Quantum (spin) Hall conductivity: Kubo-like formula (and beyond)

Giovanna Marcelli joint works with D. Monaco (*Roma Tre*, Roma), G. Panati (*La Sapienza*, Roma), C. Tauber (*ETH*, Zürich) and S. Teufel (Universität Tübingen) [MMPTe]: in progress and [MPTa]: arXiv:1801.02611

Recent Progress in Mathematics of Topological Insulators 4th September, 2018 Experimental setups for QHE and QSHE

Linear response coefficients: σ_{ii} for both QHE and QSHE

A model for quantum transport

Charge and spin current operator Construction of the NEASS Adiabatic conductivity $\sigma_{ij}^{\varepsilon}$: Kubo-like formula and beyond

Spin conductance and spin conductivity: analysis of Kubo-like terms

1. Quantum Hall charge effect 2. Quantum Hall spin effect

1. Quantum Hall charge effect 2. Quantum Hall spin effect

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

B: external magnetic field

- 1. Quantum Hall charge effect
 - $\begin{array}{c}
 \hline
 I_1\\
 \hline
 E_2\\
 \hline
 j_1\\
 \hline
 OB
 \end{array}$

Conductance $G_{12} := -\frac{I_1}{\Delta V_2}$ Conductivity $\sigma_{12} := \frac{j_1}{E_2}$ 2. Quantum Hall spin effect

- 1. Quantum Hall charge effect
- $G_{12} := -\frac{I_1}{\Delta V_2}, \ \sigma_{12} := \frac{j_1}{E_2}$

2. Quantum Hall spin effect

イロト 不得 トイヨト イヨト

- 1. Quantum Hall charge effect
- $G_{12} := -\frac{I_1}{\Delta V_2}, \sigma_{12} := \frac{j_1}{E_2}$

[KDP '80]:

$$G_{12} \simeq n rac{e^2}{h}, \ n \in \mathbb{Z}$$

2. Quantum Hall spin effect

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Quantum Hall charge effect
- $G_{12} := -\frac{I_1}{\Delta V_2}, \ \sigma_{12} := \frac{j_1}{E_2}$
- [KDP '80] and by the continuity equation:

$$\sigma_{12} = G_{12} \simeq n \frac{e^2}{h}, \ n \in \mathbb{Z}$$

2. Quantum Hall spin effect

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

1. Quantum Hall charge effect

$$G_{12} := -\frac{I_1}{\Delta V_2}, \ \sigma_{12} := \frac{j_1}{E_2}$$

[KDP '80] and by the continuity equation:

$$\sigma_{12} = \mathbf{G}_{12} \simeq n \frac{\mathbf{e}^2}{h}, \ \mathbf{n} \in \mathbb{Z}$$

2. Quantum Hall spin effect

 $B_{\uparrow},\ B_{\downarrow}$: from spin-orbit coupling

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1. Quantum Hall charge effect

2. Quantum Hall spin effect

[KDP '80] and by the continuity equation:

$$\sigma_{12} = \mathbf{G}_{12} \simeq n \frac{e^2}{h}, \ n \in \mathbb{Z}$$

1. Quantum Hall charge effect

[KDP '80] and by the continuity equation:

$$\sigma_{12} = \mathbf{G}_{12} \simeq n \frac{e^2}{h}, \ n \in \mathbb{Z}$$

2. Quantum Hall spin effect

Spin conductance $G_{12}^{s_z} := -\frac{I_1^{s_z}}{\Delta V_2}$ Spin conductivity $\sigma_{12}^{s_z} := \frac{j_1^{s_z}}{E_2}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

1. Quantum Hall charge effect

[KDP '80] and by the continuity equation:

$$\sigma_{12} = \mathbf{G}_{12} \simeq n \frac{\mathbf{e}^2}{h}, \ n \in \mathbb{Z}$$

2. Quantum Hall spin effect

$$G_{12}^{s_z} := -\frac{l_1^{s_z}}{\Delta V_2} = -\frac{?}{\Delta V_2},$$

$$\sigma_{12}^{s_z} := \frac{j_1^{s_z}}{E_2} = \frac{?}{E_2}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

1. Quantum Hall charge effect

[KDP '80] and by the continuity equation:

$$\sigma_{12} = \mathbf{G}_{12} \simeq n \frac{\mathbf{e}^2}{h}, \ n \in \mathbb{Z}$$

2. Quantum Hall spin effect

$$G_{12}^{s_z} := -\frac{I_1^{s_z}}{\Delta V_2} = -\frac{?}{\Delta V_2},$$

$$\sigma_{12}^{s_z} := \frac{j_1^{s_z}}{E_2} = \frac{?}{E_2}$$

$$\sigma_{12}^{s_z} \stackrel{?}{=} G_{12}^{s_z} \stackrel{?}{\in} \frac{e}{2\pi} \mathbb{Z}$$

э

We are going to

- ▶ study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_j$ with $\varepsilon \ll 1$, in terms of the conductivity σ_{ij}
 - for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.
- derive formulas via an argument which is as model-independent as possible via the method of non-equilibrium almost-stationary state (NEASS)
 - avoiding the linear response ansatz (LRA) and any justification of its validity.

We are going to

► study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_j$ with $\varepsilon \ll 1$, in terms of the conductivity σ_{ij}

for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.

- derive formulas via an argument which is as model-independent as possible via the method of non-equilibrium almost-stationary state (NEASS)
 - avoiding the linear response ansatz (LRA) and any justification of its validity.

We are going to

► study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_j$ with $\varepsilon \ll 1$, in terms of the conductivity σ_{ij}

 for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.

 derive formulas via an argument which is as model-independent as possible via the method of non-equilibrium almost-stationary state (NEASS)

avoiding the linear response ansatz (LRA) and any justification of its validity.

We are going to

► study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_j$ with $\varepsilon \ll 1$, in terms of the conductivity σ_{ij}

 for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.

 derive formulas via an argument which is as model-independent as possible via the method of non-equilibrium almost-stationary state (NEASS)

> avoiding the linear response ansatz (LRA) and any justification of its validity.

We are going to

► study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_j$ with $\varepsilon \ll 1$, in terms of the conductivity σ_{ij}

 for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.

- derive formulas via an argument which is as model-independent as possible via the method of non-equilibrium almost-stationary state (NEASS)
 - avoiding the linear response ansatz (LRA) and any justification of its validity.

Assumption (H) on the unperturbed model

$$\begin{array}{l} \blacktriangleright \ \mathcal{H} := L^2(\mathfrak{X}) \otimes \mathbb{C}^N, \\ \mathfrak{X} = \mathbb{R}^d \ \text{or} \ \mathfrak{X} = \text{discrete } d\text{-dimensional crystal} \subset \mathbb{R}^d. \end{array}$$

▶ H_0 is a operator on $\mathcal H$ and bounded from below

(ロ)、(型)、(E)、(E)、 E) のQ(()

Assumption (H) on the unperturbed model

- ▶ $\mathcal{H} := L^2(\mathcal{X}) \otimes \mathbb{C}^N$, $\mathcal{X} = \mathbb{R}^d$ or $\mathcal{X} = \text{discrete } d\text{-dimensional crystal} \subset \mathbb{R}^d$.
- ► H₀ is a periodic gapped operator on ℋ and bounded from below

Assumption (H) on the unperturbed model

$$\begin{array}{l} \blacktriangleright \ \mathcal{H} := L^2(\mathcal{X}) \otimes \mathbb{C}^N, \\ \mathcal{X} = \mathbb{R}^d \ \text{or} \ \mathcal{X} = \text{discrete } d\text{-dimensional crystal} \subset \mathbb{R}^d. \end{array}$$

 H₀ is a periodic gapped operator on H and bounded from below

• Bravais lattice of translations $= \Gamma \simeq \mathbb{Z}^d$

 $[H_0, T_{\gamma}] = 0 \quad \forall \gamma \in \Gamma.$

► via Bloch–Floquet representation $H_0 \simeq \int_{\mathbb{T}^d}^{\oplus} \mathrm{d}k \, H_0(k)$, $H_0(k)$ acts on $\mathcal{H}_{\mathrm{f}} := L^2(\mathcal{C}_1) \otimes \mathbb{C}^N$, $\mathcal{C}_1 \simeq \mathbb{R}^d / \Gamma$.

