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Magnetic Schrodinger operators

- Consider Euclidean space Rd equipped with its usual
Riemannian metric

∑d
j=1 dx2

j .

- the magnetic field B = 1
2
∑

j,k Θjkdxj ∧ dxk = 1
2dx t Θdx , where

Θ is a constant (d × d) skew-symmetric matrix, dx is the
column vector with entries dxj and dx t is the corresponding row
vector, and matrix multiplication is used. B is closed.

-Let us now pick a 1-form η such that dη = B. This is always
possible since B is a closed 2-form and Rd is contractible.
We may regard η as defining a connection ∇ = d + iη on the
trivial line bundle L over Rd , whose curvature is iB.
Physically we can think of η as the electromagnetic vector
potential for a uniform magnetic field B normal to Rd .



Magnetic Schrodinger operators

Using the Riemannian metric the Hamiltonian of an electron in
this magnetic field is given by

H =
1
2
∇†∇+ V =

1
2

(d + iη)†(d + iη) + V , acting on L2(Rd )

where † denotes the adjoint and V is a smooth real-valued
bounded function. H is (formally) self-adjoint & bounded below.

The restriction of H to a bounded domain Ω (with piecewise
smooth boundary ∂Ω) in Rd is denoted by HΩ.
Imposing self-adjoint (Dirichlet/Neumann...) boundary
conditions, then since HΩ becomes a self-adjoint elliptic
operator, it has an (unbounded) purely discrete real spectrum,
but which is bounded below.
Moreover the eigenvalues all have finite multiplicity.



Magnetic Schrodinger operators

Define the (spectral) counting function

N(HΩ, λ) = # {µ ∈ spec(HΩ) : µ ≤ λ}

= Tr(χ(−∞,λ](HΩ))

This is a step function, and the values N(HΩ,E) is a gap-label
whenever E lies in a spectral gap, i.e. for all E ∈ R \ spec(HΩ).

Properties of the (spectral) counting function N(HΩ, λ)

1 N(HΩ, λ) is non-decreasing;

2 N(HΩ, λ) = 0 for all λ < inf spec(HΩ);

3 N(HΩ, λ) ∼ λd/2 as λ→∞ (Weyl law);

4 N(HΩ, λ) is constant on spectral gaps.



Integrated Density of States



Magnetic Schrodinger operators
What we would like to have is a counting function for the
operator H on Rd . This is trickier to define, as H contains
continuous spectrum in general.

Define the integrated density of states (IDS)

N(H, λ) = lim
Ω↑Rd

1
vol(Ω)

N(HΩ, λ)

(which exists because Rd is amenable, and such a sequence of
open sets {Ω} is a Folner sequence.)

Properties of the IDS N(H, λ)

1 N(H, λ) is non-decreasing;
2 N(H, λ) = 0 for all λ < inf spec(H);
3 N(H, λ) ∼ λd/2 as λ→∞ (Weyl law);
4 N(H, λ) is constant on spectral gaps.



Integrated Density of States

NB Gap labels are no longer integers and more interesting!



Some C∗-algebras

Difficult to work with this definition of IDS - seek an alternatives.

Let U(γ) denote the unitary operator on L2(Rd ) given by
translation by γ ∈ Zd . Consider the set consisting of translates
of the resolvent operator:

Σ0(z) =
{

U(γ)(H − zI)−1U(γ)−1 : γ ∈ Zd
}

& assume that it is precompact for some z ∈ C with =(z) 6= 0.

This is the case for any V ∈ L∞(Rd ,R) ∩ C∞(Rd ).
In the case when V is smooth and periodic, then this set is a
point.



Some C∗-algebras

Let Σ = Σ0(z)
s

be the compact set that is the strong closure.
It turns out to be independent of z with =(z) 6= 0, modulo
homeomorphism. It is called the disorder set associated to H,
or the hull. Zd acts on Σ by homeomorphisms.

The most interesting case is when Σ is a Cantor set. and Zd

acts on Σ minimally (i.e. having dense orbit)

Let µ be a Zd -invariant probability Borel measure on Σ.



Twisted crossed product algebra

Let σ : Zd × Zd −→ U(1) be a 2-cocycle on Zd , so it satisfies,

σ(γ1, γ2)σ(γ1 +γ2, γ3) = σ(γ1, γ2 +γ3)σ(γ2, γ3), γ1, γ2, γ3 ∈ Zd

Then the twisted crossed product C∗-algebra A = C(Σ) oσ Zd

is constructed as follows. Let a,b ∈ A0 = Cc(Σ× Zd ).

