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Seminar outline

Experimental setups for QHE and QSHE
Linear response coefficients: o for both QHE and QSHE

A model for quantum transport
Charge and spin current operator
Construction of the NEASS
Adiabatic conductivity of;: Kubo-like formula and beyond

Spin conductance and spin conductivity: analysis of Kubo-like terms
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We are going to

» study the linear response coefficients of a gapped, periodic and
one-particle quantum system to the perturbation of a small
electric field, modeled by a potential —£X; with ¢ < 1, in
terms of the conductivity o

» for both charge (Quantum Hall effect) and spin (Quantum spin
Hall effect) transport.

> derive formulas via an argument which is as
model-independent as possible via the method of
non-equilibrium almost-stationary state (NEASS)

» avoiding the linear response ansatz (LRA) and any justification
of its validity.
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» Hp is a periodic gapped operator on H and bounded from
below

» Bravais lattice of translations = I ~ Z¢
[Ho, T,] =0 Vryer.

» via Bloch-Floquet representation Hy ~ fTej dk Ho(k),
Ho (k) acts on H; := L%(C1) @ CN, € ~ RI/T.
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> H = L*(X)®CN,
X = R9 or X = discrete d-dimensional crystal C RY.

» Hp is a periodic gapped operator on H and bounded from
below

» [y = Fermi projection on occupied bands below the spectral
gap is in B7.
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» Hy is a periodic gapped operator on H and bounded from
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is a smooth equivariant map taking values in the self-adjoint
operators with dense domain Dy C H¢. L(Dy, Hy) is the space
of bounded operators from Dg, equipped with the graph norm
of Ho(0), to H;.
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A model for quantum transport

Assumption (H) on the unperturbed model
> H = [*(X)®CN,
X = R or X = discrete d-dimensional crystal ¢ RY.

» Hy is a periodic gapped operator on H and bounded from
below, such that technical but mild hypotheses on Hj.

Remark The above assumptions are satisfied
> in most tight-binding models (discrete case)

» by gapped, periodic Schrédinger operators
1
Ho = 5(-1V — A(x))? + V(x)

under standard hypotheses of relative boundedness of the
potentials w.r.t. —A (continuum case).
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The following spaces of operators turn out useful for our analysis
Definition Let 31, H, € {D¢, Hs}

P(Hy,Ho) := { M-periodic A with smooth fibration RY — £(Hy,H,) }
and P(Hy) = P(Hq, Hy).

By Assumption (H) Hy € P(Dy, Hy)

i
[Mo, Xj](k) € P(Hs, D) and [Ho, Xj](k) € P(Dr, Hr)
N——— N————

E*lakjﬂo(k) E*laijo(k)
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Perturbed model
Add an electric field in direction j of small intensity ¢ € [0, 1]:

H® := Hy—eX;

Current operator
Ji = i[Ho, S Xi]

S =1Id2(x) @ s self-adjoint, acting only on CN (internal degrees of
freedom)

» s =1Id — charge current (QHE)

» s=s5,=0,/2 —> spin current (QSHE) proposed by
[SZXN "06]
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J versus periodicity

Problem
J is not periodic

J=i[Hy, SX]=iX [Hy, S] +i[Ho. X] S
—— Y
periodic periodic

if and only if [Ho, S| # 0 (for S = Id2(x) @ s, in the Kane-Mele
model: ARashba ;é 0).

Simple but new observation in [M., Panati, Tauber "18]:

T;JTh=J—4i[Ho,S]  VyeT.

~> the periodicity is restored on mesoscopic scale!
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Trace per unit volume

1
T(A) = ||m (XLAXL) |GL‘ = Ld ‘(‘31|
L—oc0 ](‘3 |
LEANT1
Lemma 1.

Let A be periodic and xxAxk € B1(H) V compact set K. Then
7(A) is well-defined and
7(A) =

1
— T Ax1).
el r(x1Ax1)

Lemma 2.
Let A be periodic and xxAxk € B1(H) V compact set K. Then
the operator X;A has finite trace per unit volume and

T(X;A) = Tr (x1 XiAx1)-

L
|Cy]



Trace per unit volume

_ 1
T(A) = lim = Tr(aAxy), €= L9ey
L—o0 |GL|
Le2N+1
Lemma 1.

Let A be periodic and xxAxk € B1(H) V compact set K. Then
7(A) is well-defined and

7(A) = 57 TrhaAx)-

b
|C1]

Lemma 2.
Let A be periodic and xxAxk € B1(H) V compact set K, such
that 7(A) = 0. Then the operator X;A has finite trace per unit
volume and

1
7(XA) = ey Tr (x1 XiAx1)-
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Perturbed model
Add an electric field in direction j of small intensity ¢ € [0, 1]:

H® = Ho—ffXj

Theorem 3 (M., Monaco, Panati, Teufel '18).