Assumption (H) on the unperturbed model

$$\begin{array}{l} \blacktriangleright \ \mathcal{H} := L^2(\mathcal{X}) \otimes \mathbb{C}^N, \\ \mathcal{X} = \mathbb{R}^d \ \text{or} \ \mathcal{X} = \text{discrete } d\text{-dimensional crystal} \subset \mathbb{R}^d. \end{array}$$

- ► H₀ is a periodic gapped operator on ℋ and bounded from below
 - Π_0 = Fermi projection on occupied bands below the spectral gap is in \mathcal{B}_1^{τ} .

Assumption (H) on the unperturbed model

$$\begin{array}{l} \blacktriangleright \ \mathcal{H} := L^2(\mathcal{X}) \otimes \mathbb{C}^N, \\ \mathcal{X} = \mathbb{R}^d \ \text{or} \ \mathcal{X} = \text{discrete } d\text{-dimensional crystal} \subset \mathbb{R}^d. \end{array}$$

▶ H_0 is a periodic gapped operator on \mathcal{H} and bounded from below, such that technical but mild hypotheses on H_0

$$H_0: \mathbb{R}^d \to \mathcal{L}(\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}), \quad k \mapsto H_0(k)$$

is a smooth equivariant map taking values in the self-adjoint operators with dense domain $\mathcal{D}_f \subset \mathcal{H}_f$. $\mathcal{L}(\mathcal{D}_f, \mathcal{H}_f)$ is the space of bounded operators from \mathcal{D}_f , equipped with the graph norm of $H_0(0)$, to \mathcal{H}_f .

Assumption (H) on the unperturbed model

$$\begin{array}{l} \blacktriangleright \ \mathcal{H} := L^2(\mathcal{X}) \otimes \mathbb{C}^N, \\ \mathcal{X} = \mathbb{R}^d \ \text{or} \ \mathcal{X} = \text{discrete} \ d\text{-dimensional crystal} \subset \mathbb{R}^d. \end{array}$$

H₀ is a periodic gapped operator on H and bounded from below, such that technical but mild hypotheses on H₀.

Remark The above assumptions are satisfied

in most tight-binding models (discrete case)

by gapped, periodic Schrödinger operators

$$H_0 = \frac{1}{2}(-i\nabla - A(x))^2 + V(x)$$

under standard hypotheses of relative boundedness of the potentials w.r.t. $-\Delta$ (continuum case).

Assumption (H) on the unperturbed model

▶
$$\mathcal{H} := L^2(\mathcal{X}) \otimes \mathbb{C}^N$$
,
 $\mathcal{X} = \mathbb{R}^d$ or $\mathcal{X} = \text{discrete } d\text{-dimensional crystal} \subset \mathbb{R}^d$.

H₀ is a periodic gapped operator on H and bounded from below, such that technical but mild hypotheses on H₀.

Remark The above assumptions are satisfied

in most tight-binding models (discrete case)

by gapped, periodic Schrödinger operators

$$H_0 = \frac{1}{2}(-i\nabla - A(x))^2 + V(x)$$

under standard hypotheses of relative boundedness of the potentials w.r.t. $-\Delta$ (continuum case).

Assumption (H) on the unperturbed model

$$\begin{array}{l} \blacktriangleright \ \mathcal{H} := L^2(\mathcal{X}) \otimes \mathbb{C}^N, \\ \mathcal{X} = \mathbb{R}^d \ \text{or} \ \mathcal{X} = \text{discrete} \ d\text{-dimensional crystal} \subset \mathbb{R}^d. \end{array}$$

H₀ is a periodic gapped operator on H and bounded from below, such that technical but mild hypotheses on H₀.

Remark The above assumptions are satisfied

- in most tight-binding models (discrete case)
- by gapped, periodic Schrödinger operators

$$H_0=\frac{1}{2}(-\mathrm{i}\nabla-A(x))^2+V(x)$$

under standard hypotheses of relative boundedness of the potentials w.r.t. $-\Delta$ (continuum case).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

The following spaces of operators turn out useful for our analysis **Definition** Let $\mathcal{H}_1, \mathcal{H}_2 \in {\mathcal{D}_f, \mathcal{H}_f}$ $\mathcal{P}(\mathcal{H}_1, \mathcal{H}_2) := { \Gamma \text{-periodic } A \text{ with smooth fibration } \mathbb{R}^d \to \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) }$ and $\mathcal{P}(\mathcal{H}_1) := \mathcal{P}(\mathcal{H}_1, \mathcal{H}_1).$ By Assumption (H) $H_0 \in \mathcal{P}(\mathcal{D}_f, \mathcal{H}_f)$ \downarrow

The following spaces of operators turn out useful for our analysis **Definition** Let $\mathcal{H}_1, \mathcal{H}_2 \in {\mathcal{D}_f, \mathcal{H}_f}$ $\mathcal{P}(\mathcal{H}_1, \mathcal{H}_2) := { \Gamma \text{-periodic } A \text{ with smooth fibration } \mathbb{R}^d \to \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) }$ and $\mathcal{P}(\mathcal{H}_1) := \mathcal{P}(\mathcal{H}_1, \mathcal{H}_1).$ By Assumption (H) $H_0 \in \mathcal{P}(\mathcal{D}_f, \mathcal{H}_f)$

 $\bigcup_{i=1}^{n} [\Pi_0, X_j] \in \mathcal{P}(\mathcal{H}_f, \mathcal{D}_f) \text{ and } [H_0, X_j] \in \mathcal{P}(\mathcal{D}_f, \mathcal{H}_f)$

The following spaces of operators turn out useful for our analysis **Definition** Let $\mathcal{H}_1, \mathcal{H}_2 \in {\mathcal{D}_f, \mathcal{H}_f}$ $\mathcal{P}(\mathcal{H}_1, \mathcal{H}_2) := { \Gamma \text{-periodic } A \text{ with smooth fibration } \mathbb{R}^d \to \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) }$ and $\mathcal{P}(\mathcal{H}_1) := \mathcal{P}(\mathcal{H}_1, \mathcal{H}_1).$ By Assumption (H) $H_0 \in \mathcal{P}(\mathcal{D}_f, \mathcal{H}_f)$

 $\bigcup_{k_j \in \mathcal{D}_f} \mathcal{H}_{f}(k) \in \mathcal{P}(\mathcal{H}_f, \mathcal{D}_f) \text{ and } \underbrace{[H_0, X_j](k)}_{\equiv -i\partial_{k_j}H_0(k)} \in \mathcal{P}(\mathcal{D}_f, \mathcal{H}_f)$

Add an electric field in direction j of small intensity $\varepsilon \in [0, 1]$:

$$H^{\varepsilon} := H_0 - \varepsilon X_j$$

Current operator

 $S = \mathrm{Id}_{L^2(\mathfrak{X})} \otimes s$ self-adjoint, acting only on \mathbb{C}^N (internal degrees of freedom)

▶ $s = Id \longrightarrow charge current (QHE)$

▶ $s = s_z = \sigma_z/2 \longrightarrow \text{spin current (QSHE) proposed by [SZXN '06]}$

Add an electric field in direction j of small intensity $\varepsilon \in [0, 1]$:

$$H^{\varepsilon} := H_0 - \varepsilon X_j$$

Current operator

$$J_i^{\varepsilon} := \mathrm{i}[H^{\varepsilon}, SX_i]$$

 $S = \mathrm{Id}_{L^2(\mathcal{X})} \otimes s$ self-adjoint, acting only on \mathbb{C}^N (internal degrees of freedom)

▶ $s = Id \longrightarrow$ charge current (QHE)

▶ $s = s_z = \sigma_z/2 \longrightarrow \text{spin current (QSHE) proposed by [SZXN '06]}$

Add an electric field in direction j of small intensity $\varepsilon \in [0, 1]$:

$$H^{\varepsilon} := H_0 - \varepsilon X_j$$

Current operator

$$J_i = i[H_0, SX_i]$$

 $S = \mathrm{Id}_{L^2(\mathcal{X})} \otimes s$ self-adjoint, acting only on \mathbb{C}^N (internal degrees of freedom)

• $s = \text{Id} \longrightarrow \text{charge current (QHE)}$

▶ $s = s_z = \sigma_z/2 \longrightarrow \text{spin current (QSHE) proposed by [SZXN '06]}$

Add an electric field in direction j of small intensity $\varepsilon \in [0, 1]$:

$$H^{\varepsilon} := H_0 - \varepsilon X_j$$

Current operator

$$J_i = \mathrm{i}[H_0, SX_i]$$

 $S = \mathrm{Id}_{L^2(\mathfrak{X})} \otimes s$ self-adjoint, acting only on \mathbb{C}^N (internal degrees of freedom)

► $s = s_z = \sigma_z/2$ \rightarrow spin current (QSHE) proposed by [SZXN '06]

\vec{J} versus periodicity

$\frac{\text{Problem}}{\vec{J} \text{ is not periodic}}$

 $\vec{J} = i[H_0, S\vec{X}]$

if and only if $[H_0, S] \neq 0$ (for $S = \mathrm{Id}_{L^2(\mathfrak{X})} \otimes s_z$ in the Kane–Mele model: $\lambda_{Rashba} \neq 0$).

