RESEARCH STATEMENT

ROMÉO TROUBAT

My research interests lie at the intersection between geometry and representation theory. My goal is, in a broad sense, the study of pseudo-Riemannian geometry in non-Lorentzian signature. Part of my work consists in generalizing the concepts of causality and global hyperbolicity to pseudo-Riemannian spaces of general signature, while the other part consists in the study of Anosov subgroups of $SO(p,q)$ and their associated geometric structures.

1. CONTEXT

Let (M, g) be a smooth conformal Lorentzian manifold. A smooth path $c: I \to M$ is said to be causal if for each $t \in I$, $g(\dot{c}(t)) \leq 0$. It is said to be *inextendible* if c does not converge at the boundaries of the interval I. When M admits a time orientation, one may also ask for causal paths to be future oriented or past oriented. The notion of future oriented causal path can be extended to a familly of non-smooth curves. We shall say that a subset $S \subset M$ is a *Cauchy* surface of M if for each inextendible future oriented causal curve c, there exists a unique $t \in I$ such that $c(t) \in S$. It is a well known fact in Lorentzian geometry due to Geroch ([\[Ger70\]](#page-4-0)) that in a causal space M , the following properties are equivalent :

- (1) For each pair of points $x, y \in M$, the space of non-parametrized future oriented causal curves from x to y is either empty or compact for the uniform topology,
- (2) There exists a Cauchy surface $S \subset M$,
- (3) There exists a map $T : M \to \mathbb{R}$ such that for each $t \in \mathbb{R}$, $T^{-1}(t)$ is a Cauchy surface. Equivalently, for each inextendible future oriented causal curve c, $T \circ c : I \to \mathbb{R}$ is a bijection.

When M satisifes one of those properties, it is said to be *globally hyperbolic* and the map T is called a *Cauchy time function*. Conformal Lorentzian spaces of signature $(p, 1)$ are geometric spaces which are infinitesimally modeled on $\text{Ein}^{p,1}$ in the sense of Cartan geometries, $\text{Ein}^{p,1}$ being the space of isotropic lines in $\mathbb{R}^{p+1,2}$. It is one of the three parabolic spaces associated with $SO_0(p+1,2)$ $(p \ge 2)$, the two others being the space of photons and pointed photons in Ein^{p,1}.

Let $p \geqslant q$ be two positive integers and let $SO_0(p,q)$ be the neutral component of the indefinite orthogonal group O(p, q). It is split if and only if $p = q$ or $p = q + 1$. Let $\Theta = \{i_1, ..., i_k\}$ be a subset of the roots of $SO_0(p,q)$. The associated parabolic space $SO_0(p,q)/P_{\Theta}$ is the space of partial flags of isotropic sub-spaces of \mathbb{R}^{p+q} , $V_{i_1} \subset ... \subset V_{i_k}$ with $\dim(V_{i_\ell}) = i_\ell$ for all ℓ . Of particular interests are the following spaces :

- (1) $\Theta = \{1\}$, $\text{SO}_0(p,q)/P_1$ is the space of isotropic lines in $\mathbb{R}^{p,q}$, commonly refered to as the *Einstein space* Ein^{p-1,q-1}. The spaces whose geometry are locally modeled on Ein^{p-1,q-1} in the Cartan sense are the conformal pseudo-Riemannian spaces of signature $(p-1, q-1)$.
- (2) $\Theta = \{1, ..., q-1\}$, $SO_0(p,q)/P_{1,...,q-1}$ is the space of sub-maximal flags of isotropic sub-spaces of \mathbb{R}^{p+q} , $V_1 \subset \ldots \subset V_{q-1}$. We know from the works of Guichard and Wienhard ([\[GW18\]](#page-4-1)) that this space admits a Θ-positive structure, i.e a familly of connected components of the double Schubert cells on which a sub-semigroup of the radical unipotent U_{Θ} acts transitively.

RESEARCH STATEMENT 2

(3) $\Theta = \{1, ..., q\}$ and $p = q + 1$, $SO_0(q + 1, q)/P_{1,...,q}$ is the space of complete flags of isotropic subspaces of \mathbb{R}^{q+1+q} . In this case, $SO_0(q+1,q)$ is split and P_{Θ} is one of its Borel subgroups, meaning that the associated space also admits a Θ-positive structure.

