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Theme of my talk

Submanifold in the space of matrices

I will relate:
o cohomology classes on such submanifolds;

o topological invariants of quantum systems on lattices
such as insulators and semimetals.

What | will talk about is something like a basic idea for
future possible works, and it stemmed from discussion with
collaborators:

Ken Shiozaki, Masatoshi Sato, Guo Chuan Thiang, ...



Plan of my talk

© Introduction
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© Change of topological numbers

Q@ Semimetal



Introduction

Quantum system on lattice

@ | would like to consider a certain quantum mechanical
system on a lattice Z¢ C R?.

@ The Hilbert space in this system is

S @)% < oo},

where n is the internal freedom at each site.
o The Hamiltonian H : L%(Z¢,C") — L?(Z4,C") is a
self-adjoint operator which is

L%(z%,Cc") = {Ib = (¥(3))jeza

e commuting with the translation operator on the lattice,
o describing a “short range interaction”.
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Fourier transformed Hamiltonian

@ Under the assumptions on the Hamiltonian H, its
information is completely encoded into the Fourier
transformed Hamiltonian

H:TY - H(C").

This is a continuous map from the d-dimensional torus
(BZ torus) to the space of n X n Hermitian matrices

H(C™) = {H € M(n,C)| H' = H} 2R,

@ Let us say that the quantum system is

o insulator if det H (k) # 0 for all k € T,
o semimetal if det H (k) = 0 at some k € T

(The definition may be physically insufficient.)
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Classification of topological phase by homotopy

@ Now, the classification of the topological phase
described by H can be done by the classification of
homotopy class of F within a fixed type of phases.

o For example, if H is an insulator (det [/ # 0), then we
consider the homotopy within insulators. In other words,
we consider the homotopy classes of

T — Ho(C™) = {H € H(C™)| det H # 0}.

e A more equivalence relation (such as “stability” under
an addition of uninteresting phases) can be introduced ,
but | will not consider it today for simplicity.
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Topological invariant: the case of insulator

o Then, for the classification of the homotopy class of H,
it is useful to consider a topological invariant of H,a
quantity invariant under the homotopy deformation.

o For example, in the case of an insulator
H:T% = Ho(C") = {H € H(C")| det H # 0},
one has the Chern classes of the Bloch vector bundle

E= | ) €pKer(H(K) — N).

keTe A0

e In 2D case, the integration of the Chern class ¢;(FE) is a
topological invariant of the insulator.
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Topological invariant: the case of insulator

In the example of an insulator, the Chern classes of
Bloch bundles are closely related to the subspace

Ho(C™) = {H € H(C™)| det H # 0}

in the space of Hermitian matrices H(C™).

Actually, Ho(C™) C H(C™) is an open submanifold
homotopy equivalent to the Grassmannian of C™.

To consider semimetals, we allow singularities for the
Hamiltonian H : T% — #(C™), namely, points k € T*
at which det H (k) = 0.

This leads us to consider subspaces in H(C™) other than
Ho(C™).



Introduction

The things | would like to talk today:

© Some subspaces of matrices give rise to submanifolds.

@ Some cohomology classes on such submanifolds provide
invariants of insulators and semimetals.

© An application is a formula of the change of topological
numbers under a deformation allowing singularities.



Introduction

The things | would like to talk today:

© Some subspaces of matrices give rise to submanifolds.

@ Some cohomology classes on such submanifolds provide
invariants of insulators and semimetals.

© An application is a formula of the change of topological
numbers under a deformation allowing singularities.

e Originally, | anticipated that a use of the submanifolds
of matrices can be applied to a detection of new
topological phases. But, the things | tell you today are
still on the way to the goal.
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The space of complex square matrices

@ To warm up, | would like to consider submanifolds in the
space of complex matrices M (C") = M (n,C), rather
than those in the space of Hermitian matrices H(C").



Submanifolds

The space of complex square matrices

To warm up, | would like to consider submanifolds in the
space of complex matrices M (C") = M (n, C), rather
than those in the space of Hermitian matrices H(C™).
If we consider a quantum system of class Alll, then the
chiral symmetry arrows us to assume that a
Fourier-transformed Hamiltonian is of the form

5 0 A(k)
H(k):<A(k:)T 0 )

Hence the Hamiltonian H amounts to
A: T - M(C") = M(n,C).

Because of this fact, it is still meaningful to study
M(C™) in the context of quantum systems.



Submanifolds
Subspaces in M(C") = M (n,C) = C™

Definition
For an integer k, we put

M, (C") :={A € M(C")| dimKerA < k},
M (C") := {A € M(C")| dimKerA = k}.

Here A is regarded as a linear map A : C™ — C™ by the left
multiplication.

M, (C") = Mcp—1(C™) U Mg (C™)
cor C M1 (C") T M (C™) C - -

o In general, M, (C™) C M(C™) is an open complex

submanifold, and dimcM<, = dimcM = n2.



Submanifolds

Example: n =1

open
M (C") = {A € M(C™")| dimKerA < k} C M(C"),
Mp(C") = {A € M(C™)| dimKerA = k}.

