Strongly Disordered Floquet Topological Systems

Jacob Shapiro
based on joint work with Clément Tauber
arXiv:1807.03251
ETH Zurich
Recent progress in mathematics of topological insulators

September 4, 2018

Floquet systems

- Periodically time-dep. Hamiltonian $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ induces a unitary map $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via the Schrödinger equation i $\dot{U}=H U$ with $U(0) \equiv \mathbb{1}$.

Floquet systems

- Periodically time-dep. Hamiltonian $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ induces a unitary map $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via the Schrödinger equation i $\dot{U}=H U$ with $U(0) \equiv \mathbb{1}$.
- Models non-int. electrons subject to driving beyond adiabatic regime.

Floquet systems

- Periodically time-dep. Hamiltonian $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ induces a unitary map $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via the Schrödinger equation i $\dot{U}=H U$ with $U(0) \equiv \mathbb{1}$.
- Models non-int. electrons subject to driving beyond adiabatic regime.
- Long time dynamics of the system determined by $U(1)$ because $U(n+t)=U(1)^{n} U(t)$ for $t \in(0,1), n \in \mathbb{N}$.

Floquet systems

- Periodically time-dep. Hamiltonian $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ induces a unitary map $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via the Schrödinger equation i $\dot{U}=H U$ with $U(0) \equiv \mathbb{1}$.
- Models non-int. electrons subject to driving beyond adiabatic regime.
- Long time dynamics of the system determined by $U(1)$ because $U(n+t)=U(1)^{n} U(t)$ for $t \in(0,1), n \in \mathbb{N}$.
- Main object however is U, not H, and all the questions (such as existence of a gap) are asked w.r.t. $U(1)$.

Simple example in zero dimensions

- In zero dimensions, $\mathcal{H}=\mathbb{C}^{N}$ (atom with N internal levels); get a cont. map $U:[0,1] \rightarrow \mathcal{U}(N)$.

Simple example in zero dimensions

- In zero dimensions, $\mathcal{H}=\mathbb{C}^{N}$ (atom with N internal levels); get a cont. map $U:[0,1] \rightarrow \mathcal{U}(N)$.
- Cannot use the winding number of $\operatorname{det} U$ since U is not a loop!

Simple example in zero dimensions

- In zero dimensions, $\mathcal{H}=\mathbb{C}^{N}$ (atom with N internal levels); get a cont. map $U:[0,1] \rightarrow \mathcal{U}(N)$.
- Cannot use the winding number of det U since U is not a loop!
- Relative construction: straight line to next integer value below; get loop on the circle in whose winding may be computed.
$-i \log \circ U$

Simple example in zero dimensions

- In zero dimensions, $\mathcal{H}=\mathbb{C}^{N}$ (atom with N internal levels); get a cont. map $U:[0,1] \rightarrow \mathcal{U}(N)$.
- Cannot use the winding number of det U since U is not a loop!
- Relative construction: straight line to next integer value below; get loop on the circle in whose winding may be computed.
$-i \log \circ U$

Higher dimensions

- In $d>1, \mathcal{H}=\ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{N}$ with N the internal levels; We ask that $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ be piecewise continuous in time and local in the sense that $\left\|\left\langle\delta_{x}, H(t) \delta_{y}\right\rangle\right\|$ is exp. decaying in $\|x-y\|$ (uniformly in $t \in \mathbb{S}^{1}$).

