Quantum (spin) Hall conductivity: Kubo-like formula (and beyond)

Giovanna Marcelli
joint works with D. Monaco (Roma Tre, Roma), G. Panati (La Sapienza, Roma), C. Tauber (ETH, Zürich) and S. Teufel (Universität Tübingen)
[MMPTe]: in progress and [MPTa]: arXiv:1801.02611

Recent Progress in Mathematics of Topological Insulators 4th September, 2018

Seminar outline

Experimental setups for QHE and QSHE

Linear response coefficients: $\sigma_{i j}$ for both QHE and QSHE

A model for quantum transport
Charge and spin current operator
Construction of the NEASS
Adiabatic conductivity $\sigma_{i j}^{\varepsilon}$: Kubo-like formula and beyond

Spin conductance and spin conductivity: analysis of Kubo-like terms

Experimental setup (schematic):

1. Quantum Hall charge effect
2. Quantum Hall spin effect

Experimental setup (schematic):

1. Quantum Hall charge effect
2. Quantum Hall spin effect

B: external magnetic field

Experimental setup (schematic):

1. Quantum Hall charge effect
2. Quantum Hall spin effect

Conductance $G_{12}:=-\frac{I_{1}}{\Delta V_{2}}$
Conductivity $\sigma_{12}:=\frac{j_{1}}{E_{2}}$

Experimental setup (schematic):

1. Quantum Hall charge effect
2. Quantum Hall spin effect

$G_{12}:=-\frac{I_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$

Experimental setup (schematic):

1. Quantum Hall charge effect
2. Quantum Hall spin effect

$G_{12}:=-\frac{I_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$
[KDP '80]:

$$
G_{12} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}
$$

Experimental setup (schematic):

1. Quantum Hall charge effect
2. Quantum Hall spin effect

$G_{12}:=-\frac{I_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$
[KDP '80] and by the continuity equation:

$$
\sigma_{12}=G_{12} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}
$$

Experimental setup (schematic):

1. Quantum Hall charge effect

$G_{12}:=-\frac{I_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$
[KDP '80] and by the continuity equation:

$$
\sigma_{12}=G_{12} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}
$$

$\mathbf{B}_{\uparrow}, \mathbf{B}_{\downarrow}$: from spin-orbit coupling

Experimental setup (schematic):

1. Quantum Hall charge effect

$G_{12}:=-\frac{\iota_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$
[KDP '80] and by the continuity equation:

$$
\sigma_{12}=G_{12} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}
$$

2. Quantum Hall spin effect

Experimental setup (schematic):

1. Quantum Hall charge effect

$G_{12}:=-\frac{\iota_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$
[KDP '80] and by the continuity equation:

$$
\sigma_{12}=G_{12} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}
$$

2. Quantum Hall spin effect

Spin conductance $G_{12}^{s_{Z}}:=-\frac{l_{1}^{s_{z}}}{\Delta V_{2}}$
Spin conductivity $\sigma_{12}^{s_{z}}:=\frac{j_{1}^{s_{z}}}{E_{2}}$

Experimental setup (schematic):

1. Quantum Hall charge effect

$G_{12}:=-\frac{I_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$
[KDP '80] and by the continuity equation:
2. Quantum Hall spin effect

$$
G_{12}^{s_{z}}:=-\frac{l_{1}^{s_{z}}}{\Delta V_{2}}=-\frac{?}{\Delta V_{2}},
$$

$$
\sigma_{12}^{s_{z}}:=\frac{j_{1}^{s_{z}}}{E_{2}}=\frac{?}{E_{2}}
$$

$$
\sigma_{12}=G_{12} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}
$$

Experimental setup (schematic):

1. Quantum Hall charge effect

$G_{12}:=-\frac{I_{1}}{\Delta V_{2}}, \sigma_{12}:=\frac{j_{1}}{E_{2}}$
[KDP '80] and by the continuity equation:

$$
\sigma_{12}=G_{12} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}
$$

2. Quantum Hall spin effect

$$
G_{12}^{s_{z}}:=-\frac{l_{1}^{s_{z}}}{\Delta V_{2}}=-\frac{?}{\Delta V_{2}},
$$

$$
\sigma_{12}^{s_{z}}:=\frac{j_{1}^{s_{z}}}{E_{2}}=\frac{?}{E_{2}}
$$

$$
\sigma_{12}^{s_{z}} \stackrel{?}{=} G_{12}^{s_{z}} \stackrel{?}{\in} \frac{e}{2 \pi} \mathbb{Z}
$$

Linear response coefficients: $\sigma_{i j}$

```
We are going to
* study the linear response coefficients of a gapped, periodic and
one-particle quantum system to the perturbation of a small
electric field, modeled by a potential }-\varepsilon\mp@subsup{X}{j}{}\mathrm{ with }\varepsilon<<<1\mathrm{ , in
terms of the conductivity }\mp@subsup{\sigma}{i}{
> for both charge (Quantum Hall effect) and spin (Quantum spin
    Hall effect) transport.
```


Linear response coefficients: $\sigma_{i j}$

We are going to

- study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_{j}$ with $\varepsilon \ll 1$, in terms of the conductivity $\sigma_{i j}$

Linear response coefficients: $\sigma_{i j}$

We are going to

- study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_{j}$ with $\varepsilon \ll 1$, in terms of the conductivity $\sigma_{i j}$
- for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.

Linear response coefficients: $\sigma_{i j}$

We are going to

- study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_{j}$ with $\varepsilon \ll 1$, in terms of the conductivity $\sigma_{i j}$
- for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.
- derive formulas via an argument which is as model-independent as possible via the method of non-equilibrium almost-stationary state (NEASS)

Linear response coefficients: $\sigma_{i j}$

We are going to

- study the linear response coefficients of a gapped, periodic and one-particle quantum system to the perturbation of a small electric field, modeled by a potential $-\varepsilon X_{j}$ with $\varepsilon \ll 1$, in terms of the conductivity $\sigma_{i j}$
- for both charge (Quantum Hall effect) and spin (Quantum spin Hall effect) transport.
- derive formulas via an argument which is as model-independent as possible via the method of non-equilibrium almost-stationary state (NEASS)
- avoiding the linear response ansatz (LRA) and any justification of its validity.

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $\mathcal{X}=\mathbb{R}^{d}$ or $\mathcal{X}=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a operator on \mathcal{H} and bounded from below

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $X=\mathbb{R}^{d}$ or $X=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a periodic gapped operator on \mathcal{H} and bounded from below

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $X=\mathbb{R}^{d}$ or $X=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a periodic gapped operator on \mathcal{H} and bounded from below
- Bravais lattice of translations $=\Gamma \simeq \mathbb{Z}^{d}$

$$
\left[H_{0}, T_{\gamma}\right]=0 \quad \forall \gamma \in \Gamma .
$$

- via Bloch-Floquet representation $H_{0} \simeq \int_{\mathbb{T}^{d}}^{\oplus} \mathrm{d} k H_{0}(k)$, $H_{0}(k)$ acts on $\mathcal{H}_{\mathrm{f}}:=L^{2}\left(\mathcal{C}_{1}\right) \otimes \mathbb{C}^{N}, \mathfrak{C}_{1} \simeq \mathbb{R}^{d} / \Gamma$.