Simple but new observation in [M., Panati, Tauber '18]:

$$T_{\vec{\gamma}} \vec{J} T_{\vec{\gamma}}^{-1} = \vec{J} - \vec{\gamma} i[H_0, S] \qquad \forall \vec{\gamma} \in \Gamma.$$

イロト 不得 トイヨト イヨト

э

ightarrow the periodicity is restored on mesoscopic scale!

\vec{J} versus periodicity

 $\frac{\text{Problem}}{\vec{J} \text{ is not periodic}}$

$$\vec{J} = i[H_0, S\vec{X}] = i\vec{X}[H_0, S] + i[H_0, \vec{X}]S$$

if and only if $[H_0, S] \neq 0$ (for $S = \mathrm{Id}_{L^2(\mathfrak{X})} \otimes s_z$ in the Kane-Mele model: $\lambda_{Rashba} \neq 0$).

Simple but new observation in [M., Panati, Tauber '18]:

$$T_{\vec{\gamma}} \vec{J} T_{\vec{\gamma}}^{-1} = \vec{J} - \vec{\gamma} \operatorname{i}[H_0, S] \qquad \forall \vec{\gamma} \in \Gamma.$$

→ the periodicity is restored on mesoscopic scale!

\vec{J} versus periodicity

Problem \vec{J} is not periodic

$$\vec{J} = i[H_0, S\vec{X}] = i\vec{X} \underbrace{[H_0, S]}_{\text{periodic}} + i\underbrace{[H_0, \vec{X}]S}_{\text{periodic}}$$

if and only if $[H_0, S] \neq 0$ (for $S = \mathrm{Id}_{L^2(\mathfrak{X})} \otimes s_z$ in the Kane-Mele model: $\lambda_{Rashba} \neq 0$).

Simple but new observation in [M., Panati, Tauber '18]:

$$T_{\vec{\gamma}} \vec{J} T_{\vec{\gamma}}^{-1} = \vec{J} - \vec{\gamma} \operatorname{i}[H_0, S] \qquad \forall \vec{\gamma} \in \Gamma.$$

→ the periodicity is restored on mesoscopic scale!
\vec{J} versus periodicity

Problem \vec{J} is not periodic

$$\vec{J} = i[H_0, S\vec{X}] = i\vec{X} \underbrace{[H_0, S]}_{\text{periodic}} + i\underbrace{[H_0, \vec{X}]S}_{\text{periodic}}$$

if and only if $[H_0, S] \neq 0$ (for $S = \mathrm{Id}_{L^2(\mathfrak{X})} \otimes s_z$ in the Kane-Mele model: $\lambda_{Rashba} \neq 0$).

Simple but new observation in [M., Panati, Tauber '18]:

$$T_{\vec{\gamma}} \vec{J} T_{\vec{\gamma}}^{-1} = \vec{J} - \vec{\gamma} \operatorname{i}[H_0, S] \qquad \forall \vec{\gamma} \in \Gamma.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \rightsquigarrow the periodicity is restored on mesoscopic scale!

$$\tau(A) := \lim_{\substack{L \to \infty \\ L \in 2\mathbb{N}+1}} \frac{1}{|\mathcal{C}_L|} \operatorname{Tr}(\chi_L A \chi_L), \quad |\mathcal{C}_L| = L^d |\mathcal{C}_1|$$

Lemma 1.

Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

$$\tau(A) = \frac{1}{|\mathfrak{C}_1|} \operatorname{Tr}(\chi_1 A \chi_1).$$

Lemma 2.

Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K. Then the operator $X_i A$ has finite trace per unit volume and

$$\tau(X_iA) = \frac{1}{|\mathcal{C}_1|} \operatorname{Tr}(\chi_1X_iA\chi_1).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

$$\tau(A) := \lim_{\substack{L \to \infty \\ L \in 2\mathbb{N}+1}} \frac{1}{|\mathcal{C}_L|} \operatorname{Tr}(\chi_L A \chi_L), \quad |\mathcal{C}_L| = L^d |\mathcal{C}_1|$$

Lemma 1.

Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

$$\tau(A) = \frac{1}{|\mathfrak{C}_1|} \operatorname{Tr}(\chi_1 A \chi_1).$$

Lemma 2.

Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K. Then the operator $X_i A$ has finite trace per unit volume and

$$\tau(X_iA) = \frac{1}{|\mathcal{C}_1|} \operatorname{Tr}(\chi_1X_iA\chi_1).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

$$\tau(A) := \lim_{\substack{L \to \infty \\ L \in 2\mathbb{N}+1}} \frac{1}{|\mathcal{C}_L|} \operatorname{Tr}(\chi_L A \chi_L), \quad |\mathcal{C}_L| = L^d |\mathcal{C}_1|$$

Lemma 1.

Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

$$\tau(A) = \frac{1}{|\mathfrak{C}_1|} \operatorname{Tr}(\chi_1 A \chi_1).$$

Lemma 2.

Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K. Then the operator $X_i A$ has finite trace per unit volume and

$$\tau(\boldsymbol{X}_{i}\boldsymbol{A}) = \frac{1}{|\mathcal{C}_{1}|} \operatorname{Tr}(\chi_{1}\boldsymbol{X}_{i}\boldsymbol{A}\chi_{1}).$$

$$\tau(A) := \lim_{\substack{L \to \infty \\ L \in 2\mathbb{N}+1}} \frac{1}{|\mathcal{C}_L|} \operatorname{Tr}(\chi_L A \chi_L), \quad |\mathcal{C}_L| = L^d |\mathcal{C}_1|$$

Lemma 1. Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

$$\tau(A) = \frac{1}{|\mathcal{C}_1|} \operatorname{Tr}(\chi_1 A \chi_1).$$

Lemma 2.

Let A be periodic and $\chi_K A \chi_K \in \mathcal{B}_1(\mathcal{H}) \forall$ compact set K, such that $\tau(A) = 0$. Then the operator $X_i A$ has finite trace per unit volume and

$$au(\mathbf{X}_{i}\mathbf{A}) = rac{1}{|\mathcal{C}_{1}|} \operatorname{Tr}(\chi_{1}\mathbf{X}_{i}\mathbf{A}\chi_{1}).$$

Perturbed model

Add an electric field in direction j of small intensity $\varepsilon \in [0, 1]$:

 $H^{\varepsilon} := H_0 - \varepsilon X_j$

Theorem 3 (M., Monaco, Panati, Teufel '18). One can construct a non-equilibrium almost-stationary state (NEASS) Π^{ε} for H^{ε} such that H_0 enjoys Assumption (H): 1. $\Pi^{\varepsilon} = e^{-i\varepsilon\delta}\Pi_0 e^{i\varepsilon\delta}$ for some bounded, periodic and self-adjoint operator S;

 Π^e almost-commutes with the Hamiltonian H^e, namely [H^e, Π^e] = O(ε²).

Perturbed model

Add an electric field in direction j of small intensity $\varepsilon \in [0, 1]$:

$$H^{\varepsilon} := H_0 - \varepsilon X_i$$

Theorem 3 (M., Monaco, Panati, Teufel '18). One can construct a non-equilibrium almost-stationary state (NEASS) Π^{ε} for H^{ε} such that H_0 enjoys Assumption (H): 1. $\Pi^{\varepsilon} = e^{-i\varepsilon \$} \Pi_0 e^{i\varepsilon \$}$ for some bounded, periodic and self-adjoint operator \\$;

2. Π^{ε} almost-commutes with the Hamiltonian H^{ε} , namely $[H^{\varepsilon}, \Pi^{\varepsilon}] = O(\varepsilon^2)$.

