

An agent-based model for cell collective dynamics

Laurent NAVORET¹, <u>Roxana SUBLET</u>^{1*}, Marcela SZOPOS², ¹Institut de Recherche Mathématique Avancée (IRMA), UMR 7501 Université de Strasbourg; ² MAP5, UMR 8145, Université Paris-Cité. *Contact : roxana.sublet@math.unistra.fr

de Strasbourg

Université

1. Introduction

Collective cell movements are observed during different important phases of epithelial tissue remodelling. The aim of this study is to proposed a mathematical and computational agent-based model that describes cells dynamics in a fixed domain with wall border.

Specifically, the goal is to represent cell collective dynamics over time, and the intensity of cell-cell contact.

2. Geometrical description of the system

We consider N cells, moving in a fixed two-dimensional square domain Ω . Each cell is represented as a hard-sphere of radius $R_0 > 0$ and has a position $\boldsymbol{X}_k(t) \in \mathbb{R}^2$, a velocity $\boldsymbol{V}_k(t) \in \mathbb{R}^2$, and a polarity $\boldsymbol{P}_k(t) \in \mathbb{S}^1$. We denote the vectors of all positions, all velocities and all polarities by:

- $\blacktriangleright \ \boldsymbol{X} = (\boldsymbol{X}_k)_k \in \mathbb{R}^{2N}$
- $\blacktriangleright \ \boldsymbol{V} = (\boldsymbol{V}_k)_k \in \mathbb{R}^{2N}$
- $\blacktriangleright \boldsymbol{P} = (\boldsymbol{P}_k)_k \in (\mathbb{S}^1)^N$

3. Mathematical model

Dynamics of the positions:

Dynamics of the velocities:

$$V = \operatorname{Proj}_{\mathcal{C}_{X}}(cP + \gamma F(X))$$

- ► Active force driven by the polarity
- ▶ Hard repulsion: projection onto the set of admissible velocities C_X :

 $\begin{aligned} \mathcal{C}_{\boldsymbol{X}} &= \{ \boldsymbol{V} \in \mathbb{R}^{2N} | \forall i < j, \ D_{i,j}(\boldsymbol{X}) = 0 \implies \nabla D_{i,j}(\boldsymbol{X}) \cdot \boldsymbol{V} \ge 0, \\ &\forall i, \ D_b(\boldsymbol{X}_i) = 0 \implies \nabla D_b(\boldsymbol{X}_i) \cdot \boldsymbol{V}_i \ge 0 \} \end{aligned}$

► Soft attraction-repulsion force $F = (F_k)_{k=1,...,N}$ derived from a potential W[1]:

$$\mathbf{F}_{k}(\boldsymbol{X}) = \sum_{j=1}^{N} \nabla_{\boldsymbol{X}_{k}} W(\|\boldsymbol{X}_{k} - \boldsymbol{X}_{j}\|) \mathbb{1}_{\{\|\boldsymbol{X}_{k} - \boldsymbol{X}_{j}\| \leq R_{\text{int}}^{\text{ar}}\}}, \quad W(r) = -\kappa \left(\frac{r^{2}}{2} - \frac{r^{3}}{3D_{c}}\right)$$

Dynamics of the polarities:

$$d\boldsymbol{P}_{k} = \operatorname{Proj}_{\boldsymbol{P}_{k}^{\perp}} \circ \left(\mu \left(\overline{\boldsymbol{P}}_{k} - \boldsymbol{P}_{k} \right) dt + \delta \left(\frac{\boldsymbol{V}_{k}}{\|\boldsymbol{V}_{k}\|} - \boldsymbol{P}_{k} \right) dt + \sqrt{2D} \left(d\mathbf{B}_{t} \right)_{k} \right)$$

▶ Alignment to the local averaged polarity \overline{P}_k (Viscek-type interaction [2])

$$\overline{\boldsymbol{P}}_{k} = \frac{\sum_{j, \|\boldsymbol{X}_{j} - \boldsymbol{X}_{k}\| \leq R_{\text{int}}^{\text{po}}} \boldsymbol{P}_{j}}{\|\sum_{j, \|\boldsymbol{X}_{j} - \boldsymbol{X}_{k}\| \leq R_{\text{int}}^{\text{po}}} \boldsymbol{P}_{j}\|}$$

- ▶ Relaxation to the velocity direction $\frac{V_k}{\|V_k\|}$
- Gaussian white noise: $(d\mathbf{B}_t)_k$
- ▶ Projection to keep the polarity of norm 1

4. Discretization

5. Parameters

Position: $\boldsymbol{X}^{n+1} = \boldsymbol{X}^n + \Delta t \boldsymbol{V}^{n+1}$

