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Topics

1 Construction of the C∗-algebra of observables.
2 Classification of gapped bulk systems in Van Daele KR-theory.
3 Systematic pseudo-symmetry picture for the corresponding boundary

classes in Kasparov’s KR-theory.
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Controlled Lattice Operators

Tight-binding model over the lattice L.
bulk lattice : L = |Zd |, half-space: L = |Zd−1 × N|
Localized lattice states: `2(L) := `2(L,C) → Complex Hilbert space with real
structure c of point-wise complex conjugation.

Definition (Controlled operators)

T ∈ B(`2(L)) is controlled or has finite propagation, if there is some R > 0 such that
〈x |T |y〉 = 0 for all x , y ∈ L with |x − y | > R.

Definition (Real C∗-algebra)

A complex C∗-algebra A is a complex Banach algebra with an anti-linear
anti-involution ∗ : A→ A s.th. ‖a∗a‖ = ‖a‖2 ∀ a ∈ A.
A Real C∗-algebra is a complex C∗-algebra A with a real involution, i.e. a ∗-isometric
anti-linear involution ·̄ : A→ A.

Definition (Uniform Roe C∗-algebra)

C∗u (L) := {T ∈ B(`2(L)) | T controlled}
‖·‖

defines a Real C∗-algebra with real
involution Adc.
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Nambu Space of Internal Degrees of Freedom

Single particle picture
V : complex vector space of internal d.o.f.; inner product 〈·, ·〉.

Many particle space without interactions:
Nambu space of fields:

W = V ⊕ V ∗

Choice of basis e1, . . . , en of V :

V ⊕ V ∗ ∼= spanC(c†1 , . . . , c
†
n , c1, . . . , cn)

Anti-linear Riesz isomorphism R : V → V ∗: R(v) = 〈v , ·〉.

Real structure on W : γW =

(
0 R∗

R 0

)
, γ2

W = 1, γW (λw) = λ̄γW (w).

γW induced by fermionic anti-commutation relations {·, ·} and the inner product 〈·, ·〉
on V and V ∗.
M̄ = AdγW

(M) = γWMγW real structure on End(W ).

Hamiltonian without interaction:

H =
∑
i,j

c†i Aijcj + c†i Bijc
†
j + ciCijcj + ciDijc

†
j

→
(
A B
C D

)
∈ End(W ),

(
A B
C D

)
= −

(
A B
C D

)
.
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Homogeneous Disorder

Definition (Dynamical system of disorder)

A dynamical system (Ω, τ,Zd ) describing homogeneous disorder is given by

a compact Hausdorff space Ω = (Ω0)Z
d

,

the Zd -action on Ω: τ : Zd → Homeo(Ω), τx (ωy ) = ωy−x .

Disorder on the level of operators:

Definition (The disordered bulk C∗-algebra)

Let U : Zd → B
(
`2(|Zd |)

)
be the action via translations. The Real C∗-algebra of bulk

observables is given by

AW
d =

{
T ∈ C

(
Ω,C∗u (|Zd |)⊗ End(W )

)
| T (τx (ω)) = UxT (ω)U−1

x ∀ x ∈ Zd
}‖·‖

⊂C(Ω)⊗ C∗u (|Zd |)⊗ End(W )

Real structure on AW
d induced by real structures on End(W ) and C∗u (|Zd |).
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Bulk C∗-algebra as crossed product C∗-algebra

Theorem (Crossed product form of bulk C∗-algebra)

AW
d =

(
C(Ω)⊗ End(W )

)
o Zd .

The crossed product C∗-algebra is the norm-closure of the non-commutative
polynomials{ ∑

x∈Zd

Mxu
x1
1 · · · u

xd
d | Mx ∈ C(Ω)⊗ End(W ),Mx = 0 for almost all x ∈ Zd

}
,

where
uiM(ω)u∗i = M

(
τei (ω)

)
, u∗i = u−1

i , uiuj = ujui

for all i , j ∈ {1, . . . , d} and M ∈ C(Ω)⊗ End(W ) = C(Ω,End(W )).

Clean system: Ω0 = {pt}.
Trivial action of Zd on Ω → translational invariance, AW

d = End(W )⊗ C∗(Zd ).
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Half-space and boundary C∗-algebra

Half-space C∗-algebra: ÂW
d
∼=
{∑

n1,n2∈N pn1,n2 (ûd )n1 (û∗d )n2

}‖·‖
, for pn1,n2 ∈ AW

d−1

and

û∗d ûd = 1, ûd û
∗
d = 1− P0,

ûdM(ω) = M(τed (ω))ûd , û
∗
dM(ω) = M(τ−ed (ω))û∗d ,

where P0 is a 1-dim. projection (P0=̂|0〉〈0|).

