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• Many one-dimensional quantum systems have massless low-energy

excitations described by Conformal Field Theory

Examples: carbon nanotubes, electrons or cold atoms trapped in

1d potential wells, quantum Hall edge currents, XXZ spin chains

✁ ⑦❇



• 1+1-D CFT describes the low temperature equilibrium physics of such

systems but also some of nonequilibrium situations as

• ”quantum quenches” to short-correlated states (reviewed by

by Calabrese-Cardy in J. Stat. Mech. (2016), 064003)

• “partitioning protocol” after two halves of a system prepared

in different equilibrium states are joined together (reviewed by

Bernard-Doyon in J. Stat. Mech. (2016), 064005, also

Hollands-Longo, CMP 357 (2018))

• Purpose of this talk: to show how CFT describes the dynamics

of states with a preimposed smooth temperature profile



• Based on joint work with E. Langmann and P. Moosavi, J. Stat. Phys.

172 (2018), 353-378, and my article in preparation

• Inspired by Lebowitz-Langmann-Mastropietro-Moosavi,

Phys. Rev. B 95 (2017)

LLMM studied in the Luttinger model of interacting 1d electrons

the time evolution of the nonequilibrium state

ωneq(A) =
Tr

(
e−GA

)

Tr
(
e−G

) for G =

∫
β(x) E(0, x) dx

where E(t, x) is the energy density and β(x) is a smooth inverse-

temperature profile with the values βℓ and (βr) far on the left (right)

β

βl

r

β

x



• By resumming the perturbation series in powers of (βr − βℓ), LLMM

showed that for the model with local interactions (which is a CFT)

ωneq(E(t, x)) =
1

2

(
F (x− vt) + F (x+ vt)

)

ωneq(J (t, x)) =
v

2

(
F (x− vt)− F (x+ vt)

)

where J (t, x) is the heat current, v is the effective Fermi velocity, and

F (x) =
π

6vβ(x)2
−

v

12π
Sβ(x)

for

Sβ(x) = −
β′′(x)

β(x)
+

1

2

(β′(x)

β(x)

)2



• They noticed that Sβ(x) is the Schwarzian derivative

{f(x), x} =
f ′′′(x)

f ′(x)
−

3

2

(
f ′′(x)

f ′(x)

)2

of the map

x 7→

∫ x

0

dx′

β(x′)
≡ fβ(x)

and {f(x), x} appears in the CFT formula for the transformation of

the energy-momentum tensor suggesting a CFT origin of their result

• The formulae of LLMM imply that

ωneq(E(t, y)) −→
t→∞

π

12v

(
β−2
ℓ

+ β−2
r

)
≡ E0

ωneq(J (t, y)) −→
t→∞

π

12

(
β−2
ℓ

− β−2
r

)
≡ J0 6= 0

but also shows a nontrivial evolution of the nonequilibrium expectations

of E(t, x) and J (t, x) with traveling heat waves
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Evolution of the mean energy density minus E0 (left)

and of the mean heat current (right)



• General theory

• Set x± ≡ x± vt. The conformal transformations in 1+1-D spacetime

are:

(x−, x+) 7→ (f+(x−), f−(x+))
since

v2dt2−dx2 = dx−dx+ 7→ df+(x−)df−(x+) = f ′
+(x−)f ′

−(x+)dx−dx+



• In a CFT the infinitesimal conformal symmetries in the Hilbert

space H of states are generated by the components T−− (x−)

and T++ (x+) of the energy-momentum tensor s.t.

[T−−
++

(x), T−−
++

(x′)] = ∓2i δ′(x− x′)T−−
++

(x′)± i δ(x− x′)T ′
−−
++

(x′)

±
c i

24π
δ′′′(x− x′)

where c is the central charge of the theory

• The energy density and heat current in a CFT are

E(t, x) = v
(
T−−(x−) + T++ (x+)

)

J (t, x) = v2
(
T−− (x−)− T++ (x+)

)



• It is convenient to work in a finite box [− 1
2 L, 1

2 L] with the boundary

conditions that guarantee that T
−−

(x−) = T
++

(x+) for x = ± 1
2 L

x

t

L1
2
_ 1_

2L−

−−−− T =T++
T =T

++

• There is then only one independent component of the energy-moment.

tensor T
−−

(x) = T
−−

(x + 2L) with T
++

(x) = T
−−

(x ± L)

T
−−

(x) =
π

2L2

∞∑

n=∞

e
πi
L

n(x+1
2
L)(

Ln −
c

24
δn,0

)
≡ T (x)

where Ln satisfy the Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δm+n,0



• T generates a unitary projective representation f 7→ U
f

of Diff
∼

+S1

for f(x+ 2L) = f(x) + 2L with f ′(x) > 0 such that

U
f
T (x) U−1

f
= f ′(x)2 T (f(x)) −

c

24π
{f(x), x}

• If fs is the flow of a vector field −ζ(x)∂x with ζ(x+2L) = ζ(x), i.e.

