A bird's-eye view on \mathbb{Z}_{2} topology

Domenico Monaco

ETH Zürich
September 5th, 2018

Kitaev's periodic table

Symmetry				Dimension							
AZ	T	C	S	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
Al	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Kitaev's periodic table

Symmetry				Dimension							
AZ	T	C	S	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
Al	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

2D All: quantum spin Hall insulator

Spin Hall effect

\mathbb{Z}_{2} classification [Fu-Kane-Mele 2005-07]

normal insulator (trivial phase) vs topological insulator (QSH phase)

$$
\mathrm{FKM}:=\frac{1}{2 \pi} \int_{\mathrm{EBZ}} \mathcal{F}-\frac{1}{2 \pi} \oint_{\partial \mathrm{EBZ}} \mathcal{A} \bmod 2 \in \mathbb{Z}_{2}
$$

Outline of the presentation

(1) TRS topological insulators
(2) FKM as a topological obstruction

- The FMP index
- The GP index
(3) FKM and WZW amplitudes
- The GT+ index
- WZW amplitude and square root
(4) More on the \mathbb{Z}_{2} invariant

Time-reversal symmetric topological insulators

d-dimensional TRS topological insulator (class AII)
A map $P: \mathbb{R}^{d} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ (possibly $M=\infty$) such that

- $P(k)=P(k)^{*}=P(k)^{2}$ is a rank- m orthogonal projection, $m=2 n$
$k \mapsto P(k)$ is smooth (at least C^{1})
$\nabla k \mapsto P(k)$ is \mathbb{Z}^{d}-periodic: $P(k+\lambda)=P(k)$ for $\lambda \in \mathbb{Z}^{d}$

Example

$P(k)=$ family of Fermi projections of a gapped, periodic, TRS Hamiltonian, in the Bloch-Floquet representation:

$$
P(k)=\mathbf{1}_{\left(-\infty, E_{F}\right]}(H(k))
$$

Time-reversal symmetric topological insulators

d-dimensional TRS topological insulator (class AII)
A map $P: \mathbb{R}^{d} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ (possibly $M=\infty$) such that

- $P(k)=P(k)^{*}=P(k)^{2}$ is a rank- m orthogonal projection, $m=2 n$
- $k \mapsto P(k)$ is smooth (at least C^{1})
$\Rightarrow k \mapsto P(k)$ is \mathbb{Z}^{d}-periodic: $P(k+\lambda)=P(k)$ for $\lambda \in \mathbb{Z}^{d}$

Example

$P(k)=$ family of Fermi projections of a gapped, periodic, TRS Hamiltonian, in the Bloch-Floquet representation:

$$
P(k)=\mathbf{1}_{\left(-\infty, E_{F}\right]}(H(k))
$$

Time-reversal symmetric topological insulators

d-dimensional TRS topological insulator (class AII)

A map $P: \mathbb{R}^{d} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ (possibly $M=\infty$) such that

- $P(k)=P(k)^{*}=P(k)^{2}$ is a rank- m orthogonal projection, $m=2 n$
- $k \mapsto P(k)$ is smooth (at least C^{1})
$\Rightarrow k \mapsto P(k)$ is \mathbb{Z}^{d}-periodic: $P(k+\lambda)=P(k)$ for $\lambda \in \mathbb{Z}^{d} \rightsquigarrow k \in B Z \simeq \mathbb{T}^{d}$

Example

$P(k)=$ family of Fermi projections of a gapped, periodic, TRS Hamiltonian, in the Bloch-Floquet representation:

$$
P(k)=\mathbf{1}_{\left(-\infty, E_{F}\right]}(H(k))
$$

Time-reversal symmetric topological insulators

d-dimensional TRS topological insulator (class AII)

A map $P: \mathbb{R}^{d} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ (possibly $M=\infty$) such that

- $P(k)=P(k)^{*}=P(k)^{2}$ is a rank- m orthogonal projection, $m=2 n$
- $k \mapsto P(k)$ is smooth (at least C^{1})
$\triangleright k \mapsto P(k)$ is \mathbb{Z}^{d}-periodic: $P(k+\lambda)=P(k)$ for $\lambda \in \mathbb{Z}^{d} \rightsquigarrow k \in B Z \simeq \mathbb{T}^{d}$ odd/fermionic time-reversal symmetry (TRS): $M=2 N$ and \exists antiunitary $\Theta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M}, \Theta^{2}=-1$, such that $\Theta P(k) \Theta^{-1}=P(-k)$

Example

$P(k)=$ family of Fermi projections of a gapped, periodic, TRS Hamiltonian, in the Bloch-Floquet representation:

$$
P(k)=\mathbf{1}_{\left(-\infty, E_{F}\right]}(H(k))
$$

Time-reversal symmetric topological insulators

d-dimensional TRS topological insulator (class AII)

A map $P: \mathbb{R}^{d} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ (possibly $M=\infty$) such that

- $P(k)=P(k)^{*}=P(k)^{2}$ is a rank- m orthogonal projection, $m=2 n$
- $k \mapsto P(k)$ is smooth (at least C^{1})
$\Rightarrow k \mapsto P(k)$ is \mathbb{Z}^{d}-periodic: $P(k+\lambda)=P(k)$ for $\lambda \in \mathbb{Z}^{d} \rightsquigarrow k \in \mathrm{BZ} \simeq \mathbb{T}^{d}$
- odd/fermionic time-reversal symmetry (TRS): $M=2 N$ and \exists antiunitary $\Theta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M}, \Theta^{2}=-\mathbf{1}$, such that $\Theta P(k) \Theta^{-1}=P(-k)$

Example

$P(k)=$ family of Fermi projections of a gapped, periodic, TRS Hamiltonian, in the Bloch-Floquet representation:

$$
P(k)=\mathbf{1}_{\left(-\infty, E_{F}\right]}(H(k))
$$

Time-reversal symmetric topological insulators

d-dimensional TRS topological insulator (class AII)

A map $P: \mathbb{R}^{d} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ (possibly $M=\infty$) such that

- $P(k)=P(k)^{*}=P(k)^{2}$ is a rank- m orthogonal projection, $m=2 n$
- $k \mapsto P(k)$ is smooth (at least C^{1})
$\Rightarrow k \mapsto P(k)$ is \mathbb{Z}^{d}-periodic: $P(k+\lambda)=P(k)$ for $\lambda \in \mathbb{Z}^{d} \rightsquigarrow k \in \mathrm{BZ} \simeq \mathbb{T}^{d}$
- odd/fermionic time-reversal symmetry (TRS): $M=2 N$ and \exists antiunitary $\Theta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M}, \Theta^{2}=-\mathbf{1}$, such that $\Theta P(k) \Theta^{-1}=P(-k)$
$\rightsquigarrow k \in \mathrm{EBZ} \simeq$ "half a $\mathbb{T}^{d "}$

Example

$P(k)=$ family of Fermi projections of a gapped, periodic, TRS Hamiltonian, in the Bloch-Floquet representation:

$$
P(k)=\mathbf{1}_{\left(-\infty, E_{F}\right]}(H(k))
$$

Time-reversal symmetric topological insulators

d-dimensional TRS topological insulator (class AII)

A map $P: \mathbb{R}^{d} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ (possibly $M=\infty$) such that

- $P(k)=P(k)^{*}=P(k)^{2}$ is a rank- m orthogonal projection, $m=2 n$
- $k \mapsto P(k)$ is smooth (at least C^{1})
$k \mapsto P(k)$ is \mathbb{Z}^{d}-periodic: $P(k+\lambda)=P(k)$ for $\lambda \in \mathbb{Z}^{d} \rightsquigarrow k \in \mathrm{BZ} \simeq \mathbb{T}^{d}$
- odd/fermionic time-reversal symmetry (TRS): $M=2 N$ and \exists antiunitary $\Theta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M}, \Theta^{2}=-\mathbf{1}$, such that $\Theta P(k) \Theta^{-1}=P(-k)$ $\rightsquigarrow k \in \mathrm{EBZ} \simeq$ "half a $\mathbb{T}^{d "}$

Example

$P(k)=$ family of Fermi projections of a gapped, periodic, TRS Hamiltonian, in the Bloch-Floquet representation:

$$
P(k)=\mathbf{1}_{\left(-\infty, E_{F}\right]}(H(k))
$$

Bloch frames

Bloch frame

A collection $\Phi(k)=\left\{\phi_{1}(k), \ldots, \phi_{m}(k)\right\} \subset \mathbb{C}^{M}, k \in \mathbb{R}^{d}$, of orthonormal vectors such that

$$
P(k)=\sum_{a=1}^{m}\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right|
$$