M<1(C)= M(1,C) = C

U M (C) = {0}
M o(C)= GL(1,C) = CX

o In general, we have obvious identifications

Mzn(C) = M(C™) 2 C™, Ma(C™) = {0},
Mzn_1(C") = C\{0},

M<o(C™") = Mp(C™) = GL(n,C).



Submanifolds

Example: n = 2

open
M, (C") = {A € M(C")| dimKerA <k} C M(C"),
M (C") = {A € M(C™)| dimKerA = k}.

M5(C2)= M(2,C) = C*

U M3 (C?) = {0}
M1 (C?)= C*\{0}
U M;(C?%) = {A # 0,det A = 0}

MSO((CZ): GL(2, (C)



Submanifolds

Subspace M (C") C M<,(C™)

open
M, (C™) = {A € M(C")| dimKerA <k} C M(C"),
Mp(C") = {A € M(C™)| dimKerA = k}.

Fact
M (C™) C M<(C™) is a closed complex submanifold of

dimc M (C") = n? — k2

M<1(C)= M(1,C) = C

U M, (C) = {0}
M<o(C)= GL(1,C) = C*



Submanifolds

Example: n = 2

op
M, (C™) = {A € M(C")| dimKerA < k} C M(C™),
M (C™") = {A € M(C™)| dimKerA = k}CIMSk(Cn)'
c

M5 (C?)= M(2,C) = C*

U M2 (C?) = {0}
M<q(C?)= C\{0}
U M;(C?) = {A # 0,det A = 0}

M<o(C2?)= GL(2,C)



Submanifolds

Cohomology

M (C?) = Mg 1(CT) UME(C™) DO M(CT)
U closed
Mcp_1(C™) open

e To apply the submanifolds of matrices, we need to know
their cohomology groups.

@ A basic tool is the long exact sequence associated to the
pair (M<x(C™), M<p—1(C™)) :

= H™"(Mcp, M<p—1) = H"(Mcy) - H"(M<p—q) —
s H™ M (Mo, Mcje_q) = -+
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Cohomology

M (C?) = M 1(C") UME(CT) D M (CM)
U closed
Mc<i_1(C™) open

@ Another basic tool is an isomorphism
(“Alexander-Poincaré duality”)

H™(M<p,(C"), Mcj_1 (C™) & H™ 2 (M, (C™).

en=1and k = 1:

H™(Mcy, M<o) = H™(C,C*) = H™(D?, 8D?),
H™?(My) = H™?({0}).



Introduction Submanifolds Change of topological numbers Semimeta

Remark

@ Next, | will apply the submanifolds and their cohomology
classes to quantum systems of class Alll.

o Before that, | remark that what | presented here is a
finite-dimensional analogue of Koschorke's work:

U. Koschorke, Infinite dimensional K-theory and
characteristic classes of Fredholm bundle maps.
1970 Global Analysis (Proc. Sympos. Pure Math.,
Vol. XV, Berkeley, Calif., 1968) pp. 95-133 Amer.
Math. Soc., Providence, R.I.

o In this paper, characteristic classes for K-theory are
constructed by using submanifolds in the space of
Fredholm operators.



Submanifolds

Remark

e Replacing C™ by an infinite-dimensional Hilbert space
‘H, we can make sense of the following generalizations of
M (C™) and My (C™):

Fen(3) = A : H — H Fredholm operator
sk 7 dimKerA = dimCokerA < k[
A : H — H Fredholm operator
Fi(H) = .
k() { dimKerA = dimCokerA = k }

o It turns out that Fj(H) C F<i(H) is a complex
submanifold of codimension k2, although F(#) and
F<i(H) are infinite-dimensional.

o There is also an isomorphism

H™(F<py F<p—1) = H™ (7).
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Change of topological numbers

Change of topological numbers

@ Recall that a certain quantum system on a d-dimensional
lattice is described by a map H : T¢ — H(C™).

@ An insulator is characterized by the gap condition;
det H(k) # 0 for all k € TC.

@ A quantum system is class Alll, if there is a linear
symmetry I' (called a chiral symmetry) such that

r2=1, T'H(k) = —H(k)T.

e Without loss of generality, we can assume

[ 1lcn O B 0 A(k)T
F_< 0 —1Cn>’H(k)_<A(k) 0 )
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Class Alll insulator

@ Then a d-dim insulator of class Alll is described by
A:T% - M<o(C™) = Mo(C™) = GL(n,C).
e It is well-known that GL(n,C) ~ U(n), and
H*(U(n);Z) = /\(Vh ey Van—1),

where vo;_1 € HY~1(U(n); Z).
@ In the case that d = 2n — 1, we can define the
d-dimensional winding number by

top(A) :/ A*vop_1 € Z.

T2n—1



Change of topological numbers

Change of topological phases

@ Now, let us consider a one-parameter family of
(2n — 1)-dimensional class Alll quantum systems

A:T? 1 x [0,1] = M(C") = C™.
Assumption
O A is a smooth map.
@ A(k,t) € M<1(C™) C M(CP) for all k, t.
Q A(k,i) € Mo(C") for all k and i = 0, 1.