One can construct a non-equilibrium almost-stationary state
(NEASS) TT° for H® such that Hy enjoys Assumption (H):
1. 1 = e “3Mge'*S for some bounded, periodic and self-adjoint
operator §;

2. N almost-commutes with the Hamiltonian H®, namely
[H7,1°] = O(2).



Proof.

» J(-) = inverse Liouvillian: for
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€ P(Hz, Dy)



Proof.

» J(-) = inverse Liouvillian: for
A= AOD = Mo AME + MEAMg € P(3)

IA) = o j'{ dz (Hy—zId) ™! [A, Mg] (Ho—zId) ™! € P(H;, Dy)
such that it solves [Hp,J(A)] = A for A = A9D,
» Defining 8 := ifJ(XjOD) then

M® ="My +ely + 0(52) S ﬂj(f}ff,Df), with M = J([Xj, no]),
satisfies [H, 7] = O(=?).
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Remark: Justification for using the NEASS (in progress)
Consider the time-dependent Hamiltonian

bwiten (£) 7= Ho—f (1) £ X,

where f: R — [0, 1] is a smooth function : f(t) =0 forall t <0
and f(t)=1forallt> T > 0.
p°(t) : perturbed state

od o -
i 3P (1) = [Howiten(t) o7 (1)), p7(0) = Mo.
Then
p°(t) — N7|| = O(£?) uniformly on bounded intervals in time.

This statement is already proved in the context of interacting
models on lattices [Teufel, "17].

NEASS bypasses the LRA and the justification of its validity, and it
is independent of the shape of the switching function!
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operator is not periodic!)



Response currents

We want to compute the response of a current to the perturbation
of a weak electric field, in the regime of linear approximation ~~ in
terms of the adiabatic conductivity tensor o7,

1 1
0% 1=~ Rer (JiTF) = ~ Rer (i[Ho, SX 1T°)
9 9
1 1
= g Re T (iX,'[Ho, S] I'IS) + g Re T (i[Ho, X,]S I'Ig)

By Lemma 2 and Theorem 3, o7, is well-defined (even if the current
operator is not periodic!)

Expansion in ¢

1
(f,‘?- == ReT(i[HQ, SX,']no) —i—RET(i[HQ, SX,']H1) + O(E)

—:persistent current




[Ho, S] # 0 : beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).

1. Let Hy satisfy Assumption (H) and let H> = Hy—¢eX;.



[Ho, S] # 0 : beyond-Kubo-like formula
Theorem 4 (M., Monaco, Panati, Teufel '18).
1. Let Hy satisfy Assumption (H) and let H* = Hy—cX;.

2. Assume no persistent current flows in the equilibrium state
Mo?.

Y1f Ho enjoys spatial symmetries hypothesis 2 is satisfied (e. g. the
Kane-Mele model is invariant under 27/3 rotation).



[Ho, S] # 0 : beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).
1. Let Hy satisfy Assumption (H) and let H> = Hy—¢eX;.
2. Assume no persistent current flows in the equilibrium state .

Then

)

o = ir ([15X, Mol X, Mo]] Mo ) +

=:Kubo-like term

ReT(i[Ho, (SX:)P1My + i[Ho, (SX;)°P 4] +i[[SX;, Mol Mo[Mo, xj]])

=:beyond-Kubo-like terms

+ O(¢).



[Ho, S] # 0 : beyond-Kubo-like formula

Theorem 4 (M., Monaco, Panati, Teufel '18).
1. Let Hy satisfy Assumption (H) and let H* = Hy—cX;.

2. Assume no persistent current flows in the equilibrium state [y.

Then

o = iT([[SXia Mo], [X, Mo]] HO) *

=:Kubo-like term

Rer(i[Ho, (5X1)1My + i[Ho, (SX;)°PM4] + i [[SX;, Mo], Mo[Mo, xj]])

=:beyond-Kubo-like terms do not vanish because 7( ) is not cyclic in general!

+ 0(2).
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[Ho, S] = 0 : Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).
1. Let Hy satisfy Assumption (H) and let H> = Hy—¢X;.

2. Assume [Hp, S] = 0.
Then

o5 = i7 (S [P Mol. [X;. Mol Mo ) +0(¢)

-

=:Kubo-like term
- _@ /E;d dk Traq, (SMo(k) [0k Mo(k), O Mo(k)]) + O(e).-




[Ho, S] = 0 : Kubo-like formula
Theorem 5 (M., Monaco, Panati, Teufel '18).
1. Let Hy satisfy Assumption (H) and let H* = Hy—<X;.

2. Assume [Hp, S] = 0.
Then

o5 = ir(S[ 1, Mol. 1% Mo] Mo ) +0(c)

=:Kubo-like term
i

- (27)d /Bd dk Try (Sﬂo(k) [ak,no(k),(‘)kjl—lo(k)}) + 0(e).