Φ is called

Bloch frames

Bloch frame

A collection $\Phi(k)=\left\{\phi_{1}(k), \ldots, \phi_{m}(k)\right\} \subset \mathbb{C}^{M}, k \in \mathbb{R}^{d}$, of orthonormal vectors such that

$$
P(k)=\sum_{a=1}^{m}\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right|
$$

Φ is called
smooth if each $k \mapsto \phi_{a}(k)$ is smooth
periodic if each $k \mapsto \phi_{a}(k)$ is \mathbb{Z}^{d}-periodic
\Rightarrow TRS if $\Phi(-k)=[\Theta \Phi(k)] \varepsilon$, with $\varepsilon:=\left(\begin{array}{cc}0 & \mathbf{1}_{n} \\ -\mathbf{1}_{n} & 0\end{array}\right)$

Bloch frames

Bloch frame

A collection $\Phi(k)=\left\{\phi_{1}(k), \ldots, \phi_{m}(k)\right\} \subset \mathbb{C}^{M}, k \in \mathbb{R}^{d}$, of orthonormal vectors such that

$$
P(k)=\sum_{a=1}^{m}\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right|
$$

Φ is called

- smooth if each $k \mapsto \phi_{a}(k)$ is smooth
- periodic if each $k \mapsto \phi_{a}(k)$ is \mathbb{Z}^{d}-periodic
\Rightarrow TRS if $\Phi(-k)=[\Theta \Phi(k)] \varepsilon$, with $\varepsilon:=\left(\begin{array}{cc}0 & 1_{n} \\ -1_{n} & 0\end{array}\right)$

Bloch frames

Bloch frame

A collection $\Phi(k)=\left\{\phi_{1}(k), \ldots, \phi_{m}(k)\right\} \subset \mathbb{C}^{M}, k \in \mathbb{R}^{d}$, of orthonormal vectors such that

$$
P(k)=\sum_{a=1}^{m}\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right|
$$

Φ is called

- smooth if each $k \mapsto \phi_{a}(k)$ is smooth
- periodic if each $k \mapsto \phi_{a}(k)$ is \mathbb{Z}^{d}-periodic
\Rightarrow TRS if $\Phi(-k)=[\Theta \Phi(k)] \varepsilon$, with $\varepsilon:=\left(\begin{array}{cc}0 & \mathbf{1}_{n} \\ -\mathbf{1}_{n} & 0\end{array}\right)$

Bloch frames

Bloch frame

A collection $\Phi(k)=\left\{\phi_{1}(k), \ldots, \phi_{m}(k)\right\} \subset \mathbb{C}^{M}, k \in \mathbb{R}^{d}$, of orthonormal vectors such that

$$
P(k)=\sum_{a=1}^{m}\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right|
$$

Φ is called

smooth if each $k \mapsto \phi_{a}(k)$ is smooth

periodic if each $k \mapsto \phi_{a}(k)$ is \mathbb{Z}^{d}-periodic

- TRS if $\Phi(-k)=[\Theta \Phi(k)] \varepsilon$, with $\varepsilon:=\left(\begin{array}{cc}0 & \mathbf{1}_{n} \\ -\mathbf{1}_{n} & 0\end{array}\right)$

$$
\begin{aligned}
\left\langle\phi_{a}(0), \phi_{a}(0)\right\rangle=1 \quad \text { but } \quad\left\langle\phi_{a}(0), \Theta \phi_{a}(0)\right\rangle & =\overline{\left\langle\Theta \phi_{a}(0), \Theta^{2} \phi_{a}(0)\right\rangle} \\
& =-\left\langle\phi_{a}(0), \Theta \phi_{a}(0)\right\rangle=0
\end{aligned}
$$

Berry connection, Berry curvature

Berry connection

$$
\mathcal{A}:=-\mathrm{i} \sum_{a=1}^{m}\left\langle\phi_{\mathrm{a}}, \mathrm{~d} \phi_{\mathrm{a}}\right\rangle
$$

Berry curvature

$$
\mathcal{F}:=\mathrm{d} \mathcal{A}=-\mathrm{i} \operatorname{Tr}(P \mathrm{~d} P \wedge \mathrm{~d} P)
$$

Gauge dependence

$$
\Phi^{G}:=\Phi(k) G(k), G(k) \in U(m) \quad \Longrightarrow
$$

$$
\begin{gathered}
\mathcal{A}^{G}=\mathcal{A}-\mathrm{i} \operatorname{Tr}\left(G^{-1} \mathrm{~d} G\right) \\
\mathcal{F}^{G}=\mathcal{F}
\end{gathered}
$$

Berry connection, Berry curvature

Berry connection

$$
\mathcal{A}:=-\mathrm{i} \sum_{a=1}^{m}\left\langle\phi_{a}, \mathrm{~d} \phi_{a}\right\rangle
$$

Berry curvature

$$
\mathcal{F}:=\mathrm{d} \mathcal{A}=-\mathrm{i} \operatorname{Tr}(P \mathrm{~d} P \wedge \mathrm{~d} P)
$$

Gauge dependence

$$
\Phi^{G}:=\Phi(k) G(k), G(k) \in U(m) \Longrightarrow \begin{gathered}
\mathcal{A}^{G}=\mathcal{A}-\mathrm{i} \operatorname{Tr}\left(G^{-1} \mathrm{~d} G\right) \\
\mathcal{F}^{G}=\mathcal{F}
\end{gathered}
$$

Existence of Bloch frames

Theorem ([Panati AHP'07; M.-Panati AAP'15])
Assume d $=2$.

- The existence of smooth, periodic Bloch frames is topologically obstructed by the Chern number:

$$
c_{1}(P):=\frac{1}{2 \pi} \int_{\mathrm{BZ}} \mathcal{F} \quad \in \mathbb{Z}
$$

In TRS topological insulators, $c_{1}(P)=0$.

Existence of Bloch frames

Theorem ([Panati AHP'07; M.-Panati AAP'15])

Assume d=2.

- The existence of smooth, periodic Bloch frames is topologically obstructed by the Chern number:

$$
c_{1}(P):=\frac{1}{2 \pi} \int_{\mathrm{BZ}} \mathcal{F} \quad \in \mathbb{Z}
$$

- In TRS topological insulators, $c_{1}(P)=0$.

Existence of Bloch frames

Theorem ([Fiorenza-M.-Panati CMP'16; Cornean-M.--Teufel RMP'17; M. AQM'17])
Assume $d=2$.

- The existence of smooth, periodic, and TRS Bloch frames is topologically obstructed by a \mathbb{Z}_{2} obstruction: $\mathrm{FMP} \in \mathbb{Z}_{2}$.
$\mathrm{FMP}=\mathrm{FKM} \in \mathbb{Z}_{2}$.
$\mathrm{FMP}=\mathrm{GP} \in \mathbb{Z}_{2}$, the Graf-Porta index [Graf-Porta CMP'13].

Existence of Bloch frames

Theorem ([Fiorenza-M.-Panati CMP'16; Cornean-M.--Teufel RMP'17; M. AQM'17])
Assume $d=2$.

- The existence of smooth, periodic, and TRS Bloch frames is topologically obstructed by a \mathbb{Z}_{2} obstruction: $\mathrm{FMP} \in \mathbb{Z}_{2}$.
- $\mathrm{FMP}=\mathrm{FKM} \in \mathbb{Z}_{2}$.
$\mathrm{FMP}=\mathrm{GP} \in \mathbb{Z}_{2}$, the Graf-Porta index [Graf-Porta CMP'13].

Existence of Bloch frames

Theorem ([Fiorenza-M.-Panati CMP'16; Cornean-M.--Teufel RMP'17; M. AQM'17])
Assume d=2.

- The existence of smooth, periodic, and TRS Bloch frames is topologically obstructed by a \mathbb{Z}_{2} obstruction: $\mathrm{FMP} \in \mathbb{Z}_{2}$.
- $\mathrm{FMP}=\mathrm{FKM} \in \mathbb{Z}_{2}$.
- $\mathrm{FMP}=\mathrm{GP} \in \mathbb{Z}_{2}$, the Graf-Porta index [Graf-Porta CMP'13].