Higher dimensions

- In $d>1, \mathcal{H}=\ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{N}$ with N the internal levels; We ask that $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ be piecewise continuous in time and local in the sense that $\left\|\left\langle\delta_{x}, H(t) \delta_{y}\right\rangle\right\|$ is exp. decaying in $\|x-y\|$ (uniformly in $t \in \mathbb{S}^{1}$).
- This implies the locality of $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$, and also of the loop $U^{\text {rel }}: \mathbb{S}^{1} \rightarrow \mathcal{U}(\mathcal{H})$ obtained via the relative construction as before,

Higher dimensions

- In $d>1, \mathcal{H}=\ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{N}$ with N the internal levels; We ask that $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ be piecewise continuous in time and local in the sense that $\left\|\left\langle\delta_{x}, H(t) \delta_{y}\right\rangle\right\|$ is exp. decaying in $\|x-y\|$ (uniformly in $t \in \mathbb{S}^{1}$).
- This implies the locality of $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$, and also of the loop $U^{\text {rel }}: \mathbb{S}^{1} \rightarrow \mathcal{U}(\mathcal{H})$ obtained via the relative construction as before, if \exists spectral gap, i.e. $\mathbb{S}^{1} \backslash \sigma(U(1)) \neq \varnothing$, where we pick a branch cut for the logarithm, which in turn makes it local (Combes-Thomas).

Higher dimensions

- In $d>1, \mathcal{H}=\ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{N}$ with N the internal levels; We ask that $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ be piecewise continuous in time and local in the sense that $\left\|\left\langle\delta_{x}, H(t) \delta_{y}\right\rangle\right\|$ is exp. decaying in $\|x-y\|$ (uniformly in $t \in \mathbb{S}^{1}$).
- This implies the locality of $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$, and also of the loop $U^{\text {rel }}: \mathbb{S}^{1} \rightarrow \mathcal{U}(\mathcal{H})$ obtained via the relative construction as before, if \exists spectral gap, i.e. $\mathbb{S}^{1} \backslash \sigma(U(1)) \neq \varnothing$, where we pick a branch cut for the logarithm, which in turn makes it local (Combes-Thomas).

- Topology depends on choice of gap, but not on branch within it! In IQHE Chern \sharp also depends on choice of gap.

Higher dimensions

- In $d>1, \mathcal{H}=\ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{N}$ with N the internal levels; We ask that $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ be piecewise continuous in time and local in the sense that $\left\|\left\langle\delta_{x}, H(t) \delta_{y}\right\rangle\right\|$ is exp. decaying in $\|x-y\|$ (uniformly in $t \in \mathbb{S}^{1}$).
- This implies the locality of $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$, and also of the loop $U^{\text {rel }}: \mathbb{S}^{1} \rightarrow \mathcal{U}(\mathcal{H})$ obtained via the relative construction as before, if \exists spectral gap, i.e. $\mathbb{S}^{1} \backslash \sigma(U(1)) \neq \varnothing$, where we pick a branch cut for the logarithm, which in turn makes it local (Combes-Thomas).

- Topology depends on choice of gap, but not on branch within it! In IQHE Chern $\#$ also depends on choice of gap.
- Gap condition is not related to insulator property (unlike static case)!

Higher dimensions (cont.)

- In transl. invar. case we get a cont. loop $U^{\text {rel }}: \mathbb{S}^{1} \times \mathbb{T}^{d} \rightarrow \mathcal{U}(N)$ based at $\mathbb{1}$, i.e. an element in suspension of C-star algebra $C\left(\mathbb{T}^{d}\right)$. Hence such unitary loops are classified by $K_{1}\left(S C\left(\mathbb{T}^{d}\right)\right) \cong K_{0}\left(C\left(\mathbb{T}^{d}\right)\right)$; get same classification as static top. insulators of class A in d dim.

Higher dimensions (cont.)

- In transl. invar. case we get a cont. loop $U^{\text {rel }}: \mathbb{S}^{1} \times \mathbb{T}^{d} \rightarrow \mathcal{U}(N)$ based at $\mathbb{1}$, i.e. an element in suspension of C-star algebra $C\left(\mathbb{T}^{d}\right)$. Hence such unitary loops are classified by $K_{1}\left(S C\left(\mathbb{T}^{d}\right)\right) \cong K_{0}\left(C\left(\mathbb{T}^{d}\right)\right)$; get same classification as static top. insulators of class A in d dim. Hence get for the strong invariants:

Dimension	1	2	3	4	\cdots
Invariant	0	\mathbb{Z}	0	\mathbb{Z}	\cdots

Higher dimensions (cont.)