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $X=\mathbb{R}^{d}$ or $X=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a periodic gapped operator on \mathcal{H} and bounded from below
- $\Pi_{0}=$ Fermi projection on occupied bands below the spectral gap is in \mathcal{B}_{1}^{\top}.

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $X=\mathbb{R}^{d}$ or $X=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a periodic gapped operator on \mathcal{H} and bounded from below, such that technical but mild hypotheses on H_{0}

$$
H_{0}: \mathbb{R}^{d} \rightarrow \mathcal{L}\left(\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right), \quad k \mapsto H_{0}(k)
$$

is a smooth equivariant map taking values in the self-adjoint operators with dense domain $\mathcal{D}_{\mathrm{f}} \subset \mathcal{H}_{\mathrm{f}}$. $\mathcal{L}\left(\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right)$ is the space of bounded operators from \mathcal{D}_{f}, equipped with the graph norm of $H_{0}(0)$, to \mathcal{H}_{f}.

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $X=\mathbb{R}^{d}$ or $X=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a periodic gapped operator on \mathcal{H} and bounded from below, such that technical but mild hypotheses on H_{0}.

Remark The above assumptions are satisfied

- by gapped, periodic Schrödinger operators
under standard hypotheses of relative boundedness of the
potentials w.r.t. $-\Delta$ (continuum case).

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $X=\mathbb{R}^{d}$ or $X=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a periodic gapped operator on \mathcal{H} and bounded from below, such that technical but mild hypotheses on H_{0}.

Remark The above assumptions are satisfied

- in most tight-binding models (discrete case)
- by spoped peridicichnordinger opeatos
under standard hypotheses of relative boundedness of the
potentials w.r.t. $-\Delta$ (continuum case).

A model for quantum transport

Assumption (H) on the unperturbed model

- $\mathcal{H}:=L^{2}(X) \otimes \mathbb{C}^{N}$, $X=\mathbb{R}^{d}$ or $X=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$.
- H_{0} is a periodic gapped operator on \mathcal{H} and bounded from below, such that technical but mild hypotheses on H_{0}.

Remark The above assumptions are satisfied

- in most tight-binding models (discrete case)
- by gapped, periodic Schrödinger operators

$$
H_{0}=\frac{1}{2}(-\mathrm{i} \nabla-A(x))^{2}+V(x)
$$

under standard hypotheses of relative boundedness of the potentials w.r.t. $-\Delta$ (continuum case).

The following spaces of operators turn out useful for our analysis
Definition Let $\mathcal{H}_{1}, \mathcal{H}_{2} \in\left\{\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right\}$
$\mathcal{P}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right):=\left\{\Gamma\right.$-periodic A with smooth fibration $\left.\mathbb{R}^{d} \rightarrow \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)\right\}$ and $\mathcal{P}\left(\mathcal{H}_{1}\right):=\mathcal{P}\left(\mathcal{H}_{1}, \mathcal{H}_{1}\right)$.

The following spaces of operators turn out useful for our analysis
Definition Let $\mathcal{H}_{1}, \mathcal{H}_{2} \in\left\{\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right\}$
$\mathcal{P}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right):=\left\{\Gamma\right.$-periodic A with smooth fibration $\left.\mathbb{R}^{d} \rightarrow \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)\right\}$ and $\mathcal{P}\left(\mathcal{H}_{1}\right):=\mathcal{P}\left(\mathcal{H}_{1}, \mathcal{H}_{1}\right)$.

By Assumption (H) $H_{0} \in \mathcal{P}\left(\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right)$

$$
\left[\Pi_{0}, X_{j}\right] \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}, \mathcal{D}_{\mathrm{f}}\right) \text { and }\left[H_{0}, X_{j}\right] \in \mathcal{P}\left(\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right)
$$

The following spaces of operators turn out useful for our analysis
Definition Let $\mathcal{H}_{1}, \mathcal{H}_{2} \in\left\{\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right\}$
$\mathcal{P}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right):=\left\{\Gamma\right.$-periodic A with smooth fibration $\left.\mathbb{R}^{d} \rightarrow \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)\right\}$ and $\mathcal{P}\left(\mathcal{H}_{1}\right):=\mathcal{P}\left(\mathcal{H}_{1}, \mathcal{H}_{1}\right)$.

By Assumption (H) $H_{0} \in \mathcal{P}\left(\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right)$
\Downarrow

$$
\underbrace{\left[\Pi_{0}, X_{j}\right](k)}_{\equiv-\mathrm{i} \partial_{k_{j}} \Pi_{0}(k)} \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}, \mathcal{D}_{\mathrm{f}}\right) \text { and } \underbrace{\left[H_{0}, X_{j}\right](k)}_{\equiv-\mathrm{i} \partial_{k_{j}} H_{0}(k)} \in \mathcal{P}\left(\mathcal{D}_{\mathrm{f}}, \mathcal{H}_{\mathrm{f}}\right)
$$

Perturbed model
Add an electric field in direction j of small intensity $\varepsilon \in[0,1]$:

$$
H^{\varepsilon}:=H_{0}-\varepsilon X_{j}
$$

Perturbed model
Add an electric field in direction j of small intensity $\varepsilon \in[0,1]$:

$$
H^{\varepsilon}:=H_{0}-\varepsilon X_{j}
$$

Current operator

$$
J_{i}^{\varepsilon}:=\mathrm{i}\left[H^{\varepsilon}, S X_{i}\right]
$$

$S=\operatorname{Id}_{L^{2}(x)} \otimes s$ self-adjoint, acting only on \mathbb{C}^{N} (internal degrees of freedom)

Perturbed model
Add an electric field in direction j of small intensity $\varepsilon \in[0,1]$:

$$
H^{\varepsilon}:=H_{0}-\varepsilon X_{j}
$$

Current operator

$$
J_{i}=\mathrm{i}\left[H_{0}, S X_{i}\right]
$$

$S=\operatorname{Id}_{L^{2}(x)} \otimes s$ self-adjoint, acting only on \mathbb{C}^{N} (internal degrees of freedom)

- $s=\mathrm{Id} \longrightarrow$ charge current (QHE)

Perturbed model
Add an electric field in direction j of small intensity $\varepsilon \in[0,1]$:

$$
H^{\varepsilon}:=H_{0}-\varepsilon X_{j}
$$

Current operator

$$
J_{i}=\mathrm{i}\left[H_{0}, S X_{i}\right]
$$

$S=\operatorname{Id}_{L^{2}(x)} \otimes s$ self-adjoint, acting only on \mathbb{C}^{N} (internal degrees of freedom)

- $s=\mathrm{Id} \longrightarrow$ charge current (QHE)
- $s=s_{z}=\sigma_{z} / 2 \longrightarrow$ spin current (QSHE) proposed by [SZXN '06]

\vec{J} versus periodicity

Problem

\vec{J} is not periodic

$$
\vec{J}=\mathrm{i}\left[H_{0}, S \vec{X}\right]
$$

\vec{J} versus periodicity

Problem
\vec{J} is not periodic

$$
\vec{J}=\mathrm{i}\left[H_{0}, S \vec{X}\right]=\mathrm{i} \vec{X}\left[H_{0}, S\right]+\mathrm{i}\left[H_{0}, \vec{X}\right] S
$$

if and only if $\left[H_{0}, S\right] \neq 0$ (for $S=\operatorname{Id}_{L^{2}(x)} \otimes s_{z}$ in the Kane-Mele model: $\lambda_{\text {Rashba }} \neq 0$).