Step-by-step extension of Bloch frames

Step 1

Pick a symplectic orthonormal basis Ψ for $\operatorname{Ran} P(0,0)$:

$$
\Theta P(0,0) \Theta^{-1}=P(0,0) \quad \Longrightarrow \quad \Psi=[\Theta \Psi] \varepsilon
$$

Step-by-step extension of Bloch frames

Step 2

Modified parallel transport along k_{2} (preserves TRS \& k_{2}-periodicity):
$\Psi\left(0, k_{2}\right):=\mathrm{e}^{-\mathrm{i} k_{2} X} T\left(k_{2}\right) \Psi$ with $\left\{\begin{array}{l}\mathrm{i} \partial_{k_{2}} T\left(k_{2}\right)=\mathrm{i}\left[\partial_{k_{2}} P\left(0, k_{2}\right), P\left(0, k_{2}\right)\right] T\left(k_{2}\right) \\ T(0)=\mathbf{1}_{\mathbb{C}} \boldsymbol{M} ; \quad T(1)=: \mathrm{e}^{\mathrm{i} X}\end{array}\right.$

Step-by-step extension of Bloch frames

Step 3

Parallel transport along k_{1} (preserves TRS \& k_{2}-periodicity):
$\Psi\left(k_{1}, k_{2}\right):=T_{k_{2}}\left(k_{1}\right) \Psi\left(0, k_{2}\right)$ with $\left\{\begin{array}{l}\mathrm{i} \partial_{k_{1}} T_{k_{2}}\left(k_{1}\right)=\mathrm{i}\left[\partial_{k_{1}} P(k), P(k)\right] T_{k_{2}}\left(k_{1}\right) \\ T_{k_{2}}(0)=\mathbf{1}_{\mathbb{C}^{M}} ; T_{k_{2}}(1)=: \mathcal{T}\left(k_{2}\right)\end{array}\right.$

Step-by-step extension of Bloch frames

Matching matrix

$$
\Psi\left(1 / 2, k_{2}\right)=\Psi\left(-1 / 2, k_{2}\right) \mathcal{T}\left(k_{2}\right), \quad \mathcal{T}\left(k_{2}\right) \in U(m)
$$

$k_{2} \mapsto \mathcal{T}\left(k_{2}\right)$ is smooth, \mathbb{Z}-periodic, and TRS: $\varepsilon \mathcal{T}\left(k_{2}\right)=\mathcal{T}\left(-k_{2}\right)^{\top} \varepsilon$

Step-by-step extension of Bloch frames

Topological obstruction
A smooth, periodic, and TRS Bloch frame exists

$$
\mathcal{T} \sim_{\mathbb{Z}_{2}-h} \mathbf{1}
$$

Obstruction matrix

- Ψ as above (smooth, k_{2}-periodic, TRS, matching matrix $\mathcal{T}\left(k_{2}\right)$)
- Φ fully symmetric

Obstruction matrix

$$
\Phi(k)=\Psi(k) U_{\text {obs }}(k), \quad U_{\text {obs }}(k) \in U(m)
$$

- w.l.o.g. $U_{\text {obs }}\left(0, k_{2}\right) \equiv \mathbf{1} \equiv U_{\text {obs }}\left(k_{1}, \pm 1 / 2\right)$
- $k \mapsto U_{\text {obs }}(k)$ is smooth
- $k_{2} \mapsto U_{\text {obs }}\left(k_{1}, k_{2}\right)$ is \mathbb{Z}-periodic
- $\varepsilon U_{\text {obs }}(k)^{*}=U_{\text {obs }}(-k)^{\top} \varepsilon$
$\Rightarrow \mathcal{T}\left(k_{2}\right)=\varepsilon^{-1} \overline{U_{\text {obs }}\left(1 / 2,-k_{2}\right)} \varepsilon U_{\text {obs }}\left(1 / 2, k_{2}\right)^{*}$

Obstruction matrix

- Ψ as above (smooth, k_{2}-periodic, TRS, matching matrix $\mathcal{T}\left(k_{2}\right)$)
- Φ fully symmetric

Obstruction matrix

$$
\Phi(k)=\Psi(k) U_{\text {obs }}(k), \quad U_{\text {obs }}(k) \in U(m)
$$

- w.l.o.g. $U_{\text {obs }}\left(0, k_{2}\right) \equiv \mathbf{1} \equiv U_{\text {obs }}\left(k_{1}, \pm 1 / 2\right)$
- $k \mapsto U_{\text {obs }}(k)$ is smooth
- $k_{2} \mapsto U_{\text {obs }}\left(k_{1}, k_{2}\right)$ is \mathbb{Z}-periodic
- $\varepsilon U_{\text {obs }}(k)^{*}=U_{\text {obs }}(-k)^{\top} \varepsilon$
- $\mathcal{T}\left(k_{2}\right)=\varepsilon^{-1} \overline{U_{\text {obs }}\left(1 / 2,-k_{2}\right)} \varepsilon U_{\text {obs }}\left(1 / 2, k_{2}\right)^{*}$

Fiorenza-Monaco-Panati index [Fiorenza-M.-Panati CMP'16]
FMP $:=\operatorname{wind}_{\partial E B Z}\left(\operatorname{det} U_{\text {obs }}\right) \bmod 2 \in \mathbb{Z}_{2}$

$F K M=F M P$

$$
\mathcal{A}_{\text {obs }}=\mathcal{A}-\mathrm{i} \operatorname{Tr}\left(U_{\text {obs }}^{-1} \mathrm{~d} U_{\text {obs }}\right)
$$

Hence by Stokes

$$
\frac{1}{2 \pi} \int_{\mathrm{EBZ}} \mathcal{F}=\frac{1}{2 \pi} \oint_{\partial \mathrm{EBZ}} \mathcal{A}=\frac{1}{2 \pi} \oint_{\partial \mathrm{EBZ}} \mathcal{A}_{\mathrm{obs}}+\frac{\mathrm{i}}{2 \pi} \oint_{\partial \mathrm{EBZ}} \operatorname{Tr}\left(U_{\mathrm{obs}}^{-1} \mathrm{~d} U_{\mathrm{obs}}\right)
$$

or

$$
\operatorname{wind}_{\partial \mathrm{EBZ}}\left(\operatorname{det} U_{\mathrm{obs}}\right)=\frac{1}{2 \pi} \int_{\mathrm{EBZ}} \mathcal{F}-\frac{1}{2 \pi} \oint_{\partial \mathrm{EBZ}} \mathcal{A}_{\mathrm{obs}}
$$

$$
\mathrm{FMP}=\mathrm{FKM} \quad \in \mathbb{Z}_{2}
$$

\mathbb{Z}_{2}-homotopy theory of matching matrices

$\alpha: S^{1} \rightarrow U(m)$ smooth, \mathbb{Z}-periodic, and TRS, i.e. $\varepsilon \alpha\left(k_{2}\right)=\alpha\left(-k_{2}\right)^{\top} \varepsilon$

\mathbb{Z}_{2}-homotopy theory of matching matrices

$\alpha: S^{1} \rightarrow U(m)$ smooth, \mathbb{Z}-periodic, and TRS, i.e. $\varepsilon \alpha\left(k_{2}\right)=\alpha\left(-k_{2}\right)^{\top} \varepsilon$

Kramers degeneracy

Eigenvalues of $\alpha(0), \alpha(1 / 2)$ are even-degenerate

\mathbb{Z}_{2}-homotopy theory of matching matrices

$$
\alpha: S^{1} \rightarrow U(m) \text { smooth, } \mathbb{Z} \text {-periodic, and TRS, i.e. } \varepsilon \alpha\left(k_{2}\right)=\alpha\left(-k_{2}\right)^{\top} \varepsilon
$$

Proposition ([Graf-Porta CMP'13; Cornean-M.-Teufel RMP'17])

The following are equivalent:

- $\alpha \sim_{\mathbb{Z}_{2}-h} \mathbf{1}$
$\alpha\left(k_{2}\right)=\mathrm{e}^{\mathrm{i} h_{1}\left(k_{2}\right)} \mathrm{e}^{\mathrm{i} h_{2}\left(k_{2}\right)}$ with $h_{i}=h_{i}^{*}$ smooth, periodic, and TRS
$-\operatorname{Rueda}(\alpha) \equiv 0 \bmod 2$, where

$$
\text { Rueda }(\alpha):=\frac{1}{2 \pi i}\left(\int_{0}^{1 / 2} \operatorname{Tr}\left(\alpha^{-1} \mathrm{~d} \alpha\right)-2 \log \frac{\sqrt{\operatorname{det} \alpha(1 / 2)}}{\sqrt{\operatorname{det} \alpha(0)}}\right) \in \mathbb{Z}
$$

\mathbb{Z}_{2}-homotopy theory of matching matrices

$\alpha: S^{1} \rightarrow U(m)$ smooth, \mathbb{Z}-periodic, and TRS, i.e. $\varepsilon \alpha\left(k_{2}\right)=\alpha\left(-k_{2}\right)^{\top} \varepsilon$