The case $q = 2$, $\Theta = \{1\}$ brings us back to conformal Lorentzian geometry. This falls in the first two cases we considered, meaning that the space $\text{Ein}^{p-1,1}$ of isotropic lines of $\mathbb{R}^{p,2}$ admits a Θ-positive structure. In this case, this structure is only the causal structure on $\text{Ein}^{p-1,1}$ in the Lorentzian sense. My goal is two study the parabolic spaces associated with $SO_0(p,q)$ and the spaces onto which they are modeled, with particular attention given to $\text{Ein}^{p-1,q-1}$ with an attempt to generalize the notions of global hyperbolicity for non-Lorentzian signatures.

2. Global hyperbolicity in pseudo-Riemannian spaces

In a work not yet published, I extend the notion of global hyperbolicity to the conformal pseudo-Riemannian spaces of signature (p, q) for $q \ge 2$. Let N_0 be a q-dimensional smooth manifold and let $f: N_0 \to M$ be an immersion. It is said to be *causal* if for each $x \in N_0$, the restriction of $g_{f(x)}$ to $Im(df_x)$ is non-positive, potentially degenerate. The bundle $Gr_q^{\leq 0}(TM)^+ \to M$ of oriented non-positive q tangent vector spaces has every fiber made of two connected components; when the bundle is trivial, M is said to be *time orientable* and the choice of a connected component gives a time orientation of M. A causal immersion $f : N_0 \to M$ where N_0 is oriented is said to be future oriented if for each $x \in N_0$, $Im(df_x)$ is in the right connected component of $Gr_q^{\leq 0}(T_xM)^+$. As in the Lorentzian case, we then extend this notion to a familly of non-necessarely smooth maps f .

Finally, we will say that f is *inextendible* if for each inextendible curve c in N_0 , $f \circ c$ is inextendible in M. We may then define the notion of Cauchy surface.

Definition 2.1. A subset $S \subset M$ is a *Cauchy surface* is for each inextendible future oriented causal map $f: N_0 \to M$, there exists a unique $x \in N_0$ such that $f(x) \in S$.

Definition 2.2. Let N be a q-dimensional manifold. A map $T : M \to N$ is said to be a *Cauchy* time function if for each $y \in N$, $T^{-1}(y)$ is a Cauchy surface. Equivalently, for each inextendible future oriented causal map $f: N_0 \to M$, the map $T \circ f: N_0 \to N$ is bijective. When such a map exists, M is said to be *globally hyperbolic*.

We provide examples of globally hyperbolic spaces, as well a spaces admitting a Cauchy surface which are not globally hyperbolic, showing that the equivalence no longer holds in higher signature.

Proposition 2.3. ^{p,q}, the projection $\pi : \mathbb{R}^{p,q} \to \mathbb{R}^q$ is a Cauchy time function,

- $M = P \times N$ where P is a complete Riemannian manifold of dimension p, N is a simply connected anti-Riemannian manifold of dimension q, the projection $\pi : M \to N$ is a Cauchy time function,
- Let $\pi : (M, g_M) \to (N, g_N)$ be a complete Riemannian submersion with N simply connected and for each $x \in M$, $v \in T_xM$, let $g(v) = g_M(v) - 2g_M(p|_{Ker(\pi)^{\perp}}(v))$ where $p|_{Ker(\pi)^{\perp}}$ is the orthogonal projection. Then (M, g) is a pseudo-Riemannian manifold of signature (p,q) and $\pi : M \to N$ is a Cauchy time function. In particular, every fiber bundle over a simply connected base can be endowed with a conformal pseudo-Riemannian metric for which the projection is a Cauchy time function.
- Let $q \geq 3$ and $M = \mathbb{R}^{p,q} \setminus \{0\}$. Then every non-trivial translation of $\mathbb{R}^{p,0}$ is a Cauchy surface of M but M is not globally hyperbolic.

I prove a result regarding the topological structure of globally hyperbolic spaces, which is to be compared to a result of Geroch ([\[Ger70\]](#page-4-0)) in the Lorentzian setting. Let $T : M \to N$ be a smooth Cauchy time function on M admitting at least one compact level set and let $\gamma: I \to N$ be a smooth path in N. Let $\gamma^* M = \bigsqcup_{t \in I} T^{-1}(\gamma(t))$ endowed with the Lorentzian metric coming from the decomposition $T_x\gamma^*M = Ker(dT) \oplus^{\perp} \text{Vect}(dT^{-1}(\dot{\gamma}(t)))$ and the projection $\gamma^*T : \gamma^*M \to I$.