Perturbed model

Add an electric field in direction j of small intensity $\varepsilon \in [0, 1]$:

$$H^{\varepsilon} := H_0 - \varepsilon X_i$$

Theorem 3 (M., Monaco, Panati, Teufel '18). One can construct a non-equilibrium almost-stationary state (NEASS) Π^{ε} for H^{ε} such that H_0 enjoys Assumption (H): 1. $\Pi^{\varepsilon} = e^{-i\varepsilon\delta}\Pi_0 e^{i\varepsilon\delta}$ for some bounded, periodic and self-adjoint operator S;

2. Π^{ε} almost-commutes with the Hamiltonian H^{ε} , namely $[H^{\varepsilon}, \Pi^{\varepsilon}] = \mathfrak{O}(\varepsilon^2)$.

Proof.

►
$$\mathcal{I}(\cdot) = \text{inverse Liouvillian: for}$$

 $A = A^{\text{OD}} := \Pi_0 A \Pi_0^{\perp} + \Pi_0^{\perp} A \Pi_0 \in \mathcal{P}(\mathcal{H}_f)$

$$\mathbb{I}(A) := \frac{\mathrm{i}}{2\pi} \oint_{C} \mathrm{d}z \, (H_0 - z \mathrm{Id})^{-1} \, [A, \Pi_0] \, (H_0 - z \mathrm{Id})^{-1} \in \mathbb{P}(\mathfrak{H}_{\mathrm{f}}, \mathfrak{D}_{\mathrm{f}})$$

such that it solves $[H_0, \mathcal{I}(A)] = A$ for $A = A^{OD}$.

▶ Defining $S := i J(X_j^{OD})$ then $\Pi^{\varepsilon} = \Pi_0 + \varepsilon \Pi_1 + O(\varepsilon^2) \in \mathcal{P}(\mathcal{H}_f, \mathcal{D}_f)$, with $\Pi_1 = J([X_j, \Pi_0])$, satisfies $[H^{\varepsilon}, \Pi^{\varepsilon}] = O(\varepsilon^2)$.

Proof.

•
$$\mathfrak{I}(\cdot) = \text{inverse Liouvillian: for}$$

 $A = A^{\text{OD}} := \Pi_0 A \Pi_0^{\perp} + \Pi_0^{\perp} A \Pi_0 \in \mathfrak{P}(\mathfrak{H}_{\mathrm{f}})$

$$\mathbb{J}(A) := \frac{\mathrm{i}}{2\pi} \oint_C \mathrm{d}z \, (H_0 - z \mathrm{Id})^{-1} \, [A, \Pi_0] \, (H_0 - z \mathrm{Id})^{-1} \in \mathcal{P}(\mathcal{H}_\mathrm{f}, \mathcal{D}_\mathrm{f})$$

such that it solves $[H_0, \mathfrak{I}(A)] = A$ for $A = A^{OD}$.

▶ Defining $S := i J(X_j^{OD})$ then $\Pi^{\varepsilon} = \Pi_0 + \varepsilon \Pi_1 + O(\varepsilon^2) \in \mathcal{P}(\mathcal{H}_f, \mathcal{D}_f)$, with $\Pi_1 = J([X_j, \Pi_0])$, satisfies $[H^{\varepsilon}, \Pi^{\varepsilon}] = O(\varepsilon^2)$.

Proof.

•
$$\mathcal{I}(\cdot) = \text{inverse Liouvillian: for}$$

 $A = A^{\text{OD}} := \Pi_0 A \Pi_0^{\perp} + \Pi_0^{\perp} A \Pi_0 \in \mathcal{P}(\mathcal{H}_f)$

$$\mathbb{I}(A) := \frac{\mathrm{i}}{2\pi} \oint_C \mathrm{d}z \, (H_0 - z \mathrm{Id})^{-1} \, [A, \Pi_0] \, (H_0 - z \mathrm{Id})^{-1} \in \mathcal{P}(\mathcal{H}_\mathrm{f}, \mathcal{D}_\mathrm{f})$$

such that it solves $[H_0, \mathfrak{I}(A)] = A$ for $A = A^{OD}$.

▶ Defining $S := i \mathcal{I}(X_j^{OD})$ then $\Pi^{\varepsilon} = \Pi_0 + \varepsilon \Pi_1 + \mathcal{O}(\varepsilon^2) \in \mathcal{P}(\mathcal{H}_f, \mathcal{D}_f)$, with $\Pi_1 = \mathcal{I}([X_j, \Pi_0])$, satisfies $[H^{\varepsilon}, \Pi^{\varepsilon}] = \mathcal{O}(\varepsilon^2)$.

$$H^{\varepsilon}_{\mathrm{switch}}(t) := H_0 - f(t) \varepsilon X_j,$$

where $f : \mathbb{R} \to [0, 1]$ is a smooth function : f(t) = 0 for all $t \leq 0$ and f(t) = 1 for all $t \geq T > 0$. $\rho^{\varepsilon}(t)$: perturbed state

$$\mathrm{i} \varepsilon \frac{\mathrm{d}}{\mathrm{d} t} \rho^{\varepsilon}(t) = [H^{\varepsilon}_{\mathrm{switch}}(t), \rho^{\varepsilon}(t)], \quad \rho^{\varepsilon}(0) = \Pi_{0}.$$

Then

 $\|
ho^arepsilon(t)-\Pi^arepsilon\|={\mathbb O}(arepsilon^2)$ uniformly on bounded intervals in time.

This statement is already proved in the context of interacting models on lattices [Teufel, '17]. NEASS bypasses the LRA and the justification of its validity, and it is independent of the shape of the switching function!

$$H^{arepsilon}_{\mathrm{switch}}(t) := H_0 - f(t) \, arepsilon \, oldsymbol{X}_j,$$

where $f : \mathbb{R} \to [0, 1]$ is a smooth function : f(t) = 0 for all $t \leq 0$ and f(t) = 1 for all $t \geq T > 0$. $\rho^{\varepsilon}(t)$: perturbed state

$$\mathrm{i} \varepsilon \frac{\mathrm{d}}{\mathrm{d} t} \rho^{\varepsilon}(t) = [H^{\varepsilon}_{\mathrm{switch}}(t), \rho^{\varepsilon}(t)], \quad \rho^{\varepsilon}(0) = \Pi_{0}.$$

Then

 $\|
ho^{arepsilon}(t)-\Pi^{arepsilon}\|={\mathbb O}(arepsilon^2)$ uniformly on bounded intervals in time.

This statement is already proved in the context of interacting models on lattices [Teufel, '17]. NEASS bypasses the LRA and the justification of its validity, and it is independent of the shape of the switching function!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$egin{aligned} & H^arepsilon_{ ext{switch}}(t) centcolor & = H_0 - f(t) \, arepsilon \, oldsymbol{X}_j, \end{aligned}$$

where $f : \mathbb{R} \to [0, 1]$ is a smooth function : f(t) = 0 for all $t \leq 0$ and f(t) = 1 for all $t \geq T > 0$. $\rho^{\varepsilon}(t)$: perturbed state

$$\mathrm{i} \varepsilon \frac{\mathrm{d}}{\mathrm{d} t} \rho^{\varepsilon}(t) = [H^{\varepsilon}_{\mathrm{switch}}(t), \rho^{\varepsilon}(t)], \quad \rho^{\varepsilon}(0) = \Pi_{0}.$$

Then

 $\|
ho^{arepsilon}(t)-\Pi^{arepsilon}\|={\mathbb O}(arepsilon^2)$ uniformly on bounded intervals in time.

This statement is already proved in the context of interacting models on lattices [Teufel, '17]. NEASS bypasses the LRA and the justification of its validity, and it is independent of the shape of the switching function!

$$H^{\varepsilon}_{\mathrm{switch}}(t) := H_0 - f(t) \varepsilon X_j,$$

where $f : \mathbb{R} \to [0, 1]$ is a smooth function : f(t) = 0 for all $t \leq 0$ and f(t) = 1 for all $t \geq T > 0$. $\rho^{\varepsilon}(t)$: perturbed state

$$\mathrm{i} \varepsilon \frac{\mathrm{d}}{\mathrm{d} t} \rho^{\varepsilon}(t) = [H^{\varepsilon}_{\mathrm{switch}}(t), \rho^{\varepsilon}(t)], \quad \rho^{\varepsilon}(0) = \Pi_{0}.$$

Then

 $\|
ho^{arepsilon}(t)-\Pi^{arepsilon}\|={\mathbb O}(arepsilon^2)$ uniformly on bounded intervals in time.