Simple but new observation in [M., Panati, Tauber '18]:

$\vec{\jmath}$ versus periodicity

Problem

\vec{J} is not periodic

$$
\vec{J}=\mathrm{i}\left[H_{0}, S \vec{X}\right]=\mathrm{i} \vec{X} \underbrace{\left[H_{0}, S\right]}_{\text {periodic }}+\mathrm{i} \underbrace{\left[H_{0}, \vec{X}\right] S}_{\text {periodic }}
$$

if and only if $\left[H_{0}, S\right] \neq 0$ (for $S=\operatorname{Id}_{L^{2}(x)} \otimes s_{z}$ in the Kane-Mele model: $\lambda_{\text {Rashba }} \neq 0$).

Simple but new observation in [M., Panati, Tauber '18]:

$$
T_{\vec{\gamma}} \vec{\jmath} T_{\vec{\gamma}}^{-1}=\vec{\jmath}-\vec{\gamma} \mathrm{i}\left[H_{0}, S\right] \quad \forall \vec{\gamma} \in \Gamma .
$$

$\vec{\jmath}$ versus periodicity

Problem

\vec{J} is not periodic

$$
\vec{J}=\mathrm{i}\left[H_{0}, S \vec{X}\right]=\mathrm{i} \vec{X} \underbrace{\left[H_{0}, S\right]}_{\text {periodic }}+\mathrm{i} \underbrace{\left[H_{0}, \vec{X}\right] S}_{\text {periodic }}
$$

if and only if $\left[H_{0}, S\right] \neq 0$ (for $S=\operatorname{Id}_{L^{2}(x)} \otimes s_{z}$ in the Kane-Mele model: $\lambda_{\text {Rashba }} \neq 0$).

Simple but new observation in [M., Panati, Tauber '18]:

$$
T_{\vec{\gamma}} \vec{\jmath} T_{\vec{\gamma}}^{-1}=\vec{\jmath}-\vec{\gamma} \mathrm{i}\left[H_{0}, S\right] \quad \forall \vec{\gamma} \in \Gamma .
$$

\rightsquigarrow the periodicity is restored on mesoscopic scale!

Trace per unit volume

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in 2 N+1}} \frac{1}{\left|\mathcal{C}_{L}\right|} \operatorname{Tr}\left(\chi_{L} A \chi_{L}\right), \quad\left|\mathcal{C}_{L}\right|=L^{d}\left|\mathcal{C}_{1}\right|
$$

Lemma 1.
 Let A be perioc and $\chi k A \chi k \in B_{1}(\mathscr{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

> Lemma 2.
> Let A be periodic and $\chi_{K} A \chi_{K} \in \mathcal{B}_{1}(\mathcal{H}) \forall$ compact set K. Then the operator $X_{i} A$ has finite trace per unit volume and

Trace per unit volume

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in 2 N+1}} \frac{1}{\left|\mathcal{C}_{L}\right|} \operatorname{Tr}\left(\chi_{L} A \chi_{L}\right), \quad\left|\mathcal{C}_{L}\right|=L^{d}\left|\mathcal{C}_{1}\right|
$$

Lemma 1.
Let A be periodic and $\chi_{K} A \chi_{K} \in \mathcal{B}_{1}(\mathcal{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

$$
\tau(A)=\frac{1}{\left|\mathfrak{C}_{1}\right|} \operatorname{Tr}\left(\chi_{1} A \chi_{1}\right) .
$$

Trace per unit volume

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in 2 \mathbb{N}+1}} \frac{1}{\left|\mathcal{C}_{L}\right|} \operatorname{Tr}\left(\chi_{L} A \chi_{L}\right), \quad\left|\mathcal{C}_{L}\right|=L^{d}\left|\mathcal{C}_{1}\right|
$$

Lemma 1.

Let A be periodic and $\chi_{K} A \chi_{K} \in \mathcal{B}_{1}(\mathcal{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

$$
\tau(A)=\frac{1}{\left|\mathcal{C}_{1}\right|} \operatorname{Tr}\left(\chi_{1} A \chi_{1}\right)
$$

Lemma 2.

Let A be periodic and $\chi_{K} A \chi_{K} \in \mathcal{B}_{1}(\mathcal{H}) \forall$ compact set K. Then the operator $X_{i} A$ has finite trace per unit volume and

$$
\tau\left(X_{i} A\right)=\frac{1}{\left|\mathfrak{C}_{1}\right|} \operatorname{Tr}\left(\chi_{1} X_{i} A \chi_{1}\right)
$$

Trace per unit volume

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in 2 \mathbb{N}+1}} \frac{1}{\left|\mathcal{C}_{L}\right|} \operatorname{Tr}\left(\chi_{L} A \chi_{L}\right), \quad\left|\mathcal{C}_{L}\right|=L^{d}\left|\mathcal{C}_{1}\right|
$$

Lemma 1.

Let A be periodic and $\chi_{K} A \chi_{K} \in \mathcal{B}_{1}(\mathcal{H}) \forall$ compact set K. Then $\tau(A)$ is well-defined and

$$
\tau(A)=\frac{1}{\left|\complement_{1}\right|} \operatorname{Tr}\left(\chi_{1} A \chi_{1}\right)
$$

Lemma 2.
Let A be periodic and $\chi_{K} A \chi_{K} \in \mathcal{B}_{1}(\mathcal{H}) \forall$ compact set K, such that $\tau(A)=0$. Then the operator $X_{i} A$ has finite trace per unit volume and

$$
\tau\left(X_{i} A\right)=\frac{1}{\left|\mathcal{C}_{1}\right|} \operatorname{Tr}\left(\chi_{1} X_{i} A \chi_{1}\right)
$$

Perturbed model

Add an electric field in direction j of small intensity $\varepsilon \in[0,1]$:

$$
H^{\varepsilon}:=H_{0}-\varepsilon X_{j}
$$

Theorem 3 (M., Monaco, Panati, Teufel '18).
One can construct a non-equilibrium almost-stationary state (NEASS) Π^{ε} for H^{ε} such that H_{0} enjoys Assumption (H):