Boundary C∗-algebra: BW
d := ÂW

d P0ÂW
d
∼= AW

d−1 ⊗ K
(
`2(N)

)
→ ideal in ÂW

d
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Bulk-boundary short exact sequence

Short exact sequence of Real C∗-algebras:
(
K = K(`2(N))

)
0→ AW

d−1 ⊗ K
ι
↪→ ÂW

d
π−→ AW

d → 0,

where π is the bulk-projection (Real ∗-homomorphism) defined by π(ûd ) = ud and
π(a) = a for a ∈ AW

d−1.
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Classification of gapped free-fermion bulk
groundstates with symmetries

Van Daele KR-theory of graded C∗-algebras Physical Input

KR-classes for gapped bulk systems

Reference: Kellendonk (2015), arxiv: 1509.06271
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Van Daele KR-theory

Definition (Graded, Real C∗-algebra)

Let A be a Real C∗-algebra. A grading on A is a decomposition

A = A(0) ⊕ A(1) with ai ∈ A(i), aj ∈ A(j) ⇒ aiaj ∈ A(i+j), āi ∈ A(i) ∀i , j ∈ Z2.

A(0): ’even’ elements, A(1): ’odd’ elements.

Example

Cla,b: Clifford algebra generated by the positive generators K1, . . . ,Ka and the
negative generators I1, . . . , Ib, s.th. for all m, n ∈ {1, . . . , a}, i , j ∈ {1, . . . , b}:

KmKn + KnKm = 2δm,n, K
∗
m = Km, K̄m = Km,

Ii Ij + Ij Ii = −2δi,j , I
∗
i = −Ii , Īi = Ii ,

KmIi + IiKm = 0.

Standard grading: Kn, Ii odd ∀ n, i .
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Van Daele KR-theory

Let A be a graded, Real C∗-algebra.

F(A) :={a ∈ A(1) | a∗ = a, a2 = 1, ā = a},
F (A) :=F(A)/homotopy.

For [x] ∈ F (Mn(A)), [y ] ∈ F (Mm(A)) let [x] + [y ] :=

[(
x 0
0 y

)]
∈ F (Mn+m(A)).

Definition

Choose a reference element e ∈ F(A).
Van Daele KR-theory for A w.r.t. e is defined as the inductive limit

DKRe(A) := lim
→n

F (Mn(A)),

where F (Mn(A)) 3 [x] 7→
[(

x 0
0 e

)]
∈ F (Mn+1(A)).
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Bulk classification in Van Daele KR-theory

Theorem (Stability)

DKRe(A) ∼= DKRe(A⊗Mn(C)) for all n ∈ N.

Theorem

If e ∈ F(A) with e ∼hom −e, then DKRe(A) is a group that is, up to isomorphism,
independent of the choice of e:

[x] + [y ] =
[(

x 0
0 y

)]
,

Neutral element: [e] = 0,

Inverse for [x] ∈ F (Mn(A)): [−enxen] ∈ F (Mn(A)), where en = e ⊕ e · · · ⊕ e.

→ DKR(A)

Theorem

If A is a Real, ungraded C∗-algebra, then DKR(A⊗ Cla+1,b) ∼= KRb−a(A).
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Bulk Classification - Physical Input

symmetry- # of pseudo- physical
class symmetries symmetries
D 0 none,
DIII 1 time reversal T ,
AII 2 T , charge conj. Q,
CII 3 T ,Q, twisted particle-hole conj. C ,
C 4 spin rotations j1, j2, j3,
CI 5 j1, j2, j3,T ,
AI 6 j1, j2, j3,T ,Q,
BDI 7 j1, j2, j3,T ,Q,C .


Quasi-particle vacuum (QPV)

J ∈ AW
d : J2 = −1, J̄ = J, J∗ = −J

H := −iJ : flattened Hamiltonian

 1:1↔


Free-fermion groundstate

projection P+ :=
1

2
(1 + iJ)




pseudo-symmetries

J1, . . . , Js ∈ End(W ) ⊂ AW
d :

JiJj + JjJi = −2δi,j , J̄i = Ji , J
∗
i = −Ji ,

JiJ + JJi = 0 ∀ i , j ∈ {1, . . . , s}


1:1↔
{

physical symmetries of

the free fermion groundstate

}

Ref.: Zirnbauer, Kennedy (2014), arxiv: 1412.4808
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Bulk classification: class D, s = 0

Consider J ∈ AW
d , J2 = −1, J∗ = −J, J̄ = J.

s = 0:

No restriction on J → classify all x ∈ AW
d s.th. x2 = −1, x∗ = −x , x̄ = x .

