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Many one-dimensional quantum systems have massless low-energy
excitations described by Conformal Field Theory

Examples: carbon nanotubes, electrons or cold atoms trapped in

1d potential wells, quantum Hall edge currents, XXZ spin chains




1+1-D CFT describes the low temperature equilibrium physics of such

systems but also some of nonequilibrium situations as
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e "quantum quenches” to short-correlated states (reviewed by

by Calabrese-Cardy in J. Stat. Mech. (2016), 064003)

“partitioning protocol” after two halves of a system prepared

in different equilibrium states are joined together (reviewed by
Bernard-Doyon in J. Stat. Mech. (2016), 064005, also

Hollands-Longo, CMP 357 (2018))
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Purpose of this talk: to show how CFT describes the dynamics
of states with a preimposed smooth temperature profile



Based on joint work with E. Langmann and P. Moosavi, J. Stat. Phys.
172 (2018), 353-378, and my article in preparation

Inspired by Lebowitz-Langmann-Mastropietro-Moosavi,

Phys. Rev. B 95 (2017)

LLIMM studied in the Luttinger model of interacting 1d electrons
the time evolution of the nonequilibrium state

Tr(e_GA)

w9 (A) = Tr(e_G) for G = /ﬁ(w)g(o,w) dx

where S(t, :C) is the energy density and B(w) is a smooth inverse-
temperature profile with the values 8y and () far on the left (right)
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e By resumming the perturbation series in powers of (3, — y), LLMM
showed that for the model with local interactions (which is a CFT)

w'(E(t, x)) (F(z — vt) + F(z + vt))
WY T (t, x)) (F(xz — vt) — F(z + vt))

where j(t, ar;) is the heat current, v is the effective Fermi velocity, and
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e They noticed that Sg(x) is the Schwarzian derivative

_ @) 3 (@)Y
{f@),a} = L2 - 2 (L2

of the map
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and {f(a:), aj} appears in the CFT formula for the transformation of

the energy-momentum tensor suggesting a CF'T origin of their result

e The formulae of LLMM imply that
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but also shows a nontrivial evolution of the nonequilibrium expectations
of £(t,x) and J(t,x) with traveling heat waves
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Evolution of the mean energy density minus £y (left)

and of the mean heat current (right)




e General theory

+

e Set = = x = vt. The conformal transformations in 1-+1-D spacetime

are:

(z7,27) = (fy(z7), f-(=T))




e In a CFT the infinitesimal conformal symmetries in the Hilbert

space [H of states are generated by the components 1’ (:C_)

and T++ (az+) of the energy-momentum tensor s.t.

(), T-— ()] = F2i6"(x — 2" )T-— () Lid(z — 2" )T _ (')
++ ++ ++ ++
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where ¢ is the central charge of the theory

e The energy density and heat current in a CFT are




e It is convenient to work in a finite box [—3 L, &+ L] with the boundary
conditions that guarantee that 7' _(z7) = T (z%) for =z =+1L

t

e There is then only one independent component of the energy-moment.
tensor T _(z) =T__(x+2L) with T (z)=T__(x+L)

T (@) =25 > Tt (L, — £5,0) = T(a)

n=0

where L, satisfy the Virasoro algebra:




e ' generates a unitary projective representation [ Uf of Diff_:Sl
for f(x +2L) = f(x) + 2L with f’(x) > 0 such that

U, T(2) U7 = f@)PT(f() - 5o {f(@),)

o If fs is the flow of a vector field —((x)0; with ((x+2L) = ((x), i.e.

Os fs(x) = —C(fs(x)), fo(z) ==

U, = cs,¢c eXp [1S/LLC(J;) T(x) daz]

E.g. for translations fs(z) =z — s

Hs(Lo— 1)




e For L big enough let 81, (x) = Br(x + 2L) be defined by

1
e Consider for G, = ff B(x)£0,x)dxr = v
L

)
the finite-box nonequilibrium state

T (e_GL A)
Tr (e_GL)




e Let f=f1 € Diffzsl be such that f] () = BBE—&;) with B L,

fixed by the requirement that fr(z + 2L) =x + 2L. Then

Bo,LHr + const.

