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Seminar outline
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A model for quantum transport
Charge and spin current operator
Construction of the NEASS
Adiabatic conductivity σεij : Kubo-like formula and beyond

Spin conductance and spin conductivity: analysis of Kubo-like terms
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Linear response coe�cients: σij

We are going to

I study the linear response coe�cients of a gapped, periodic and
one-particle quantum system to the perturbation of a small
electric �eld, modeled by a potential −εXj with ε� 1, in
terms of the conductivity σij

I for both charge (Quantum Hall e�ect) and spin (Quantum spin
Hall e�ect) transport.

I derive formulas via an argument which is as
model-independent as possible via the method of
non-equilibrium almost-stationary state (NEASS)

I avoiding the linear response ansatz (LRA) and any justi�cation
of its validity.
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A model for quantum transport

Assumption (H) on the unperturbed model

I H := L2(X)⊗ CN ,
X = Rd or X = discrete d-dimensional crystal ⊂ Rd .

I H0 is a operator on H and bounded from below
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Assumption (H) on the unperturbed model

I H := L2(X)⊗ CN ,
X = Rd or X = discrete d-dimensional crystal ⊂ Rd .

I H0 is a periodic gapped operator on H and bounded from
below
I Bravais lattice of translations = Γ ' Zd

[H0,Tγ ] = 0 ∀γ ∈ Γ.

I via Bloch�Floquet representation H0 '
∫ ⊕
Td dk H0(k),

H0(k) acts on Hf := L2(C1)⊗ CN , C1 ' Rd/Γ.



A model for quantum transport

Assumption (H) on the unperturbed model

I H := L2(X)⊗ CN ,
X = Rd or X = discrete d-dimensional crystal ⊂ Rd .

I H0 is a periodic gapped operator on H and bounded from
below

I Π0 = Fermi projection on occupied bands below the spectral
gap is in Bτ

1
.
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Assumption (H) on the unperturbed model

I H := L2(X)⊗ CN ,
X = Rd or X = discrete d-dimensional crystal ⊂ Rd .

I H0 is a periodic gapped operator on H and bounded from
below, such that technical but mild hypotheses on H0

I
H0 : Rd → L(Df ,Hf) , k 7→ H0(k)

is a smooth equivariant map taking values in the self-adjoint
operators with dense domain Df ⊂ Hf . L(Df ,Hf) is the space
of bounded operators from Df , equipped with the graph norm
of H0(0), to Hf .
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under standard hypotheses of relative boundedness of the
potentials w.r.t. −∆ (continuum case).
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The following spaces of operators turn out useful for our analysis

De�nition Let H1,H2 ∈ {Df , Hf}

P(H1,H2) := { Γ-periodic A with smooth �bration Rd → L(H1,H2) }

and P(H1) := P(H1,H1).

By Assumption (H) H0 ∈ P(Df ,Hf)w�
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De�nition Let H1,H2 ∈ {Df , Hf}

P(H1,H2) := { Γ-periodic A with smooth �bration Rd → L(H1,H2) }

and P(H1) := P(H1,H1).

By Assumption (H) H0 ∈ P(Df ,Hf)w�
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Perturbed model
Add an electric �eld in direction j of small intensity ε ∈ [0, 1]:

Hε := H0−εXj

Current operator

S = IdL2(X) ⊗ s self-adjoint, acting only on CN (internal degrees of
freedom)

I s = Id −→ charge current (QHE)

I s = sz = σz/2 −→ spin current (QSHE) proposed by
[SZXN '06]
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~J versus periodicity

Problem
~J is not periodic

~J = i[H0,S ~X ]

if and only if [H0, S ] 6= 0 (for S = IdL2(X) ⊗ sz in the Kane�Mele
model: λRashba 6= 0).

Simple but new observation in [M., Panati, Tauber '18]:

T~γ ~J T
−1
~γ = ~J − ~γ i[H0,S ] ∀~γ ∈ Γ.

 the periodicity is restored on mesoscopic scale!
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Trace per unit volume

τ(A) := lim
L→∞

L∈2N+1

1

|CL|
Tr(χLAχL), |CL| = Ld |C1|

Lemma 1.
Let A be periodic and χKAχK ∈ B1(H) ∀ compact set K . Then

τ(A) is well-de�ned and

τ(A) =
1

|C1|
Tr(χ1Aχ1).

Lemma 2.
Let A be periodic and χKAχK ∈ B1(H) ∀ compact set K . Then

the operator XiA has �nite trace per unit volume and

τ(XiA) =
1

|C1|
Tr (χ1XiAχ1).
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Perturbed model
Add an electric �eld in direction j of small intensity ε ∈ [0, 1]:

Hε := H0−εXj

Theorem 3 (M., Monaco, Panati, Teufel '18).

One can construct a non-equilibrium almost-stationary state

(NEASS) Πε for Hε such that H0 enjoys Assumption (H):

1. Πε = e−iεSΠ0e
iεS for some bounded, periodic and self-adjoint

operator S;

2. Πε almost-commutes with the Hamiltonian Hε, namely

[Hε,Πε] = O(ε2).