Product:
ab(ω, γ) =

∑
γ′∈Zd a(ω, γ′)b(γ′−1ω, γ − γ′)σ(γ − γ′, γ′);

The adjoint: a∗(ω, γ) = a(γ−1ω,−γ)σ(−γ, γ);

The regular representation for a ∈ A0 and ψ ∈ L2(Zd ):
πω(a)ψ(γ) =

∑
γ′∈Zd a(γ′−1ω, γ − γ′)ψ(γ′)σ(γ − γ′, γ′);

The norm: ||a|| = supω∈Σ ||πω(a)||;

The twisted crossed product C∗-algebra: A = A0
||·||



The trace functional

Let µ : C(Σ) −→ C be an invariant measure on Σ.
Then it induces a trace τµ on the twisted crossed product
C∗-algebra A = C(Σ) oσ Zd as follows: define for a ∈ A,

τµ(a) =

∫
Σ

a(ω,0)dµ(ω).

Then for a,b ∈ A, one has

τµ(ab) = τµ(ba),

and if a ≥ 0,
τµ(a) ≥ 0.

The trace actually extends to the bigger von Neumann algebra,
L∞(Σ) oσ Zd , using the same formula.



Magnetic gap-labelling conjecture
Now the spectral projections of H are bounded measurable
functions of H, therefore χ(−∞,λ](H) ∈ L∞(Σ) oσ Zd ⊗K, the
von Neumann algebra. Then one has the useful

Theorem (Shubin)
IDS has the following expression, at a point of continuity:

N(H, λ) = τµ(χ(−∞,λ](H)), λ ∈ R

When λ is in a spectral gap of H, i.e. λ ∈ R \ spec(H), then the
projection χ(−∞,λ](H) is the smaller algebra C(Σ) oσ Zd ⊗K,

Lemma

E 6∈ spec(H)⇒ χ(−∞,E ](H)) ∈ C(Σ) oσ Zd ⊗K.

Proof. Suppose that, spec(H) ⊂ [−A,∞) and that the open
interval (a,b) is a spectral gap of H, i.e. (a,b) ∩ spec(H) = ∅.



Magnetic gap-labelling conjecture
Suppose that E ∈ (a,b) i.e. E /∈ spec(H).
Then there is a holomorphic function φ on a neighbourhood of
spec(H) ∩ [−A,a] such that

χ(−∞,E ](H) = φ(H) =

∮
C

dλ
λ− H

where C is a closed contour enclosing the interval [−A,a] to the
left of E , and is the Riesz projection.

Since C(Σ)oσ Zd ⊗K is closed under the continuous functional
calculus, it follows that χ(−∞,E ](H) ∈ C(Σ) oσ Zd ⊗K.



Magnetic gap-labelling conjecture

It follows that the spectral gap-labels of H are contained in the
countable subgroup of R, τµ(K0(C(Σ) oσ Zd )).

Then the magnetic gap-labelling conjecture is about finding
an expression for

τµ(K0(C(Σ) oσ Zd )) =????



K-theory of C∗-algebras

Two projections P,Q in the C∗-algebra A⊗K, where K is the
algebra of compact operators on a separable Hilbert space, are
said to be (Murray-von Neumann) equivalent P ∼ Q whenever
there is an element a ∈ A such that P = a∗a and Q = aa∗.

Recall that the K-theory K0(A) is defined as stable equivalence
classes of pairs of projections (P,Q) in A⊗K,
where (P,Q) and (P ′,Q′) are stably equivalent whenever
P ⊕Q′ ⊕ R ∼ P ′ ⊕Q ⊕ R, for some projection R in A⊗K.
K0(A) is a countable group.

Clearly a trace on the algebra A, τµ : A → C, induces a
morphism τµ : K0(A) −→ R.



Motivation: Magic formula

Let Λ[dx ] = Λ[dx1, . . . ,dxd ] denote the exterior algebra with
generators dx1, . . . ,dxd . It has basis the monomials
dxI = dxi1 , . . . ,dxip , I = {i1, . . . , ip}, i1 < · · · < ip, 1 ≤ p ≤ d .

Given a skew-symmetric matrix Θ, we can associate a
quadratic element 1

2dx t Θdx in Λ[dx ].