This statement is already proved in the context of interacting models on lattices [Teufel, '17]. NEASS bypasses the LRA and the justification of its validity, and it is independent of the shape of the switching function!

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor σ_{ii}^{ϵ}

$$\sigma_{ij}^{\varepsilon} := \frac{1}{\varepsilon} \operatorname{Re} \tau \left(J_{i} \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_{0}, SX_{i}] \Pi^{\varepsilon} \right)$$
$$= \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}X_{i}[H_{0}, S] \Pi^{\varepsilon} \right) + \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_{0}, X_{i}] S \Pi^{\varepsilon} \right).$$

By Lemma 2 and Theorem 3, $\sigma^{\varepsilon}_{ij}$ is well-defined (even if the current operator is not periodic!)

Expansion in ε

$$\sigma_{ij}^{\varepsilon} = \frac{1}{\varepsilon} \underbrace{\operatorname{Re} \tau \left(\mathrm{i}[H_0, SX_i] \Pi_0 \right)}_{:} + \operatorname{Re} \tau \left(\mathrm{i}[H_0, SX_i] \Pi_1 \right) + O(\varepsilon)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

=:persistent current

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{ii}^{\varepsilon}$

$$\sigma_{ij}^{\varepsilon} := \frac{1}{\varepsilon} \operatorname{Re} \tau \left(J_{i} \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_{0}, SX_{i}] \Pi^{\varepsilon} \right)$$
$$= \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}X_{i}[H_{0}, S] \Pi^{\varepsilon} \right) + \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_{0}, X_{i}] S \Pi^{\varepsilon} \right).$$

By Lemma 2 and Theorem 3, $\sigma^{\varepsilon}_{ij}$ is well-defined (even if the current operator is not periodic!)

Expansion in ε

$$\sigma_{ij}^{\varepsilon} = \frac{1}{\varepsilon} \underbrace{\operatorname{Re} \tau \left(\mathrm{i}[H_0, SX_i] \Pi_0 \right)}_{ij} + \operatorname{Re} \tau \left(\mathrm{i}[H_0, SX_i] \Pi_1 \right) + O(\varepsilon)$$

=:persistent current

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{ii}^{\varepsilon}$

$$\sigma_{ij}^{\varepsilon} := \frac{1}{\varepsilon} \operatorname{Re} \tau \left(J_i \, \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_0, SX_i] \, \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}X_i[H_0, S] \, \Pi^{\varepsilon} \right) + \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_0, X_i] S \, \Pi^{\varepsilon} \right).$$

By Lemma 2 and Theorem 3, $\sigma^{\varepsilon}_{ij}$ is well-defined (even if the current operator is not periodic!)

Expansion in ε

$$\sigma_{ij}^{\varepsilon} = \frac{1}{\varepsilon} \underbrace{\operatorname{Re} \tau \left(\mathrm{i}[H_0, SX_i] \Pi_0 \right)}_{\mathsf{He} \tau} + \operatorname{Re} \tau \left(\mathrm{i}[H_0, SX_i] \Pi_1 \right) + O(\varepsilon)$$

=:persistent current

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{ii}^{\varepsilon}$

$$\sigma_{ij}^{\varepsilon} := \frac{1}{\varepsilon} \operatorname{Re} \tau \left(J_i \, \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_0, SX_i] \, \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}X_i[H_0, S] \, \Pi^{\varepsilon} \right) + \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_0, X_i] S \, \Pi^{\varepsilon} \right).$$

By Lemma 2 and Theorem 3, $\sigma_{ij}^{\varepsilon}$ is well-defined (even if the current operator is not periodic!)

Expansion in ε $\sigma_{ij}^{\varepsilon} = \frac{1}{\varepsilon} \underbrace{\operatorname{Re} \tau \left(i[H_0, SX_i] \Pi_0 \right)}_{=: \text{persistent current}} + \operatorname{Re} \tau \left(i[H_0, SX_i] \Pi_1 \right) + O(\varepsilon)$

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{ii}^{\varepsilon}$

$$\sigma_{ij}^{\varepsilon} := \frac{1}{\varepsilon} \operatorname{Re} \tau \left(J_i \, \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_0, SX_i] \, \Pi^{\varepsilon} \right) = \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}X_i[H_0, S] \, \Pi^{\varepsilon} \right) + \frac{1}{\varepsilon} \operatorname{Re} \tau \left(\operatorname{i}[H_0, X_i] S \, \Pi^{\varepsilon} \right).$$

By Lemma 2 and Theorem 3, $\sigma_{ij}^{\varepsilon}$ is well-defined (even if the current operator is not periodic!)

Expansion in ε

$$\sigma_{ij}^{\varepsilon} = \frac{1}{\varepsilon} \underbrace{\operatorname{Re} \tau \left(i[H_0, SX_i] \Pi_0 \right)}_{=: \text{persistent current}} + \operatorname{Re} \tau \left(i[H_0, SX_i] \Pi_1 \right) + O(\varepsilon)$$

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume no persistent current flows in the equilibrium state Π_0 . Then

$$\sigma_{ij}^{\varepsilon} = \underbrace{i\tau\left(\left[\left[SX_{i}, \Pi_{0}\right], \left[X_{j}, \Pi_{0}\right]\right]\Pi_{0}\right)}_{=:Kubo-like \ term}$$

$$\underbrace{\operatorname{Re} \tau\left(i\left[H_{0}, \left(SX_{i}\right)^{\mathrm{D}}\right]\Pi_{1} + i\left[H_{0}, \left(SX_{i}\right)^{\mathrm{OD}}\Pi_{1}\right] + i\left[\left[SX_{i}, \Pi_{0}\right], \Pi_{0}\left[\Pi_{0}, X_{j}\right]\right]\right)}_{=:beyond-Kubo-like \ terms}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 4 (M., Monaco, Panati, Teufel '18).

- 1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 \varepsilon X_j$.
- 2. Assume no persistent current flows in the equilibrium state Π_0^{-1} .

Then

$$\sigma_{ij}^{\varepsilon} = \underbrace{i\tau\left(\left[[SX_{i},\Pi_{0}], [X_{j},\Pi_{0}]\right]\Pi_{0}\right)}_{=:Kubo-like \ term} + \underbrace{\operatorname{Re} \tau\left(i[H_{0}, (SX_{i})^{\mathrm{D}}]\Pi_{1} + i[H_{0}, (SX_{i})^{\mathrm{OD}}\Pi_{1}] + i[[SX_{i},\Pi_{0}], \Pi_{0}[\Pi_{0}, X_{j}]]\right)}_{=:beyond-Kubo-like \ terms} + O(\varepsilon)$$

¹If H_0 enjoys spatial symmetries hypothesis 2 is satisfied (*e. g.* the Kane–Mele model is invariant under $2\pi/3$ rotation).

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume no persistent current flows in the equilibrium state $\Pi_0.$ Then

 $\sigma_{ij}^{\varepsilon} = \underbrace{\mathrm{i}\tau\left(\left[[SX_{i},\Pi_{0}], [X_{j},\Pi_{0}]\right]\Pi_{0}\right)}_{=:Kubo-like \ term} + O(\varepsilon).$

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume no persistent current flows in the equilibrium state $\Pi_0.$ Then

$$\begin{split} \sigma_{ij}^{\varepsilon} &= \underbrace{\mathrm{i}\tau\left(\left[[SX_{i},\Pi_{0}],[X_{j},\Pi_{0}]\right]\Pi_{0}\right)}_{=:\mathsf{Kubo-like term}} + \\ \underbrace{\operatorname{Re}\tau\left(\mathrm{i}[H_{0},(SX_{i})^{\mathrm{D}}]\Pi_{1} + \mathrm{i}[H_{0},(SX_{i})^{\mathrm{OD}}\Pi_{1}] + \mathrm{i}\left[[SX_{i},\Pi_{0}],\Pi_{0}[\Pi_{0},X_{j}]\right]\right)}_{=:\mathsf{beyond-Kubo-like terms do not vanish because }\tau(\cdot) \text{ is not cyclic in general!} \\ &+ O(\varepsilon). \end{split}$$

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume
$$[H_0, S] = 0$$
.