Perturbed model
Add an electric field in direction j of small intensity $\varepsilon \in[0,1]$:

$$
H^{\varepsilon}:=H_{0}-\varepsilon X_{j}
$$

Theorem 3 (M., Monaco, Panati, Teufel '18).
One can construct a non-equilibrium almost-stationary state (NEASS) Π^{ε} for H^{ε} such that H_{0} enjoys Assumption (H):

1. $\Pi^{\varepsilon}=\mathrm{e}^{-\mathrm{i} \varepsilon \delta} \Pi_{0} \mathrm{e}^{\mathrm{i} \varepsilon \delta}$ for some bounded, periodic and self-adjoint operator \mathcal{S};
,
7^{ε} almost-commutes with the Hamiltonian H^{ε}, namely

Perturbed model

Add an electric field in direction j of small intensity $\varepsilon \in[0,1]$:

$$
H^{\varepsilon}:=H_{0}-\varepsilon X_{j}
$$

Theorem 3 (M., Monaco, Panati, Teufel '18).
One can construct a non-equilibrium almost-stationary state (NEASS) Π^{ε} for H^{ε} such that H_{0} enjoys Assumption (H):

1. $\Pi^{\varepsilon}=\mathrm{e}^{-\mathrm{i} \varepsilon \delta} \Pi_{0} \mathrm{e}^{\mathrm{i} \varepsilon \delta}$ for some bounded, periodic and self-adjoint operator \mathcal{S};
2. Π^{ε} almost-commutes with the Hamiltonian H^{ε}, namely $\left[H^{\varepsilon}, \Pi^{\varepsilon}\right]=\mathcal{O}\left(\varepsilon^{2}\right)$.

Proof.

- $\mathcal{J}(\cdot)=$ inverse Liouvillian: for

$$
A=A^{\mathrm{OD}}:=\Pi_{0} A \Pi_{0}^{\perp}+\Pi_{0}^{\perp} A \Pi_{0} \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}\right)
$$

$$
\mathcal{J}(A):=\frac{\mathrm{i}}{2 \pi} \oint_{C} \mathrm{~d} z\left(H_{0}-z \mathrm{Id}\right)^{-1}\left[A, \Pi_{0}\right]\left(H_{0}-z \mathrm{Id}\right)^{-1} \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}, \mathcal{D}_{\mathrm{f}}\right)
$$

Proof.

- $\mathcal{J}(\cdot)=$ inverse Liouvillian: for

$$
A=A^{\mathrm{OD}}:=\Pi_{0} A \Pi_{0}^{\perp}+\Pi_{0}^{\perp} A \Pi_{0} \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}\right)
$$

$$
\mathcal{J}(A):=\frac{\mathrm{i}}{2 \pi} \oint_{C} \mathrm{~d} z\left(H_{0}-z \mathrm{Id}\right)^{-1}\left[A, \Pi_{0}\right]\left(H_{0}-z \mathrm{Id}\right)^{-1} \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}, \mathcal{D}_{\mathrm{f}}\right)
$$

such that it solves $\left[H_{0}, \mathcal{J}(A)\right]=A$ for $A=A^{\mathrm{OD}}$.

Proof.

- $\mathcal{J}(\cdot)=$ inverse Liouvillian: for $A=A^{\mathrm{OD}}:=\Pi_{0} A \Pi_{0}^{\perp}+\Pi_{0}^{\perp} A \Pi_{0} \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}\right)$
$\mathcal{J}(A):=\frac{\mathrm{i}}{2 \pi} \oint_{C} \mathrm{~d} z\left(H_{0}-z \mathrm{Id}\right)^{-1}\left[A, \Pi_{0}\right]\left(H_{0}-z \mathrm{Id}\right)^{-1} \in \mathcal{P}\left(\mathcal{H}_{\mathrm{f}}, \mathcal{D}_{\mathrm{f}}\right)$
such that it solves $\left[H_{0}, \mathcal{J}(A)\right]=A$ for $A=A^{\mathrm{OD}}$.
- Defining $\mathcal{S}:=\mathrm{i} \mathcal{J}\left(X_{j}^{\mathrm{OD}}\right)$ then
$\Pi^{\varepsilon}=\Pi_{0}+\varepsilon \Pi_{1}+\mathcal{O}\left(\varepsilon^{2}\right) \in \mathcal{P}\left(\mathcal{H}_{f}, \mathcal{D}_{\mathrm{f}}\right)$, with $\Pi_{1}=\mathcal{J}\left(\left[X_{j}, \Pi_{0}\right]\right)$, satisfies $\left[H^{\varepsilon}, \Pi^{\varepsilon}\right]=\mathcal{O}\left(\varepsilon^{2}\right)$.

Remark: Justification for using the NEASS (in progress) Consider the time-dependent Hamiltonian

$$
H_{\text {switch }}^{\varepsilon}(t):=H_{0}-f(t) \varepsilon X_{j},
$$

where $f: \mathbb{R} \rightarrow[0,1]$ is a smooth function : $f(t)=0$ for all $t \leq 0$ and $f(t)=1$ for all $t \geq T>0$.
$\rho^{\varepsilon}(t)$: perturbed state

$$
\mathrm{i} \varepsilon \frac{\mathrm{~d}}{\mathrm{~d} t} \rho^{\varepsilon}(t)=\left[H_{\mathrm{switch}}^{\varepsilon}(t), \rho^{\varepsilon}(t)\right], \quad \rho^{\varepsilon}(0)=\Pi_{0}
$$

Remark: Justification for using the NEASS (in progress) Consider the time-dependent Hamiltonian

$$
H_{\text {switch }}^{\varepsilon}(t):=H_{0}-f(t) \varepsilon X_{j},
$$

where $f: \mathbb{R} \rightarrow[0,1]$ is a smooth function : $f(t)=0$ for all $t \leq 0$ and $f(t)=1$ for all $t \geq T>0$.
$\rho^{\varepsilon}(t)$: perturbed state

$$
\mathrm{i} \varepsilon \frac{\mathrm{~d}}{\mathrm{~d} t} \rho^{\varepsilon}(t)=\left[H_{\mathrm{switch}}^{\varepsilon}(t), \rho^{\varepsilon}(t)\right], \quad \rho^{\varepsilon}(0)=\Pi_{0}
$$

Then

$$
\left\|\rho^{\varepsilon}(t)-\Pi^{\varepsilon}\right\|=\mathcal{O}\left(\varepsilon^{2}\right) \text { uniformly on bounded intervals in time. }
$$

Remark: Justification for using the NEASS (in progress) Consider the time-dependent Hamiltonian

$$
H_{\text {switch }}^{\varepsilon}(t):=H_{0}-f(t) \varepsilon X_{j},
$$

where $f: \mathbb{R} \rightarrow[0,1]$ is a smooth function : $f(t)=0$ for all $t \leq 0$ and $f(t)=1$ for all $t \geq T>0$.
$\rho^{\varepsilon}(t)$: perturbed state

$$
\mathrm{i} \varepsilon \frac{\mathrm{~d}}{\mathrm{~d} t} \rho^{\varepsilon}(t)=\left[H_{\mathrm{switch}}^{\varepsilon}(t), \rho^{\varepsilon}(t)\right], \quad \rho^{\varepsilon}(0)=\Pi_{0}
$$

Then

$$
\left\|\rho^{\varepsilon}(t)-\Pi^{\varepsilon}\right\|=\mathcal{O}\left(\varepsilon^{2}\right) \text { uniformly on bounded intervals in time. }
$$

This statement is already proved in the context of interacting models on lattices [Teufel, '17].