∂sfs(x) = −ζ(fs(x)) , f0(x) = x

then

U
fs

= cs,ζ exp
[
is

∫ L

−L

ζ(x)T (x) dx
]

E.g. for translations fs(x) = x− s

U
fs

= cs,1 e
πi
L

s(L0−
c
24

)



• For L big enough let βL(x) = βL(x+ 2L) be defined by

βL(x) =





β(x) for x ∈ [− 1

2 L,
1
2 L]

β(−x− L) for x ∈ [− 3
2 L,−

1
2 L]

β

βl

r

β

3
2L L1

2
1L2

βL

• Consider for GL =
∫ 1

2L

− 1
2L
β(x) E(0, x) dx = v

∫ 1
2L

− 3
2L
βL(x)T (x) dx

the finite-box nonequilibrium state

ωneq
L

(A) =
Tr

(
e−GLA

)

Tr
(
e−GL

)



• Let f = fL ∈ Diff
∼

+S1 be such that f ′
L(x) =

β0,L

βL(x)
with β0,L

fixed by the requirement that fL(x+ 2L) = x+ 2L. Then

U
fL

GL U−1
fL

= v

∫ 1
2L

− 3
2L

βL(x)UfL
T (x)U−1

fL
dx

= v

∫ 1
2L

− 3
2L

βL(x) f
′
L(x)

2T (fL(x)) dx −
cv

24π

∫ 1
2L

− 3
2L

βL(x) {fL(x), x} dx

y=fL(x)

= vβ0,L

∫ 1
2L

− 3
2L

T (y) dy −
cv

24π

∫ 1
2L

− 3
2L

βL(x){fL(x), x} dx

︸ ︷︷ ︸
c−number

= β0,LHL + const.

⇒ the conjugation by U
fL

flattens the temperature profile !!!



• This allows to compare the non-equilibrium and equilibrium finite-volume

states:

ωneq
L

(A) = ωeq
β0,L,L

(
U
fL

A U−1
fL

)

• That relation may be applied to A =
∏

i T−−(x−
i )

∏
j T++ (x+

j ) for

which one has the identity

U
fL

T−−
++

(x∓) U−1
fL

=
( β0,L

βL(x∓)

)2
T−−

++

(
fL(x

∓)
)
−

c

24π
{fL(x

∓), x∓}

• The thermodynamic limit L → ∞ is easily controlled using standard CFT

techniques leading to the infinite-volume relations

ω
neq

(∏

i

T
−−

(xi)
∏

j

T
++

(xj)
)

= ωeq
β0

(∏

i

(
β2
0

β(xi)
2
T
−−

(fβ(xi)) −
c

24π
{fβ(xi), xi}

)

×
∏

j

( β2
0

β(xj)
2
T
++

(fβ(xi)) −
c

24π
{fβ(xj), xj}

))

where fβ(x) =
∫ x
0

β0
β(x′)

dx′ with arbitrary β0



• In the infinite-volume CFT equilibrium state ωeq
β0

(
T−−

++
(x∓)

)
= πc

12(vβ0)2

leading to

ωneq
(
T−−

++
(x∓)

)
=

πc

12(vβ(xi)
2)

−
c

24π
{fβ(x

∓), x∓}

which extends the result of LLMM about the nonequilibrium expectations

of the energy density and the heat current to any unitary CFT

• In CFT the transport is ballistic and the conductivities are proportional

to the δ-function in the frequency space with the coefficient called

the Dude weight

• The result about the nonequilibrium heat current simplifies the calculation

of the thermal Drude weight that may be given by

Dth = β2
0 lim
β(·)→β0

1

βr − βℓ

lim
t→∞

1

t

∫
ωneq

(
J (t, x)

)
dx

One obtains the universal result Dth = πcv
3β0

that agrees with the one

based on the Green-Kubo formula



• The 1-point expressions are an example of the general relations for

the nonequilibrium expectations in any CFT model. E.g. for

the connected 2-point function, one gets

ωneq, c(T−−(x−
1 ) ;T−−(x−

2 ))

=
( β0

β(x−
1 )

)2( β0

β(x−
2 )

)2
ωeq, c
β0

(T−−(fβ(x
−
1 )) ;T−−(fβ(x

−
2 )))