Then

$$\sigma_{ij}^{\varepsilon} = \underbrace{\mathrm{i}\tau\left(S\left[\left[X_{j}, \Pi_{0}\right], \left[X_{j}, \Pi_{0}\right]\right]\Pi_{0}\right)}_{=:Kubo-like \ term} + O(\varepsilon)$$
$$= -\frac{\mathrm{i}}{(2\pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{d}k \ \mathrm{Tr}_{\mathcal{H}_{\mathrm{f}}}\left(S\Pi_{0}(k)\left[\partial_{k_{j}}\Pi_{0}(k), \partial_{k_{j}}\Pi_{0}(k)\right]\right) + O(\varepsilon).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume $[H_0, S] = 0$.

Then

$$\sigma_{ij}^{\varepsilon} = \underbrace{\mathrm{i}\tau\left(S\left[\left[X_{j}, \Pi_{0}\right], \left[X_{j}, \Pi_{0}\right]\right]\Pi_{0}\right) + O(\varepsilon)\right)_{=:Kubo-like \ term} = -\frac{\mathrm{i}}{(2\pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{d}k \ \mathrm{Tr}_{\mathcal{H}_{\mathrm{f}}}\left(S\Pi_{0}(k)\left[\partial_{k_{i}}\Pi_{0}(k), \partial_{k_{j}}\Pi_{0}(k)\right]\right) + O(\varepsilon).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume
$$[H_0, S] = 0$$
.

Then

$$\sigma_{ij}^{\varepsilon} = \underbrace{\mathrm{i}\tau\left(S\left[\left[X_{j},\Pi_{0}\right],\left[X_{j},\Pi_{0}\right]\right]\Pi_{0}\right)}_{=:\mathsf{Kubo-like \ term}} + O(\varepsilon)$$
$$= -\frac{\mathrm{i}}{(2\pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{d}k \ \mathrm{Tr}_{\mathcal{H}_{\mathrm{f}}}\left(S\Pi_{0}(k)\left[\partial_{k_{j}}\Pi_{0}(k),\partial_{k_{j}}\Pi_{0}(k)\right]\right) + O(\varepsilon).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Remark

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume
$$[H_0, S] = 0$$
.

Then

 $\sigma_{ij}^{\varepsilon} = \underbrace{\mathrm{i}\tau\left(S\left[[X_{j},\Pi_{0}], [X_{j},\Pi_{0}]\right]\Pi_{0}\right)}_{=:\mathsf{Kubo-like\ term}} + O(\varepsilon)$ $= -\frac{\mathrm{i}}{(2\pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{d}k \ \mathrm{Tr}_{\mathcal{H}_{\mathrm{f}}}\left(S\Pi_{0}(k)\left[\partial_{k_{i}}\Pi_{0}(k), \partial_{k_{j}}\Pi_{0}(k)\right]\right) + O(\varepsilon).$

Remark conditional cyclicity of $\tau(\cdot) \implies$ persistent current vanishes automatically and the beyond-Kubo-like terms vanish. In d = 2 the Kubo-term is equal to the (Spin) Chern number for $(S = \text{Id} \otimes s_z) S = \text{Id}$ (whenever H_0 is time-reversal symmetric).

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_0 satisfy Assumption (H) and let $H^{\varepsilon} = H_0 - \varepsilon X_j$.

2. Assume
$$[H_0, S] = 0$$
.

Then

 $\sigma_{ij}^{\varepsilon} = \underbrace{\mathrm{i}\tau\left(S\left[[X_{j},\Pi_{0}], [X_{j},\Pi_{0}]\right]\Pi_{0}\right)}_{=:Kubo-like \ term} + O(\varepsilon)$ $= -\frac{\mathrm{i}}{(2\pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{d}k \ \mathrm{Tr}_{\mathcal{H}_{\mathrm{f}}}\left(S\Pi_{0}(k)\left[\partial_{k_{i}}\Pi_{0}(k), \partial_{k_{j}}\Pi_{0}(k)\right]\right) + O(\varepsilon).$

Remark For S = Id this result agrees with [AG '98, BES '94, BGKS '05, AW '15 ...] and for $S = Id \otimes s_z$ it agrees with [Pr '09, Sch '13].

Inspired by the Kubo theory of charge transport [ASS, '94]

- ▶ we define the Kubo-like spin conductance $G_K^{s_z}$ and prove that
- for any gapped, periodic, one-particle and near-sighted discrete Hamiltonian G^{sz}_K is well-defined
- the equality

・ロト ・ 一下・ ・ コト ・ 日 ・ - 日 ・

holds true (in the non trivial case $[H_0, \mathrm{Id} \otimes s_z] \neq 0$).

Inspired by the Kubo theory of charge transport [ASS, '94]

- ▶ we define the Kubo-like spin conductance $G_K^{s_z}$ and prove that
- for any gapped, periodic, one-particle and near-sighted discrete Hamiltonian G^{sz}_K is well-defined

Inspired by the Kubo theory of charge transport [ASS, '94]

- ▶ we define the Kubo-like spin conductance $G_K^{s_z}$ and prove that
- for any gapped, periodic, one-particle and near-sighted discrete Hamiltonian G^{sz}_K is well-defined
- the equality

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

holds true (in the non trivial case $[H_0, \mathrm{Id} \otimes s_z] \neq 0$).

► Hilbert space
$$\mathcal{H}_{ ext{disc}} := \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^N \otimes \mathbb{C}^2$$

For
$$A \in \mathcal{B}(\mathcal{H}_{disc})$$

 $A_{\mathbf{m},\mathbf{n}} := \left\langle \delta_{\mathbf{m}}^{(k)}, A \, \delta_{\mathbf{n}}^{(k)} \right\rangle_{\{k \in \{1,...,2N\}\}} \in \operatorname{End}_{2N}(\mathbb{C})$

► Hamiltonian H_0 is bounded, self-adjoint 1. periodic: $H_{0m,n} = H_{0m-p,n-p} \forall m, n, p \in \mathbb{Z}^2$

3 admits a spectral gap:

$$\mu = \sigma(H)$$

Fermi projection $\Pi_0 := \chi_{(-\infty,\mu)}(H)$ (also near-sighted)

• Hilbert space
$$\mathfrak{H}_{ ext{disc}} := \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^N \otimes \mathbb{C}^2$$

For
$$A \in \mathcal{B}(\mathcal{H}_{disc})$$

 $A_{\mathbf{m},\mathbf{n}} := \left\langle \delta_{\mathbf{m}}^{(k)}, A \, \delta_{\mathbf{n}}^{(k)} \right\rangle_{\{k \in \{1,...,2N\}\}} \in \operatorname{End}_{2N}(\mathbb{C})$

► Hamiltonian *H*₀ is bounded, self-adjoint

- 1. periodic: $H_{0\mathbf{m},\mathbf{n}}=H_{0\mathbf{m}-\mathbf{p},\mathbf{n}-\mathbf{p}}$ orall $\mathbf{m},\mathbf{n},\mathbf{p}\in\mathbb{Z}^2$
- 2. near-sighted: $\left|H_{0\,\mathfrak{m},\mathfrak{n}}\right| \leq C \mathrm{e}^{-rac{1}{\zeta}(|m_1-n_1|+|m_2-n_2|)} \quad orall \mathfrak{m},\mathfrak{n}\in\mathbb{Z}^2$
- 3. admits a spectral gap:

$$\mu$$
 $\sigma(H)$

▶ Fermi projection $\Pi_0 := \chi_{(-\infty,\mu)}(H)$ (also near-sighted)

• Hilbert space
$$\mathcal{H}_{\mathrm{disc}} := \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^N \otimes \mathbb{C}^2$$

For
$$A \in \mathcal{B}(\mathcal{H}_{disc})$$

 $A_{\mathbf{m},\mathbf{n}} := \left\langle \delta_{\mathbf{m}}^{(k)}, A \, \delta_{\mathbf{n}}^{(k)} \right\rangle_{\{k \in \{1,...,2N\}\}} \in \operatorname{End}_{2N}(\mathbb{C})$

Hamiltonian H₀ is bounded, self-adjoint
 1. periodic: H_{0m,n} = H_{0m-p,n-p} ∀ m, n, p ∈ Z²

2. near-sighted: $|H_{0m,n}| \leq C e^{-\frac{1}{\zeta}(|m_1-n_1|+|m_2-n_2|)} \quad \forall m, n \in \mathbb{Z}^2$

3. admits a spectral gap:

 $\mu \sigma(H)$

• Fermi projection ${\sf \Pi}_0:=\chi_{(-\infty,\mu)}({\sf H})$ (also near-sighted)