Remark: Justification for using the NEASS (in progress) Consider the time-dependent Hamiltonian

$$
H_{\text {switch }}^{\varepsilon}(t):=H_{0}-f(t) \varepsilon X_{j},
$$

where $f: \mathbb{R} \rightarrow[0,1]$ is a smooth function : $f(t)=0$ for all $t \leq 0$ and $f(t)=1$ for all $t \geq T>0$.
$\rho^{\varepsilon}(t)$: perturbed state

$$
\mathrm{i} \varepsilon \frac{\mathrm{~d}}{\mathrm{~d} t} \rho^{\varepsilon}(t)=\left[H_{\mathrm{switch}}^{\varepsilon}(t), \rho^{\varepsilon}(t)\right], \quad \rho^{\varepsilon}(0)=\Pi_{0}
$$

Then

$$
\left\|\rho^{\varepsilon}(t)-\Pi^{\varepsilon}\right\|=\mathcal{O}\left(\varepsilon^{2}\right) \text { uniformly on bounded intervals in time. }
$$

This statement is already proved in the context of interacting models on lattices [Teufel, '17].
NEASS bypasses the LRA and the justification of its validity, and it is independent of the shape of the switching function!

Response currents

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation

Response currents

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{i j}^{\varepsilon}$

By Lemma 2 and Theorem 3, $\sigma_{i j}^{\varepsilon}$ is well-defined (even if the current operator is not periodic!)

Response currents

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{i j}^{\varepsilon}$

$$
\begin{aligned}
\sigma_{i j}^{\varepsilon}: & =\frac{1}{\varepsilon} \operatorname{Re} \tau\left(J_{i} \Pi^{\varepsilon}\right)=\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, S X_{i}\right] \Pi^{\varepsilon}\right) \\
& =\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i} X_{i}\left[H_{0}, S\right] \Pi^{\varepsilon}\right)+\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, X_{i}\right] S \Pi^{\varepsilon}\right) .
\end{aligned}
$$

By Lemma 2 and Theorem 3, $\sigma_{i i}^{\varepsilon}$ is well-defined (even if the current operator is not periodic!)

Expansion in

Response currents

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{i j}^{\varepsilon}$

$$
\begin{aligned}
\sigma_{i j}^{\varepsilon}: & =\frac{1}{\varepsilon} \operatorname{Re} \tau\left(J_{i} \Pi^{\varepsilon}\right)=\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, S X_{i}\right] \Pi^{\varepsilon}\right) \\
& =\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i} X_{i}\left[H_{0}, S\right] \Pi^{\varepsilon}\right)+\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, X_{i}\right] S \Pi^{\varepsilon}\right) .
\end{aligned}
$$

By Lemma 2 and Theorem 3, $\sigma_{i j}^{\varepsilon}$ is well-defined (even if the current operator is not periodic!)

Response currents

We want to compute the response of a current to the perturbation of a weak electric field, in the regime of linear approximation \rightsquigarrow in terms of the adiabatic conductivity tensor $\sigma_{i j}^{\varepsilon}$

$$
\begin{aligned}
\sigma_{i j}^{\varepsilon}: & =\frac{1}{\varepsilon} \operatorname{Re} \tau\left(J_{i} \Pi^{\varepsilon}\right)=\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, S X_{i}\right] \Pi^{\varepsilon}\right) \\
& =\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i} X_{i}\left[H_{0}, S\right] \Pi^{\varepsilon}\right)+\frac{1}{\varepsilon} \operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, X_{i}\right] S \Pi^{\varepsilon}\right) .
\end{aligned}
$$

By Lemma 2 and Theorem 3, $\sigma_{i j}^{\varepsilon}$ is well-defined (even if the current operator is not periodic!)

Expansion in ε

$$
\sigma_{i j}^{\varepsilon}=\frac{1}{\varepsilon} \underbrace{\operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, S X_{i}\right] \Pi_{0}\right)}_{=\text {:persistent current }}+\operatorname{Re} \tau\left(\mathrm{i}\left[H_{0}, S X_{i}\right] \Pi_{1}\right)+O(\varepsilon)
$$

$\left[H_{0}, S\right] \neq 0$: beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume no persistent current flows in the equilibrium state Π_{0}.

$\left[H_{0}, S\right] \neq 0$: beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume no persistent current flows in the equilibrium state $\Pi_{0}{ }^{1}$.
${ }^{1}$ If H_{0} enjoys spatial symmetries hypothesis 2 is satisfied (e.g. the Kane-Mele model is invariant under $2 \pi / 3$ rotation).

$\left[H_{0}, S\right] \neq 0$: beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume no persistent current flows in the equilibrium state Π_{0}.

Then
$\sigma_{i j}^{\varepsilon}=\underbrace{\mathrm{i} \tau\left(\left[\left[S X_{i}, \Pi_{0}\right],\left[X_{j}, \Pi_{0}\right]\right] \Pi_{0}\right)}_{=: \text {Kubo-like term }}+$
$\underbrace{\operatorname{Re} \tau\left(\mathrm{i}\left[H_{0},\left(S X_{i}\right)^{\mathrm{D}}\right] \Pi_{1}+\mathrm{i}\left[H_{0},\left(S X_{i}\right)^{\mathrm{OD}} \Pi_{1}\right]+\mathrm{i}\left[\left[S X_{i}, \Pi_{0}\right], \Pi_{0}\left[\Pi_{0}, X_{j}\right]\right]\right)}$
$=$:beyond-Kubo-like terms
$+O(\varepsilon)$.

$\left[H_{0}, S\right] \neq 0$: beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume no persistent current flows in the equilibrium state Π_{0}.

Then
$\sigma_{i j}^{\varepsilon}=\underbrace{\mathrm{i} \tau\left(\left[\left[S X_{i}, \Pi_{0}\right],\left[X_{j}, \Pi_{0}\right]\right] \Pi_{0}\right)}_{=: \text {Kubo-like term }}+$
$\underbrace{\operatorname{Re} \tau\left(\mathrm{i}\left[H_{0},\left(S X_{i}\right)^{\mathrm{D}}\right] \Pi_{1}+\mathrm{i}\left[H_{0},\left(S X_{i}\right)^{\mathrm{OD}} \Pi_{1}\right]+\mathrm{i}\left[\left[S X_{i}, \Pi_{0}\right], \Pi_{0}\left[\Pi_{0}, X_{j}\right]\right]\right)}$
=:beyond-Kubo-like terms do not vanish because $\tau(\cdot)$ is not cyclic in general! $+O(\varepsilon)$.