RESEARCH STATEMENT 3

Theorem 2.4. Under those assumptions, the map γ^*T is a Cauchy time function in the Lorentzian sense on the space γ^*M . Since this holds for each γ , in particular, $T : M \to N$ is a fiber bundle on N.

I also introduce the notion of causal diamonds in higher signature. Let $g: N_1 \to M$ be a causal immersion with N_1 a closed smooth manifold of dimension $q-1$. Let $J(q)$ be the set of maps $f: N_0 \to M$ where N_0 is a smooth compact q-dimensional manifold with boundary $\partial N_0 \simeq N_1$, $f|_{N_0}$ is a causal future oriented map and $f|_{\partial N_0} = g$ quotiented by composition with diffeomorphisms of N_0 . The set $J(g)$ endowed with the uniform topology is called the causal diamond of g.

Theorem 2.5. Let M be a globally hyperbolic space. Then the causal diamonds of M are either empty or compact.

Unlike in the Lorentzian case, the converse is not true; counter examples emerge from the works of Collier, Tholozan and Toulisse ([\[CTT19\]](#page-4-2)). In the pseudo-Riemannian spaces where all causal diamonds are compact, which now include globally hyperbolic spaces, this compacity can be used to deduce a result regarding the Plateau problem which should be considered an analogue to the existence of causal geodesics in the Lorentzian setting. Let $f: N_0 \to M$ be a causal future oriented map. Since f is smooth almost everywhere, we may define the q -dimensional volume $Vol(f)$ of f as the volume of N_0 with the pullback metric of M by f.

Theorem 2.6. Let M be a space with compact diamonds and let $g : N_1 \to M$ be a causal immersion with N_1 a smooth closed manifold of dimension $q-1$. Then there exists a map $f \in J(g)$ such that $-Vol(f)$ is maximal.

3. ANOSOV SUBGROUPS IN $SO_0(p,q)$

In this section I will discuss a joint work with Clarence Kineider. The goal of our paper ([\[KT24\]](#page-4-3) has been to count the number of connected components in the space of triples of transverse flags for any parabolic subgroup P_{Θ} and to use this count to obtain rigidity results regarding the P_{Θ} -Anosov subgroups of SO₀ (p, q) .

Let $\mathcal{F}_0, \mathcal{F}_{\infty}$ be two transverse points in $\text{SO}_0(p,q)/P_{\Theta}$ and let Ω be the set of point $\mathcal F$ which are transverse to both \mathcal{F}_0 and \mathcal{F}_{∞} . The space Ω usually contains multiple connected components.

Theorem 3.1 (with C. Kineider). The number of connected component of $\Omega \subset SO_0(p,q)/P_{\Theta}$ is know for all p, q and all Θ . Furthermore, we give a local parametrisation of those connected components and a global parametrisation of the Θ -positive ones.

By using results from Dey, Greenberg and Riestenberg (see [\[Dey24\]](#page-4-4), [\[DGR23\]](#page-4-5)) we then prove the following rigidity results :

- **Theorem 3.2** (with C. Kineider). When $p = q + 1$, $q = 1$ or $q = 2 \mod 4$ and Θ contains the last root, any P_Θ-Anosov subgroup of $SO_0(q + 1, q)$ is virtually isomorphic to either a free group or a surface group.
	- When $p = q$, $q = 2 \mod 4$ and Θ contains any of the last two roots, any P_{Θ} -Anosov subgroup of $SO_0(q,q)$ is virtually isomorphic to either a free group or a surface group.

We build counter examples to some of the cases not covered by the theorem using a combination result by Dey and Kapovitch ([\[DK23\]](#page-4-6)):

Theorem 3.3 (with C. Kineider). There exists a subgroup Γ of $SO_0(p,q)$ which is $P_{1,\dots,q-2}$ -Anosov and is isomorphic to the free product of a surface group and a cyclic group.