Ex: Kane-Mele model

• Hilbert space
$$\mathcal{H}_{\mathrm{disc}} := \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^N \otimes \mathbb{C}^2$$

For
$$A \in \mathcal{B}(\mathcal{H}_{disc})$$

 $A_{\mathbf{m},\mathbf{n}} := \left\langle \delta_{\mathbf{m}}^{(k)}, A \, \delta_{\mathbf{n}}^{(k)} \right\rangle_{\{k \in \{1,...,2N\}\}} \in \operatorname{End}_{2N}(\mathbb{C})$

► Hamiltonian *H*⁰ is bounded, self-adjoint

- 1. periodic: $H_{0\mathbf{m},\mathbf{n}} = H_{0\mathbf{m}-\mathbf{p},\mathbf{n}-\mathbf{p}} \ \forall \ \mathbf{m},\mathbf{n},\mathbf{p} \in \mathbb{Z}^2$
- 2. near-sighted: $|H_{0m,n}| \leq C e^{-\frac{1}{\zeta}(|m_1-n_1|+|m_2-n_2|)} \quad \forall m, n \in \mathbb{Z}^2$

3. admits a spectral gap:

• Fermi projection $\Pi_0 := \chi_{(-\infty,\mu)}(H)$ (also near-sighted)

Ex: Kane-Mele model
Kubo-like spin conductance and conductivity: mathematical setting

► Hilbert space
$$\mathcal{H}_{ ext{disc}} := \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^N \otimes \mathbb{C}^2$$

For
$$A \in \mathcal{B}(\mathcal{H}_{disc})$$

 $A_{\mathbf{m},\mathbf{n}} := \left\langle \delta_{\mathbf{m}}^{(k)}, A \, \delta_{\mathbf{n}}^{(k)} \right\rangle_{\{k \in \{1,...,2N\}\}} \in \operatorname{End}_{2N}(\mathbb{C})$

► Hamiltonian H₀ is bounded, self-adjoint

- 1. periodic: $H_{0\mathbf{m},\mathbf{n}} = H_{0\mathbf{m}-\mathbf{p},\mathbf{n}-\mathbf{p}} \ \forall \ \mathbf{m},\mathbf{n},\mathbf{p} \in \mathbb{Z}^2$
- 2. near-sighted: $|H_{0m,n}| \leq C e^{-\frac{1}{\zeta}(|m_1-n_1|+|m_2-n_2|)} \quad \forall m, n \in \mathbb{Z}^2$

3. admits a spectral gap: $\mu \sigma(H)$

▶ Fermi projection $\mathsf{\Pi}_0 := \chi_{(-\infty,\mu)}(H)$ (also near-sighted)

Ex: Kane-Mele model

Kubo-like spin conductance and conductivity: mathematical setting

► Hilbert space
$$\mathcal{H}_{ ext{disc}} := \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^N \otimes \mathbb{C}^2$$

For
$$A \in \mathcal{B}(\mathcal{H}_{disc})$$

 $A_{\mathbf{m},\mathbf{n}} := \left\langle \delta_{\mathbf{m}}^{(k)}, A \, \delta_{\mathbf{n}}^{(k)} \right\rangle_{\{k \in \{1,...,2N\}\}} \in \operatorname{End}_{2N}(\mathbb{C})$

► Hamiltonian H₀ is bounded, self-adjoint

- 1. periodic: $H_{0\mathbf{m},\mathbf{n}} = H_{0\mathbf{m}-\mathbf{p},\mathbf{n}-\mathbf{p}} \ \forall \ \mathbf{m},\mathbf{n},\mathbf{p} \in \mathbb{Z}^2$
- 2. near-sighted: $|H_{0\mathbf{m},\mathbf{n}}| \leq C e^{-\frac{1}{\zeta}(|m_1-n_1|+|m_2-n_2|)} \quad \forall \mathbf{m}, \mathbf{n} \in \mathbb{Z}^2$
- 3. admits a spectral gap: $\mu \sigma(H)$

Fermi projection $\Pi_0 := \chi_{(-\infty,\mu)}(H)$ (also near-sighted)

Ex: Kane-Mele model

Kubo-like spin conductance and conductivity

- Spin torque response $\mathbb{T}_{s_z} := i \Pi_0 \big[\underbrace{[\Pi_0, s_z]}_{\sim i[H_0, s_z]}, \underbrace{[\Pi_0, X_2]}_{\sim E_2} \big]$
- Kubo-like spin conductivity

$$\sigma_{K}^{s_{z}} := \tau \left(\Sigma_{K}^{s_{z}} \right) \quad \text{where} \quad \Sigma_{K}^{s_{z}} := \mathrm{i} \Pi_{0} \left[\underbrace{\left[\Pi_{0}, X_{1} \otimes s_{z} \right]}_{\sim J_{1}^{s_{z}} := \mathrm{i} \left[H_{0}, X_{1} \otimes s_{z} \right]}, \underbrace{\left[\Pi_{0}, X_{2} \right]}_{\sim E_{2}} \right]$$

Kubo-like spin conductance

 $G_{K}^{s_{z}} := 1 \text{-} \mathrm{pvTr}(\mathcal{G}_{K}^{s_{z}}) \quad \text{where} \quad \mathcal{G}_{K}^{s_{z}} := \mathrm{i} \Pi_{0} \big[\underbrace{[\Pi_{0}, \Lambda_{1} \otimes s_{z}]}_{\sim I_{1}^{s_{z}} := \mathrm{i} [H_{0}, \Lambda_{1} \otimes s_{z}]}, \underbrace{[\Pi_{0}, \Lambda_{2}]}_{\sim \Delta V_{2}} \big]$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Kubo-like spin conductance and conductivity

• Spin torque response
$$\mathbb{T}_{s_z} := \mathrm{i} \Pi_0 \Big[\underbrace{[\Pi_0, s_z]}_{\sim \mathrm{i}[H_0, s_z]}, \underbrace{[\Pi_0, X_2]}_{\sim E_2} \Big]$$

 $\begin{aligned} & \mathsf{Kubo-like spin conductivity} \\ & \sigma_{K}^{s_{z}} := \tau\left(\Sigma_{K}^{s_{z}}\right) \quad \mathsf{where} \quad \Sigma_{K}^{s_{z}} := \mathrm{i}\Pi_{0}\big[\underbrace{\left[\Pi_{0}, X_{1} \otimes s_{z}\right]}_{\sim J_{1}^{s_{z}} := \mathrm{i}\left[H_{0}, X_{1} \otimes s_{z}\right]}, \underbrace{\left[\Pi_{0}, X_{2}\right]}_{\sim E_{2}}\big] \end{aligned}$

Kubo-like spin conductance

 $G_{K}^{s_{z}} := 1 \text{-} \mathrm{pvTr}(\mathcal{G}_{K}^{s_{z}}) \quad \text{where} \quad \mathcal{G}_{K}^{s_{z}} := \mathrm{i} \Pi_{0} \big[\underbrace{[\Pi_{0}, \Lambda_{1} \otimes s_{z}]}_{\sim I_{1}^{s_{z}} := \mathrm{i} [H_{0}, \Lambda_{1} \otimes s_{z}]}, \underbrace{[\Pi_{0}, \Lambda_{2}]}_{\sim \Delta V_{2}} \big]$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Kubo-like spin conductance and conductivity

• Spin torque response
$$\mathbb{T}_{s_z} := i \Pi_0 \left[\underbrace{[\Pi_0, s_z]}_{\sim i[H_0, s_z]}, \underbrace{[\Pi_0, X_2]}_{\sim E_2} \right]$$

$$\begin{aligned} & \mathsf{Kubo-like spin conductivity} \\ & \sigma_{K}^{s_{z}} := \tau\left(\Sigma_{K}^{s_{z}}\right) \quad \mathsf{where} \quad \Sigma_{K}^{s_{z}} := \mathrm{i}\Pi_{0}\big[\underbrace{\left[\Pi_{0}, X_{1} \otimes s_{z}\right]}_{\sim J_{1}^{s_{z}} := \mathrm{i}\left[H_{0}, X_{1} \otimes s_{z}\right]}, \underbrace{\left[\Pi_{0}, X_{2}\right]}_{\sim E_{2}}\big] \end{aligned}$$

$$G_{K}^{s_{z}} := 1 \text{-pvTr}(\mathcal{G}_{K}^{s_{z}}) \quad \text{where} \quad \mathcal{G}_{K}^{s_{z}} := i\Pi_{0} \Big[\underbrace{[\Pi_{0}, \Lambda_{1} \otimes s_{z}]}_{\sim l_{1}^{s_{z}} := i [H_{0}, \Lambda_{1} \otimes s_{z}]}, \underbrace{[\Pi_{0}, \Lambda_{2}]}_{\sim \Delta V_{2}} \Big]$$

1. $\tau(\mathfrak{T}_{s_z}) = 0$.