Velocity [3]:

We transform the projection problem into the following optimization one, solved using the Uzawa algorithm:

 $\boldsymbol{V}^{n+1} = \underset{\boldsymbol{V} \in \boldsymbol{\mathcal{C}}_{\boldsymbol{X}^n}}{\operatorname{argmin}} \frac{1}{2} \left\| \boldsymbol{V} - c\boldsymbol{P}^{n+1} - \gamma \mathbf{F}(\boldsymbol{X}^n) \right\|^2.$

Polarity [4]: Denoting $P_k^n = (\cos(\theta_k^n), \sin(\theta_k^n))^T$, the polarity angle θ_k^n is obtained by the semi-implicit scheme:

 $\theta_k^{n+1} = \theta_k^n + 2\left(\theta[\boldsymbol{Q}_k^n] - \theta_k^n\right) + \sqrt{2D\Delta t}\,\boldsymbol{\xi}_k^n$

with \boldsymbol{Q}_k^n defined by:

 $\boldsymbol{Q}_{k}^{n} = \boldsymbol{P}_{k}^{n} + \frac{\Delta t}{2} \left(\mu \left(\overline{\boldsymbol{P}}_{k}^{n} - \boldsymbol{P}_{k}^{n} \right) + \delta \left(\frac{\boldsymbol{V}_{k}^{n}}{\|\boldsymbol{V}_{k}^{n}\|} - \boldsymbol{P}_{k}^{n} \right) \right)$

7. Conclusion & Perspective

Conclusion:

We proposed a new framework to describe and sim-

Cells radius	R_0	7.5	$\mu\mathrm{m}$	[5]
Cells comfort radius	R_c	9.5	$\mu\mathrm{m}$	Numerical calibration
Cells attraction-repulsion interaction radius	$R_{ m int}^{ m ar}$	19	$\mu\mathrm{m}$	Numerical calibration
Cells polarity interaction radius	$R_{\rm int}^{\rm po}$	60	$\mu\mathrm{m}$	[5]
Cell speed	c	21.6	$\mu \mathrm{m}\mathrm{h}^{-1}$	[5]
Angular diffusion	D	0.96	$\mathrm{rad}^{2}\mathrm{h}^{-1}$	$\left[5 ight]$
Relaxation parameter: polarity to mean polarity	μ	6.2	$\mathrm{rad}\mathrm{h}^{-1}$	[5]
Relaxation parameter: polarity to velocity	δ	6.2	$\mathrm{rad}\mathrm{h}^{-1}$	[5]
Rigidity constant	κ	16.10^{4}	$ m pN\mu m^{-1}$	Numerical calibration
nverse friction coefficient	γ	10^{-4}	$pN^{-1}h^{-1}\mu m$	Numerical calibration

6. Numerical results

ulate collective cell movement, combining a Viscektype description of the cell dynamics and a hard contact model. The model is capable to recover the order-disorder phase transition of the flock, as well as the jamming effect in high density regimes. **Perspectives:**

- ► Derive a macroscopic model
- Incorporate other cellular events (e.g. apoptosis, cell division)

8. Acknowledgements

This research was funded by l'Agence Nationale de la Recherche (ANR), project ANR-22-CE45-0028, called ANR MAPEFLU.

- Rotating movement
- ► Low number of contacts
- ► Compressibility

9. References

- ► Up-down flocking motion
- ► Cells glued together
- ► Incompressibility
- C. Beatrici, C. Kirch, S. Henkes, F. Graner, and L. Brunnet, "Comparing individual-based models of collective cell motion in a benchmark flow geometry," *Soft Matter*, vol. 19, no. 29, pp. 5583–5601, 2023.
- [2] V. Hakim and P. Silberzan, "Collective cell migration: A physics perspective," Rep. Prog. Phys., vol. 80, no. 7, p. 076601, 2017.
- [3] B. Maury and J. Venel, "A discrete contact model for crowd motion," ESAIM Math. Model. Numer. Anal., vol. 45, no. 1, pp. 145–168, 2011.
- [4] S. Motsch and L. Navoret, "Numerical simulations of a nonconservative hyperbolic system with geometric constraints describing swarming behavior," *Multiscale Model. Simul.*, vol. 9, no. 3, pp. 1253–1275, 2011.
- [5] S. Lo Vecchio, O. Pertz, M. Szopos, L. Navoret, and D. Riveline, "Spontaneous rotations in epithelia as an interplay between cell polarity and boundaries," *Nature Physics*, vol. 20, pp. 322–331, 2024.