@ a condition which ensures that
Y= {(k,t) € T? ! x [0,1]| det A(k,t) = 0}

is a (2n — 2)-dimensional submanifold of 72"~ x [0, 1].



Change of topological numbers

Change of topological numbers

(T2n—1 X [0’ 1],T2"_1 X {0,]_}) i} (MSI((Cn), MSO(Cn))

S = {(kyt) € T* 1 x [0,1]| det A(k, t) = 0} A5 M, (C™)

Theorem
Under the assumption, we have

top(A|r2n-1x{0}) — toP(Alr2n-1x{13) = /):A!E’an—z,

where v2,,_2 € H?"~2(M;(C")) is the class induced from
Van—1 € H?*""1(M<o(C™)) through

H2 " (Mog) D H2(Moy, Mog) = H272(M,).
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Example: d =1 (n =1)

(T2 % [0,1], T2 x {0,1}) -2 (M1 (C?), M<o(C™))
¥ = {(k,t) € T>""1 x [0,1]| det A(k,t) = 0}

tOp(A|T2"*1><{O}) - top(A’T”L*lx{l}) = /Efilzwn_z

@ In the case of n = 1, let us consider
A: R/27Z x [0,1] — M<4(C) =C
A(k,t) = (1 —t) + tet*
@ Then the change of the topological numbers
0—1=-1

agrees with the number of points in ¥ = {(7,1/2)}
counted with weight x‘i*’Yo = —1.



Change of topological numbers

Remark

o | just explained the case of class Alll, but the formula
can be generalized:
@ we can consider the other Altland-Zirnbauer classes

(class A, Al, BDI, D, ....)
@ we can allow crystalline symmetry of the lattice

o In the first generalization, we need to consider a suitable
equivariant cohomology, for real classes.

@ In the second generalization, we need to consider a fiber
bundle of submanifolds of matrices in addition, for
nonsymmorphic crystalline symmetry.
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Semimetal

@ | would like to relate submanifolds of matrices with the
“semimetal class” of V. Mathai and G. C. Thiang:

V. Mathai and G. C. Thiang, Global topology of
Weyl semimetals and Fermi arcs. Journal of Physics
A: Mathematical and Theoretical 50 (11), 11LT01

V. Mathai and G. C. Thiang, Differential topology
of semimetals. Communications in Mathematical
Physics 355 (2), 561-602



Semimetal

Submanifolds of traceless Hermitian matrices

@ For the semimetal setup, let us consider the subspaces
of n X n traceless Hermitian matrices

HO(C™) = {H € M(C™)| H' = H,trH = 0} X R™ 1,
HL,(C") = {H € #°(C™)| dimKerH < k},
Hy(C™) = {H € H°(C")| dimKerH = k}.

@ The traceless condition leads to
Hy_1(CM) =0, %%n—z(cn) = H%n—l(cn)‘

o Except for this point, we have the same results as before.



Semimetal
Submanifolds of traceless Hermitian matrices

H%k(cn) = {H € #°(C")| dimKerH < k},
HI(C™) = {H € H°(C")| dimKerH = k}.

o In general, H%, (C™) C H°(C™) is an open submanifold
of dimension dimpH%, (C*) = dimpH®(C") = n? — 1.
o HR(C™) C HL,(C™) is a closed submanifold of

dimension n? — k? — 1 for k < n — 2, with orientable
normal bundle.

@ In the case of n = 2:
HL,(C?)= R?

U H2(C?) = {0}
HZo(C*)=HZ, (C?) = R*\{0}



Semimetal

3d “Weyl” semimetal

H,(C) R

U H2(C?) = {0}
HEo(C*)= HZ, (C?) = R*\{0}

@ Suppose that we are given a continuous map
H:T? - HZ,(C?) = HO(C?) = R®
such that the set of “Weyl points”
W = {k € T3| det H(k) = 0}

consists of a finite number of points.



Semimetal
3d “Weyl” semimetal

W = {k € T?| det H(k) = 0}

w #H3(C?) = {0}
N N
T8 5 HL,(CH)=R3
U U
T3\W HL(C?)= HL,(C?) = R3\{0} ~ S?

@ We can then have a map
H : T3\W — H%,(C?).

o The pullback of a generator in H2(H%,(C?)) =X Z is
essentially the semimetal class of Mathai and Thiang;:

The semimetal class of H € H?*(T3\W).



Semimetal

3d “Weyl” semimetal

o The “Mayer-Vietoris sequence” of Mathai-Thiang is
equivalent to

insulator semimetal charge

— —_——~— a ——
H2(T3) — H*(T3\W) > H3(T?, T3\W) = HO(W).

@ There is the universal counterpart

e

H*(M%,) — H*(H,) RN H?(HL,, HE ) = HO(HY).
@ A use of the submanifolds

L CHY 4 (€M) CHLL(EM) C -+

would generalize the semimetal class.
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