Bijection:
AW
d 3 x 7→ x ⊗ I1 ∈ F(AW

d ⊗ Cl0,1)

KR-class for QPV in class D:[(
J ⊗ I1 0

0 −J0 ⊗ I1

)]
∈DKRe(M2(AW

d ⊗ Cl0,1)) ∼= KR2(AW
d ).

where e =

(
J0 ⊗ I1 0

0 −J0 ⊗ I1

)
, J0 =

(
i 0
0 −i

)
∈ End(W ) ⊂ AW

d .

cos(t)
(

J0⊗I1 0
0 −J0⊗I1

)
+ sin(t)

(
0 J0⊗I1

J0⊗I1 0

)
connects e and −e.
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No restriction on J → classify all x ∈ AW
d s.th. x2 = −1, x∗ = −x , x̄ = x .

Bijection:
AW
d 3 x 7→ x ⊗ I1 ∈ F(AW

d ⊗ Cl0,1)

KR-class for QPV in class D:[(
J ⊗ I1 0

0 −J0 ⊗ I1

)]
∈DKRe(M2(AW

d ⊗ Cl0,1)) ∼= KR2(AW
d ).

where e =

(
J0 ⊗ I1 0

0 −J0 ⊗ I1

)
, J0 =

(
i 0
0 −i

)
∈ End(W ) ⊂ AW

d .

cos(t)
(

J0⊗I1 0
0 −J0⊗I1

)
+ sin(t)

(
0 J0⊗I1

J0⊗I1 0

)
connects e and −e.
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Bulk classification: class DIII, s = 1

symmetry- # of pseudo- physical
class symmetries symmetries
D 0 none,
DIII 1 time reversal T ,
AII 2 T , charge conj. Q,
CII 3 T ,Q, twisted particle-hole conj. C ,
C 4 spin rotations j1, j2, j3,
CI 5 j1, j2, j3,T ,
AI 6 j1, j2, j3,T ,Q,
BDI 7 j1, j2, j3,T ,Q,C .

T : V → V , T 2 = −1,T∗ = −T

→ pseudo-symmetry: J1 =

(
0 TR∗

RT 0

)
∈ End(W ) ⊂ AW

d .

Use TR∗ to split End(W ) = End(V )⊗ HC, where HC denotes the
complexification of the quaternions H = spanR

((
i 0
0 −i

)
,
(

0 −1
1 0

)
,
(

0 i
i 0

))
.

AW
d
∼= AV

d ⊗ HC
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Bulk classification: class DIII, s = 1

AW
d
∼= AV

d ⊗ HC : J1 =

(
0 TR∗

RT 0

)
7→ 1⊗

(
0 −1
1 0

)
∈ AV

d ⊗ HC

γ =

(
0 R∗

R 0

)
7→ T ⊗

(
0 −1
1 0

)
.

T defines a quaternionic (T∗ = −T ,T 2 = −1) structure on AV
d .

QPV J ∈ AW
d in class DIII commutes with γ and anti-commutes with J1:

J 7→ x1 ⊗
(
i 0
0 −i

)
+ x2 ⊗

(
0 i
i 0

)
∈ AV

d ⊗ HC, (1)

with x̄i := T∗xiT = xi , x
∗
i = xi , x

2
i = 1 for i = 1, 2 and x1x2 = x2x1, x2

1 + x2
2 = 1.

Bijection:
(x1, x2) 7→ x1 ⊗ K1 + x2 ⊗ K2 ∈ F(AV

d ⊗ Cl2,0)

DKR-class for QPV (1) in class DIII:

[x1 ⊗ K1 + x2 ⊗ K2] ∈ DKR(AV
d ⊗ Cl2,0) ∼= KR−1(AV

d )∼= KR3(AW
d ),

where e.g. e = 1⊗ K1.
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Bulk classification

symmetry- # of pseudo- physical
class symmetries symmetries
D 0 none,
DIII 1 time reversal T ,
AII 2 T , charge conj. Q,
CII 3 T ,Q, twisted particle-hole conj. C ,
C 4 spin rotations j1, j2, j3,
CI 5 j1, j2, j3,T ,
AI 6 j1, j2, j3,T ,Q,
BDI 7 j1, j2, j3,T ,Q,C .

Observation

A bulk QPV in symmetry class s defines a class in KRs+2(AW
d ).
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Bulk-boundary correspondence:
1 Construct a boundary morphism ∂ : KRs+2(AW

d )→ KRs+1(AW
d−1) inducing

bulk-boundary correspondence.

