
Strongly Disordered Floquet Topological Systems

Jacob Shapiro
based on joint work with Clément Tauber

arXiv:1807.03251

ETH Zurich
Recent progress in mathematics of topological insulators

September 4, 2018

J. Shapiro (ETH Zurich) Disordered Floquet Topological Systems September 4, 2018 1 / 14



Floquet systems

Periodically time-dep. Hamiltonian H : S1 → B(H) induces a unitary
map U : [0, 1]→ U(H) via the Schrödinger equation i U̇ = HU with
U(0) ≡ 1.

Models non-int. electrons subject to driving beyond adiabatic regime.

Long time dynamics of the system determined by U(1) because
U(n + t) = U(1)nU(t) for t ∈ (0, 1), n ∈ N.

Main object however is U, not H, and all the questions (such as
existence of a gap) are asked w.r.t. U(1).
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Simple example in zero dimensions

In zero dimensions, H = CN (atom with N internal levels); get a
cont. map U : [0, 1]→ U(N).

Cannot use the winding number of detU since U is not a loop!

Relative construction: straight line to next integer value below; get
loop on the circle in whose winding may be computed.
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Higher dimensions

In d > 1, H = `2(Zd)⊗ CN with N the internal levels; We ask that
H : S1 → B(H) be piecewise continuous in time and local in the sense
that ‖〈δx ,H(t)δy 〉‖ is exp. decaying in ‖x − y‖ (uniformly in t ∈ S1).

This implies the locality of U : [0, 1]→ U(H), and also of the loop
Urel : S1 → U(H) obtained via the relative construction as before, if ∃
spectral gap, i.e. S1 \ σ(U(1)) 6= ∅, where we pick a branch cut for
the logarithm, which in turn makes it local (Combes-Thomas).

branch cut σ(U(1))

Topology depends on choice of gap, but not on branch within it!
In IQHE Chern ] also depends on choice of gap.

Gap condition is not related to insulator property (unlike static case)!
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Higher dimensions (cont.)

In transl. invar. case we get a cont. loop Urel : S1 × Td → U(N)
based at 1, i.e. an element in suspension of C-star algebra C (Td).
Hence such unitary loops are classified by K1(SC (Td)) ∼= K0(C (Td));
get same classification as static top. insulators of class A in d dim.

Hence get for the strong invariants:
Dimension 1 2 3 4 . . .
Invariant 0 Z 0 Z . . .

which has Bott periodicity of two in d , like class A row in Kitaev
table.

Can consider also other symmetry classes, but need to decide how
symmetry operations should interact with time variable.
Can Get analogous periodic table (see Roy, Harper (2017)).

As in static case, ∃ bulk picture (on H ≡ `2(Zd)⊗ CN) and edge
picture on half-space HE := `2(Zd−1 × N)⊗ CN obtained by
truncating a given bulk Hamiltonian with some B.C. (truncation
always on H, not U!).
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What we studied and previous results

We study the 2D no-symmetries case in the bulk and on the edge. The input is a bulk

H : S1 → B(H) (piecewise) cont. in time and local in space. It induces a bulk evolution

U : [0, 1]→ U(H) via Schödinger, an edge Hamiltonian HE : S1 → HE (via truncation

to half-space with Dirichlet) and an edge evolution UE : [0, 1]→ U(HE ) via Schrödinger

from HE .

Previous studies

Physics: Rudner, Lindner, et al (2013)
Math: Schulz-Baldes, Sadel (2017) and Graf, Tauber (2018)

K-theoretic classification says this case should have a Z strong invariant.

Previous studies assume a spectral gap for U(1) which allows one to take a
log(U(1)) which is local, then Urel : S1 → B(H) is U concat. with static e· log(U(1)).
Bulk invariant is 3D winding of the loop Urel.

Define Hrel
E as the concatenation of HE and the truncation of − i log(U(1)).

Induces evol. Urel
E : [0, 1]→ U(HE ) (not a loop). Edge invar. is charge pumped

along 1 direction after one period of Urel
E : depends only on endpoint Urel

E (1)!
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Our results

1st result: mobility gap

Relax the set-theoretic
spectral gap assumption with
an estimate from dynamical
localization.

2nd result: stretch function

New formulation the bulk and
edge invariants in a new way
that avoids the relative
construction.

3rd result: magnetization and time-averaged charge pumping

Investigate the physical meaning of the invariants in completely
localized case.

4th result: equality

All invariants are equal, including bulk-edge correspondence. Uses
continuity argument.
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The mobility gap regime

Via Combes-Thomas, S1 6= σ(U(1)) implies that ‖h(U(1))xy‖ decays
in ‖x − y‖ for h holomorphic. This off-diagonal decay is apparently all
we need for a well-defined topological phase.

Hamza, Joye, Stolz (2009) e.g. prove that certain random unitary ops.
have dyn. loc. We assume the a.-s. results of loc. deterministically,
i.e. we assume that ∃µ > 0 s.t. for any ε > 0 ∃Cε <∞ with

sup
g∈B1(∆)

‖g(U(1))xy‖ ≤ Cε e−µ‖x−y‖+ε‖x‖

with B1(∆) the set of Borel bdd. maps |g | ≤ 1 constant outside of
∆ ⊆ S1, which is called the mobility gap. Implies spectral localization
in ∆ via RAGE.
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The mobility gap regime (cont.)

∆

Spec. gap

∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗

∆

Mobility gap

σ(U(1)) = S1

No gap

σ(U(1)) = S1

Theorem

If ∆ is a mob. gap for U(1), placing the branch cut of the logarithm
in ∆, the relative construction still goes through, as well as its bulk-
edge correspondence proof.