Remark conditional cyclicity of 7(-) = persistent current
vanishes automatically and the beyond-Kubo-like terms vanish. In
d = 2 the Kubo-term is equal to the (Spin) Chern number for
(S=T1d®s,) S =1Id (whenever Hy is time-reversal symmetric).



[Ho, S] = 0 : Kubo-like formula

Theorem 5 (M., Monaco, Panati, Teufel '18).

1. Let Hy satisfy Assumption (H) and let H* = Ho—cX;.

2. Assume [Hp, S] = 0.
Then

-
=:Kubo-like term

= _(27r)d /E;d dk Trg{f (Sno(k) [dklno(k)/({‘)kjﬂo(k)}) + O(&-)

Remark For S = Id this result agrees with [AG '98, BES '94,
BGKS '05, AW '15 ... ] and for S = Id ® s, it agrees with [Pr '09,
Sch "13].
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Inspired by the Kubo theory of charge transport [ASS, '94]

> we define the Kubo-like spin conductance G and prove that

> for any gapped, periodic, one-particle and near-sighted discrete
Hamiltonian G;? is well-defined

» the equality

Sz _ Sz
Gy = oK
~~~ ~~

ratio of extensive quantities  ratio of intensive quantities

holds true (in the non trivial case [Hp,1d ® s,] # 0).
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Kubo-like spin conductance and conductivity: mathematical
setting

» Hilbert space Hyise := (%(7Z?) @ CN @ C?

For A € ‘B(f}fdisc)
Amn = (68 A5 End
g <6m »Ad >{ke{1,...,2N}} € Endan(C)

» Hamiltonian Hy is bounded, self-adjoint
1. periodic: Homn = Hom—pn_p ¥V M, n,p € Z?
2. near-sighted: ‘Hom,"‘ < Ce~ ¢lUm=mltlm—nl) ym o c 72

3. admits a spectral gap:
— IS | >
f o(H)

» Fermi projection lNg := X(_o,,)(H) (also near-sighted)

Ex: Kane—Mele model
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Kubo-like spin conductance and conductivity

>4

> Spin torque response T, :=illg [ [Mo, 5], [Mo, X2] |
—— N —
Ni[H07sz] ~E>

» Kubo-like spin conductivity

O';Z = T(Zié) where Zié = 1FI0[ [ﬂo,Xl ®SZ] , [no,XQH

~J7%:=1[Ho,X1®s;] ~E>



Kubo-like spin conductance and conductivity

> Spin torque response T, :=illg [ [Mo, 5], [Mo, X2] |
—— N —

>4

Nl[HO 752] ~E>

» Kubo-like spin conductivity
O';Z = T(Z%) where Zié = 1FI0[ [ﬂo,Xl ® 52] , [ﬂo,XgH
—_———  ~—\—

~JE=i[Ho, X ®s;]  ~Ea

» Kubo-like spin conductance

G = 1-pvIr(G%) where G :=iMg[ [Mo, A1 ®s;] , [Mo,A2]]

NllsZZZi[Ho,/\l(X)SZ] ~AV>
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Theorem 6 (M., Panati, Tauber '18).

1. 7(Ts,) =0.

2. Y32 is not periodic, o}¢ is well-defined and satisfies
o = Tr(xaXgxa)-

3. Fix No. Assume that G2 (N1, \2) is finite for at least a switch
function N\y. Then G2 (N}, \y) is finite for any of switch
function N} and it is independent of the choice of N].

4. The equality Gz = o}¢ holds true. In particular, G2 is finite
and independent of the choice of switch functions N\, \>.

Proof uses the conditional cyclicity of Tr(-) and 7(-), Lemma 2,
[Elgart, Graf, Schenker '04], ...
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Conclusion

1. We have analyzed quantum transport of charge and spin via
space-adiabatic perturbation theory (NEASS) avoiding the
LRA.

2. We have established a Kubo-like formula for the adiabatic
conductivity related to the current operator J = i[Hp, SX]
with corrections when S is not conserved.

3. In charge- or spin-preserving models, we have established
quantization of conductivities via (spin) Chern numbers.

4. Even if [Hy,s;] # 0, then Kubo-like spin conductivity and spin
conductance are well-defined and coincide using the “proper”
spin current J, due to 7(7;) = 0, because periodicity and spin
conservation are restored on average.
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Perspectives

1. Study beyond-Kubo-like terms and consequences in spin
transport (e. g. in the Kane-Mele model).

2. Define and analyze of the beyond-Kubo-like terms in terms of
conductance ~» does the equality G = 077 still hold?

3. Study higher-order corrections in ¢ to the formula for the
adiabatic conductivity o;.

4. For S =1d ® s, relate transport coefficients to Z, topological
invariants.

5. Include other effects: disorder, interactions —> universality
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