4. Future research

4.1. Θ-positive subgroups in $SO_0(q+1,q)$ which are Borel Anosov are Hitchin. In his paper [\[Dav24\]](#page-4-7), Davalo proves that any subgroup Γ of $SO₀(3, 2)$ which is both maximal and Borel Anosov is Hitchin. A natural generalization of this result would be to prove that any subgroup Γ of $SO_0(q + 1, q)$ which is both Θ-positive for $Θ = \{1, ..., q - 1\}$ and Borel Anosov has to be Hitchin, i.e Θ-positive for $\Theta = \{1, ..., q\}$. I would like to try and combine the knowledge obtained from my study of the double Schubert cells of $SO₀(q+1,q)$ and the methods employed in [\[Dav24\]](#page-4-7) to prove this result.

4.2. P₁-Anosov representations in SO₀ (p, q) as holonomies of $\mathbb{H}^{p,q-1}$ -spaces. Let Λ be a positive p – 1-dimensional sphere in $\text{Ein}^{p-1,q-1}$ seen as the boundary of $\mathbb{H}^{p,q-1}$. Let $\Omega(\Lambda)$ be the set of points in $\mathbb{H}^{p,q-1}$ which are not causally related to any point of Λ . Finally, let $\rho : \Gamma \to \mathrm{SO}_0(p,2)$ be a representation preserving Λ . It is know that when $\Omega(\Lambda)$ is non-empty, ρ acts properly discontinuously on $\Omega(\Lambda)$.

I would like to use the notion of global hyperbolicity I introduced in [\[Tro24\]](#page-4-8) to generalize a result by Mess, proven in [\[Mes07\]](#page-4-9) for $p = 2$ and in [\[And+07\]](#page-4-10) for $p \ge 3$:

Theorem 4.1 (Mess). Let M be a maximal globally hyperbolic Lorentzian space locally modeled on $\mathbb{H}^{p,1}$ with a complete Cauchy surface. Then there exists a representation $\rho : \pi_1(M) \to \mathrm{SO}_0(p, 2)$ which preserves a positive $(p-1)$ -sphere Λ in $\partial \mathbb{H}^{p,1}$ such that the quotient $\Omega(\Lambda)/\rho$ is isometric to M. Inversely, any such quotient is globally hyperbolic with a complete Cauchy surface.

A pseudo-Riemannian manifold (M, g) will be said to be *causally convex* if for each inextendible immersion $f: N_0 \to M$ which is locally totally geodesic, any two points in (N_0, f^*g) have a geodesic coming from one to the other.

Conjecture 4.2. Let M be a maximal causally convex pseudo-Riemannian space locally modeled on $\mathbb{H}^{p,q-1}$ with a complete Cauchy surface. Then there exists a representation $\rho : \pi_1(M) \to \text{SO}_0(p,q)$ which preserves a positive $(p-1)$ -sphere Λ in $\partial \mathbb{H}^{p,q-1}$ such that the quotient $\Omega(\Lambda)/\rho$ is isometric to M. Inversely, any such quotient is causally convex with a complete Cauchy surface.

4.3. Θ-causality. Let $\Theta = \{1, ..., q-1\}$. The notion of Θ-positivity gives us a nice notion of future oriented and past oriented paths in $SO(p,q)/P_{1,\dots,q-1}$. Let M be a conformally flat pseudo-Riemannian manifold of signature $(p-1, q-1)$ and let Pho_{0,...,q-2}(M) be the space of submaximal flags of photons in M, $\{x\} \subset Q_1 \subset ... \subset Q_{q-2}$. Since M is a $(SO_0(p,q), SO_0(p,q)/P_1)$ structure, Pho_{0,...,q-2} must then be a $(SO_0(p,q), SO_0(p,q)/P_{1,\ldots,q-1})$ -structure, which endows Pho_{0,...,q-2} with a notion of future oriented and past-oriented paths. I would be interested in studying the nature of this "Θ-causality" structure on M , if it can be related to the notions introduced in [\[Tro24\]](#page-4-8), what some reasonable Θ -causality conditions on M may tell us on its geometric properties. I would also like to generalize this notion to non-conformally flat manifolds by considering the fiber bundle of sub-maximal photon flags in tangent spaces of M , $Pho_{0,...,q-2}(M) = \{(x, Q_1, ..., Q_{q-2}), x \in M, Q_1 \subset ... \subset Q_{q-2} \subset T_xM\}$ which should be endowed with a Cartan geometry modeled on $(SO_0(p,q), SO_0(p,q)/P_{1,\ldots,q-1})$ inhertited from M.

