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.
Theme of my talk
..

.

Submanifold in the space of matrices

I will relate:

cohomology classes on such submanifolds;

topological invariants of quantum systems on lattices

such as insulators and semimetals.

What I will talk about is something like a basic idea for

future possible works, and it stemmed from discussion with

collaborators:

Ken Shiozaki, Masatoshi Sato, Guo Chuan Thiang, ...
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...4 Semimetal
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Quantum system on lattice

I would like to consider a certain quantum mechanical

system on a lattice Zd ⊂ Rd.

The Hilbert space in this system is

L2(Zd,Cn) =

{
ψ = (ψ(j))j∈Zd

∣∣∣∣ ∑ ∥ψ(j)∥2 < ∞
}
,

where n is the internal freedom at each site.

The Hamiltonian H : L2(Zd,Cn) → L2(Zd,Cn) is a
self-adjoint operator which is

commuting with the translation operator on the lattice,

describing a “short range interaction”.
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Fourier transformed Hamiltonian

Under the assumptions on the Hamiltonian H, its

information is completely encoded into the Fourier

transformed Hamiltonian

Ĥ : T d → H(Cn).

This is a continuous map from the d-dimensional torus

(BZ torus) to the space of n× n Hermitian matrices

H(Cn) = {H ∈ M(n,C)| H† = H} ∼= Rn2
.

Let us say that the quantum system is

insulator if det Ĥ(k) ̸= 0 for all k ∈ T d,

semimetal if det Ĥ(k) = 0 at some k ∈ T d.

(The definition may be physically insufficient.)
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Classification of topological phase by homotopy

Now, the classification of the topological phase

described by Ĥ can be done by the classification of

homotopy class of Ĥ within a fixed type of phases.

For example, if Ĥ is an insulator (det Ĥ ̸= 0), then we

consider the homotopy within insulators. In other words,

we consider the homotopy classes of

T d → H0(Cn) = {H ∈ H(Cn)| detH ̸= 0}.

A more equivalence relation (such as “stability” under

an addition of uninteresting phases) can be introduced ,

but I will not consider it today for simplicity.
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Topological invariant: the case of insulator

Then, for the classification of the homotopy class of Ĥ,

it is useful to consider a topological invariant of Ĥ, a

quantity invariant under the homotopy deformation.

For example, in the case of an insulator

Ĥ : T d → H0(Cn) = {H ∈ H(Cn)| detH ̸= 0},

one has the Chern classes of the Bloch vector bundle

E =
∪

k∈T d

⊕
λ<0

Ker(Ĥ(k) − λ).

In 2D case, the integration of the Chern class c1(E) is a

topological invariant of the insulator.
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Topological invariant: the case of insulator

In the example of an insulator, the Chern classes of

Bloch bundles are closely related to the subspace

H0(Cn) = {H ∈ H(Cn)| detH ̸= 0}

in the space of Hermitian matrices H(Cn).

Actually, H0(Cn) ⊂ H(Cn) is an open submanifold

homotopy equivalent to the Grassmannian of Cn.

To consider semimetals, we allow singularities for the

Hamiltonian Ĥ : T d → H(Cn), namely, points k ∈ T d

at which det Ĥ(k) = 0.

This leads us to consider subspaces in H(Cn) other than

H0(Cn).
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.
The things I would like to talk today:
..

.

...1 Some subspaces of matrices give rise to submanifolds.

...2 Some cohomology classes on such submanifolds provide

invariants of insulators and semimetals.

...3 An application is a formula of the change of topological

numbers under a deformation allowing singularities.

Originally, I anticipated that a use of the submanifolds

of matrices can be applied to a detection of new

topological phases. But, the things I tell you today are

still on the way to the goal.
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The space of complex square matrices

To warm up, I would like to consider submanifolds in the

space of complex matrices M(Cn) = M(n,C), rather
than those in the space of Hermitian matrices H(Cn).

If we consider a quantum system of class AIII, then the

chiral symmetry arrows us to assume that a

Fourier-transformed Hamiltonian is of the form

Ĥ(k) =

(
0 A(k)

A(k)† 0

)
.

Hence the Hamiltonian Ĥ amounts to

A : T d → M(Cn) = M(n,C).