Recall that the Pfaffian of the skew-symmetric matrix Θ, Pf(Θ)

can be defined as

1
m!

(
1
2

dx t Θdx
)m

= Pf(Θ)dx1 ∧ dx2 ∧ . . . ∧ dxd

where d = 2m.



Motivation: Magic formula

By section 1 in [Mathai-Quillen86],

e
1
2 dx t Θdx =

∑
I

Pf(ΘI)dxI

where I runs over subsets of {1, . . . ,d} with an even number of
elements, and ΘI denotes the submatrix of Θ = (Θij) with
i , j ∈ I, which is clearly also skew-symmetric.

This was a key formula in the paper above, to construct the
Chern-Weil representative of the Thom class of an oriented
vector bundle.



Motivation: Magic formula

sketch of proof.
To verify this identity, fix such a multiindex I and consider the
onto algebra homomorphism

Λ[dx ] −→ Λ[dxj : j ∈ I]

which kills components containing dxk for k 6∈ I.
In degree |I| this map kills all monomials except dxI , and it
maps the Gaussian expression e

1
2 dx t Θdx onto the corresponding

Gaussian expression constructed from the submatrix ΘI . Thus
the coefficient of dxI in the Gaussian expression e

1
2 dx t Θdx is just

Pf(ΘI)

as claimed.



Magnetic gap-labelling conjecture

The subgroup of the real line R which is generated by
µ-measures of clopen subsets of Σ is denoted Z[µ].

NB Z[µ] is a countable set as all the clopen subsets of a
Cantor set form a countable set.

Z[µ] is also the image under (the integral associated with) the
invariant probability measure µ of C(Σ,Z), the group of
continuous integer valued functions on Σ. That is,

Z[µ] =

{∫
Σ

f (z)dµ(z)
∣∣∣f ∈ C(Σ,Z)

}
= µ(C(Σ,Z))



Magnetic gap-labelling conjecture
Recall that if a group Γ acts on a module M, then the
coinvariants of M is defined as the quotient

M/{m − gm|m ∈ M,g ∈ Γ},

and the invariants of M is defined as

{m ∈ M|m = gm for all g ∈ Γ}.

Let I be an ordered subset of {1, . . . ,p} with an even number of
elements, and let C(Σ,Z)ZIc denote the coinvariants under the
subgroup ZIc

of Zd , where Ic denotes the complementary index
to I. Let

(
C(Σ,Z)ZIc

)ZI
denote the subset of C(Σ,Z)ZIc invariant

under the subgroup ZI of Zd . Define the countable group

ZI [µ] = µ
((

C(Σ,Z)ZIc
)ZI)

.



Magnetic gap-labelling conjecture

Let Σ be a Cantor set with a minimal action of Zd that
preserves a Borel probability measure µ. Let σ be the multiplier
on Zd associated to a skew-symmetric (d × d) matrix Θ.

1 If d is even, then the magnetic frequency group is defined as
follows:

Z[µ] +
∑

0<|I|<d

Pf(ΘI)ZI [µ] + Pf(Θ)Z.

2 If d is odd, then the magnetic frequency group is defined as
follows:

Z[µ] +
∑

0<|I|≤d

Pf(ΘI)ZI [µ].

Here, |I| is even, and ΘI denotes the skew-symmetric submatrix
of Θ = (Θij) with i , j ∈ I, Pf(ΘI) denotes the Pfaffian of ΘI .



Magnetic gap-labelling conjecture

The magnetic gap-labelling group is defined as the range of
the trace on K-theory,

τµ

(
K0(C(Σ) oσ Zd )

)
.

The magnetic gap-labelling conjecture [BM] asserts that:

magnetic gap-labelling group Ĳ magnetic frequency group



Magnetic gap-labelling conjecture

When Θ = 0, this is the case when there is no magnetic field. It
was first formulated in the early 1980s by Jean Bellissard, and
the statement reduces to

τµ

(
K0(C(Σ) o Zd )

)
= Z[µ].

It was proved by Bellissard and collaborators when d = 1,2,3
in the 1990s.

In early 2000s, there were 3 groups who published proofs of
the conjecture in all dimensions.
J. Bellissard, R. Benedetti, J-M. Gambaudo;
M.-T. Benameur ,H. Oyono-Oyono;
J. Kaminker, I. Putnam.



Magnetic gap-labelling conjecture: existence of gaps
Raikov et al., consider the 2D magnetic Schrödinger operator,

H = − ∂2

∂x2 +

(
−i

∂

∂y
− θx

)2

+ V (x).