- In transl. invar. case we get a cont. loop $U^{\text {rel }}: \mathbb{S}^{1} \times \mathbb{T}^{d} \rightarrow \mathcal{U}(N)$ based at $\mathbb{1}$, i.e. an element in suspension of C-star algebra $C\left(\mathbb{T}^{d}\right)$. Hence such unitary loops are classified by $K_{1}\left(S C\left(\mathbb{T}^{d}\right)\right) \cong K_{0}\left(C\left(\mathbb{T}^{d}\right)\right)$; get same classification as static top. insulators of class A in d dim. Hence get for the strong invariants:

Dimension	1	2	3	4	\cdots
Invariant	0	\mathbb{Z}	0	\mathbb{Z}	\cdots

which has Bott periodicity of two in d, like class A row in Kitaev table.

- Can consider also other symmetry classes, but need to decide how symmetry operations should interact with time variable. Can Get analogous periodic table (see Roy, Harper (2017)).

Higher dimensions (cont.)

- In transl. invar. case we get a cont. loop $U^{\text {rel }}: \mathbb{S}^{1} \times \mathbb{T}^{d} \rightarrow \mathcal{U}(N)$ based at $\mathbb{1}$, i.e. an element in suspension of C-star algebra $C\left(\mathbb{T}^{d}\right)$. Hence such unitary loops are classified by $K_{1}\left(S C\left(\mathbb{T}^{d}\right)\right) \cong K_{0}\left(C\left(\mathbb{T}^{d}\right)\right)$; get same classification as static top. insulators of class A in d dim. Hence get for the strong invariants:

Dimension	1	2	3	4	\cdots
Invariant	0	\mathbb{Z}	0	\mathbb{Z}	\cdots

which has Bott periodicity of two in d, like class A row in Kitaev table.

- Can consider also other symmetry classes, but need to decide how symmetry operations should interact with time variable. Can Get analogous periodic table (see Roy, Harper (2017)).
- As in static case, \exists bulk picture (on $\mathcal{H} \equiv \ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{N}$) and edge picture on half-space $\mathcal{H}_{E}:=\ell^{2}\left(\mathbb{Z}^{d-1} \times \mathbb{N}\right) \otimes \mathbb{C}^{N}$ obtained by truncating a given bulk Hamiltonian with some B.C. (truncation always on H, not U!).

What we studied and previous results

We study the $2 D$ no-symmetries case in the bulk and on the edge. The input is a bulk $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ (piecewise) cont. in time and local in space. It induces a bulk evolution $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via Schödinger, an edge Hamiltonian $H_{E}: \mathbb{S}^{1} \rightarrow \mathcal{H}_{E}$ (via truncation to half-space with Dirichlet) and an edge evolution $U_{E}:[0,1] \rightarrow \mathcal{U}\left(\mathcal{H}_{E}\right)$ via Schrödinger from H_{E}.

What we studied and previous results

We study the $2 D$ no-symmetries case in the bulk and on the edge. The input is a bulk $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ (piecewise) cont. in time and local in space. It induces a bulk evolution $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via Schödinger, an edge Hamiltonian $H_{E}: \mathbb{S}^{1} \rightarrow \mathcal{H}_{E}$ (via truncation to half-space with Dirichlet) and an edge evolution $U_{E}:[0,1] \rightarrow \mathcal{U}\left(\mathcal{H}_{E}\right)$ via Schrödinger from H_{E}.