— the conjugation by UfL flattens the temperature profile !!!




e This allows to compare the non-equilibrium and equilibrium finite-volume
states:

ne e —1
e 1(A) = wﬁg’L,L(UfLA UfL )

e That relation may be applied to A = HZ T (:Ez_) Hj T++ (a:j_) for
which one has the identity

Uy, T- @F) Ut = (522 )’ T (fr(e™) — 5o {fo (), 2T}

++ Br (x7T) ++

e The thermodynamic limit L. — oo is easily controlled using standard CFT
techniques leading to the infinite-volume relations
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where fﬁ( ): fox 5(53?,) dx’ with arbitrary ﬁo
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leading to
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which extends the result of LLMM about the nonequilibrium expectations
of the energy density and the heat current to any unitary CFT

e In CFT the transport is ballistic and the conductivities are proportional
to the O-function in the frequency space with the coefficient called
the Dude weight

e The result about the nonequilibrium heat current simplifies the calculation
of the thermal Drude weight that may be given by
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Di, = 82 lim ——— lim —/wneq J(t,x)) dx
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One obtains the universal result D}, = that agrees with the one

based on the Green-Kubo formula




The 1-point expressions are an example of the general relations for
the nonequilibrium expectations in any CFT model. E.g. for

the connected 2-point function, one gets

W (T (zq ) ;T —(25))
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8% B(x1)2B(zz )? sinh* (5= (fs(xy) — fa(23)))

e One may deal in the same way the nonequilibrium expectations with

insertions of primary fields

e Analogous arguments work for states with temperature and chemical
potential profiles in CFT’s with wu(1)-current algebra symmetries

by combining conformal and gauge transformations




e Full counting statistics for the heat transfer

e For the profile states, one may obtain exact formulae for the full
counting statistics (FCS) of the heat transfers across the kink in
a [(x)-profile

Consider a CFT on [—3 L, L] with the boundary conditions as
before. If the kink in [S(x) .

. is narrow then
|

1
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GL — 5($) E(O,ZE) de = BeEy+ BrEr

where F/y and F), are the energies to the left and to the right
of the kink, respectively

e One accesses the FCS of the heat transfers by performing two
measurement of (j in the nonequilibrium state wgeq separated

by time ©




e By spectral decomposition

Gr = Zgipia GL(t) = "ML Gre L = Zgip t

If the 1°% measurement gives the value ¢; and the 29 one g; then

the transfer of the energy across the kink in time ¢ is

gdj — 9i

Ae = Er(t) — Er(0) = —(Ep(t) — E¢(0)) = AB

where AB = B, — By
e By the QM rules the probability of getting the results (g@', gj) is
pij = wy (P’ipj (t))

giving for the PDF of the energy transfers

p+. 1. (Ae) Z5(A€—93A591> neq(PP())




e The characteristic function of the probability distribution of Ae is
: X (4.
ft,L()\) /elkAept,L(Ae) _ ZGAB (95—9i) neQ(PP ( ))
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using our relation between the nonequilibrium and equilibrium states
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where (r, ¢ (y) =




(@L<x> Br (z 1)) {fL (x),2} do

Tr( 2mito(Lo— 57 ) Cs,Cp ¢

for § = AAB’ Te = (I_SgZBO’L, and fs € Diff_:Sl solving the flow

equation Osfs(y) = —Cr,¢«(fs(y)), fo(y) =

: @
e One usually views the denominator 1T (eQWIT(LO_ﬂ>) as the character

of the Virasoro algebra representation in the space of states of CFT

. @
e Similarly, the numerator It (e f) may be viewed as the

character of the corresponding representation of Diff:Sl




e Characters of Dz'ff:S1

e The characters of Diff_:Sl may be reduced to those of the respective

Virasoro representation (this did not seem to exist in the literature)
s C

2miT(Lo—37) Uf is proportional to

the chiral Euclidian CFT amplitude of the complex annulus

A ¢ = {2z ™7 < |z <1}

According to G. Segal, the operator e

with the boundary components parameterized by

1

pl( )26271'17'6—7%]”(x)7 pz(x):e—f:c

e Usually, group characters are class functions
invariant under the adjoint action