Here B = θ dx ∧ dy , θ 6= 0 is a constant magnetic field, and V is
a real valued, non-constant smooth periodic electric potential
that is independent of the y variable. The self-adjoint operator
H on L2(R2) is proved to generically have infinitely many open
spectral gaps.

This is in stark contrast to the Bethe-Sommerfeld conjecture
(proved recently by L. Parnovski), which says that there are
only a finite number of gaps in the spectrum of any
Schrödinger operator with smooth periodic potential V on
Euclidean space, in the case when the magnetic field vanishes,
i.e. θ = 0, whenever the dimension is greater than or equal to 2.



Magnetic gap-labelling conjecture: existence of gaps

In fact Raikov et al, also study the Hamiltonian H± = H ±W ,
where W ∈ L∞(R2) ∩ C∞(R2) is non-negative and decays at
infinity and θ 6= 0, so that H± is the sort of Hamiltonians that we
consider in our paper. They find that there are infinitely many
discrete eigenvalues of H± in any open gap in the spectrum of
spec(H), and the convergence of these eigenvalues to the
corresponding endpoint of the spectral gap is asymptotically
Gaussian.

This shows that the spectral gaps of magnetic Schrödinger
operators (of the type considered in this paper) can be rather
interesting even in higher dimensions.



Evidence for the conjecture: the 2D case

We now compute the magnetic gap-labelling group in a
physically relevant case when p = 2.

- Let Z2 y Σ be a minimal action with invariant probability
measure µ on Σ.

- Let σ be a multiplier on Z2. Then the group cohomology class
of [σ] ∈ H2(Z2;R/Z) ∼= R/Z can be identified with a real
number θ, 0 ≤ θ < 1. More precisely, we take σ = e2πiθω where
ω is the standard symplectic form on Z2.

The magnetic gap-labelling conjecture in 2D reduces to

Theorem (2D case)

τµ(K0(C(Σ) oσ Z2) = Z[µ] + Zθ



Evidence for the conjecture: the 2D case

Proof.
By results of Packer-Raburn and the Connes-Thom
isomorphism, it follows that

µθ : K 0(X ) −→ K0(C(Σ) oσ Z)

is an isomorphism, where X = Σ×Z2 R2 is a fibre bundle over
the torus R2/Z2 with typical fibre the Cantor set Σ; X is also
called a solenoidal torus. By the foliated twisted L2-index
theorem [BM15], for any vector bundle ξ over X , one has

τµ(µθ(ξ)) =

∫
X

dµ(ϑ) eθdx1∧dx2 ∧ Ch(ξ)

Now X is a connected space since the Z2-action is minimal.



Evidence for the conjecture: the 2D case

Proof.
Therefore

τµ(µθ(ξ)) = θµ(Σ)

∫
T2

dx1 ∧ dx2 rank(ξ) +

∫
X

c1(ξ)

= θ rank(ξ) +

∫
X

c1(ξ)

Varying over all (virtual) vector bundles ξ over T2, and using the
fact that the zero-magnetic field gap-labelling in 2D holds, i.e.{∫

X
c1(ξ) : ξ ∈ K 0(X )

}
= Z[µ]

we conclude that the result follows.



A particular 2D example

Suppose that 0 < α1 < α2 < 1 are two rationally independent
irrational numbers. Then Tjx = x + αj (mod 1), j = 1,2 defines
a minimal Z2-action on the circle R/Z.

Define the Cantor set Σ to be the circle disconnected along the
dense orbit of Z2 through the origin. Then by fiat, Z2 also acts
minimally on Σ and this example has a unique invariant
probability measure µ. In this case, one can show that,

Z[µ] = Z + Zα1 + Zα2.

The magnetic gap-labelling theorem in this 2D example is:

τµ(K0(C(Σ) oσ Z2)) = Z + Zα1 + Zα2 + Zθ.



Evidence for the conjecture: Jordan block diagonal
case

We also deduce the magnetic gap-labelling conjecture when

Θ =
⊕n

j=1

(
0 −θj

θj 0

)
is in Jordan block diagonal form, for

any n.

This essentially follows from the 2D case, and the Kunneth
theorem in K-theory.



Evidence for the conjecture: the periodic case
Let Σ = {pt} i.e. V is periodic. Then C(Σ) oσ Zd is the
noncommutative torus AΘ.