Proposition ([Graf-Porta CMP'13; Cornean-M.-Teufel RMP'17])

The following are equivalent:

- $\alpha \sim_{\mathbb{Z}_{2}-h} \mathbf{1}$
$-\alpha\left(k_{2}\right)=\mathrm{e}^{\mathrm{i} h_{1}\left(k_{2}\right)} \mathrm{e}^{\mathrm{i} h_{2}\left(k_{2}\right)}$ with $h_{i}=h_{i}^{*}$ smooth, periodic, and TRS
- Rueda $(\alpha) \equiv 0 \bmod 2$, where

$$
\text { Rueda }(\alpha):=\frac{1}{2 \pi i}\left(\int_{0}^{1 / 2} \operatorname{Tr}\left(\alpha^{-1} \mathrm{~d} \alpha\right)-2 \log \frac{\sqrt{\operatorname{det} \alpha(1 / 2)}}{\sqrt{\operatorname{det} \alpha(0)}}\right) \in \mathbb{Z}
$$

\mathbb{Z}_{2}-homotopy theory of matching matrices

$\alpha: S^{1} \rightarrow U(m)$ smooth, \mathbb{Z}-periodic, and TRS, i.e. $\varepsilon \alpha\left(k_{2}\right)=\alpha\left(-k_{2}\right)^{\top} \varepsilon$

Proposition ([Graf-Porta CMP'13; Cornean-M.-Teufel RMP'17])

The following are equivalent:

- $\alpha \sim_{\mathbb{Z}_{2}-h} \mathbf{1}$
- $\alpha\left(k_{2}\right)=\mathrm{e}^{\mathrm{i} h_{1}\left(k_{2}\right)} \mathrm{e}^{\mathrm{i} h_{2}\left(k_{2}\right)}$ with $h_{i}=h_{i}^{*}$ smooth, periodic, and TRS
- Rueda $(\alpha) \equiv 0 \bmod 2$, where

$$
\text { Rueda }(\alpha):=\frac{1}{2 \pi \mathrm{i}}\left(\int_{0}^{1 / 2} \operatorname{Tr}\left(\alpha^{-1} \mathrm{~d} \alpha\right)-2 \log \frac{\sqrt{\operatorname{det} \alpha(1 / 2)}}{\sqrt{\operatorname{det} \alpha(0)}}\right) \in \mathbb{Z}
$$

\mathbb{Z}_{2}-homotopy theory of matching matrices

$$
\alpha: S^{1} \rightarrow U(m) \text { smooth, } \mathbb{Z} \text {-periodic, and TRS, i.e. } \varepsilon \alpha\left(k_{2}\right)=\alpha\left(-k_{2}\right)^{\top} \varepsilon
$$

Proposition ([Graf-Porta CMP'13; Cornean-M.-Teufel RMP'17])

The following are equivalent:

- $\alpha \sim_{\mathbb{Z}_{2}-h} \mathbf{1}$
- $\alpha\left(k_{2}\right)=\mathrm{e}^{\mathrm{i} h_{1}\left(k_{2}\right)} \mathrm{e}^{\mathrm{i} h_{2}\left(k_{2}\right)}$ with $h_{i}=h_{i}^{*}$ smooth, periodic, and TRS
- Rueda $(\alpha) \equiv 0 \bmod 2$, where

$$
\operatorname{Rueda}(\alpha):=\frac{1}{2 \pi \mathrm{i}}\left(\int_{0}^{1 / 2} \operatorname{Tr}\left(\alpha^{-1} \mathrm{~d} \alpha\right)-2 \log \frac{\sqrt{\operatorname{det} \alpha(1 / 2)}}{\sqrt{\operatorname{det} \alpha(0)}}\right) \in \mathbb{Z}
$$

Graf-Porta index

$$
\mathrm{GP}:=\operatorname{Rueda}(\mathcal{T}) \bmod 2 \in \mathbb{Z}_{2}
$$

Rueda and logarithm

$$
\begin{array}{ll}
\text { Extra } & \text { degeneracies in } \\
\sigma\left(\alpha\left(k_{2}\right)\right), & k_{2} \in \quad(0,1 / 2),
\end{array}
$$ can be lifted

Rueda and logarithm

Extra degeneracies in $\sigma\left(\alpha\left(k_{2}\right)\right), \quad k_{2} \in(0,1 / 2)$, can be lifted \Longrightarrow

$$
\alpha\left(k_{2}\right)=\alpha_{\operatorname{gen}}\left(k_{2}\right) \mathrm{e}^{\mathrm{i} h_{2}\left(k_{2}\right)}
$$

h_{2} smooth, periodic, TRS

Rueda and logarithm

> Rueda $(\alpha)=0 \Longrightarrow$
> $\alpha_{\text {gen }}\left(k_{2}\right)=\mathrm{e}^{\mathrm{i} h_{1}\left(k_{2}\right)}$,
> h_{1} smooth, periodic, TRS

$F M P=G P$

Proposition ([Cornean-M.-Teufel RMP'17])

If $\alpha\left(k_{2}\right)=\varepsilon^{-1} \gamma\left(-k_{2}\right)^{\top} \varepsilon \gamma\left(k_{2}\right)$ with $\gamma: S^{1} \rightarrow U(m)$ smooth and \mathbb{Z} periodic, then

$$
\operatorname{Rueda}(\alpha)=\operatorname{wind}_{S^{1}}(\operatorname{det} \gamma)
$$

$$
\mathcal{T}\left(k_{2}\right)=\varepsilon^{-1} \overline{U_{\text {obs }}\left(1 / 2,-k_{2}\right)} \varepsilon U_{\text {obs }}\left(1 / 2, k_{2}\right)^{*} \rightsquigarrow \gamma\left(k_{2}\right)=U_{\text {obs }}\left(1 / 2, k_{2}\right)^{-1}
$$

$$
\mathrm{GP}=\operatorname{Rueda}(\mathcal{T}) \bmod 2=\operatorname{wind}_{\partial E B Z}\left(\operatorname{det} U_{\text {obs }}^{-1}\right) \bmod 2=\mathrm{FMP}
$$

$F M P=G P$

Proposition ([Cornean-M.-Teufel RMP'17])

If $\alpha\left(k_{2}\right)=\varepsilon^{-1} \gamma\left(-k_{2}\right)^{\top} \varepsilon \gamma\left(k_{2}\right)$ with $\gamma: S^{1} \rightarrow U(m)$ smooth and \mathbb{Z} periodic, then

$$
\operatorname{Rueda}(\alpha)=\operatorname{wind}_{S^{1}}(\operatorname{det} \gamma) .
$$

$$
\mathcal{T}\left(k_{2}\right)=\varepsilon^{-1} \overline{U_{\mathrm{obs}}\left(1 / 2,-k_{2}\right)} \varepsilon U_{\mathrm{obs}}\left(1 / 2, k_{2}\right)^{*} \rightsquigarrow \gamma\left(k_{2}\right)=U_{\mathrm{obs}}\left(1 / 2, k_{2}\right)^{-1}
$$

$$
\mathrm{GP}=\operatorname{Rueda}(\mathcal{T}) \bmod 2=\operatorname{wind}_{\partial \mathrm{EBZ}}\left(\operatorname{det} U_{\mathrm{obs}}^{-1}\right) \bmod 2=\mathrm{FMP}
$$

An index from field theory

Carpentier-Delplace-Fruchart-Gawẹdzki-Tauber index [CDFGT NPB'15]

$$
(-1)^{\mathrm{GT}+}:=\sqrt{\exp \left(\mathrm{i} S_{\mathrm{WZW}}[\mathbf{1}-2 P]\right)} \in \mathbb{Z}_{2}
$$

- TQFT
- Defined as a holonomy over an equivariant bundle gerbe (not today!)
- Applies to periodically-driven systems as well (Floquet insulators)

WZW action

Field

$$
g: \Sigma \rightarrow G \text { smooth }
$$

$\Sigma=2 \mathrm{D}$ compact, closed surface (later $\Sigma=\mathbb{T}^{2}$)
$G=$ compact matrix Lie group (later $G=U(M)$)

Field extension

$$
\tilde{g}: \widetilde{\Sigma} \rightarrow G \text { smooth }
$$

with $\partial \widetilde{\Sigma}=\Sigma$ (later $\widetilde{\Sigma}=$ solid torus) and $\left.\widetilde{g}\right|_{\partial \widetilde{\Sigma}}=g$

