymbol{P}_{k}^{n} \right) \\ &+ \sqrt{2D\Delta t} \,\boldsymbol{\xi}_{k}^{n} \right), \end{aligned}$$

►
$$P_k^{n+1/2} = (P_k^n + P_k^{n+1})/2$$

 $\triangleright \xi_k^n$: random number following a standard Normal distribution

⁷S. Motsch and L. Navoret, "Numerical simulations of a nonconservative hyperbolic system with geometric constraints describing swarming behavior," *Multiscale Model. Simul.*, vol. 9, no. 3, pp. 1253–1275, 2011.

Explicit implementation

Polar formulation: $\theta_k^n \in [0, 2\pi)$, such that $\boldsymbol{P}_k^n = (\cos(\theta_k^n), \sin(\theta_k^n))^T$. The semi-implicit scheme become:

$$\theta_k^{n+1} = \theta_k^n + 2\left(\hat{\boldsymbol{Q}}_k^n - \theta_k^n\right) + \sqrt{2D\Delta t}\,\boldsymbol{\xi}_k^n$$

$$\blacktriangleright \quad \boldsymbol{Q}_{k}^{n} = \boldsymbol{P}_{k}^{n} + \frac{\Delta t}{2} \left(\mu \left(\overline{\boldsymbol{P}}_{k}^{n} - \boldsymbol{P}_{k}^{n} \right) + \delta \left(\frac{\boldsymbol{V}_{k}^{n}}{\|\boldsymbol{V}_{k}^{n}\|} - \boldsymbol{P}_{k}^{n} \right) \right)$$

• $\hat{\boldsymbol{Q}}_k^n$ is the polar angle of the vector \boldsymbol{Q}_k^n

Apoptosis part in the discretization

- Decreasing radius: $\mathbf{R}_{k}^{n} = \left[R_{0} + \mathbb{1}_{[T_{a}, +\infty[}(n\Delta t)\beta[T_{a} n\Delta t]]_{+}\right]_{+}$
- Center polarity on the dying cell:

$$\boldsymbol{Q}_{k}^{n} = \boldsymbol{P}_{k}^{n} + \frac{\Delta t}{2} \left(\mu \left(\overline{\boldsymbol{P}}_{k}^{n} - \boldsymbol{P}_{k}^{n} \right) + \delta \left(\frac{\boldsymbol{V}_{k}^{n}}{\|\boldsymbol{V}_{k}^{n}\|} - \boldsymbol{P}_{k}^{n} \right) \right) + \nu (\boldsymbol{M}_{k}^{n} - \boldsymbol{P}_{k}^{n}) dt$$

Stronger attraction-repulsion force: change κ to $((1 - \alpha_j)\kappa + \alpha_j\kappa_{apop})$ in the potential.

I. Mathematical model

II. Numerical discretization

III. Numerical experiment

- ► Influence of the shape of the domain
- ▶ Influence of the smooth attraction-repulsion
- Apoptosis

Parameters

Taken from [4]⁸, IGBMC, calibrated numerically

Cells radius	R ₀	7.5	μ m
Cells comfort radius	R_c	9.5	μ m
Cells attraction-repulsion interaction radius	$R_{ m int}^{ m ar}$	19	μ m
Cells polarity interaction radius	$R_{\rm int}^{\rm po}$	60	μ m
Cell speed	с	21.6	μ m h $^{-1}$
Angular diffusion	D	0.96	$rad^2 h^{-1}$
Relaxation parameter: polarity to mean polarity	μ	6.2	$rad h^{-1}$
Relaxation parameter: polarity to velocity	δ	6.2	$rad h^{-1}$
Rigidity constant	κ	10 ⁴	pN μm^{-1}
Inverse friction coefficient	γ	10^{-5}	$pN^{-1}h^{-1}\mum$
Apoptosis on P	ν	10	$radh^{-1}$
Apoptosis spring force (on V)	κ_{apop}	5.10^{4}	$pN\mum^{-1}$
Speed of decreasing for radius	eta	11.25	$\mu { m m}{ m h}^{-1}$

⁸S. L. Vecchio, O. Pertz, M. Szopos, *et al.*, "Spontaneous rotations in epithelia as an interplay between cell polarity and boundaries," *Nature Physics*, 2024.

Indicators of the emergence of collective movement

► The normalized global mean speed:

$$ar{v}(t) = rac{1}{c} rac{1}{N} \sum_{k=1}^N \| oldsymbol{V}_k(t) \|,$$

► The rotation order parameter:

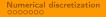
$$\phi_{\text{rot}}(t) = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{P}_{k}(t) \cdot \boldsymbol{e}_{k}(t),$$

where $\boldsymbol{e}_k = (\boldsymbol{X}_k - \boldsymbol{X}_c)^{\perp} / \| \boldsymbol{X}_k - \boldsymbol{X}_c \|$ is the unit tangential vector with respect to the domain center \boldsymbol{X}_c .