Theorem

1 If d is even, then

τ(K0(AΘ)) = Z +
∑

0<|I|<d

Pf(ΘI)Z + Pf(Θ)Z,

2 If d is odd, then

τ(K0(AΘ)) = Z +
∑

0<|I|<d

Pf(ΘI)Z,

where I runs over subsets of {1, . . . ,d} with an even number of
elements, and ΘI denotes the submatrix of Θ = (Θij) with
i , j ∈ I.



Evidence for the conjecture: the periodic case

Proof.
Since the Baum-Connes conjecture with coefficients is true for
Zd (assume that d is even), it follows that

µΘ : K 0(Td )
∼−→ K0(AΘ)

is an isomorphism. Then by the twisted L2-index theorem
[Mathai99] and equation [MathaiQuillen86],

τ(µΘ(ξ)) =

∫
Td

e
1
2 dx t Θdx ∧ Ch(ξ)

=
∑

I

Pf(ΘI)

∫
Td

dxI ∧ Ch(ξ)

Since the Chern character is an integral isomorphism on the
torus Td , the result follows by varying ξ over all K-theory
classes.



Evidence for the conjecture: the periodic case

Remarks

The proposition above is a result of [Elliott82], however we both
give a new proof of it, as well as a significantly neater
expression for the range of the trace that is better suited to our
paper.



Key difficulty: integrality of the Chern character

The Chern character is an integral isomorphism on the torus
and is well understood for manifolds in general.

However for the fibre bundle Σ→ X → Td , where Σ is a Cantor
set, X is only a solenoidal torus and the Chern character is not
well understood in this case.

By the (foliated) index theorem, if one can prove integrality of
all of the components of the Chern character,

∫
X dxI ∧ Ch(ξ) for

all ξ ∈ K 0(X ), then it turns out that the MGL conjecture can be
proved. This is hard work!

(For the precise definition of the Chern character in this context,
see Moore-Schochet, Global Analysis on Foliated Spaces)



Sketch of the proof of the the conjecture in 3D

The 3D case is technically much more involved and is the main
theorem in [BM].

Theorem

Let Z3 y Σ be a minimal action with invariant probability
measure µ on Σ.

τµ(K0(C(Σ) oσ Z3)) ⊂

Z[µ] + Θ12 Z12[µ] + Θ13 Z13[µ] + Θ23 Z23[µ].

This proves the magnetic gap-labelling conjecture in 3D.



Sketch of the proof of the the conjecture in 3D

Step 1. The twisted Connes-Thom isomorphism,

Index : K 1(X )→ K0(C(Σ) oΘ Z3),

is an isomorphism, where Σ ↪→ X → T3 is a fibre bundle over
the torus T3 with typical fibre Σ. More precisely, X = R3 ×Z3 Σ.

Step 2. By the measured twisted foliated index theorem in
[BM15], we see that

τµ(Index(∂Θ ⊗ U) = Θ13

∫
X

dµ(ϑ) dx1 ∧ dx3chodd
1 (U) + Θ12

∫
X

dµ(ϑ) dx1 ∧ dx2chodd
1 (U)

+Θ23

∫
X

dµ(ϑ) dx2 ∧ dx3chodd
1 (U) +

∫
X

dµ(ϑ) chodd
3 (U)

where U : X → U(∞) is continuous and represents a class
[U] ∈ K 1(X ), where chodd

2j+1(U) ∈ H2j+1(X ) are the components
of the odd Chern character, chodd : K 1(X )→ Hodd (X ).



Sketch of the proof of the the conjecture in 3D

Therefore the range of the trace τµ, range(τµ) is equal to the set,{
Θ13

∫
X

dµ(ϑ) dx1 ∧ dx3chodd
1 (U) + Θ12

∫
X

dµ(ϑ) dx1 ∧ dx2chodd
1 (U)

+Θ23

∫
X

dµ(ϑ) dx2 ∧ dx3chodd
1 (U) +

∫
X

dµ(ϑ) chodd
3 (U)

∣∣∣[U] ∈ K 1(X)

}

When Θ = 0, the usual gap-labelling conjecture in this context
asserts that,

range(τµ) =

{∫
X

dµ(ϑ) chodd
3 (U)

∣∣∣[U] ∈ K 1(X )

}
= Z[µ],

and this has a complete proof by Bellissard et al. [1998]



Sketch of the proof of the the conjecture in 3D

It suffices to compute,
{

Θ13

∫
X

dµ(ϑ) dx1 ∧ dx3chodd
1 (U) + Θ12

∫
X

dµ(ϑ) dx1 ∧ dx2chodd
1 (U)

+Θ23

∫
X

dµ(ϑ) dx2 ∧ dx3chodd
1 (U)

∣∣∣[U] ∈ K 1(X)

}

Step 3. To do this, we use the following Lemma in homological
algebra, where we assume that M = C(Σ,Z), which is a free
Z[Γ]-module where Γ = Z3 acts minimally on Σ.