= π2c

8v4

1

β(x−
1 )2β(x−

2 )2 sinh4
(

π
vβ0

(fβ(x
−
1 )− fβ(x

−
2 ))

)

• One may deal in the same way the nonequilibrium expectations with

insertions of primary fields

• Analogous arguments work for states with temperature and chemical

potential profiles in CFT’s with u(1)-current algebra symmetries

by combining conformal and gauge transformations



• Full counting statistics for the heat transfer

• For the profile states, one may obtain exact formulae for the full

counting statistics (FCS) of the heat transfers across the kink in

a β(x)-profile

• Consider a CFT on [− 1
2 L,

1
2 L] with the boundary conditions as

before. If the kink in β(x) is narrow thenr

β

β

l

G
L

=

∫ 1
2L

− 1
2L

β(x) E(0, x) dx = βℓEℓ + βrEr

where Eℓ and Er are the energies to the left and to the right

of the kink, respectively

• One accesses the FCS of the heat transfers by performing two

measurement of GL in the nonequilibrium state ωneq
L

separated

by time t



• By spectral decomposition

GL =
∑

i

giPi , GL(t) ≡ eitHLGLe
−itHL =

∑

i

giPi(t)

If the 1st measurement gives the value gi and the 2nd one gj then

the transfer of the energy across the kink in time t is

∆e = Er(t)−Er(0) = −(Eℓ(t)−Eℓ(0)) =
gj − gi

∆β

where ∆β = βr − βℓ

• By the QM rules the probability of getting the results (gi, gj) is

pij = ωneq
L

(
PiPj(t)

)

giving for the PDF of the energy transfers

pt,L(∆e) =
∑

ij

δ
(
∆e−

gj−gi

∆β

)
ωneq

(
PiPj(t)

)



• The characteristic function of the probability distribution of ∆e is

Ft,L(λ) ≡

∫
eiλ∆e pt,L(∆e) =

∑

i,j

e
iλ
∆β

(gj−gi) ωneq
L

(
PiPj(t)

)

= ωneq
L

(
e
− iλ

∆β
GL e

iλ
∆β

GL(t)
)
= ωeq

β0,L,L

(
UfL

e
− iλ

∆β
GL e

iλ
∆β

GL(t)
U−1
fL

)

using our relation between the nonequilibrium and equilibrium states

UfL
G

L
U−1
fL

= β0,LH
L

−
cv

24π

∫ 1
2L

− 3
2L

βL(x){fL(x), x} dx

︸ ︷︷ ︸
c−number

UfL
GL(t) U

−1
fL

=

∫ 1
2L

− 3
2L

ζL,t(y)T (y) dy −
cv

24π

∫ 1
2L

− 3
2L

βL(x
+){fL(x), x} dx

︸ ︷︷ ︸
c−number

where ζL,t(y) = vβ0,L
βL(f−1

L
(y)+vt)

βL(f−1
L

(y))



Since H
L

= π
L
(L0 − c

24
),

FL,t(λ) = ωneq
L

(
e
− iλ

∆β
GL e

iλ
∆β

GL(t)
)

=
Tr

(
e2πiτs(L0−

c
24

) U
fs

)

Tr
(
e2πiτ0(L0−

c
24

)
) e

is cv
24π

∫ 1
2L

− 3
2L

(
βL(x)−βL(x+)

)
{fL(x),x} dx

cs,ζL,t

for s = λ
∆β

, τs =
(i−s)vβ0,L

2L
, and fs ∈ Diff

∼

+S1 solving the flow

equation ∂sfs(y) = −ζL,t(fs(y)) , f0(y) = y

• One usually views the denominator Tr
(
e2πiτ(L0−

c
24

)
)

as the character

of the Virasoro algebra representation in the space of states of CFT

• Similarly, the numerator Tr
(
e2πiτ(L0−

c
24

) U
f

)
may be viewed as the

character of the corresponding representation of Diff
∼

+S1



• Characters of Diff
∼

+S1

• The characters of Diff
∼

+S1 may be reduced to those of the respective

Virasoro representation (this did not seem to exist in the literature)

• According to G. Segal, the operator e2πiτ(L0−
c
24

)U
f

is proportional to

the chiral Euclidian CFT amplitude of the complex annulus

Aτ,f =
{
z
∣∣ |e2πiτ | ≤ |z| ≤ 1

}

with the boundary components parameterized by

p1(x) = e2πiτ e−
πi
L

f(x) , p2(x) = e−
πi
L

x

p (x)
2

p (x)1

A
(  ,f)τ

• Usually, group characters are class functions

invariant under the adjoint action

What it means here is that (up to a scalar factor)