What it means here is that (up to a scalar factor)
. C

Tr (eQmT(LO_ﬂ) Uf depends only on the torus

7-5,]8 obtained from .AT,f by sewing togeather its

parameterized boundary components




e Indeed, TTr (eQmT(LO_ﬁ) Uf) is proportional to the CFT amplitude

of the torus 7'5,f with its natural complex structure

e The complex torus 73 s is isomorphic to 7}.7f0 for fo(x) = and

AN

some 7 in the upper half plane. This implies the relation

£

Ty (GQWiT(LQ—ﬁ) Uf) _ CT,f Tf(GQWi?(LO_Qél))

where the trace on the right-hand-side is the CFT amplitude of the
annulus ‘A?,fo and CT,f is a complex number due to the projective
character of the chiral CFT amplitudes

e The constant CT,f may be expressed in terms of determinants of
Fredholm operators on LQ(R/(QLZ)) = ‘H that appear in
the context of a Riemann-Hilbert-type problem on the torus 7:-,]0

AN

e 7 may be obtained by solving a related Fredholm equation




¢ The Riemann-Hilbert problem on 7. ¢

e Given a function X € H one searches for a holomorphic function X
on AT,f such that

X = X1 — Xo for X; = X op;

jump of a holomorphic function X
prescribed along the sewing line

e Let P~ and P~ be the orthogonal projectors in H on the subspaces
7T 1
spanned by functions e~ L " with n > 0 and n < 0, respectively

o Let Qr ¢ :Ho — Ho, for Ho C H composed of functions with
vanishing integral, be the operator

Qr,
(P> + P<)(X1 — X2) T PuXy — PeXo




e (- r is traceclass. Explicitly
Qr.p = (Ki1+Ki2—K21)(I— K11 — Ki2— Ko21) (P« — K12) — K12

where K,;; : H — H have smooth kernels (on the circle R/(2LZ))
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e FW)—f(2) _ 1 oL Ww—2)_1
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K1oX |
(K12X)(2) | emireB—f@) _

X(y)dy

f'(y)

. e—2mite T (F(W)—2) _ 4

(K21X) () X(y) dy

and as such are traceclass




The theory of determinant bundles of Quillen and Segal implies that

TI(GQWiTLO Uf) _ (ddeejct((ll C?Tq:ffo)>) <O‘U }O> TI‘( 271'17'L0)
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This reduces the characters of Diff+51 to the more standard ones

of the Virasoro algebra and to the vacuum expectation value of Uf

The effective modular parameter 7 solves the equation

L
P = Gy [ I )

where X is the inner boundary value X op1 of a holomorphic function
on 7; ¢ with the jump f — fo +2L(7 —7) across the sewing line

One obtains this way a reduced formula for the characteristic function
Fr.t(A) of FCS in which C.. ¢ Ly (eQmTS(LO 24)Uf8) was the only

non-explicit entry




The vacuum matrix element of Ufs

For the flow fs(x) of the vector field —((z)0,

. —QfTrV’ L) ds’
Cs_,é <0}Ufs O> _ <O‘elsfg(a:)T(a:)da:‘0> e 29 ( ¢, fy )

where Vi f=PsF¢P<(CO)P>(PsFrPs)~1 for (FX)(z)=X(f"1(z))

is a traceclass operator

The above formula may be obtained from the result for massless free field,
giving a Fredholm determinant (Bruneau-Derezinski 2007),
raised to power ¢

It represents the characteristic function of the distribution of coarse-grained
energy density in the vacuum state