2. $\Sigma_K^{s_z}$ is not periodic, $\sigma_K^{s_z}$ is well-defined and satisfies $\sigma_K^{s_z} = \operatorname{Tr}(\chi_1 \Sigma_K^{s_z} \chi_1).$

 Fix Λ₂. Assume that G⁵²_K(Λ₁, Λ₂) is finite for at least a switch function Λ₁. Then G⁵²_K(Λ'₁, Λ₂) is finite for any of switch function Λ'₁ and it is independent of the choice of Λ'₁.

4. The equality $G_K^{s_z} = \sigma_K^{s_z}$ holds true. In particular, $G_K^{s_z}$ is finite and independent of the choice of switch functions Λ_1, Λ_2 .

1.
$$\tau(\mathfrak{T}_{s_z}) = 0$$
.

2. $\Sigma_{K}^{s_{z}}$ is not periodic, $\sigma_{K}^{s_{z}}$ is well-defined and satisfies $\sigma_{K}^{s_{z}} = \text{Tr}(\chi_{1}\Sigma_{K}^{s_{z}}\chi_{1}).$

- Fix Λ₂. Assume that G^{s_z}_K(Λ₁, Λ₂) is finite for at least a switch function Λ₁. Then G^{s_z}_K(Λ'₁, Λ₂) is finite for any of switch function Λ'₁ and it is independent of the choice of Λ'₁.
- 4. The equality $G_K^{s_z} = \sigma_K^{s_z}$ holds true. In particular, $G_K^{s_z}$ is finite and independent of the choice of switch functions Λ_1, Λ_2 .

1.
$$\tau(\mathfrak{T}_{s_z}) = 0$$
.

- 2. $\Sigma_{K}^{s_{z}}$ is not periodic, $\sigma_{K}^{s_{z}}$ is well-defined and satisfies $\sigma_{K}^{s_{z}} = \text{Tr}(\chi_{1}\Sigma_{K}^{s_{z}}\chi_{1}).$
- 3. Fix Λ_2 . Assume that $G_{\mathcal{K}}^{s_2}(\Lambda_1, \Lambda_2)$ is finite for at least a switch function Λ_1 . Then $G_{\mathcal{K}}^{s_2}(\Lambda'_1, \Lambda_2)$ is finite for any of switch function Λ'_1 and it is independent of the choice of Λ'_1 .
- 4. The equality $G_K^{s_z} = \sigma_K^{s_z}$ holds true. In particular, $G_K^{s_z}$ is finite and independent of the choice of switch functions Λ_1, Λ_2 .

1.
$$\tau(\mathfrak{T}_{s_z})=0$$
.

- 2. $\Sigma_{K}^{s_{z}}$ is not periodic, $\sigma_{K}^{s_{z}}$ is well-defined and satisfies $\sigma_{K}^{s_{z}} = \text{Tr}(\chi_{1}\Sigma_{K}^{s_{z}}\chi_{1}).$
- 3. Fix Λ_2 . Assume that $G_{\mathcal{K}}^{s_2}(\Lambda_1, \Lambda_2)$ is finite for at least a switch function Λ_1 . Then $G_{\mathcal{K}}^{s_2}(\Lambda'_1, \Lambda_2)$ is finite for any of switch function Λ'_1 and it is independent of the choice of Λ'_1 .
- 4. The equality $G_K^{s_z} = \sigma_K^{s_z}$ holds true. In particular, $G_K^{s_z}$ is finite and independent of the choice of switch functions Λ_1, Λ_2 .

- 1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.
- 2. We have established a Kubo-like formula for the adiabatic conductivity related to the current operator $\vec{J} = i[H_0, S\vec{X}]$ with corrections when S is not conserved.
- 3. In charge- or spin-preserving models, we have established quantization of conductivities via (spin) Chern numbers.
- 4. Even if $[H_0, s_z] \neq 0$, then Kubo-like spin conductivity and spin conductance are well-defined and coincide using the "proper" spin current \vec{J} , due to $\tau(\mathcal{T}_z) = 0$, because periodicity and spin conservation are restored on average.

- 1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.
- 2. We have established a Kubo-like formula for the adiabatic conductivity related to the current operator $\vec{J} = i[H_0, S\vec{X}]$ with corrections when S is not conserved.
- 3. In charge- or spin-preserving models, we have established quantization of conductivities via (spin) Chern numbers.
- 4. Even if $[H_0, s_z] \neq 0$, then Kubo-like spin conductivity and spin conductance are well-defined and coincide using the "proper" spin current \vec{J} , due to $\tau(\mathcal{T}_z) = 0$, because periodicity and spin conservation are restored on average.

- 1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.
- 2. We have established a Kubo-like formula for the adiabatic conductivity related to the current operator $\vec{J} = i[H_0, S\vec{X}]$ with corrections when S is not conserved.
- 3. In charge- or spin-preserving models, we have established quantization of conductivities via (spin) Chern numbers.
- 4. Even if $[H_0, s_z] \neq 0$, then Kubo-like spin conductivity and spin conductance are well-defined and coincide using the "proper" spin current \vec{J} , due to $\tau(\mathfrak{T}_z) = 0$, because periodicity and spin conservation are restored on average.

- 1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.
- 2. We have established a Kubo-like formula for the adiabatic conductivity related to the current operator $\vec{J} = i[H_0, S\vec{X}]$ with corrections when S is not conserved.
- 3. In charge- or spin-preserving models, we have established quantization of conductivities via (spin) Chern numbers.
- 4. Even if $[H_0, s_z] \neq 0$, then Kubo-like spin conductivity and spin conductance are well-defined and coincide using the "proper" spin current \vec{J} , due to $\tau(\mathcal{T}_z) = 0$, because periodicity and spin conservation are restored on average.

- 1. Study beyond-Kubo-like terms and consequences in spin transport (*e. g.* in the Kane-Mele model).
- Define and analyze of the beyond-Kubo-like terms in terms of conductance → does the equality G^{sz}_{ii} = σ^{sz}_{ii} still hold?
- 3. Study higher-order corrections in ε to the formula for the adiabatic conductivity σ_{ij} .
- For S = Id ⊗ s_z relate transport coefficients to Z₂ topological invariants.

- 1. Study beyond-Kubo-like terms and consequences in spin transport (*e. g.* in the Kane-Mele model).
- 2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{ii}^{s_z} = \sigma_{ii}^{s_z}$ still hold?
- 3. Study higher-order corrections in ε to the formula for the adiabatic conductivity σ_{ij} .
- 4. For $S = Id \otimes s_z$ relate transport coefficients to \mathbb{Z}_2 topological invariants.

- 1. Study beyond-Kubo-like terms and consequences in spin transport (*e. g.* in the Kane-Mele model).
- 2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{ii}^{s_z} = \sigma_{ii}^{s_z}$ still hold?
- 3. Study higher-order corrections in ε to the formula for the adiabatic conductivity σ_{ij} .
- 4. For $S = Id \otimes s_z$ relate transport coefficients to \mathbb{Z}_2 topological invariants.
- 5. Include other effects: disorder, interactions \rightarrow universality

- 1. Study beyond-Kubo-like terms and consequences in spin transport (*e. g.* in the Kane-Mele model).
- 2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{ii}^{s_z} = \sigma_{ii}^{s_z}$ still hold?
- 3. Study higher-order corrections in ε to the formula for the adiabatic conductivity σ_{ij} .
- 4. For $S = Id \otimes s_z$ relate transport coefficients to \mathbb{Z}_2 topological invariants.

- 1. Study beyond-Kubo-like terms and consequences in spin transport (*e. g.* in the Kane-Mele model).
- 2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{ii}^{s_z} = \sigma_{ii}^{s_z}$ still hold?
- 3. Study higher-order corrections in ε to the formula for the adiabatic conductivity σ_{ij} .
- 4. For $S = Id \otimes s_z$ relate transport coefficients to \mathbb{Z}_2 topological invariants.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

5. Include other effects: disorder, interactions \rightarrow universality