Tr
(
e2πiτ(L0−

c
24

) U
f

)
depends only on the torus

Tβ,f obtained from Aτ,f by sewing togeather its

parameterized boundary components

p (x)
1 p (x)2

(  ,f)

=

T τ



• Indeed, Tr
(
e2πiτ(L0−

c
24

) U
f

)
is proportional to the CFT amplitude

of the torus Tβ,f with its natural complex structure

• The complex torus Tβ,f is isomorphic to Tτ̂ ,f0 for f0(x) ≡ x and

some τ̂ in the upper half plane. This implies the relation

Tr
(
e2πiτ(L0−

c
24

) U
f

)
= Cτ,f Tr

(
e2πiτ̂(L0−

c
24

)
)

where the trace on the right-hand-side is the CFT amplitude of the

annulus Aτ̂ ,f0
and Cτ,f is a complex number due to the projective

character of the chiral CFT amplitudes

• The constant Cτ,f may be expressed in terms of determinants of

Fredholm operators on L2(R/(2LZ)) ≡ H that appear in

the context of a Riemann-Hilbert-type problem on the torus Tτ,f

• τ̂ may be obtained by solving a related Fredholm equation



• The Riemann-Hilbert problem on Tτ,f

• Given a function X ∈ H one searches for a holomorphic function X
on Aτ,f such that

X = X1 −X2 for Xi = X ◦ pi

(  ,f)
T τjump of a holomorphic function X

prescribed along the sewing line

• Let P> and P< be the orthogonal projectors in H on the subspaces

spanned by functions e−
πi
L

nx with n > 0 and n < 0, respectively

• Let Qτ,f : H0 −→ H0, for H0 ⊂ H composed of functions with

vanishing integral, be the operator

(P> + P<)(X1 −X2)
Qτ,f
−→ P>X1 − P<X2



• Qτ,f is traceclass. Explicitly

Qτ,f = (K11+K12−K21)(I−K11−K12−K21)
−1(P<−K12)−K12

where Kij : H −→ H have smooth kernels (on the circle R/(2LZ))

(K11X)(x) =
1

2L

∫ 1
2L

− 3
2L

(
f ′(y)

e
πi
L

(f(y)−f(x)) − 1
−

1

e
πi
L

(y−x) − 1

)
X(y) dy

(K12X)(x) = −
1

2L

∫ 1
2L

− 3
2L

1

e2πiτ e
πi
L

(y−f(x)) − 1
X(y) dy

(K21X)(x) =
1

2L

∫ 1
2L

− 3
2L

f ′(y)

e−2πiτ e
πi
L

(f(y)−x) − 1
X(y) dy

and as such are traceclass



• The theory of determinant bundles of Quillen and Segal implies that

Tr
(
e2πiτL0U

f

)
=

(
det(I−Qτ,f )

det(I−Qτ̂,f0
)

)c
2 〈

0
∣∣U

f

∣∣0
〉

︸ ︷︷ ︸
Tr

(
e2πiτ̂L0

)

e
πc
12

i(τ−τ̂)Cτ,f

• This reduces the characters of Diff
∼

+S1 to the more standard ones

of the Virasoro algebra and to the vacuum expectation value of U
f

• The effective modular parameter τ̂ solves the equation

τ̂ − τ =
1

(2L)2

∫ 1
2L

−3
2L

(f − f0)(dX1 − df)

where X1 is the inner boundary value X ◦ p1 of a holomorphic function

on Tτ,f with the jump f − f0 + 2L(τ̂ − τ) across the sewing line

• One obtains this way a reduced formula for the characteristic function

FL,t(λ) of FCS in which c−1
s,ζ

Tr
(
e2πiτs(L0−

c
24

)U
fs

)
was the only

non-explicit entry



• The vacuum matrix element of U
fs

• For the flow fs(x) of the vector field −ζ(x)∂x

c−1
s,ζ

〈
0
∣∣U

fs

∣∣0
〉
=

〈
0
∣∣eis

∫
ζ(x) T (x) dx

∣∣0
〉
= e

− c
2

s∫

0
Tr
(
Vζ,f

s′

)
ds′

where Vζ,f =P>FfP<(ζ∂)P>(P>FfP>)−1 for (FfX)(x)=X(f−1(x))
is a traceclass operator

• The above formula may be obtained from the result for massless free field,

giving a Fredholm determinant (Bruneau-Dereziński 2007),

raised to power c

• It represents the characteristic function of the distribution of coarse-grained

energy density in the vacuum state

• In recent paper by Fewster-Hollands arXiv:1805.0428 it was related to

a conformal welding problem, a cousin of the Riemann-Hilbert one,

and a differential equation was proposed for Tr
(
e2πiτ0(L0−

c
24

)U
fs

)