Sketch of the proof of the the conjecture in 3D

The following is standard and can be found in any book on
group cohomology, Γ = Z3

Lemma

If M is a Z[Γ]-module, then the following hold:

1 The cohomology groups Hn(Γ; M) and homology groups
Hn(Γ; M), are trivial except for 0 ≤ n ≤ 3.

2 H0(Γ; M) = M/{m − gm|m ∈ M,g ∈ Γ}, the coinvariants of M.

3 H0(Γ; M) = {m ∈ M|m = gm for all g ∈ Γ}, the invariants of M.

4 There is a natural isomorphism PD : Hn(Γ; M) ∼= H3−n(Γ; M)

(Poincaré duality) for 0 ≤ n ≤ 3.

In particular, H0(Γ; M) = MΓ and H3(Γ,M) = MΓ.
So it remains to compute H1(Γ,M).



Sketch of the proof of the the conjecture in 3D

To compute H1(Γ,M), we use the following homological algebra
lemma iteratively (long, so we skip the details here):

Lemma

0→ H1(Td ; Hn−1(Td−1
12...(d−1); M))→ Hn(Td ; M)→

→ H0(T2; Hn(Td−1
12...(d−1); M))→ 0.

for n = 1, . . . ,d.

This is proved by basic topology by cutting the dth circle factor
in the classifying space Td for Zd into two semicircles gives rise
to Mayer-Vietoris exact sequences giving rise to the short exact
sequences indicated.
We will be concerned with d ≤ 3.



Sketch of the proof of the the conjecture in 3D

Therefore, the magnetic gap-labelling group coincides with Z[µ]

plus the range of the map

H1(Z3,C(Σ,Z))
∪Θ−→ H3(Z3,C(Σ,R))

PD−→ C(Σ,R)Z3
µ−→ R.

This completes the sketch of proof for the 3D case.



A general theorem in all dimensions

The integrality hypothesis: (IH) The range of the Chern
character Ch : K p(X ) −→ H [p](X ,Q) '
⊕k≥0Hp+2k (Zp,C(Σ,Q)) is contained in Hp+2k (Zp,C(Σ,Z)).

We will show that IH is satisfied for principal solenoidal tori in all
dimensions.

Theorem

Suppose that the integralty hypothesis (IH) stated above is
satisfied, then the Magnetic Gap-Labelling Conjecture is true.



A general theorem in all dimensions

The proof uses as in the 3D case,

1 the twisted Connes-Thom isomorphism;

2 the twisted measured foliated index theorem in [BM15]

3 various homological algebra arguments in group
cohomology with coefficients in modules



Chern character for principal solenoidal tori

For each j ∈ N, let Xj = Tn. Define the finite regular covering
map fj+1 : Xj+1 → Xj to be a finite covering map such that
degree of fj+1 is greater than 1 for all j . For example, let
fj+1(z1, ..., zn) = (zp1

1 , ..., zpn
n ),where each pj ∈ N \ {1}.

Set (X∞, f∞) to be the inverse limit, lim←−(Xj , fj). Then X∞ is a
solenoid torus, and X∞ ⊂

∏
j∈N Xj , where the right hand side is

a compact space when given the Tychonoff topology, therefore
X∞ is also compact. Let Gj = Zn/Γj be the finite covering
space group of the finite cover pj : Xj → X1 = Tn. Then the
inverse limit G∞ = lim←−Gj = lim←−Zn/Γj is the profinite completion
of Zn that is homeomorphic to the Cantor set, cf. Lemma 5.1 in
[McCord]. Moreover G∞ → X∞ → Tn is a principal fibre bundle,
cf. [McCord]. We call such an X a principal solenoidal torus.



Chern character for principal solenoidal tori
Now K-theory is continuous under taking inverse limits in the
category of compact Hausdorff spaces, which follows from
Proposition 6.2.9 in [Wegge-Olsen], see also [NCPhillips],

K •(X∞) ∼= lim−→K •(Xj).