Main point over [GT18]: Use loc. instead of Combes-Thomas to get (weak) locality of
log(U(1)); then generalize all notions from uniform decay in ‖x − y‖ to allow possible

explosion in ‖x‖ simultaneously, which we call weakly-local operators:
‖Axy‖ ≤ Cε e−µ‖x−y‖+ε‖x‖.
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Problems with the relative construction

Not clear what the invariant W (Urel) (3D non-comm. winding)
measures in an experiment or how to implement it:

W (Urel) ≡ −1

2

∫
S1

tr ˙Urel(Urel)∗[Urel
,1 (Urel)∗,Urel

,2 (Urel)∗]

where A,i ≡ i[Λi ,A] with Λi a switch function. We have
W (Urel) = W (U)−W (e· logλ(U(1))), so that some winding of
e· logλ(U(1)) is removed, but what does it mean physically? (non-top.
transport contributions?)

Edge invariant contains significant information from the bulk, namely,
it depends on Urel

E which is the evolution of Hrel
E , which is the

concatenation of HE and the truncation of − i log(U(1)). The latter
is a bulk object. Want bulk-edge correspondence where bulk and edge
invariants depend on H and HE alone, without intertwining their
evolutions during the proof.
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is a bulk object. Want bulk-edge correspondence where bulk and edge
invariants depend on H and HE alone, without intertwining their
evolutions during the proof.
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The stretch function construction

The stretch function (used by Sadel, Schulz-Baldes (2017) only for
the edge in spec. gap case) smooth map F∆ : C \ { 0 } → C;
restricted to S1: constant 1 outside ∆, has winding number 1.

∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗

σ(U(1))

∆ ∗∗∗∗
∗∗∗∗
∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗
∗∗∗∗
∗∗ 1∆

σ(F∆(U(1)))

F∆(U(1)) is dynamically localized on S1 \ { 1 }.
Idea: If we can understand the situation for completely localized
operators then we could work with F∆ ◦ U and F∆ ◦ UE for bulk and
edge respectively. The application of F∆ on UE uses no information
from the bulk except the position of the chosen gap!
F∆ chooses the gap for Floquet just like χ(−∞,EF ) chooses the gap for
the IQHE, so F∆ is like the Floquet’s Fermi projection.
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The completely localization case

Let V : [0, 1]→ U(H) be some bulk evolution s.t. V (1) is completely
localized, in the sense that it obeys a det. dyn. loc. estimate on S1

except some finitely many special points; we ask that the Chern ]
assoc. to each such point vanish.

Define the bulk magnetization operator
M(V ) :=

∫
[0,1] ImV ∗Λ1 i V̇ V ∗Λ2V and the total (orbital)

magnetization M(V ) :=
∫
z∈S1 trM(V ) dP(z) with P the proj.

valued spectral measure of V (1). Related to magnetization studied by
Rudner, Lindner et al (2017). If Λi ∼ xi then like orbital angular
momentum 1

2r(t)× ṙ(t).

Define the edge time-avg. charge pumping assoc. to VE (1), the
evolution of the truncated Hamiltonian assoc. to V :
PE (VE (1)) := limn→∞ limr→∞

1
n tr(VE (1)∗)n[Λ1,VE (1)n]Λ⊥2,r where

Λ⊥2,r restricts to a vertical band from zero to r .

J. Shapiro (ETH Zurich) Disordered Floquet Topological Systems September 4, 2018 12 / 14



The completely localization case

Let V : [0, 1]→ U(H) be some bulk evolution s.t. V (1) is completely
localized, in the sense that it obeys a det. dyn. loc. estimate on S1

except some finitely many special points; we ask that the Chern ]
assoc. to each such point vanish.

Define the bulk magnetization operator
M(V ) :=

∫
[0,1] ImV ∗Λ1 i V̇ V ∗Λ2V and the total (orbital)

magnetization M(V ) :=
∫
z∈S1 trM(V ) dP(z) with P the proj.

valued spectral measure of V (1). Related to magnetization studied by
Rudner, Lindner et al (2017). If Λi ∼ xi then like orbital angular
momentum 1

2r(t)× ṙ(t).
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Connecting everything

Theorem

If U : [0, 1] → U(H) is s.t. U(1) is completely loc. as above, then
M(U) = W (Urel).

Theorem

If U : [0, 1] → U(H) is s.t. U(1) is completely loc. as above, then
PE (UE (1)) =M(U).

Theorem

If U : [0, 1]→ U(H) has a mobility gap at ∆, and Urel : S1 → U(H)
is the rel. construction w.r.t. a cut in ∆ then

W (Urel) = W ((F∆ ◦ U)rel) =M(F∆ ◦ U) = PE (F∆(UE (1))) .
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Idea for proof

We start with

W (Urel) = W (U)−W (e· logλ(U(1)))

(δα := − iU∗U,α)

=
1

2
tr

∫
[0,1]

εαβ(δαδ̇β − δλαδ̇λβ)

(U,α ≡ i[Λα,U] ∧ δα(t) = δλα(t)∀t ∈ { 0, 1 })
= trM(U)−M(e· logλ(U(1)))

Now use localization to prove (the regularized) trace of M(e· log(U(1)))
is finite and actually zero.

For W (Urel) = W ((F∆ ◦ U)rel) we use continuity of W under
interpolation from the smooth F∆ to the identity map, in the mobility
gap regime.
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