• Summarizing: the generating function FL,t(λ) of FCS is expressed by

the Virasoro character of the space of states and explicit Fredholm

determinants

• FCS for the heat transfer in the thermodynamic limit

• The formula for characteristic function of the FCS heat transfer

simplifies in the limit L → ∞ giving

Ft(λ) = lim
L→∞

FL,t(λ) = e
− c

2

∑

+,−

s∫

0
Tr
(
(I−Q±

t,s′
)−1∂s′Q

±
t,s′

−V±
t,s′

)
ds′

× e
is cv

24π

∫ (
2β(x)−β(x+)+β(x−)

)
{fβ(x),x} dx

where operators Q in L2(R) are related to the integral operators Kij

obtained in the L → ∞ limit from Kij



Q = (K11 +K12 −K21)(I −K11 +K12 +K21)
−1(P< −K12)−K12

(K11X)(x) =
1

2πi

∫ ∞

−∞

( f ′(y)

f(y)− f(x)
−

1

y − x

)
X(y) dy

(K12X)(x) = −
1

2πi

∫ ∞

−∞

1

y − f(x) + (i− s)vβ0
X(y) dy

(K21X)(x) =
1

2πi

∫ ∞

−∞

f ′(y)

f(y)− x− (i− s)vβ0
X(y) dy

Q±
t,s correspond to f(y) = f±s(±y) for ∂sf±s(±y)=∓ζ±t(f±s(∓y))

(right- and left-movers contributions) with ζ±t(y) = vβ0
β(f

−1
β

(y)±vt)

β(f
−1
β

(y))
,

fβ(x) =
∫ x

0
β0

β(x′)
dx′, β−1

0 = 1
2
(β−1

L + β−1
R )



• Operators V±
t,s are obtained from Vζ,f in the L → ∞ limit

by setting ζ(y) = ζ±t(±y) and f(y) = f±s(±y)

• It follows that Ft(λ) is universal depending only on the profile β(x)
and the central charge c of the CFT

• 1st moment
〈
(∆e)(t)

〉
= 1

i ∂λ
∣∣
λ=0

Ft(λ)

=
πc

12(vβ0)2∆β

∑

±

ξ̂±t (0) +
cv

24π∆β

∑

±

∫
(β(x)−β(x±)){fβ(x), x}dx

where ξ̂±t (p) =
∫
eipx

(
ζ±t(±x)− vβ0

)
dx

• 2nd moment
〈
(∆e)(t) ; (∆e)(t)

〉c
= −∂2

λ

∣∣
λ=0

lnFt(λ)

=
c

48π2(∆β)2

∑

±

∫ p(p2+ 4π2

(vβ0)2
)

1−e−vβ0p
ξ̂±t (p) ξ̂±t (−p) dp

• Fano factor

〈
(∆e)(t) ;(∆e)(t)

〉c
〈
(∆e)(t)

〉 ?



• One should be able to extract the large deviations asymptotics of

Bernard-Doyon (2012)

lim
t→∞

1

t
lnFt(λ) =

πc

12

(
1

βℓ−iλ
−

1

βℓ
+

1

βr+iλ
−

1

βr

)
≡ Φ(λ)

from our exact formula for Ft(λ)

• The above formula means that at large t the energy transfers ∆e(t)
become a Lévy process with the jump rates

w(x, y) =
πc

12

(
e−βℓ(y−x)θ(y − x) + e−βr(x−y)θ(x− y)

)

where θ( · ) is the Heaviside step function

• For large t, pt(∆e) ∝ e tI(∆e
t

) with the rate function

I(σ) = min
ν∈[−βr,βℓ]

(
Φ(−iν)− νσ

)
=

πc

12

{
−βℓσ + o(σ) for σ→∞
βrσ + o(σ) for σ→−∞

possessing the Gallavotti-Cohen symmetry I(−σ) = I(σ)− σ∆β



Conclusions

• In a CFT conformal symmetries may be used to map inhomogeneous
situations to homogeneous ones

• That allowed to express nonequilibrium expectations in states with
temperature profile in terms of equilibrium ones

• Profile states were e.g. shown to describe on mesoscopic scales dense
cold gases in 1d traps

• States where one imposes also the profiles of chemical potential can

be treated similarly in theories with current-algebra symmetries
(e.g. in the local Luttinger model)

• The general results confirmed and extended the particular ones obtained
by LLMM for the Luttinger model through perturbative calculations

• The FCS statistics of energy transfers in such states was reduced to

the character of Diff
∼

+S1 and shown to become a universal functional

of the temperature profile in the thermodynamic limit