2 Use the Kasparov picture of the KR-classes to get a systematic picture of the
boundary classes.

KRb−a+1(AW
d ) ∼= DKR(AW

d ⊗ Cla,b) KKR(Clb,a,A
W
d ⊗ Cl0,1) ∼= KRb−a+1(AW

d )

KRb−a(AW
d−1) ∼= DKR(AW

d−1 ⊗ Cla+1,b) KKR(Clb,a+1,A
W
d−1 ⊗ Cl0,1) ∼= KRb−a(AW

d−1)

∂

∼

∼

∂
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Long exact sequence of KR-theory

Short exact sequence of Real C∗-algebras:

0→ AW
d−1 ⊗ K

ι
↪→ ÂW

d
π−→ AW

d → 0

Long exact sequence of KR-theory: (∂: connecting/boundary morphism)

KRi (A
W
d−1 ⊗ K) KRi (Â

W
d ) KRi (A

W
d )

KRi−1(AW
d−1 ⊗ K) KRi−1(ÂW

d ) KRi−1(AW
d )

ι∗ π∗

ι∗ π∗

∂

∂

∂
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Boundary classes in KKR-theory

KRs+1(AW
d−1) ∼= KKR(Cls,0,AW

d−1 ⊗ Cl0,1):

The elements are (equivalence classes of) tuples
(
ψ : Cls,0 → B(H),F ∈ B(H)

)
,

where H = `2(N)⊗ AW
d−1 ⊗ Cl0,1 and ψ is a grading preserving ∗-morphism such

that

(F∗ − F )ψ(Cls,0) = 0,

Fψ(Ki ) + ψ(Ki )F = 0 ∀ i ∈ {1, . . . , s},

(F 2 − 1)ψ(Cls,0) ∈ K(H) = K(`2(N))⊗ AW
d−1 ⊗ Cl0,1.

Degenerate tuples: (F 2 − 1)ψ(Cls,0) = 0 → Trivial KR-theory.

Equivalence relations:
Unitary equivalence: (ψ1,F1) ∼u (v∗ψ1v , v∗F1v) for unitary, even v ∈ B(H).
Operator homotopy equivalence: Continuous path (ψ,Ft) for t ∈ [0, 1], then
(ψ,F0) ∼h (ψ,F1).
Stabilization: Direct sum (ψ1,F1)⊕ (ψ2,F2) = (ψ1 ⊕ ψ2,F1 ⊕ F2) well defined,
since H⊕H ∼= H.
→ (ψ, f ) ∼s (ψ,F )⊕ (ψdeg ,Fdeg ) if (ψdeg ,Fdeg ) is degenerate.
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Boundary classes in KKR-theory

Theorem

The boundary class for symmetry class s is given by[(
H, ψ, Ĵ ⊗ I1

)]
∈ KKR(Cls,0,A

W
d−1 ⊗ Cl0,1),

where H = `2(N)⊗ AW
d−1 ⊗ Cl0,1 and ψ : Cls,0 → B(H);ψ(Ki ) = Ji ⊗ I1 for

i = 1, . . . , s.

Ĵ ∈ ÂW
d−1 ⊆ B(`2(N)⊗ AW

d−1) half-space QPV corresponding to J ∈ AW
d , i.e.

π(Ĵ) = J for the bulk-projection π. ⇒ 1 + Ĵ2 ∈ AW
d−1 ⊗ K.

Pseudo symmetries J1, . . . , Js ∈ End(W ) ⊂ ÂW
d anti-commute with Ĵ ∈ ÂW

d .

⇒ [ψ(x), Ĵ ⊗ I1] = 0 ∀ x ∈ Cls,0.
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Results

Solid motivation for the crossed product algebra as observable algebra for the
disordered tight-binding model.

Canonical construction of KR-classes of gapped bulk systems.

Systematic picture for gapless boundary classification.

Properties of bulk-boundary correspondence ∂ : KRs+2(AW
d )→ KRs+1(AW

d−1):

J ∈ AW
d defines a bulk KR-class in ker(∂) if and only if J ∈ AW

d−1 ⊂ AW
d .

Im(∂) = KRs+1(AW
d−1) in clean system. In general false for disordered systems.

Given a fixed bulk class, the boundary classes can be different for different directions of
the boundary.
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Strong topological invariants agree, up to a sign, in bulk and boundary for any
direction.1

Non-trivial strong invariant in bulk ⇒ Gapless boundaries.

symmetry- # of pseudo- Dimension d
class symmetries 0 1 2 3 4 5 6 7

D 0 Z2 Z2 Z 0 0 0 Z 0
DIII 1 0 Z2 Z2 Z 0 0 0 Z
AII 2 Z 0 Z2 Z2 Z 0 0 0
CII 3 0 Z 0 Z2 Z2 Z 0 0
C 4 0 0 Z 0 Z2 Z2 Z 0
CI 5 0 0 0 Z 0 Z2 Z2 Z
AI 6 Z 0 0 0 Z 0 Z2 Z2

BDI 7 Z2 Z 0 0 0 Z 0 Z2

Table: Strong Topological Invariants

1Bourne, Kellendonk, Rennie (2016), arxiv: 1604.02337
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