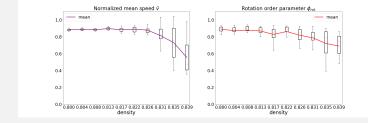
Influence of the shape of the domain

Compare cells collective dynamics in a square and in a disk

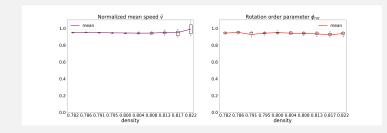
- Dense regime (density larger than 0.8)
- Domains with same area
- Final time: T = 20 h, time step $\Delta t = 10^{-2} \text{ h}$
- Indicators averaged over the last T/8 = 2.5h
- ▶ 20 different numerical simulations for each density.



Numerical experiment



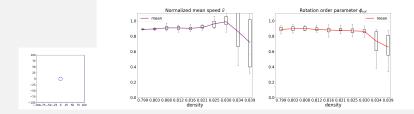
Square domain of length 200 μ m: jamming effect at higher density, rotational movement elsewhere.



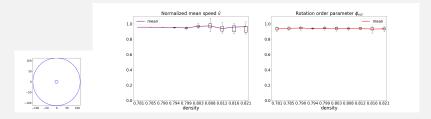
Disk domain of radius $200/\sqrt{\pi} \, \mu$ m: rotational movement independent of the density.

Numerical experiment

With an obstacle



Helps the movement but still jamming effect in the largest densites.

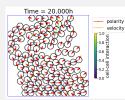


Rotational movement.

Numerical experiment

Influence of the attraction-repulsion force

Default parameters: $R_c = 9.5 \mu \text{m}$ $\kappa = 10^4 \text{pN} \, \mu \text{m}^{-1}$ $\gamma = 10^{-5} \text{pN}^{-1} \text{h}^{-1} \mu \text{m}$



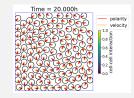
Observation:

- Rotating movement
- Lot of contacts

Strong attraction-repulsion:

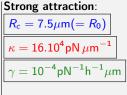
$$R_c = 9.5 \mu \text{m}$$

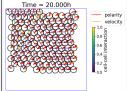
 $\kappa = 16.10^4 \text{pN} \,\mu \text{m}^{-1}$
 $\gamma = 10^{-4} \text{pN}^{-1} \text{h}^{-1} \mu \text{m}$



Observation:

- Better rotating movement
- Few contact





Observation:

- Movement up-down
- Cells glued together

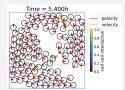
Numerical experiment

Apoptosis

Apoptosis starts at $T_a = 5h$ for 2 randomly chosen cells. It takes 40min for a cell to die. Apoptotic cells are in green.

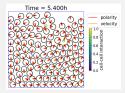
Default parameters:

$$\begin{split} R_{c} &= 9.5 \mu \text{m} \\ \kappa &= 10^{4} \text{pN} \, \mu \text{m}^{-1} \\ \gamma &= 10^{-5} \text{pN}^{-1} \text{h}^{-1} \mu \text{m} \\ \kappa_{apop} &= 5.10^{4} \text{pN} \, \mu \text{m}^{-1} \end{split}$$



- Change in the direction of the neighbour
- Some change in the global movement

Strong attraction-repulsion: $R_c = 9.5 \mu \text{m}$ $\kappa = 16.10^4 \text{pN} \mu \text{m}^{-1}$ $\gamma = 10^{-4} \text{pN}^{-1} \text{h}^{-1} \mu \text{m}$ $\kappa_{apop} = 5.16.10^4 \text{pN} \mu \text{m}^{-1}$



- Change of direction less important
- Less change in the global movement

Conclusion & perspectives

- Construction of a mathematical and computational model for cells collective dynamics
- Include the phenomena of apoptosis
- Observation of different behaviors depending of the shape of the domain and the intensity of the attraction-repulsion force
- Macroscopic model
- Calibration of last parameters
- Design a fluidity indicator

Mathematical mod	del
0000000000000	

Biblio I

- T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, "Novel type of phase transition in a system of self-driven particles," *Phys. Rev. Lett.*, vol. 75, no. 6, p. 1226, 1995.
- [2] B. Maury and J. Venel, "A discrete contact model for crowd motion," *ESAIM Math. Model. Numer. Anal.*, vol. 45, no. 1, pp. 145–168, 2011.
- [3] C. Beatrici, C. Kirch, S. Henkes, F. Graner, and L. Brunnet, "Comparing individual-based models of collective cell motion in a benchmark flow geometry," *Soft Matter*, vol. 19, no. 29, pp. 5583–5601, 2023.
- S. L. Vecchio, O. Pertz, M. Szopos, L. Navoret, and
 D. Riveline, "Spontaneous rotations in epithelia as an interplay between cell polarity and boundaries," *Nature Physics*, 2024.

Biblio II

- [5] J. Venel, "Modélisation mathématique et numérique de mouvements de foule," Ph.D. dissertation, Université Paris Sud-Paris XI, 2008.
- [6] S. Motsch and L. Navoret, "Numerical simulations of a nonconservative hyperbolic system with geometric constraints describing swarming behavior," *Multiscale Model. Simul.*, vol. 9, no. 3, pp. 1253–1275, 2011.