WZW action

Field

$$
g: \Sigma \rightarrow G \text { smooth }
$$

$\Sigma=2 \mathrm{D}$ compact, closed surface (later $\Sigma=\mathbb{T}^{2}$)
$G=$ compact matrix Lie group (later $G=U(M)$)

Field extension

$$
\tilde{g}: \widetilde{\Sigma} \rightarrow G \text { smooth }
$$

with $\partial \widetilde{\Sigma}=\Sigma$ (later $\widetilde{\Sigma}=$ solid torus) and $\left.\widetilde{g}\right|_{\partial \widetilde{\Sigma}}=g$

Wess-Zumino-Witten (WZW) action

$$
S_{\mathrm{WZW}}[g]:=\frac{1}{12 \pi} \int_{\widetilde{\Sigma}} \operatorname{Tr}\left\{\left(\widetilde{g}^{-1} \mathrm{~d} \widetilde{g}\right)^{\wedge 3}\right\}
$$

WZW amplitude

WZW action

$$
S_{\mathrm{WzW}}[g]:=\frac{1}{12 \pi} \int_{\widetilde{\Sigma}} \operatorname{Tr}\left\{\left(\widetilde{g}^{-1} \mathrm{~d} \widetilde{g}\right)^{\wedge 3}\right\}
$$

$S_{\text {WZW }}[g]$ depends a priori from extension \widetilde{g}, but if $\left.\widetilde{g}_{1}\right|_{\partial \widetilde{\Sigma}}=\left.\widetilde{g}_{2}\right|_{\partial \widetilde{\Sigma}}$

$$
\frac{1}{12 \pi} \int_{\widetilde{\Sigma}} \operatorname{Tr}\left\{\left(\widetilde{g}_{1}^{-1} \mathrm{~d} \widetilde{g}_{1}\right)^{\wedge 3}\right\}-\frac{1}{12 \pi} \int_{\widetilde{\Sigma}} \operatorname{Tr}\left\{\left(\widetilde{g}_{2}^{-1} \mathrm{~d} \widetilde{g}_{2}\right)^{\wedge 3}\right\} \in 2 \pi \mathbb{Z}
$$

WZW amplitude

$$
\mathrm{WZW}[g]:=\exp \left(\mathrm{i} S_{\mathrm{WZW}}[g]\right) \in U(1)
$$

The Chern number as a WZW amplitude

Proposition

$P: \mathbb{T}^{2} \rightarrow \mathcal{B}\left(\mathbb{C}^{M}\right)$ smooth, $P(k)=P(k)^{*}=P(k)^{2}$. Set

$$
u_{P}(k):=\mathbf{1}-2 P(k) \in U(M) .
$$

Then WZW $\left[u_{P}\right]=(-1)^{c_{1}(P)}$.

Proof.

Extension to $\widetilde{\Sigma}:=[0,1] \times \mathbb{T}^{2}$

$$
\widetilde{u}_{P}(t, k):=\exp (\mathrm{i} \pi t P(k))=\mathbf{1}-P(k)+\mathrm{e}^{\mathrm{i} \pi t} P(k)
$$

$-\widetilde{u}_{P}(t=0, k) \equiv \mathbf{1}, \widetilde{u}_{P}(t=1, k)=u_{P}(k) \rightsquigarrow \widetilde{\Sigma}=\mathbb{D} \times \mathbb{T}$
$\rightarrow \operatorname{Tr}\left\{\left(\widetilde{u}_{P}^{-1} \mathrm{~d} \widetilde{u}_{P}\right)^{\wedge 3}\right\}=6 \pi(1-\cos (\pi t)) \mathrm{d} t \wedge \mathcal{F} \Rightarrow S_{\mathrm{WZW}}\left[u_{P}\right]=\pi c_{1}(P)$.

Equivariant $U(M)$-valued fields and extensions

TRS $\Theta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M}$ induces $g \mapsto \Theta g \Theta^{-1}, g \in U(M)$ Assume Σ has involution $\vartheta: \Sigma \rightarrow \Sigma, \vartheta \circ \vartheta=\mathbf{1}_{\Sigma}\left(\right.$ later $\vartheta(k)=-k$ on $\left.\mathbb{T}^{2}\right)$

Equivariant field

$g: \Sigma \rightarrow U(M)$ such that $g(\vartheta(k))=\Theta g(k) \Theta^{-1}$

Equivariant field extension

$\widetilde{g}: \widetilde{\Sigma} \rightarrow G$ extension of g such that

- $\widetilde{\Sigma}$ has involution $\widetilde{\vartheta}$ and $\left.\widetilde{\vartheta}\right|_{\partial \widetilde{\Sigma}}=\vartheta$

Equivariant $U(M)$-valued fields and extensions

TRS $\Theta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M}$ induces $g \mapsto \Theta g \Theta^{-1}, g \in U(M)$ Assume Σ has involution $\vartheta: \Sigma \rightarrow \Sigma, \vartheta \circ \vartheta=\mathbf{1}_{\Sigma}\left(\right.$ later $\vartheta(k)=-k$ on $\left.\mathbb{T}^{2}\right)$

Equivariant field

$g: \Sigma \rightarrow U(M)$ such that $g(\vartheta(k))=\Theta g(k) \Theta^{-1}$

Equivariant field extension

$\tilde{g}: \widetilde{\Sigma} \rightarrow G$ extension of g such that

- $\widetilde{\Sigma}$ has involution $\widetilde{\vartheta}$ and $\left.\widetilde{\vartheta}\right|_{\partial \widetilde{\Sigma}}=\vartheta$
$\widetilde{g}(\widetilde{\vartheta}(k))=\Theta \widetilde{g}(k) \Theta^{-1}$

$$
\frac{1}{12 \pi} \int_{\tilde{\Sigma}} \operatorname{Tr}\left\{\left(\widetilde{g}_{1}^{-1} \mathrm{~d} \widetilde{g}_{1}\right)^{\wedge 3}-\left(\widetilde{g}_{2}^{-1} \mathrm{~d} \widetilde{g}_{2}\right)^{\wedge 3}\right\} \in 4 \pi \mathbb{Z}
$$

Equivariant $U(M)$-valued fields and extensions

TRS $\Theta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M}$ induces $g \mapsto \Theta g \Theta^{-1}, g \in U(M)$ Assume Σ has involution $\vartheta: \Sigma \rightarrow \Sigma, \vartheta \circ \vartheta=\mathbf{1}_{\Sigma}\left(\right.$ later $\vartheta(k)=-k$ on $\left.\mathbb{T}^{2}\right)$

Equivariant field

$g: \Sigma \rightarrow U(M)$ such that $g(\vartheta(k))=\Theta g(k) \Theta^{-1}$

Equivariant field extension

$\widetilde{g}: \widetilde{\Sigma} \rightarrow G$ extension of g such that

- $\widetilde{\Sigma}$ has involution $\widetilde{\vartheta}$ and $\left.\widetilde{\vartheta}\right|_{\partial \widetilde{\Sigma}}=\vartheta$

$$
\sqrt{\mathrm{WZW}[g]}:=\exp \left(\mathrm{i} \mathrm{~S}_{\mathrm{WzW}}[g] / 2\right)
$$

$\mathrm{GT}+=\mathrm{FKM}$

Theorem ([M.-Tauber LMP'17])

$$
(-1)^{\mathrm{GT}+}=\sqrt{\mathrm{WZW}[\mathbf{1}-2 P]}=(-1)^{\mathrm{FKM}} \in \mathbb{Z}_{2} .
$$

GT $+=$ FKM

Theorem ([M.-Tauber LMP'17])

$$
(-1)^{\mathrm{GT}+}=\sqrt{\mathrm{WZW}[\mathbf{1}-2 P]}=(-1)^{\mathrm{FKM}} \in \mathbb{Z}_{2} .
$$

Theorem ([Gawẹdzki arXiv:1512.01028])

$$
\begin{aligned}
& \text { With } \widetilde{g}_{P}(t, k)=\exp (\mathrm{i} 2 \pi t P(k)) \\
& (-1)^{\mathrm{GT}+}=\frac{\sqrt{\mathrm{WZW}\left[\left.\widetilde{g}_{P}\right|_{\left\{k_{1}=1 / 2\right\}}\right]}}{\sqrt{\mathrm{WZW}\left[\left.\widetilde{g}_{P}\right|_{\left\{k_{1}=0\right\}}\right]}} \exp \left(\frac{\mathrm{i}}{24 \pi} \int_{S^{1} \times \mathrm{EBZ}} \operatorname{Tr}\left\{\left(\widetilde{g}_{P}^{-1} \mathrm{~d} \widetilde{g}_{P}\right)^{\wedge 3}\right\}\right)
\end{aligned}
$$