Previous studies

Physics: Rudner, Lindner, et al (2013)
Math: Schulz-Baldes, Sadel (2017) and Graf, Tauber (2018)

What we studied and previous results

We study the $2 D$ no-symmetries case in the bulk and on the edge. The input is a bulk $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ (piecewise) cont. in time and local in space. It induces a bulk evolution $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via Schödinger, an edge Hamiltonian $H_{E}: \mathbb{S}^{1} \rightarrow \mathcal{H}_{E}$ (via truncation to half-space with Dirichlet) and an edge evolution $U_{E}:[0,1] \rightarrow \mathcal{U}\left(\mathcal{H}_{E}\right)$ via Schrödinger from H_{E}.

Previous studies

Physics: Rudner, Lindner, et al (2013)
Math: Schulz-Baldes, Sadel (2017) and Graf, Tauber (2018)

- K-theoretic classification says this case should have a \mathbb{Z} strong invariant.

What we studied and previous results

We study the $2 D$ no-symmetries case in the bulk and on the edge. The input is a bulk $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ (piecewise) cont. in time and local in space. It induces a bulk evolution $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via Schödinger, an edge Hamiltonian $H_{E}: \mathbb{S}^{1} \rightarrow \mathcal{H}_{E}$ (via truncation to half-space with Dirichlet) and an edge evolution $U_{E}:[0,1] \rightarrow \mathcal{U}\left(\mathcal{H}_{E}\right)$ via Schrödinger from H_{E}.

Previous studies

Physics: Rudner, Lindner, et al (2013)
Math: Schulz-Baldes, Sadel (2017) and Graf, Tauber (2018)

- K-theoretic classification says this case should have a \mathbb{Z} strong invariant.
- Previous studies assume a spectral gap for $U(1)$ which allows one to take a $\log (U(1))$ which is local, then $U^{\text {rel }}: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ is U concat. with static $\mathrm{e}^{\cdot \log (U(1))}$. Bulk invariant is 3 D winding of the loop $U^{\text {rel }}$.

What we studied and previous results

We study the $2 D$ no-symmetries case in the bulk and on the edge. The input is a bulk $H: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ (piecewise) cont. in time and local in space. It induces a bulk evolution $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ via Schödinger, an edge Hamiltonian $H_{E}: \mathbb{S}^{1} \rightarrow \mathcal{H}_{E}$ (via truncation to half-space with Dirichlet) and an edge evolution $U_{E}:[0,1] \rightarrow \mathcal{U}\left(\mathcal{H}_{E}\right)$ via Schrödinger from H_{E}.

Previous studies

Physics: Rudner, Lindner, et al (2013)
Math: Schulz-Baldes, Sadel (2017) and Graf, Tauber (2018)

- K-theoretic classification says this case should have a \mathbb{Z} strong invariant.
- Previous studies assume a spectral gap for $U(1)$ which allows one to take a $\log (U(1))$ which is local, then $U^{\text {rel }}: \mathbb{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ is U concat. with static $\mathrm{e}^{\cdot \log (U(1))}$. Bulk invariant is 3 D winding of the loop $U^{\text {rel }}$.
- Define $H_{E}^{\text {rel }}$ as the concatenation of H_{E} and the truncation of $-i \log (U(1))$. Induces evol. $U_{E}^{\text {rel }}:[0,1] \rightarrow \mathcal{U}\left(\mathcal{H}_{E}\right)$ (not a loop). Edge invar. is charge pumped along 1 direction after one period of $U_{E}^{\text {rel }}$: depends only on endpoint $U_{E}^{\text {rel }}(1)$!

Our results

1st result: mobility gap

Relax the set-theoretic spectral gap assumption with an estimate from dynamical localization.

Our results

1st result: mobility gap

Relax the set-theoretic spectral gap assumption with an estimate from dynamical localization.

2nd result: stretch function

New formulation the bulk and edge invariants in a new way that avoids the relative construction.

Our results

1st result: mobility gap

Relax the set-theoretic spectral gap assumption with an estimate from dynamical localization.

2nd result: stretch function

New formulation the bulk and edge invariants in a new way that avoids the relative construction.

3rd result: magnetization and time-averaged charge pumping
Investigate the physical meaning of the invariants in completely localized case.