Because of this fact, it is still meaningful to study

M(Cn) in the context of quantum systems.
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Subspaces in M(Cn) = M(n,C) ∼= Cn2

.
Definition
..

.

For an integer k, we put

M≤k(Cn) := {A ∈ M(Cn)| dimKerA ≤ k},
Mk(Cn) := {A ∈ M(Cn)| dimKerA = k}.

Here A is regarded as a linear map A : Cn → Cn by the left

multiplication.

M≤k(Cn) = M≤k−1(Cn) ∪ Mk(Cn)

· · · ⊂ M≤k−1(Cn) ⊂ M≤k(Cn) ⊂ · · ·

In general, M≤k(Cn) ⊂ M(Cn) is an open complex

submanifold, and dimCM≤k = dimCM = n2.
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Example: n = 1
.

.

M≤k(Cn) = {A ∈ M(Cn)| dimKerA ≤ k}
open
⊂ M(Cn),

Mk(Cn) = {A ∈ M(Cn)| dimKerA = k}.

M≤1(C)= M(1,C) = C∪
M1(C) = {0}

M≤0(C)= GL(1,C) = C×

In general, we have obvious identifications

M≤n(Cn) = M(Cn) ∼= Cn2
, Mn(Cn) = {0},

M≤n−1(Cn) ∼= Cn2\{0},
M≤0(Cn) = M0(Cn) = GL(n,C).
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Example: n = 2

.

.

M≤k(Cn) = {A ∈ M(Cn)| dimKerA ≤ k}
open
⊂ M(Cn),

Mk(Cn) = {A ∈ M(Cn)| dimKerA = k}.

M≤2(C2)= M(2,C) ∼= C4∪
M2(C2) = {0}

M≤1(C2)∼= C4\{0}∪
M1(C2) = {A ̸= 0,detA = 0}

M≤0(C2)= GL(2,C)
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Subspace Mk(Cn) ⊂ M≤k(Cn)

.

.

M≤k(Cn) = {A ∈ M(Cn)| dimKerA ≤ k}
open
⊂ M(Cn),

Mk(Cn) = {A ∈ M(Cn)| dimKerA = k}.

.
Fact
..

.

Mk(Cn) ⊂ M≤k(Cn) is a closed complex submanifold of

dimCMk(Cn) = n2 − k2.

M≤1(C)= M(1,C) = C∪
M1(C) = {0}

M≤0(C)= GL(1,C) = C×
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Example: n = 2

.

.

M≤k(Cn) = {A ∈ M(Cn)| dimKerA ≤ k}
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⊂M(Cn),
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M≤2(C2)= M(2,C) ∼= C4∪
M2(C2) = {0}

M≤1(C2)∼= C4\{0}∪
M1(C2) = {A ̸= 0,detA = 0}

M≤0(C2)= GL(2,C)
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Cohomology

M≤k(Cn) = M≤k−1(Cn) ∪ Mk(Cn) ⊃ Mk(Cn)∪
closed

M≤k−1(Cn) open

To apply the submanifolds of matrices, we need to know

their cohomology groups.

A basic tool is the long exact sequence associated to the

pair (M≤k(Cn),M≤k−1(Cn)) :

· · · → Hm(M≤k,M≤k−1) → Hm(M≤k) → Hm(M≤k−1) →
· · · → Hm+1(M≤k,M≤k−1) → · · ·
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Cohomology

M≤k(Cn) = M≤k−1(Cn) ∪ Mk(Cn) ⊃ Mk(Cn)∪
closed

M≤k−1(Cn) open

Another basic tool is an isomorphism

(“Alexander-Poincaré duality”)

Hm(M≤k(Cn),M≤k−1(Cn))
α∼= Hm−2k2

(Mk(Cn)).

n = 1 and k = 1:

Hm(M≤1,M≤0) = Hm(C,C×) ∼= Hm(D2, ∂D2),

Hm−2(M1) = Hm−2({0}).
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Remark

Next, I will apply the submanifolds and their cohomology

classes to quantum systems of class AIII.

Before that, I remark that what I presented here is a

finite-dimensional analogue of Koschorke’s work:

U. Koschorke, Infinite dimensional K-theory and

characteristic classes of Fredholm bundle maps.