$\mathrm{GT}+=\mathrm{FKM}$

Theorem ([M.-Tauber LMP'17])

$$
(-1)^{\mathrm{GT}+}=\sqrt{\mathrm{WZW}[\mathbf{1}-2 P]}=(-1)^{\mathrm{FKM}} \in \mathbb{Z}_{2}
$$

Theorem ([Gawẹdzki arXiv:1512.01028])

$$
\begin{aligned}
& \text { With } \widetilde{g}_{P}(t, k)=\exp (\mathrm{i} 2 \pi t P(k)) \\
& \qquad(-1)^{\mathrm{GT}+}=\frac{\sqrt{\mathrm{WZW}\left[\left.\widetilde{g}_{P}\right|_{\left\{k_{1}=1 / 2\right\}}\right]}}{\sqrt{\mathrm{WZW}\left[\left.\widetilde{g}_{P}\right|_{\left\{k_{1}=0\right\}}\right]}} \underbrace{\exp \left(\frac{\mathrm{i}}{24 \pi} \int_{S^{1} \times \mathrm{EBZ}} \operatorname{Tr}\left\{\left(\widetilde{g}_{P}^{-1} \mathrm{~d} \widetilde{g}_{P}\right)^{\wedge 3}\right\}\right)}_{\sim \frac{1}{2 \pi} \int_{\mathrm{EBZ}} \mathcal{F}}
\end{aligned}
$$

$\mathrm{GT}+=\mathrm{FKM}$

Theorem ([M.-Tauber LMP'17])

$$
(-1)^{\mathrm{GT}+}=\sqrt{\mathrm{WZW}[\mathbf{1}-2 P]}=(-1)^{\mathrm{FKM}} \in \mathbb{Z}_{2}
$$

Theorem ([Gawẹdzki arXiv:1512.01028])

$$
\text { With } \widetilde{g}_{P}(t, k)=\exp (i 2 \pi t P(k))
$$

$$
(-1)^{\mathrm{GT}+}=\underbrace{\sqrt{\sqrt{\mathrm{WZW}\left[\left.\widetilde{g}_{P}\right|_{\left\{k_{1}=1 / 2\right\}}\right]}}}_{\stackrel{?}{\sim}-\frac{1}{2 \pi} \oint_{\partial \mathrm{ER} 7} \mathcal{A}} \underbrace{\exp \left(\frac{\mathrm{i}}{24 \pi} \int_{S^{1} \times \mathrm{EBZ}} \operatorname{Tr}\left\{\left(\widetilde{g}_{P}^{-1} \mathrm{~d} \widetilde{g}_{P}\right)^{\wedge 3}\right\}\right)}_{\sim \frac{1}{2 \pi} \int_{\mathrm{EBZ}} \mathcal{F}}
$$

$\mathrm{GT}+=\mathrm{FKM}$

Theorem ([M.-Tauber LMP'17])

$$
(-1)^{\mathrm{GT}+}=\sqrt{\mathrm{WZW}[\mathbf{1}-2 P]}=(-1)^{\mathrm{FKM}} \in \mathbb{Z}_{2} .
$$

Reduces to

Theorem ([M.-Tauber LMP'17])

The square root of the WZW amplitude equals the square root of the Berry phase along $\mathbb{T}_{*}:=\left\{k_{1}=k_{*}\right\}, k_{*} \in\{0,1 / 2\}$:

$$
\sqrt{\exp \left(\mathrm{i} S_{\mathrm{WZW}}\left[\left.\widetilde{g}_{P}\right|_{\mathbb{T}_{*}}\right]\right)}=\sqrt{\exp \left(-\mathrm{i} \oint_{\mathbb{T}_{*}} \mathcal{A}\right)}
$$

$\mathrm{GT}+=\mathrm{FKM}$

Theorem ([M.-Tauber LMP'17])

$$
(-1)^{\mathrm{GT}+}=\sqrt{\mathrm{WZW}[\mathbf{1}-2 P]}=(-1)^{\mathrm{FKM}} \in \mathbb{Z}_{2} .
$$

Reduces to

Theorem ([M.-Tauber LMP'17])

The square root of the WZW amplitude equals the square root of the Berry phase along $\mathbb{T}_{*}:=\left\{k_{1}=k_{*}\right\}, k_{*} \in\{0,1 / 2\}$:

$$
\sqrt{\exp \left(i S_{\mathrm{WZW}}\left[\left.\widetilde{g}_{P}\right|_{\mathbb{T}_{*}}\right]\right)}=\sqrt{\exp \left(-\mathrm{i} \oint_{\mathbb{T}_{*}} \mathcal{A}\right)}
$$

$$
g_{P}: \underbrace{S^{1} \times \mathbb{T}_{*}}_{\text {not BZ! }} \rightarrow U(M), \quad g_{P}\left(t, k_{2}\right):=\exp \left(\mathrm{i} 2 \pi t P\left(k_{*}, k_{2}\right)\right)
$$

Equivariant adjoint Polyakov-Wiegmann formula

Proof.

- By 1D discussion, $P\left(k_{*}, k_{2}\right)=W\left(k_{2}\right) P\left(k_{*}, 0\right) W\left(k_{2}\right)^{*}$, with $W\left(k_{2}\right):=$ $\mathrm{e}^{-\mathrm{i} k_{2} X} T\left(k_{2}\right)$ modified parallel transport.
g_{P} has adjoint structure:

$$
g_{P}\left(t, k_{2}\right)=W\left(k_{2}\right) g_{P}(t, 0) W\left(k_{2}\right)^{*} \equiv W\left(k_{2}\right) f_{P}(t) W\left(k_{2}\right)^{*} .
$$

Equivariant adjoint Polyakov-Wiegmann formula [M.-Tauber LMP'17]:

$$
S_{W Z W}\left[g g^{-1}\right]=S_{W Z W}[h]+\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}(g \times h)^{*} \beta \quad \bmod 4 \pi \mathbb{Z}
$$

$$
\text { For } g=W, h=f_{P}
$$

$$
S_{\mathrm{WzW}}\left[f_{P}\right]=0,
$$

$$
\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}\left(W \times f_{P}\right)^{*} \beta=\mathrm{i} \int_{\mathbb{T}_{*}} \operatorname{Tr}\left\{P\left(k_{*}, 0\right) W^{-1} \mathrm{~d} W\right\}=-\mathrm{i} \int_{\mathbb{T}_{*}} \mathcal{A}
$$

Equivariant adjoint Polyakov-Wiegmann formula

Proof.

- By 1D discussion, $P\left(k_{*}, k_{2}\right)=W\left(k_{2}\right) P\left(k_{*}, 0\right) W\left(k_{2}\right)^{*}$, with $W\left(k_{2}\right):=$ $\mathrm{e}^{-\mathrm{i} k_{2} X} T\left(k_{2}\right)$ modified parallel transport.
- g_{P} has adjoint structure:

$$
g_{P}\left(t, k_{2}\right)=W\left(k_{2}\right) g_{P}(t, 0) W\left(k_{2}\right)^{*} \equiv W\left(k_{2}\right) f_{P}(t) W\left(k_{2}\right)^{*} .
$$

Equivariant adjoint Polyakov-Wiegmann formula [M.-Tauber LMP'17]:

$$
S_{\mathrm{WZW}}\left[g h g^{-1}\right]=S_{\mathrm{WZW}}[h]+\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}(g \times h)^{*} \beta \quad \bmod 4 \pi \mathbb{Z}
$$

$$
\text { For } g=W, h=f_{P}
$$

$$
S_{\mathrm{WZW}}\left[f_{P}\right]=0
$$

$$
\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}\left(W \times f_{P}\right)^{*} \beta=\mathrm{i} \int_{\mathbb{T}_{*}} \operatorname{Tr}\left\{P\left(k_{*}, 0\right) W^{-1} \mathrm{~d} W\right\}=-\mathrm{i} \int_{\mathbb{T}_{*}} \mathcal{A} .
$$

Equivariant adjoint Polyakov-Wiegmann formula

Proof.