$\left[H_{0}, S\right]=0:$ Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.

$\left[H_{0}, S\right]=0:$ Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume $\left[H_{0}, S\right]=0$.

$\left[H_{0}, S\right]=0:$ Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume $\left[H_{0}, S\right]=0$.

Then

$$
\begin{aligned}
\sigma_{i j}^{\varepsilon} & =\underbrace{\mathrm{i} \tau\left(S\left[\left[X_{j}, \Pi_{0}\right],\left[X_{j}, \Pi_{0}\right]\right] \Pi_{0}\right)}_{=: \text {Kubo-like term }}+O(\varepsilon) \\
& =-\frac{\mathrm{i}}{(2 \pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{~d} k \operatorname{Tr}_{\mathcal{H}_{f}}\left(S \Pi_{0}(k)\left[\partial_{k_{i}} \Pi_{0}(k), \partial_{k_{j}} \Pi_{0}(k)\right]\right)+O(\varepsilon) .
\end{aligned}
$$

$\left[H_{0}, S\right]=0$: Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume $\left[H_{0}, S\right]=0$.

Then

$$
\begin{aligned}
\sigma_{i j}^{\varepsilon} & =\underbrace{\mathrm{i} \tau\left(S\left[\left[X_{j}, \Pi_{0}\right],\left[X_{j}, \Pi_{0}\right]\right] \Pi_{0}\right)}_{=: \text {Kubo-like term }}+O(\varepsilon) \\
& =-\frac{\mathrm{i}}{(2 \pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{~d} k \operatorname{Tr}_{\mathcal{H}_{f}}\left(S \Pi_{0}(k)\left[\partial_{k_{i}} \Pi_{0}(k), \partial_{k_{j}} \Pi_{0}(k)\right]\right)+O(\varepsilon) .
\end{aligned}
$$

Remark conditional cyclicity of $\tau(\cdot) \Longrightarrow$ persistent current vanishes automatically and the beyond-Kubo-like terms vanish. In $d=2$ the Kubo-term is equal to the (Spin) Chern number for ($S=\operatorname{Id} \otimes s_{z}$) $S=\operatorname{Id}$ (whenever H_{0} is time-reversal symmetric).

$\left[H_{0}, S\right]=0$: Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let H_{0} satisfy Assumption (H) and let $H^{\varepsilon}=H_{0}-\varepsilon X_{j}$.
2. Assume $\left[H_{0}, S\right]=0$.

Then

$$
\begin{aligned}
\sigma_{i j}^{\varepsilon} & =\underbrace{\mathrm{i} \tau\left(S\left[\left[X_{j}, \Pi_{0}\right],\left[X_{j}, \Pi_{0}\right]\right] \Pi_{0}\right)}_{=: \text {Kubo-like term }}+O(\varepsilon) \\
& =-\frac{\mathrm{i}}{(2 \pi)^{d}} \int_{\mathbb{B}^{d}} \mathrm{~d} k \operatorname{Tr}_{\mathcal{H}_{f}}\left(S \Pi_{0}(k)\left[\partial_{k_{i}} \Pi_{0}(k), \partial_{k_{j}} \Pi_{0}(k)\right]\right)+O(\varepsilon) .
\end{aligned}
$$

Remark For $S=$ Id this result agrees with [AG '98, BES '94, BGKS '05, AW '15 ...] and for $S=\operatorname{Id} \otimes s_{z}$ it agrees with [Pr '09, Sch '13].

Inspired by the Kubo theory of charge transport [ASS, '94]

- we define the Kubo-like spin conductance $G_{K}^{s_{2}}$

Inspired by the Kubo theory of charge transport [ASS, '94]

- we define the Kubo-like spin conductance $G_{K}^{s_{2}}$ and prove that
- for any gapped, periodic, one-particle and near-sighted discrete Hamiltonian $G_{K}^{s_{2}}$ is well-defined

Inspired by the Kubo theory of charge transport [ASS, '94]

- we define the Kubo-like spin conductance $G_{K}^{S_{2}}$ and prove that
- for any gapped, periodic, one-particle and near-sighted discrete Hamiltonian $G_{K}^{s_{2}}$ is well-defined
- the equality

holds true (in the non trivial case $\left[H_{0}, \mathrm{Id} \otimes s_{z}\right] \neq 0$).

Kubo-like spin conductance and conductivity: mathematical setting

- Hilbert space $\mathcal{H}_{\text {disc }}:=\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{2}$

For $A \in \mathcal{B}\left(\mathcal{H}_{\text {disc }}\right)$
$A_{\mathbf{m}, \mathbf{n}}:=\left\langle\delta_{\mathbf{m}}^{(k)}, A \delta_{\mathbf{n}}^{(k)}\right\rangle_{\{k \in\{1, \ldots, 2 N\}\}} \in \operatorname{End}_{2 N}(\mathbb{C})$

Kubo-like spin conductance and conductivity: mathematical setting

- Hilbert space $\mathcal{H}_{\text {disc }}:=\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{2}$

For $A \in \mathcal{B}\left(\mathcal{H}_{\text {disc }}\right)$
$A_{\mathbf{m}, \mathbf{n}}:=\left\langle\delta_{\mathbf{m}}^{(k)}, A \delta_{\mathbf{n}}^{(k)}\right\rangle_{\{k \in\{1, \ldots, 2 N\}\}} \in \operatorname{End}_{2 N}(\mathbb{C})$

- Hamiltonian H_{0} is bounded, self-adjoint

Kubo-like spin conductance and conductivity: mathematical setting

- Hilbert space $\mathcal{H}_{\text {disc }}:=\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{2}$

For $A \in \mathcal{B}\left(\mathcal{H}_{\text {disc }}\right)$
$A_{\mathbf{m}, \mathbf{n}}:=\left\langle\delta_{\mathbf{m}}^{(k)}, A \delta_{\mathbf{n}}^{(k)}\right\rangle_{\{k \in\{1, \ldots, 2 N\}\}} \in \operatorname{End}_{2 N}(\mathbb{C})$

- Hamiltonian H_{0} is bounded, self-adjoint

1. periodic: $H_{0 \mathbf{m}, \mathbf{n}}=H_{0 \mathbf{m}-\mathbf{p}, \mathbf{n}-\mathbf{p}} \forall \mathbf{m}, \mathbf{n}, \mathbf{p} \in \mathbb{Z}^{2}$

Ex: Kane-Mele model

Kubo-like spin conductance and conductivity: mathematical setting

- Hilbert space $\mathcal{H}_{\text {disc }}:=\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{2}$

For $A \in \mathcal{B}\left(\mathcal{H}_{\text {disc }}\right)$
$A_{\mathbf{m}, \mathbf{n}}:=\left\langle\delta_{\mathbf{m}}^{(k)}, A \delta_{\mathbf{n}}^{(k)}\right\rangle_{\{k \in\{1, \ldots, 2 N\}\}} \in \operatorname{End}_{2 N}(\mathbb{C})$