Our results

1st result: mobility gap

Relax the set-theoretic spectral gap assumption with an estimate from dynamical localization.

2nd result: stretch function

New formulation the bulk and edge invariants in a new way that avoids the relative construction.

3rd result: magnetization and time-averaged charge pumping
Investigate the physical meaning of the invariants in completely localized case.

4th result: equality
All invariants are equal, including bulk-edge correspondence. Uses continuity argument.

The mobility gap regime

- Via Combes-Thomas, $\mathbb{S}^{1} \neq \sigma(U(1))$ implies that $\left\|h(U(1))_{x y}\right\|$ decays in $\|x-y\|$ for h holomorphic. This off-diagonal decay is apparently all we need for a well-defined topological phase.

The mobility gap regime

- Via Combes-Thomas, $\mathbb{S}^{1} \neq \sigma(U(1))$ implies that $\left\|h(U(1))_{x y}\right\|$ decays in $\|x-y\|$ for h holomorphic. This off-diagonal decay is apparently all we need for a well-defined topological phase.
- Hamza, Joye, Stolz (2009) e.g. prove that certain random unitary ops. have dyn. loc. We assume the a.-s. results of loc. deterministically, i.e. we assume that $\exists \mu>0$ s.t. for any $\varepsilon>0 \exists C_{\varepsilon}<\infty$ with

$$
\sup _{g \in B_{1}(\Delta)}\left\|g(U(1))_{x y}\right\| \leq C_{\varepsilon} \mathrm{e}^{-\mu\|x-y\|+\varepsilon\|x\|}
$$

with $B_{1}(\Delta)$ the set of Borel bdd. maps $|g| \leq 1$ constant outside of $\Delta \subseteq \mathbb{S}^{1}$, which is called the mobility gap. Implies spectral localization in Δ via RAGE.

The mobility gap regime (cont.)

Spec. gap

Mobility gap
$\sigma(U(1))=\mathbb{S}^{1}$

No gap
$\sigma(U(1))=\mathbb{S}^{1}$

The mobility gap regime (cont.)

Spec. gap

Mobility gap

$$
\sigma(U(1))=\mathbb{S}^{1}
$$

No gap

$$
\sigma(U(1))=\mathbb{S}^{1}
$$

Theorem

If Δ is a mob. gap for $U(1)$, placing the branch cut of the logarithm in Δ, the relative construction still goes through, as well as its bulkedge correspondence proof.

The mobility gap regime (cont.)

Spec. gap

Mobility gap
$\sigma(U(1))=\mathbb{S}^{1}$

No gap

$$
\sigma(U(1))=\mathbb{S}^{1}
$$

Theorem

If Δ is a mob. gap for $U(1)$, placing the branch cut of the logarithm in Δ, the relative construction still goes through, as well as its bulkedge correspondence proof.

Main point over [GT18]: Use loc. instead of Combes-Thomas to get (weak) locality of $\log (U(1))$; then generalize all notions from uniform decay in $\|x-y\|$ to allow possible explosion in $\|x\|$ simultaneously, which we call weakly-local operators:

$$
\left\|A_{x y}\right\| \leq C_{\varepsilon} \mathrm{e}^{-\mu\|x-y\|+\varepsilon\|x\|}
$$

Problems with the relative construction

- Not clear what the invariant $W\left(U^{\text {rel }}\right)$ (3D non-comm. winding) measures in an experiment or how to implement it:

Problems with the relative construction

- Not clear what the invariant $W\left(U^{\text {rel }}\right)$ (3D non-comm. winding) measures in an experiment or how to implement it:

$$
W\left(U^{\mathrm{rel}}\right) \equiv-\frac{1}{2} \int_{\mathbb{S}^{1}} \operatorname{tr} \dot{U^{\mathrm{rel}}}\left(U^{\mathrm{rel}}\right)^{*}\left[U_{, 1}^{\mathrm{rel}}\left(U^{\mathrm{rel}}\right)^{*}, U_{, 2}^{\mathrm{rel}}\left(U^{\mathrm{rel}}\right)^{*}\right]
$$

where $A_{, i} \equiv \mathrm{i}\left[\Lambda_{i}, A\right]$ with Λ_{i} a switch function. We have $W\left(U^{\text {rel }}\right)=W(U)-W\left(e^{\log _{\lambda}(U(1))}\right)$, so that some winding of $\mathrm{e}^{\cdot \log _{\lambda}(U(1))}$ is removed, but what does it mean physically? (non-top. transport contributions?)

Problems with the relative construction

- Not clear what the invariant $W\left(U^{\text {rel }}\right)$ (3D non-comm. winding) measures in an experiment or how to implement it:

$$
W\left(U^{\mathrm{rel}}\right) \equiv-\frac{1}{2} \int_{\mathbb{S}^{1}} \operatorname{tr} \dot{U^{\mathrm{rel}}}\left(U^{\mathrm{rel}}\right)^{*}\left[U_{, 1}^{\mathrm{rel}}\left(U^{\mathrm{rel}}\right)^{*}, U_{, 2}^{\mathrm{rel}}\left(U^{\mathrm{rel}}\right)^{*}\right]
$$

where $A_{, i} \equiv \mathrm{i}\left[\Lambda_{i}, A\right]$ with Λ_{i} a switch function. We have $W\left(U^{\text {rel }}\right)=W(U)-W\left(e^{\log _{\lambda}(U(1))}\right)$, so that some winding of $\mathrm{e}^{\cdot \log _{\lambda}(U(1))}$ is removed, but what does it mean physically? (non-top. transport contributions?)

- Edge invariant contains significant information from the bulk, namely, it depends on U_{E}^{rel} which is the evolution of H_{E}^{rel}, which is the concatenation of H_{E} and the truncation of $-i \log (U(1))$. The latter is a bulk object. Want bulk-edge correspondence where bulk and edge invariants depend on H and H_{E} alone, without intertwining their evolutions during the proof.

The stretch function construction

- The stretch function (used by Sadel, Schulz-Baldes (2017) only for the edge in spec. gap case) smooth map $F_{\Delta}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$; restricted to \mathbb{S}^{1} : constant 1 outside Δ, has winding number 1 .

The stretch function construction

- The stretch function (used by Sadel, Schulz-Baldes (2017) only for the edge in spec. gap case) smooth map $F_{\Delta}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$; restricted to \mathbb{S}^{1} : constant 1 outside Δ, has winding number 1 .

$$
\sigma(U(1))
$$

$$
\sigma\left(F_{\Delta}(U(1))\right)
$$

The stretch function construction

- The stretch function (used by Sadel, Schulz-Baldes (2017) only for the edge in spec. gap case) smooth map $F_{\Delta}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$; restricted to \mathbb{S}^{1} : constant 1 outside Δ, has winding number 1 .

$\sigma(U(1))$

$$
\sigma\left(F_{\Delta}(U(1))\right)
$$

- $F_{\Delta}(U(1))$ is dynamically localized on $\mathbb{S}^{1} \backslash\{1\}$.

The stretch function construction

- The stretch function (used by Sadel, Schulz-Baldes (2017) only for the edge in spec. gap case) smooth map $F_{\Delta}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$; restricted to \mathbb{S}^{1} : constant 1 outside Δ, has winding number 1 .

$$
\sigma(U(1))
$$

$$
\sigma\left(F_{\Delta}(U(1))\right)
$$

- $F_{\Delta}(U(1))$ is dynamically localized on $\mathbb{S}^{1} \backslash\{1\}$.
- Idea: If we can understand the situation for completely localized operators then we could work with $F_{\Delta} \circ U$ and $F_{\Delta} \circ U_{E}$ for bulk and edge respectively. The application of F_{Δ} on U_{E} uses no information from the bulk except the position of the chosen gap!