- By 1D discussion, $P\left(k_{*}, k_{2}\right)=W\left(k_{2}\right) P\left(k_{*}, 0\right) W\left(k_{2}\right)^{*}$, with $W\left(k_{2}\right):=$ $\mathrm{e}^{-\mathrm{i} k_{2} X} T\left(k_{2}\right)$ modified parallel transport.
- g_{P} has adjoint structure:

$$
g_{P}\left(t, k_{2}\right)=W\left(k_{2}\right) g_{P}(t, 0) W\left(k_{2}\right)^{*} \equiv W\left(k_{2}\right) f_{P}(t) W\left(k_{2}\right)^{*} .
$$

- Equivariant adjoint Polyakov-Wiegmann formula [M.-Tauber LMP'17]:

$$
S_{\mathrm{WZW}}\left[g h g^{-1}\right]=S_{\mathrm{WZW}}[h]+\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}(g \times h)^{*} \beta \quad \bmod 4 \pi \mathbb{Z}
$$

$$
\text { For } g=W, h=f_{P}
$$

$$
S_{\mathrm{WZW}}\left[f_{P}\right]=0,
$$

$$
\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}\left(W \times f_{P}\right)^{*} \beta=\mathrm{i} \int_{\mathbb{T}_{*}} \operatorname{Tr}\left\{P\left(k_{*}, 0\right) W^{-1} \mathrm{~d} W\right\}=-\mathrm{i} \int_{\mathbb{T}_{*}} \mathcal{A} .
$$

Equivariant adjoint Polyakov-Wiegmann formula

Proof.

- By 1D discussion, $P\left(k_{*}, k_{2}\right)=W\left(k_{2}\right) P\left(k_{*}, 0\right) W\left(k_{2}\right)^{*}$, with $W\left(k_{2}\right):=$ $\mathrm{e}^{-\mathrm{i} k_{2} X} T\left(k_{2}\right)$ modified parallel transport.
- g_{P} has adjoint structure:

$$
g_{P}\left(t, k_{2}\right)=W\left(k_{2}\right) g_{P}(t, 0) W\left(k_{2}\right)^{*} \equiv W\left(k_{2}\right) f_{P}(t) W\left(k_{2}\right)^{*} .
$$

- Equivariant adjoint Polyakov-Wiegmann formula [M.-Tauber LMP'17]:

$$
S_{\mathrm{WZW}}\left[g h g^{-1}\right]=S_{\mathrm{WZW}}[h]+\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}(g \times h)^{*} \beta \quad \bmod 4 \pi \mathbb{Z}
$$

- For $g=W, h=f_{P}$

$$
\begin{gathered}
S_{\mathrm{WZW}}\left[f_{P}\right]=0 \\
\frac{1}{4 \pi} \int_{S^{1} \times \mathbb{T}_{*}}\left(W \times f_{P}\right)^{*} \beta=\mathrm{i} \int_{\mathbb{T}_{*}} \operatorname{Tr}\left\{P\left(k_{*}, 0\right) W^{-1} \mathrm{~d} W\right\}=-\mathrm{i} \int_{\mathbb{T}_{*}} \mathcal{A}
\end{gathered}
$$

Further properties

- $\mathrm{FKM} \in \mathbb{Z}_{2}$ is a complete homotopy invariant of $2 D$ topological insulators in class AII, hence classify TRS-isomorphism class of the Bloch bundle:

$$
P_{0} \sim_{\mathbb{Z}_{2}-h} P_{1} \Longleftrightarrow \operatorname{FKM}\left(P_{0}\right)=\operatorname{FKM}\left(P_{1}\right) \in \mathbb{Z}_{2} \Longleftrightarrow \mathcal{E}_{0} \simeq_{\operatorname{TRS}} \mathcal{E}_{1}
$$

Allows to define four 3D \mathbb{Z}_{2} invariants as well:

Further properties

- $\mathrm{FKM} \in \mathbb{Z}_{2}$ is a complete homotopy invariant of $2 D$ topological insulators in class AII, hence classify TRS-isomorphism class of the Bloch bundle:

$$
P_{0} \sim_{\mathbb{Z}_{2}-h} P_{1} \Longleftrightarrow \operatorname{FKM}\left(P_{0}\right)=\operatorname{FKM}\left(P_{1}\right) \in \mathbb{Z}_{2} \Longleftrightarrow \mathcal{E}_{0} \simeq_{\text {TRS }} \mathcal{E}_{1}
$$

- Allows to define four 3D \mathbb{Z}_{2} invariants as well:

Further properties

- $\mathrm{FKM} \in \mathbb{Z}_{2}$ is a complete homotopy invariant of $2 D$ topological insulators in class AII, hence classify TRS-isomorphism class of the Bloch bundle:

$$
P_{0} \sim_{\mathbb{Z}_{2}-h} P_{1} \Longleftrightarrow \operatorname{FKM}\left(P_{0}\right)=\operatorname{FKM}\left(P_{1}\right) \in \mathbb{Z}_{2} \Longleftrightarrow \mathcal{E}_{0} \simeq_{\operatorname{TRS}} \mathcal{E}_{1}
$$

- Allows to define four $3 \mathrm{D} \mathbb{Z}_{2}$ invariants as well:

Further properties

- $\mathrm{FKM} \in \mathbb{Z}_{2}$ is a complete homotopy invariant of $2 D$ topological insulators in class AII, hence classify TRS-isomorphism class of the Bloch bundle:

$$
P_{0} \sim_{\mathbb{Z}_{2}-h} P_{1} \Longleftrightarrow \operatorname{FKM}\left(P_{0}\right)=\operatorname{FKM}\left(P_{1}\right) \in \mathbb{Z}_{2} \Longleftrightarrow \mathcal{E}_{0} \simeq_{\mathrm{TRS}} \mathcal{E}_{1}
$$

- Allows to define four $3 \mathrm{D} \mathbb{Z}_{2}$ invariants as well:

$$
\mathrm{FKM}_{k_{1}=0} \quad \mathrm{FKM}_{k_{1}=1 / 2}
$$

$$
\mathrm{FKM}_{k_{2}=0} \quad \mathrm{FKM}_{k_{2}=1 / 2}
$$

Further properties

- $\mathrm{FKM} \in \mathbb{Z}_{2}$ is a complete homotopy invariant of $2 D$ topological insulators in class AII, hence classify TRS-isomorphism class of the Bloch bundle:

$$
P_{0} \sim_{\mathbb{Z}_{2}-h} P_{1} \Longleftrightarrow \operatorname{FKM}\left(P_{0}\right)=\operatorname{FKM}\left(P_{1}\right) \in \mathbb{Z}_{2} \Longleftrightarrow \mathcal{E}_{0} \simeq_{\text {TRS }} \mathcal{E}_{1}
$$

- Allows to define four 3D \mathbb{Z}_{2} invariants as well:

$$
\begin{array}{ll}
\mathrm{FKM}_{k_{1}=0} & \mathrm{FKM}_{k_{1}=1 / 2} \\
\mathrm{FKM}_{k_{2}=0} & \mathrm{FKM}_{k_{2}=1 / 2} \\
\mathrm{FKM}_{k_{3}=0} & \mathrm{FKM}_{k_{3}=1 / 2}
\end{array}
$$

Further properties

- $\mathrm{FKM} \in \mathbb{Z}_{2}$ is a complete homotopy invariant of $2 D$ topological insulators in class AII, hence classify TRS-isomorphism class of the Bloch bundle:

$$
P_{0} \sim_{\mathbb{Z}_{2}-h} P_{1} \Longleftrightarrow \operatorname{FKM}\left(P_{0}\right)=\operatorname{FKM}\left(P_{1}\right) \in \mathbb{Z}_{2} \Longleftrightarrow \mathcal{E}_{0} \simeq_{\text {TRS }} \mathcal{E}_{1}
$$

- Allows to define four $3 \mathrm{D} \mathbb{Z}_{2}$ invariants as well:

$$
\begin{aligned}
& \mathrm{FKM}_{k_{1}=0}+\mathrm{FKM}_{k_{1}=1 / 2} \\
&= \\
& \mathrm{FKM}_{k_{2}=0}+\mathrm{FKM}_{k_{2}=1 / 2} \\
&= \\
& \mathrm{FKM}_{k_{3}=0}+\mathrm{FKM}_{k_{3}=1 / 2}
\end{aligned}
$$

Further properties

- $\mathrm{FKM} \in \mathbb{Z}_{2}$ is a complete homotopy invariant of $2 D$ topological insulators in class AII, hence classify TRS-isomorphism class of the Bloch bundle:

$$
P_{0} \sim_{\mathbb{Z}_{2}-h} P_{1} \Longleftrightarrow \operatorname{FKM}\left(P_{0}\right)=\operatorname{FKM}\left(P_{1}\right) \in \mathbb{Z}_{2} \Longleftrightarrow \mathcal{E}_{0} \simeq_{\mathrm{TRS}} \mathcal{E}_{1}
$$