- Hamiltonian H_{0} is bounded, self-adjoint

1. periodic: $H_{0 \mathbf{m}, \mathbf{n}}=H_{0 \mathbf{m}-\mathbf{p}, \mathbf{n}-\mathbf{p}} \forall \mathbf{m}, \mathbf{n}, \mathbf{p} \in \mathbb{Z}^{2}$
2. near-sighted: $\left|H_{0 \mathbf{m}, \mathbf{n}}\right| \leq C \mathrm{e}^{-\frac{1}{\zeta}\left(\left|m_{1}-n_{1}\right|+\left|m_{2}-n_{\mathbf{2}}\right|\right)} \quad \forall \mathbf{m}, \mathbf{n} \in \mathbb{Z}^{2}$
\Rightarrow Fermi projection $\Pi_{0}:=\chi_{(-\infty, \mu)}(H)$ (also near-sighted)
Ex: Kane-Mele model

Kubo-like spin conductance and conductivity: mathematical setting

- Hilbert space $\mathcal{H}_{\text {disc }}:=\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{2}$

For $A \in \mathcal{B}\left(\mathcal{H}_{\text {disc }}\right)$
$A_{\mathbf{m}, \mathbf{n}}:=\left\langle\delta_{\mathbf{m}}^{(k)}, A \delta_{\mathbf{n}}^{(k)}\right\rangle_{\{k \in\{1, \ldots, 2 N\}\}} \in \operatorname{End}_{2 N}(\mathbb{C})$

- Hamiltonian H_{0} is bounded, self-adjoint

1. periodic: $H_{0 \mathbf{m}, \mathbf{n}}=H_{0 \mathbf{m}-\mathbf{p}, \mathbf{n}-\mathbf{p}} \forall \mathbf{m}, \mathbf{n}, \mathbf{p} \in \mathbb{Z}^{2}$
2. near-sighted: $\left|H_{0 \mathbf{m}, \mathbf{n}}\right| \leq C e^{-\frac{1}{\zeta}\left(\left|m_{1}-n_{1}\right|+\left|m_{2}-n_{\mathbf{2}}\right|\right)} \quad \forall \mathbf{m}, \mathbf{n} \in \mathbb{Z}^{2}$
3. admits a spectral gap:

Fermi projection Π_{0}
Ex: Kane-Mele model

Kubo-like spin conductance and conductivity: mathematical setting

- Hilbert space $\mathcal{H}_{\text {disc }}:=\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{2}$

For $A \in \mathcal{B}\left(\mathcal{H}_{\text {disc }}\right)$
$A_{\mathbf{m}, \mathbf{n}}:=\left\langle\delta_{\mathbf{m}}^{(k)}, A \delta_{\mathbf{n}}^{(k)}\right\rangle_{\{k \in\{1, \ldots, 2 N\}\}} \in \operatorname{End}_{2 N}(\mathbb{C})$

- Hamiltonian H_{0} is bounded, self-adjoint

1. periodic: $H_{0 \mathbf{m}, \mathbf{n}}=H_{0 \mathbf{m}-\mathbf{p}, \mathbf{n}-\mathbf{p}} \forall \mathbf{m}, \mathbf{n}, \mathbf{p} \in \mathbb{Z}^{2}$
2. near-sighted: $\left|H_{0 \mathbf{m}, \mathbf{n}}\right| \leq C e^{-\frac{1}{\zeta}\left(\left|m_{1}-n_{1}\right|+\left|m_{2}-n_{\mathbf{2}}\right|\right)} \quad \forall \mathbf{m}, \mathbf{n} \in \mathbb{Z}^{2}$
3. admits a spectral gap:

- Fermi projection $\Pi_{0}:=\chi_{(-\infty, \mu)}(H)$ (also near-sighted)

Ex: Kane-Mele model

Kubo-like spin conductance and conductivity

- Spin torque response $\mathcal{T}_{s_{z}}:=\mathrm{i} \Pi_{0}[\underbrace{}_{\sim i}\left[H_{0}, s_{z}\right] \quad \underbrace{\Pi_{0}, s_{z}}_{\sim E_{2}}]$ - Kubo-like spin conductivity

Kubo-like spin conductance and conductivity

- Spin torque response $\mathcal{T}_{s_{z}}:=\mathrm{i} \Pi_{0}[\underbrace{\left[\Pi_{0}, s_{z}\right]}_{\sim i\left[H_{0}, s_{z}\right]}, \underbrace{\left[\Pi_{0}, X_{2}\right]}_{\sim E_{2}}]$
- Kubo-like spin conductivity

$$
\sigma_{K}^{s_{z}}:=\tau\left(\Sigma_{K}^{s_{z}}\right) \quad \text { where } \quad \sum_{K}^{s_{z}}:=\mathrm{i} \Pi_{0}[\underbrace{\left[\Pi_{0}, X_{1} \otimes s_{z}\right]}_{\sim J_{1}^{s_{z}}:=\mathrm{i}\left[H_{0}, X_{1} \otimes s_{z}\right]}, \underbrace{\left[\Pi_{0}, X_{2}\right]}_{\sim E_{2}}]
$$

Kubo-like spin conductance and conductivity

- Spin torque response $\mathcal{T}_{s_{z}}:=\mathrm{i} \Pi_{0}[\underbrace{\left[\Pi_{0}, s_{z}\right]}_{\sim i}[\underbrace{\Pi_{0}, s_{z}}_{\sim E_{2}}],\left[\Pi_{0}, X_{2}\right]]$
- Kubo-like spin conductivity

$$
\sigma_{K}^{s_{z}}:=\tau\left(\Sigma_{K}^{s_{z}}\right) \text { where } \sum_{K}^{s_{z}}:=\mathrm{i} \Pi_{0}[\underbrace{\left[\Pi_{0}, X_{1} \otimes s_{z}\right]}_{\sim J_{1}^{s_{z}}:=\mathrm{i}\left[H_{0}, X_{1} \otimes s_{z}\right]}, \underbrace{\left[\Pi_{0}, X_{2}\right]}_{\sim E_{2}}]
$$

- Kubo-like spin conductance

$$
G_{K}^{s_{z}}:=1-\operatorname{pvTr}\left(\mathcal{G}_{K}^{s_{z}}\right) \text { where } \mathcal{G}_{K}^{s_{z}}:=\mathrm{i} \Pi_{0}[\underbrace{\left[\Pi_{0}, \Lambda_{1} \otimes s_{z}\right]}_{\sim l_{1}^{s_{2}}:=\mathrm{i}\left[H_{0}, \Lambda_{1} \otimes s_{z}\right]}, \underbrace{\left[\Pi_{0}, \Lambda_{2}\right]}_{\sim \Delta V_{2}}]
$$

Theorem 6 (M., Panati, Tauber '18).

$$
\text { 1. } \tau\left(\mathcal{T}_{s_{z}}\right)=0 \text {. }
$$

Proof uses the conditional cyclicity of $\operatorname{Tr}(\cdot)$ and $\tau(\cdot)$, Lemma 2, [Elgart, Graf, Schenker '04], ...