In recent paper by Fewster-Hollands arXiv:1805.0428 it was related to
a conformal welding problem, a cousin of the Riemann-Hilbert one,

. c
and a differential equation was proposed for 1T (eQmTO(LO_ﬂ) Ufs)



e Summarizing: the generating function ]:L,t()\) of FCS is expressed by
the Virasoro character of the space of states and explicit Fredholm

determinants

FCS for the heat transfer in the thermodynamic limit

e T'he formula for characteristic function of the FCS heat transfer

simplifies in the limit L — oo giving

+ —1 + +
(I_Qt,s/) aS/Qt,S/ _Vt,S/)dS/

QCZLUW f(25(x)_5(x+)+5(58_ )) {fB (x),x} dx

where operators O in L?(R) are related to the integral operators KCij
obtained in the L — oo limit from K




Q= (Ki1+Ki2 —Ka1)(I — K11 + K12 +Ka21) 1 (Pc — K12) — K12

(K11X)(x) = 1/_0;( (y{/iy) - )X(y)dy

27 flz)  y—=z

_ 1 - 1
KX = =55 | g G

K X)) = 5 [ T X dy

Q;lfs correspond to f(y) = fis(Fy) for Osfis(Fy)=F(++(f+s(Fy))
B(f5 " (w)Evt)

B(fg " ()

(right- and left-movers contributions) with C:I:t( ) = vBo
T —1 — =
fﬁ(x) — fo 5(63?/) da:’, B() — %(Bﬁ _I_BT\’, )
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Operators Vtis are obtained from V¢ ¢ in the L — oo limit

by setting ((y) = (+¢(Ey) and f(y) = frs(Ey)

It follows that F:(\) is universal depending only on the profile 3(x)
and the central charge ¢ of the CFT

1% moment < >— 1(9)\‘)\ O.Eg()x

o TC 24
 12(vB)2 AP Zﬁt (0) + 247TAB Z/

where ft = [ e'P* (Cit(iw) — Uﬁ@)dw

27 moment ((Ae)(t) ; (Ae)(t )>C = —92|, __ InF:())

2_|_ )

p(p 5 X
(v B ) +
- 4871'2(AB)2 Z/ _e—vBoP ft ( )ft (—p) dp

((A)(®);(Ae)®))" 9
((ae)(t))

x=0

Fano factor




e One should be able to extract the large deviations asymptotics of
Bernard-Doyon (2012)

.1 mC 1 1 ! L) =
t1i>r£lo 7 InFi(A) = 53 (Be—v\ T B TR 5_7”)

from our exact formula for JF ()

e The above formula means that at large ¢ the energy transfers Ae(t)

become a Lévy process with the jump rates

'w(aj’ y) — % (e_BE(y_x)Q(y _ Qf) + e_ﬁr(m_y)e(x _ y))

where 6(-) is the Heaviside step function

Ae
e For large t, pi(Ae) et'(5°)  Wwith the rate function

1 —iv) — _ 7mc | —Byo+o(o) for o—oo
Ve[r_nﬁlvrﬂlaﬁe]<q)( 11/) VO) 12 Bro +o(o) for o——o0

possessing the Gallavotti-Cohen symmetry [(—o) = I(0) — cApS




Conclusions

In a CFT conformal symmetries may be used to map inhomogeneous
situations to homogeneous ones

That allowed to express nonequilibrium expectations in states with
temperature profile in terms of equilibrium ones

Profile states were e.g. shown to describe on mesoscopic scales dense
cold gases in 1d traps

States where one imposes also the profiles of chemical potential can
be treated similarly in theories with current-algebra symmetries
(e.g. in the local Luttinger model)

The general results confirmed and extended the particular ones obtained
by LLIMM for the Luttinger model through perturbative calculations

The FCS statistics of energy transfers in such states was reduced to
the character of Diff+51 and shown to become a universal functional

of the temperature profile in the thermodynamic limit