Now the Chern character

Ch : K •(Xj)→ H•(Xj ,Z)

maps to integral cohomology, as shown earlier, since Xj is a
torus. Therefore

lim−→Ch : K •(X∞) ∼= lim−→K •(Xj)→ lim−→H•(Xj ,Z). ∼= H•(X∞,Z)

by the continuity for Čech cohomology under taking inverse
limits in the category of compact Hausdorff spaces, [Spanier].



Chern character for principal solenoidal tori

Now H•(Xj ,Z) are torsion-free Abelian groups, therefore the
direct limit lim−→H•(Xj ,Z) is again a torsionfree Abelian group. So
we have proved the following,

Theorem (Integrality of the Chern character)

Let X be a principal solenoidal torus as above. Then the Chern
character,

lim−→Ch : K •(X∞)→ H•(X∞,Q)

is integral, that is, the range is contained in H•(X∞,Z).

So the MGL is true for principal solenoidal tori



Overview of the measured index theorem

One of the main steps towards proving the magnetic GL
conjecture is the measured twisted index theorem, which is a
twisted analog of Connes measured index theorem.

The suspension X = Rp ×Zd Σ is a compact foliated space with
transversal the Cantor set Σ, and with invariant transverse
measure induced from µ. The monodromy groupoid is

G = (Rp × Rp × Σ)/Zp.



Overview of the measured index theorem

Consider functions f in L2(Rp × Σ; dxdµ) and the operators
defined on it as follows,

1 Sγ f (x , ϑ) = eiϕγ(x)f (x , ϑ);

2 Uγ f (x , ϑ) = f (x .γ, ϑ.γ).

Then for all γ ∈ Zp, the bounded operators Tγ = Uγ ◦ Sγ satisfy
the relation

Tγ1Tγ1 = σ(γ1, γ2) Tγ1γ2

where σ(γ1, γ2) = φγ1(γ2) is a multiplier on Zp.



Overview of the measured index theorem

Let /∂ denote the Dirac operator on Rp and ∇ = d + 2iπη the
connection on the trivial line bundle on Rp, ∇E the lift to Rp × Σ

of a connection on a vector bundle E → X . Consider the
twisted Dirac operator along the leaves of the lifted foliation,

D = /∂ ⊗∇⊗∇E : L2(Rp × Σ,S+ ⊗ E) −→ L2(Rp × Σ,S− ⊗ E).

Then one computes that Tγ ◦ D = D ◦ Tγ for γ ∈ Zp.
The heat kernel of D, denoted k(t , x , y , ϑ), since it is smooth
for t > 0, it has a well defined µ-trace

τµ(kt ) =

∫
X

k(t , x , x , ϑ)dµ(ϑ)dx



Overview of the measured index theorem
For t > 0, define the Wasserman or index idempotent

et (D+) ∈ M2(A)

as follows:

et (D+) =

 e−tD−D+
e−

t
2 D−D+ (1− e−tD−D+

)

D−D+
D+

e−
t
2 D+D−D+ 1− e−tD+D−

 ,

Here A ∼= C∗(X ,F , σ)⊗K ∼= C(Σ) oσ Zp ⊗K.
Then the A-twisted foliated analytic index is defined as

IndexA(D+) = [et (D)]− [E0] ∈ K0(A), (1)

where t > 0 and E0 is the idempotent

E0 =

(
0 0
0 1

)
∈ M2(A).



Overview of the measured index theorem
Note:

IndexA : K 0(X ) −→ K0(A).

is an isomorphism (Packer-Raeburn+Connes’ Thom isom.).
A McKean-Singer type argument shows that

τµ(trs(k(t , · · · ))) = τµ(e−tD−D+

)− τµ(e−tD+D−
) = τ s

µ(IndexA(D+))

is independent of t > 0 and represents the twisted measured
foliated index. By Getzler’s local index and the M-Q formula,

lim
t↓0

τµ(trs(k(t , · · · ))) =
1

(2π)p

∫
X

exp
(

1
2

dx t Θdx
)
∧ Ch(FE )dµ(ϑ),

=
1

(2π)p

∑
I

Pf(ΘI)

∫
X

dxI ∧ Ch(FE )Ic dµ(ϑ).

Here I runs over subsets of {1, . . . ,p} with an even number of
elements, and ΘI is the submatrix of Θ = (Θij) with i , j ∈ I.