Perturbed model
Add an electric �eld in direction j of small intensity ε ∈ [0, 1]:

Hε := H0−εXj

Theorem 3 (M., Monaco, Panati, Teufel '18).

One can construct a non-equilibrium almost-stationary state

(NEASS) Πε for Hε such that H0 enjoys Assumption (H):

1. Πε = e−iεSΠ0e
iεS for some bounded, periodic and self-adjoint

operator S;

2. Πε almost-commutes with the Hamiltonian Hε, namely

[Hε,Πε] = O(ε2).



Perturbed model
Add an electric �eld in direction j of small intensity ε ∈ [0, 1]:

Hε := H0−εXj

Theorem 3 (M., Monaco, Panati, Teufel '18).

One can construct a non-equilibrium almost-stationary state

(NEASS) Πε for Hε such that H0 enjoys Assumption (H):

1. Πε = e−iεSΠ0e
iεS for some bounded, periodic and self-adjoint

operator S;

2. Πε almost-commutes with the Hamiltonian Hε, namely

[Hε,Πε] = O(ε2).



Proof.

I I( · ) = inverse Liouvillian: for
A = AOD := Π0AΠ⊥0 + Π⊥0 AΠ0 ∈ P(Hf)

I(A) :=
i

2π

∮
C
dz (H0−zId)−1 [A,Π0] (H0−zId)−1 ∈ P(Hf ,Df)

such that it solves [H0, I(A)] = A for A = AOD.

I De�ning S := i I(XOD

j ) then

Πε = Π0 + εΠ1 + O(ε2) ∈ P(Hf ,Df), with Π1 = I([Xj ,Π0]),
satis�es [Hε,Πε] = O(ε2).
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Remark: Justi�cation for using the NEASS (in progress)
Consider the time-dependent Hamiltonian

Hε
switch(t) := H0−f (t) εXj ,

where f : R→ [0, 1] is a smooth function : f (t) = 0 for all t ≤ 0
and f (t) = 1 for all t ≥ T > 0.
ρε(t) : perturbed state

i ε
d

dt
ρε(t) = [Hε

switch(t), ρε(t)], ρε(0) = Π0.

Then

‖ρε(t)− Πε‖ = O(ε2) uniformly on bounded intervals in time.

This statement is already proved in the context of interacting
models on lattices [Teufel, '17].
NEASS bypasses the LRA and the justi�cation of its validity, and it
is independent of the shape of the switching function!
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Response currents
We want to compute the response of a current to the perturbation
of a weak electric �eld, in the regime of linear approximation  in
terms of the adiabatic conductivity tensor σεij

σεij : =
1

ε
Re τ (Ji Πε) =

1

ε
Re τ (i[H0,SXi ] Πε)

=
1

ε
Re τ (iXi [H0,S ] Πε) +

1

ε
Re τ (i[H0,Xi ]S Πε).

By Lemma 2 and Theorem 3, σεij is well-de�ned (even if the current
operator is not periodic!)

Expansion in ε

σεij =
1

ε
Re τ (i[H0,SXi ]Π0)︸ ︷︷ ︸

=:persistent current

+Re τ (i[H0, SXi ]Π1) + O(ε)
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[H0, S ] 6= 0 : beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H0 satisfy Assumption (H) and let Hε = H0−εXj .

2. Assume no persistent current �ows in the equilibrium state Π0.

Then

σεij = iτ
([

[SXi ,Π0], [Xj ,Π0]
]
Π0

)
︸ ︷︷ ︸

=:Kubo-like term

+

Re τ
(
i[H0, (SXi )

D]Π1 + i[H0, (SXi )
ODΠ1] + i

[
[SXi ,Π0],Π0[Π0,Xj ]

])︸ ︷︷ ︸
=:beyond-Kubo-like terms

+ O(ε).
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1If H0 enjoys spatial symmetries hypothesis 2 is satis�ed (e. g. the
Kane�Mele model is invariant under 2π/3 rotation).
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[H0, S ] = 0 : Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H0 satisfy Assumption (H) and let Hε = H0−εXj .

2. Assume [H0,S ] = 0.

Then

σεij = iτ
(
S
[

[Xj ,Π0], [Xj ,Π0]
]
Π0

)
︸ ︷︷ ︸

=:Kubo-like term

+O(ε)

= − i

(2π)d

∫
Bd

dk TrHf

(
SΠ0(k)

[
∂ki Π0(k), ∂kj Π0(k)

])
+ O(ε).

Remark
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[H0, S ] = 0 : Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H0 satisfy Assumption (H) and let Hε = H0−εXj .

2. Assume [H0,S ] = 0.

Then
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(
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])
+ O(ε).

Remark conditional cyclicity of τ( · ) =⇒ persistent current
vanishes automatically and the beyond-Kubo-like terms vanish. In
d = 2 the Kubo-term is equal to the (Spin) Chern number for
(S = Id⊗ sz) S = Id (whenever H0 is time-reversal symmetric).