1970 Global Analysis (Proc. Sympos. Pure Math.,

Vol. XV, Berkeley, Calif., 1968) pp. 95–133 Amer.

Math. Soc., Providence, R.I.

In this paper, characteristic classes for K-theory are

constructed by using submanifolds in the space of

Fredholm operators.
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Remark

Replacing Cn by an infinite-dimensional Hilbert space

H, we can make sense of the following generalizations of

M≤k(Cn) and Mk(Cn):

F≤k(H) =

{
A : H → H Fredholm operator

dimKerA = dimCokerA ≤ k

}
,

Fk(H) =

{
A : H → H Fredholm operator

dimKerA = dimCokerA = k

}
.

It turns out that Fk(H) ⊂ F≤k(H) is a complex

submanifold of codimension k2, although Fk(H) and

F≤k(H) are infinite-dimensional.

There is also an isomorphism

Hm(F≤k,F≤k−1) ∼= Hm−2k2
(Fk).
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Change of topological numbers

Recall that a certain quantum system on a d-dimensional

lattice is described by a map H : T d → H(Cn).

An insulator is characterized by the gap condition;

detH(k) ̸= 0 for all k ∈ T d.

A quantum system is class AIII, if there is a linear

symmetry Γ (called a chiral symmetry) such that

Γ2 = 1, ΓH(k) = −H(k)Γ.

Without loss of generality, we can assume

Γ =

(
1Cn 0

0 −1Cn

)
, H(k) =

(
0 A(k)†

A(k) 0

)
.
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Class AIII insulator

Then a d-dim insulator of class AIII is described by

A : T d → M≤0(Cn) = M0(Cn) = GL(n,C).

It is well-known that GL(n,C) ≃ U(n), and

H•(U(n);Z) =
∧

(ν1, . . . , ν2n−1),

where ν2j−1 ∈ H2j−1(U(n);Z).

In the case that d = 2n− 1, we can define the

d-dimensional winding number by

top(A) =

∫
T 2n−1

A∗ν2n−1 ∈ Z.
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Change of topological phases

Now, let us consider a one-parameter family of

(2n− 1)-dimensional class AIII quantum systems

Ã : T 2n−1 × [0, 1] → M(Cn) = Cn2
.

.
Assumption
..

.

...1 Ã is a smooth map.

...2 Ã(k, t) ∈ M≤1(Cn) ⊂ M(Cn) for all k, t.

...3 Ã(k, i) ∈ M0(Cn) for all k and i = 0, 1.

...4 a condition which ensures that

Σ := {(k, t) ∈ T 2n−1 × [0, 1]| det Ã(k, t) = 0}

is a (2n− 2)-dimensional submanifold of T 2n−1 × [0, 1].



Introduction Submanifolds Change of topological numbers Semimetal

Change of topological numbers

(T 2n−1 × [0, 1], T 2n−1 × {0, 1}) Ã−→ (M≤1(Cn),M≤0(Cn))

Σ = {(k, t) ∈ T 2n−1 × [0, 1]| det Ã(k, t) = 0} Ã|Σ−→ M1(Cn)

.
Theorem
..

.

Under the assumption, we have

top(Ã|T 2n−1×{0}) − top(Ã|T 2n−1×{1}) =

∫
Σ
Ã|∗Σγ2n−2,

where γ2n−2 ∈ H2n−2(M1(Cn)) is the class induced from

ν2n−1 ∈ H2n−1(M≤0(Cn)) through

H2n−1(M≤0)
δ→ H2n(M≤1,M≤0)

α∼= H2n−2(M1).
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Example: d = 1 (n = 1)

(T 2n−1 × [0, 1], T 2n−1 × {0, 1}) Ã−→ (M≤1(Cn),M≤0(Cn))

Σ = {(k, t) ∈ T 2n−1 × [0, 1]| det Ã(k, t) = 0}

top(Ã|T 2n−1×{0}) − top(Ã|T 2n−1×{1}) =

∫
Σ
Ã|∗Σγ2n−2

In the case of n = 1, let us consider

Ã : R/2πZ × [0, 1] −→ M≤1(C) = C

Ã(k, t) = (1 − t) + teik

Then the change of the topological numbers

0 − 1 = −1

agrees with the number of points in Σ = {(π, 1/2)}
counted with weight Ã∗γ0 = −1.
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Remark

I just explained the case of class AIII, but the formula

can be generalized:

...1 we can consider the other Altland-Zirnbauer classes

(class A, AI, BDI, D, ....)
...2 we can allow crystalline symmetry of the lattice

In the first generalization, we need to consider a suitable

equivariant cohomology, for real classes.