- Allows to define four $3 \mathrm{D} \mathbb{Z}_{2}$ invariants as well:

$$
\begin{aligned}
& \mathrm{FKM}_{k_{1}=0} \\
& \mathrm{FKM}_{k_{2}=0}
\end{aligned}
$$

$$
\mathrm{FKM}_{k_{3}=0} \quad \mathrm{FKM}_{k_{3}=1 / 2}
$$

What was left out

- "Pfaffian"-like formulæ [Fu-Kane-Mele]

$$
(-1)^{\mathrm{FKM}}=\prod_{k \equiv-k \bmod \mathbb{Z}^{2}} \frac{\sqrt{\operatorname{det} w(k)}}{\operatorname{Pf} w(k)} \quad w(k)_{a b}:=\left\langle\psi_{a}(k), \Theta \psi_{b}(k)\right\rangle
$$

What was left out

"Pfaffian"-like formulæ [Fu-Kane-Mele; Prodan PRB'11]

$$
(-1)^{\mathrm{FKM}}=\prod_{k \equiv-k \bmod \mathbb{Z}^{2}} \frac{\sqrt{\operatorname{det} w(k)}}{\operatorname{Pf} w(k)}=\prod_{k_{2} \in\{0,1 / 2\}} \frac{\sqrt{\operatorname{det} \mathcal{T}\left(k_{2}\right)}}{\operatorname{Pf}\left(\varepsilon \mathcal{T}\left(k_{2}\right)\right)}=(-1)^{\mathrm{P}}
$$

Twisted equivariant cohomology [De Nittis-Gomi '15-'18]

$$
(-1)^{\mathrm{DNG}} \in H_{\mathbb{Z}_{2}}^{2}\left(\mathbb { T } ^ { d } | _ { \mathbb { T } _ { \text { fix } } ^ { d } , \mathbb { Z } (1)) } \simeq \left\{\begin{array}{ll}
\mathbb{Z}_{2}, & d=2 \\
\mathbb{Z}_{2}^{4}, & d=3
\end{array}\right.\right.
$$

localization formulæ [Bunk-Szabo arXiv:1712.02991] $\rightsquigarrow ~ " P f a f f i a n " ~$
K-theory [Prodan, Schulz-Baldes, Kellendonk, Freed-Moore, Thiang, Bourne-CareyRennie...] \rightsquigarrow disorder, bulk-edge correspondence anomaly cancellation of gauge currents [Fröhlich et al. '95]

What was left out

- "Pfaffian"-like formulæ [Fu-Kane-Mele; Prodan PRB'11]

$$
(-1)^{\mathrm{FKM}}=\prod_{k \equiv-k \bmod \mathbb{Z}^{2}} \frac{\sqrt{\operatorname{det} w(k)}}{\operatorname{Pf} w(k)}=\prod_{k_{2} \in\{0,1 / 2\}} \frac{\sqrt{\operatorname{det} \mathcal{T}\left(k_{2}\right)}}{\operatorname{Pf}\left(\varepsilon \mathcal{T}\left(k_{2}\right)\right)}=(-1)^{\mathrm{P}}
$$

- Twisted equivariant cohomology [De Nittis-Gomi '15-'18]

$$
(-1)^{\mathrm{DNG}} \in H_{\mathbb{Z}_{2}}^{2}\left(\mathbb{T}^{d} \mid \mathbb{T}_{\mathrm{fix}}^{d}, \mathbb{Z}(1)\right) \simeq \begin{cases}\mathbb{Z}_{2}, & d=2 \\ \mathbb{Z}_{2}{ }^{4}, & d=3\end{cases}
$$

localization formulæ [Bunk-Szabo arXiv:1712.02991] $\rightsquigarrow ~ " P f a f f i a n " ~$
K-theory [Prodan, Schulz-Baldes, Kellendonk, Freed-Moore, Thiang, Bourne-CareyRennie...] \rightsquigarrow disorder, bulk-edge correspondence anomaly cancellation of gauge currents [Fröhlich et al. '95]

What was left out

- "Pfaffian"-like formulæ [Fu-Kane-Mele; Prodan PRB'11]

$$
(-1)^{\mathrm{FKM}}=\prod_{k \equiv-k \bmod \mathbb{Z}^{2}} \frac{\sqrt{\operatorname{det} w(k)}}{\operatorname{Pf} w(k)}=\prod_{k_{2} \in\{0,1 / 2\}} \frac{\sqrt{\operatorname{det} \mathcal{T}\left(k_{2}\right)}}{\operatorname{Pf}\left(\varepsilon \mathcal{T}\left(k_{2}\right)\right)}=(-1)^{\mathrm{P}}
$$

- Twisted equivariant cohomology [De Nittis-Gomi '15-'18]

$$
(-1)^{\mathrm{DNG}} \in H_{\mathbb{Z}_{2}}^{2}\left(\mathbb{T}^{d} \mid \mathbb{T}_{\mathrm{fix}}^{d}, \mathbb{Z}(1)\right) \simeq \begin{cases}\mathbb{Z}_{2}, & d=2 \\ \mathbb{Z}_{2}{ }^{4}, & d=3\end{cases}
$$

localization formulæ [Bunk-Szabo arXiv:1712.02991] $\rightsquigarrow ~ " P f a f f i a n " ~$

- K-theory [Prodan, Schulz-Baldes, Kellendonk, Freed-Moore, Thiang, Bourne-CareyRennie...] \rightsquigarrow disorder, bulk-edge correspondence
anomaly cancellation of gauge currents [Fröhlich et al. '95]

What was left out

- "Pfaffian"-like formulæ [Fu-Kane-Mele; Prodan PRB'11]

$$
(-1)^{\mathrm{FKM}}=\prod_{k \equiv-k \bmod \mathbb{Z}^{2}} \frac{\sqrt{\operatorname{det} w(k)}}{\operatorname{Pf} w(k)}=\prod_{k_{2} \in\{0,1 / 2\}} \frac{\sqrt{\operatorname{det} \mathcal{T}\left(k_{2}\right)}}{\operatorname{Pf}\left(\varepsilon \mathcal{T}\left(k_{2}\right)\right)}=(-1)^{\mathrm{P}}
$$

- Twisted equivariant cohomology [De Nittis-Gomi '15-'18]

$$
(-1)^{\mathrm{DNG}} \in H_{\mathbb{Z}_{2}}^{2}\left(\mathbb{T}^{d} \mid \mathbb{T}_{\mathrm{fix}}^{d}, \mathbb{Z}(1)\right) \simeq \begin{cases}\mathbb{Z}_{2}, & d=2 \\ \mathbb{Z}_{2}{ }^{4}, & d=3\end{cases}
$$

localization formulæ [Bunk-Szabo arXiv:1712.02991] $\rightsquigarrow ~ " P f a f f i a n " ~$

- K-theory [Prodan, Schulz-Baldes, Kellendonk, Freed-Moore, Thiang, Bourne-CareyRennie...] \rightsquigarrow disorder, bulk-edge correspondence
- anomaly cancellation of gauge currents [Fröhlich et al. '95]

What was left out

- "Pfaffian"-like formulæ [Fu-Kane-Mele; Prodan PRB'11]

$$
(-1)^{\mathrm{FKM}}=\prod_{k \equiv-k \bmod \mathbb{Z}^{2}} \frac{\sqrt{\operatorname{det} w(k)}}{\operatorname{Pf} w(k)}=\prod_{k_{2} \in\{0,1 / 2\}} \frac{\sqrt{\operatorname{det} \mathcal{T}\left(k_{2}\right)}}{\operatorname{Pf}\left(\varepsilon \mathcal{T}\left(k_{2}\right)\right)}=(-1)^{\mathrm{P}}
$$

- Twisted equivariant cohomology [De Nittis-Gomi '15-'18]

$$
(-1)^{\mathrm{DNG}} \in H_{\mathbb{Z}_{2}}^{2}\left(\mathbb{T}^{d} \mid \mathbb{T}_{\text {fix }}^{d}, \mathbb{Z}(1)\right) \simeq \begin{cases}\mathbb{Z}_{2}, & d=2 \\ \mathbb{Z}_{2}{ }^{4}, & d=3\end{cases}
$$

localization formulæ [Bunk-Szabo arXiv:1712.02991] $\rightsquigarrow ~ " P f a f f i a n " ~$

- K-theory [Prodan, Schulz-Baldes, Kellendonk, Freed-Moore, Thiang, Bourne-CareyRennie...] \rightsquigarrow disorder, bulk-edge correspondence
- anomaly cancellation of gauge currents [Fröhlich et al. '95]