The stretch function construction

- The stretch function (used by Sadel, Schulz-Baldes (2017) only for the edge in spec. gap case) smooth map $F_{\Delta}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$; restricted to \mathbb{S}^{1} : constant 1 outside Δ, has winding number 1 .

$$
\sigma(U(1))
$$

$$
\sigma\left(F_{\Delta}(U(1))\right)
$$

- $F_{\Delta}(U(1))$ is dynamically localized on $\mathbb{S}^{1} \backslash\{1\}$.
- Idea: If we can understand the situation for completely localized operators then we could work with $F_{\Delta} \circ U$ and $F_{\Delta} \circ U_{E}$ for bulk and edge respectively. The application of F_{Δ} on U_{E} uses no information from the bulk except the position of the chosen gap!
- F_{Δ} chooses the gap for Floquet just like $\chi_{\left(-\infty, E_{F}\right)}$ chooses the gap for the IQHE, so F_{Δ} is like the Floquet's Fermi projection.

The completely localization case

- Let $V:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ be some bulk evolution s.t. $V(1)$ is completely localized, in the sense that it obeys a det. dyn. loc. estimate on \mathbb{S}^{1} except some finitely many special points; we ask that the Chern \sharp assoc. to each such point vanish.

The completely localization case

- Let $V:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ be some bulk evolution s.t. $V(1)$ is completely localized, in the sense that it obeys a det. dyn. loc. estimate on \mathbb{S}^{1} except some finitely many special points; we ask that the Chern \sharp assoc. to each such point vanish.
- Define the bulk magnetization operator $M(V):=\int_{[0,1]} \mathbb{I m} V^{*} \Lambda_{1} i \dot{V} V^{*} \Lambda_{2} V$ and the total (orbital) magnetization $\mathcal{M}(V):=\int_{z \in \mathbb{S}^{1}} \operatorname{tr} M(V) \mathrm{d} P(z)$ with P the proj. valued spectral measure of $V(1)$. Related to magnetization studied by Rudner, Lindner et al (2017). If $\Lambda_{i} \sim x_{i}$ then like orbital angular momentum $\frac{1}{2} \mathbf{r}(t) \times \dot{\mathbf{r}}(t)$.

The completely localization case

- Let $V:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ be some bulk evolution s.t. $V(1)$ is completely localized, in the sense that it obeys a det. dyn. loc. estimate on \mathbb{S}^{1} except some finitely many special points; we ask that the Chern \sharp assoc. to each such point vanish.
- Define the bulk magnetization operator $M(V):=\int_{[0,1]} \mathbb{I m} V^{*} \Lambda_{1} i \dot{V} V^{*} \Lambda_{2} V$ and the total (orbital) magnetization $\mathcal{M}(V):=\int_{z \in \mathbb{S}^{1}} \operatorname{tr} M(V) \mathrm{d} P(z)$ with P the proj. valued spectral measure of $V(1)$. Related to magnetization studied by Rudner, Lindner et al (2017). If $\Lambda_{i} \sim x_{i}$ then like orbital angular momentum $\frac{1}{2} \mathbf{r}(t) \times \dot{\mathbf{r}}(t)$.
- Define the edge time-avg. charge pumping assoc. to $V_{E}(1)$, the evolution of the truncated Hamiltonian assoc. to V : $\mathcal{P}_{E}\left(V_{E}(1)\right):=\lim _{n \rightarrow \infty} \lim _{r \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(V_{E}(1)^{*}\right)^{n}\left[\Lambda_{1}, V_{E}(1)^{n}\right] \Lambda_{2, r}^{\perp}$ where $\Lambda_{2, r}^{\perp}$ restricts to a vertical band from zero to r.

Connecting everything

Theorem

If $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ is s.t. $U(1)$ is completely loc. as above, then $\mathcal{M}(U)=W\left(U^{\text {rel }}\right)$.