Theorem 6 (M., Panati, Tauber '18).

1. $\tau\left(\mathcal{T}_{s_{z}}\right)=0$.
2. $\Sigma_{K}^{s_{2}}$ is not periodic, $\sigma_{K}^{s_{2}}$ is well-defined and satisfies $\sigma_{K}^{S_{z}}=\operatorname{Tr}\left(\chi_{1} \Sigma_{K}^{S_{2}} \chi_{1}\right)$.

Proof uses the conditional cyclicity of $\operatorname{Tr}(\cdot)$ and $\tau(\cdot)$, Lemma 2, [Elgart, Graf, Schenker '04], ...

Theorem 6 (M., Panati, Tauber '18).

1. $\tau\left(\mathcal{T}_{s_{z}}\right)=0$.
2. $\Sigma_{K}^{s_{2}}$ is not periodic, $\sigma_{K}^{s_{2}}$ is well-defined and satisfies $\sigma_{K}^{S_{z}}=\operatorname{Tr}\left(\chi_{1} \Sigma_{K}^{S_{2}} \chi_{1}\right)$.
3. Fix Λ_{2}. Assume that $G_{K}^{s_{2}}\left(\Lambda_{1}, \Lambda_{2}\right)$ is finite for at least a switch function Λ_{1}. Then $G_{K}^{s_{2}}\left(\Lambda_{1}^{\prime}, \Lambda_{2}\right)$ is finite for any of switch function Λ_{1}^{\prime} and it is independent of the choice of Λ_{1}^{\prime}.

Proof uses the conditional cyclicity of $\operatorname{Tr}(\cdot)$ and $\tau(\cdot)$, Lemma 2, [Elgart, Graf, Schenker '04], ...

Theorem 6 (M., Panati, Tauber '18).

1. $\tau\left(\mathcal{T}_{s_{z}}\right)=0$.
2. $\Sigma_{K}^{s_{2}}$ is not periodic, $\sigma_{K}^{s_{2}}$ is well-defined and satisfies $\sigma_{K}^{s_{2}}=\operatorname{Tr}\left(\chi_{1} \Sigma_{K}^{s_{2}} \chi_{1}\right)$.
3. Fix Λ_{2}. Assume that $G_{K}^{s_{2}}\left(\Lambda_{1}, \Lambda_{2}\right)$ is finite for at least a switch function Λ_{1}. Then $G_{K}^{s_{2}}\left(\Lambda_{1}^{\prime}, \Lambda_{2}\right)$ is finite for any of switch function Λ_{1}^{\prime} and it is independent of the choice of Λ_{1}^{\prime}.
4. The equality $G_{K}^{s_{z}}=\sigma_{K}^{s_{z}}$ holds true. In particular, $G_{K}^{s_{z}}$ is finite and independent of the choice of switch functions Λ_{1}, Λ_{2}.

Proof uses the conditional cyclicity of $\operatorname{Tr}(\cdot)$ and $\tau(\cdot)$, Lemma 2, [Elgart, Graf, Schenker '04], ...

Conclusion

1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.

Conclusion

1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.
2. We have established a Kubo-like formula for the adiabatic conductivity related to the current operator $\vec{J}=\mathrm{i}\left[H_{0}, S \vec{X}\right]$ with corrections when S is not conserved.

In charge- or spin-preserving models, we have established quantization of conductivities via (spin) Chern numbers. Even if $\left[H_{0}, s_{z}\right] \neq 0$, then Kubo-like spin conductivity and spin conductance are well-defined and coincide using the snin current I due to $\tau\left(\mathcal{T}_{z}\right)=0$ because conservation are restored on average.

Conclusion

1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.
2. We have established a Kubo-like formula for the adiabatic conductivity related to the current operator $\vec{J}=\mathrm{i}\left[H_{0}, S \vec{X}\right]$ with corrections when S is not conserved.
3. In charge- or spin-preserving models, we have established quantization of conductivities via (spin) Chern numbers.

Even if $\left[H_{0}, s_{z}\right] \neq 0$, then Kubo-like spin conductivity and spin conductance are well-defined and coincide using the "proper"
spin current \vec{J}, due to $\tau\left(\mathcal{T}_{z}\right)=0$, because periodicity and spin

Conclusion

1. We have analyzed quantum transport of charge and spin via space-adiabatic perturbation theory (NEASS) avoiding the LRA.
2. We have established a Kubo-like formula for the adiabatic conductivity related to the current operator $\vec{J}=\mathrm{i}\left[H_{0}, S \vec{X}\right]$ with corrections when S is not conserved.
3. In charge- or spin-preserving models, we have established quantization of conductivities via (spin) Chern numbers.
4. Even if $\left[H_{0}, s_{z}\right] \neq 0$, then Kubo-like spin conductivity and spin conductance are well-defined and coincide using the "proper" spin current \vec{J}, due to $\tau\left(\mathcal{T}_{z}\right)=0$, because periodicity and spin conservation are restored on average.

Perspectives

1. Study beyond-Kubo-like terms and consequences in spin transport (e.g. in the Kane-Mele model).

Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{i:}^{S_{z}}=\sigma_{i:}^{5_{z}}$ still hold? Study higher-order corrections in ε to the formula for the adiabatic conductivity

Perspectives

1. Study beyond-Kubo-like terms and consequences in spin transport (e.g. in the Kane-Mele model).
2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{i j}^{s_{z}}=\sigma_{i j}^{s_{z}}$ still hold?

Perspectives

1. Study beyond-Kubo-like terms and consequences in spin transport (e.g. in the Kane-Mele model).
2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{i j}^{s_{z}}=\sigma_{i j}^{s_{z}}$ still hold?
3. Study higher-order corrections in ε to the formula for the adiabatic conductivity $\sigma_{i j}$.

Perspectives

1. Study beyond-Kubo-like terms and consequences in spin transport (e.g. in the Kane-Mele model).
2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{i j}^{s_{z}}=\sigma_{i j}^{s_{z}}$ still hold?
3. Study higher-order corrections in ε to the formula for the adiabatic conductivity $\sigma_{i j}$.
4. For $S=\mathrm{Id} \otimes s_{z}$ relate transport coefficients to \mathbb{Z}_{2} topological invariants.
5. Include other effects:

Perspectives

1. Study beyond-Kubo-like terms and consequences in spin transport (e.g. in the Kane-Mele model).
2. Define and analyze of the beyond-Kubo-like terms in terms of conductance \rightsquigarrow does the equality $G_{i j}^{s_{z}}=\sigma_{i j}^{s_{z}}$ still hold?
3. Study higher-order corrections in ε to the formula for the adiabatic conductivity $\sigma_{i j}$.
4. For $S=\mathrm{Id} \otimes s_{z}$ relate transport coefficients to \mathbb{Z}_{2} topological invariants.
5. Include other effects: disorder, interactions \longrightarrow universality