[H0, S ] = 0 : Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H0 satisfy Assumption (H) and let Hε = H0−εXj .

2. Assume [H0,S ] = 0.

Then

σεij = iτ
(
S
[

[Xj ,Π0], [Xj ,Π0]
]
Π0

)
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=:Kubo-like term

+O(ε)

= − i

(2π)d

∫
Bd

dk TrHf

(
SΠ0(k)

[
∂ki Π0(k), ∂kj Π0(k)

])
+ O(ε).

Remark For S = Id this result agrees with [AG '98, BES '94,
BGKS '05, AW '15 . . . ] and for S = Id⊗ sz it agrees with [Pr '09,
Sch '13].



Inspired by the Kubo theory of charge transport [ASS, '94]

I we de�ne the Kubo-like spin conductance G sz
K and prove that

I for any gapped, periodic, one-particle and near-sighted discrete
Hamiltonian G sz

K is well-de�ned

I the equality

G sz
K︸︷︷︸

ratio of extensive quantities

= σszK︸︷︷︸
ratio of intensive quantities

holds true (in the non trivial case [H0, Id⊗ sz ] 6= 0).
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Kubo-like spin conductance and conductivity: mathematical
setting

I Hilbert space Hdisc := `2(Z2)⊗ CN ⊗ C2

For A ∈ B(Hdisc)

Am,n :=
〈
δ

(k)
m ,A δ

(k)
n

〉
{k∈{1,...,2N}}

∈ End2N(C)

I Hamiltonian H0 is bounded, self-adjoint

1. periodic: H0m,n = H0m−p,n−p ∀ m,n,p ∈ Z2

2. near-sighted:
∣∣H0m,n

∣∣ ≤ Ce
− 1

ζ (|m1−n1|+|m2−n2|) ∀m,n ∈ Z2

3. admits a spectral gap:

σ(H)µ

I Fermi projection Π0 := χ(−∞,µ)(H) (also near-sighted)

Ex: Kane�Mele model
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Kubo-like spin conductance and conductivity

I Spin torque response Tsz := iΠ0

[
[Π0, sz ]︸ ︷︷ ︸
∼i[H0,sz ]

, [Π0,X2]︸ ︷︷ ︸
∼E2

]

I Kubo-like spin conductivity

σszK := τ
(
Σsz
K

)
where Σsz

K := iΠ0

[
[Π0,X1 ⊗ sz ]︸ ︷︷ ︸
∼Jsz

1
:= i [H0,X1⊗sz ]

, [Π0,X2]︸ ︷︷ ︸
∼E2

]

I Kubo-like spin conductance

G sz
K := 1-pvTr

(
Gsz
K

)
where Gsz

K := iΠ0

[
[Π0,Λ1 ⊗ sz ]︸ ︷︷ ︸
∼I sz

1
:= i [H0,Λ1⊗sz ]

, [Π0,Λ2]︸ ︷︷ ︸
∼∆V2

]
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Theorem 6 (M., Panati, Tauber '18).

1. τ(Tsz ) = 0.

2. Σsz
K is not periodic, σszK is well-de�ned and satis�es

σszK = Tr(χ1Σsz
Kχ1).

3. Fix Λ2. Assume that G sz
K (Λ1,Λ2) is �nite for at least a switch

function Λ1. Then G sz
K (Λ′1,Λ2) is �nite for any of switch

function Λ′1 and it is independent of the choice of Λ′1.

4. The equality G sz
K = σszK holds true. In particular, G sz

K is �nite

and independent of the choice of switch functions Λ1,Λ2.

Proof uses the conditional cyclicity of Tr( · ) and τ( · ), Lemma 2,
[Elgart, Graf, Schenker '04], . . .
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Conclusion

1. We have analyzed quantum transport of charge and spin via
space-adiabatic perturbation theory (NEASS) avoiding the
LRA.

2. We have established a Kubo-like formula for the adiabatic
conductivity related to the current operator ~J = i[H0, S ~X ]
with corrections when S is not conserved.

3. In charge- or spin-preserving models, we have established
quantization of conductivities via (spin) Chern numbers.

4. Even if [H0, sz ] 6= 0, then Kubo-like spin conductivity and spin
conductance are well-de�ned and coincide using the �proper�
spin current ~J, due to τ(Tz) = 0, because periodicity and spin
conservation are restored on average.
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Perspectives

1. Study beyond-Kubo-like terms and consequences in spin
transport (e. g. in the Kane�Mele model).

2. De�ne and analyze of the beyond-Kubo-like terms in terms of
conductance  does the equality G sz

ij = σszij still hold?

3. Study higher-order corrections in ε to the formula for the
adiabatic conductivity σij .

4. For S = Id⊗ sz relate transport coe�cients to Z2 topological
invariants.

5. Include other e�ects: disorder, interactions −→ universality
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