In the second generalization, we need to consider a fiber

bundle of submanifolds of matrices in addition, for

nonsymmorphic crystalline symmetry.
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Semimetal

I would like to relate submanifolds of matrices with the

“semimetal class” of V. Mathai and G. C. Thiang:

V. Mathai and G. C. Thiang, Global topology of

Weyl semimetals and Fermi arcs. Journal of Physics

A: Mathematical and Theoretical 50 (11), 11LT01

V. Mathai and G. C. Thiang, Differential topology

of semimetals. Communications in Mathematical

Physics 355 (2), 561-602
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Submanifolds of traceless Hermitian matrices

For the semimetal setup, let us consider the subspaces

of n× n traceless Hermitian matrices
.

.

H0(Cn) = {H ∈ M(Cn)| H† = H, trH = 0} ∼= Rn2−1,

H0
≤k(C

n) = {H ∈ H0(Cn)| dimKerH ≤ k},

H0
k(C

n) = {H ∈ H0(Cn)| dimKerH = k}.

The traceless condition leads to

H0
n−1(C

n) = ∅, H0
≤n−2(C

n) = H0
≤n−1(C

n).

Except for this point, we have the same results as before.
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Submanifolds of traceless Hermitian matrices
.

.

H0
≤k(C

n) = {H ∈ H0(Cn)| dimKerH ≤ k},

H0
k(C

n) = {H ∈ H0(Cn)| dimKerH = k}.

In general, H0
≤k(C

n) ⊂ H0(Cn) is an open submanifold

of dimension dimRH0
≤k(C

n) = dimRH0(Cn) = n2 − 1.

H0
k(C

n) ⊂ H0
≤k(C

n) is a closed submanifold of

dimension n2 − k2 − 1 for k ≤ n− 2, with orientable

normal bundle.

In the case of n = 2:

H0
≤2(C

2)∼= R3∪
H2(C2) = {0}

H0
≤0(C

2)= H0
≤1(C

2) ∼= R3\{0}
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3d “Weyl” semimetal

.

.

H0
≤2(C

2)∼= R3∪
H2(C2) = {0}

H0
≤0(C

2)= H0
≤1(C

2) ∼= R3\{0}

Suppose that we are given a continuous map

H : T 3 → H0
≤2(C

2) = H0(C2) ∼= R3

such that the set of “Weyl points”

W = {k ∈ T 3| detH(k) = 0}

consists of a finite number of points.
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3d “Weyl” semimetal
.

.

W = {k ∈ T 3| detH(k) = 0}

W H0
2(C

2) = {0}∩ ∩
T 3 H→ H0

≤2(C
2)∼= R3∪ ∪

T 3\W H0
≤0(C

2)= H0
≤1(C

2) ∼= R3\{0} ≃ S2

We can then have a map

H : T 3\W → H0
≤0(C

2).

The pullback of a generator in H2(H0
≤0(C

2)) ∼= Z is

essentially the semimetal class of Mathai and Thiang:

The semimetal class of H ∈ H2(T 3\W ).
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3d “Weyl” semimetal

The “Mayer-Vietoris sequence” of Mathai-Thiang is

equivalent to

insulator︷ ︸︸ ︷
H2(T 3) →

semimetal︷ ︸︸ ︷
H2(T 3\W )

δ→ H3(T 3, T 3\W )
α∼=

charge︷ ︸︸ ︷
H0(W ) .

There is the universal counterpart

H2(H0
≤2) → H2(H0

≤0)
δ→ H3(H0

≤2,H
0
≤0)

α∼= H0(H0
2).

A use of the submanifolds

· · · ⊂ H0
≤k−1(C

n) ⊂ H0
≤k(C

n) ⊂ · · ·

would generalize the semimetal class.
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