Connecting everything

Theorem

If $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ is s.t. $U(1)$ is completely loc. as above, then $\mathcal{M}(U)=W\left(U^{\text {rel }}\right)$.

Theorem

If $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ is s.t. $U(1)$ is completely loc. as above, then $\mathcal{P}_{E}\left(U_{E}(1)\right)=\mathcal{M}(U)$.

Connecting everything

Theorem

If $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ is s.t. $U(1)$ is completely loc. as above, then $\mathcal{M}(U)=W\left(U^{\text {rel }}\right)$.

Theorem

If $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ is s.t. $U(1)$ is completely loc. as above, then $\mathcal{P}_{E}\left(U_{E}(1)\right)=\mathcal{M}(U)$.

Theorem

If $U:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ has a mobility gap at Δ, and $U^{\text {rel }}: \mathbb{S}^{1} \rightarrow \mathcal{U}(\mathcal{H})$ is the rel. construction w.r.t. a cut in Δ then

$$
W\left(U^{\mathrm{rel}}\right)=W\left(\left(F_{\Delta} \circ U\right)^{\mathrm{rel}}\right)=\mathcal{M}\left(F_{\Delta} \circ U\right)=\mathcal{P}_{E}\left(F_{\Delta}\left(U_{E}(1)\right)\right)
$$

Idea for proof

- We start with

$$
\begin{aligned}
W\left(U^{\mathrm{rel}}\right)= & W(U)-W\left(\mathrm{e}^{\cdot \log _{\lambda}(U(1))}\right) \\
& \left(\delta_{\alpha}:=-\mathrm{i} U^{*} U_{, \alpha}\right) \\
= & \frac{1}{2} \operatorname{tr} \int_{[0,1]} \varepsilon_{\alpha \beta}\left(\delta_{\alpha} \dot{\delta}_{\beta}-\delta_{\alpha}^{\lambda} \dot{\delta}_{\beta}^{\lambda}\right) \\
& \left(U_{, \alpha} \equiv \mathrm{i}\left[\Lambda_{\alpha}, U\right] \wedge \delta_{\alpha}(t)=\delta_{\alpha}^{\lambda}(t) \forall t \in\{0,1\}\right) \\
= & \operatorname{tr} M(U)-M\left(\mathrm{e}^{\cdot \log _{\lambda}(U(1))}\right)
\end{aligned}
$$

Now use localization to prove (the regularized) trace of $M\left(e^{\cdot \log (U(1))}\right)$ is finite and actually zero.

Idea for proof

- We start with

$$
\begin{aligned}
W\left(U^{\mathrm{rel}}\right)= & W(U)-W\left(\mathrm{e}^{\cdot \log _{\lambda}(U(1))}\right) \\
& \left(\delta_{\alpha}:=-\mathrm{i} U^{*} U_{, \alpha}\right) \\
= & \frac{1}{2} \operatorname{tr} \int_{[0,1]} \varepsilon_{\alpha \beta}\left(\delta_{\alpha} \dot{\delta}_{\beta}-\delta_{\alpha}^{\lambda} \dot{\delta}_{\beta}^{\lambda}\right) \\
& \left(U_{, \alpha} \equiv \mathrm{i}\left[\Lambda_{\alpha}, U\right] \wedge \delta_{\alpha}(t)=\delta_{\alpha}^{\lambda}(t) \forall t \in\{0,1\}\right) \\
= & \operatorname{tr} M(U)-M\left(\mathrm{e}^{\cdot \log _{\lambda}(U(1))}\right)
\end{aligned}
$$

Now use localization to prove (the regularized) trace of $M\left(e^{\cdot \log (U(1))}\right)$ is finite and actually zero.

- For $W\left(U^{\text {rel }}\right)=W\left(\left(F_{\Delta} \circ U\right)^{\text {rel }}\right)$ we use continuity of W under interpolation from the smooth F_{Δ} to the identity map, in the mobility gap regime.