4.4. Proper open space associated to a Θ -positive representation in $SO_0(p,q)$. Let $\rho : \Gamma \to \text{SO}_0(p, 2)$ be a Θ -positive representation. The method used by Collier and Tholozan, then by Barbot and Danciger-Guéritaud-Kassel for higher dimensional lattices (see [\[Bar15\]](#page-4-11), [\[CTT19\]](#page-4-2), [\[DGK17\]](#page-4-12)), is to embbed $SO_0(p,2)$ in $SO_0(p,3)$ diagonally and to consider the set of points transverse to every point in the image of the Anosov map $\xi : \mathbb{S}^1 \to \text{Ein}^{p-1,1} \subset \text{Ein}^{p-1,2}$. This gives us two proper connected components, one of which is the set $\Omega(\xi(\Gamma)) \subset \mathbb{H}^{2,p-1}$ discussed before. I would like to adapt those methods by considering a Θ -positive representation ρ in $SO_0(p,q)$, embedding it in $SO_0(p,q+1)$ and considering the set of points transverse to every

REFERENCES 5

point of the image of ξ in $SO_0(p,q+1)/P_{1,\dots,q-1}$. This should yield a union of 2^{q-1} connected components, all of which are proper in $SO_0(p,q+1)/P_{1,\ldots,q-1}$. I would like to study those spaces and their quotient by the action of ρ .

4.5. Splitting theorem in higher signature. The Cheeger–Gromoll splitting theorem is a well known result in Riemannian geometry giving sufficient conditions for a space to be isometric to a splitting $(N \times \mathbb{R}, g_N + dt^2)$. A Lorentzian analogue has been proven by Eschenburg in [\[Esc88\]](#page-4-13) :

Theorem 4.3 (Eschenburg). Let (M, g) be a connected, time orientable Lorentzian manifold admitting a complete timelike geodesic $\gamma : \mathbb{R} \to M$ and such that $Ric(v, v) \geq 0$ for each timelike vector v. Then M is isometric to $(S \times \mathbb{R}, g_S - dt^2)$ where (S, g_s) is a complete Riemannian manifold and the factor $(\mathbb{R}, -dt^2)$ is represented by γ .

I would like to see if the notion of global hyperbolicity I introduced in [\[Tro24\]](#page-4-8) could be used to give a nice translation of this theorem and of others into the pseudo-Riemannian setting.

REFERENCES

- [And+07] Lars Andersson et al. Notes on a paper of Mess. 2007. URL: [https://link.springer.](https://link.springer.com/article/10.1007/s10711-007-9164-6) [com/article/10.1007/s10711-007-9164-6](https://link.springer.com/article/10.1007/s10711-007-9164-6).
- [Bar15] Thierry Barbot. "Deformations of Fuchsian AdS representations are quasi-Fuchsian". In: Journal of Differential Geometry 101.1 (2015), pp. 1–46. DOI: [10.4310/jdg/](https://doi.org/10.4310/jdg/1433975482) [1433975482](https://doi.org/10.4310/jdg/1433975482). url: <https://doi.org/10.4310/jdg/1433975482>.
- [CTT19] Brian Collier, Nicolas Tholozan, and Jérémy Toulisse. "The geometry of maximal representations of surface groups into $SO_0(2, n)$ ". In: Duke Mathematical Journal 168.15 (2019), pp. 2873-2949. DOI: 10.1215/00127094-2019-0052. URL: [https:](https://doi.org/10.1215/00127094-2019-0052) [//doi.org/10.1215/00127094-2019-0052](https://doi.org/10.1215/00127094-2019-0052).
- [Dav24] Colin Davalo. "Maximal and Borel Anosov representations into Sp(4, R)". In: Advances in Mathematics 442 (Apr. 2024), p. 109578. ISSN: 0001-8708. DOI: [10.1016/j.aim.](https://doi.org/10.1016/j.aim.2024.109578) [2024.109578](https://doi.org/10.1016/j.aim.2024.109578). url: <http://dx.doi.org/10.1016/j.aim.2024.109578>.
- [Dey24] Subhadip Dey. On Borel Anosov subgroups of SL(d, R). 2024. arXiv: [2208.02109](https://arxiv.org/abs/2208.02109) [\[math.GT\]](https://arxiv.org/abs/2208.02109). URL: <https://arxiv.org/abs/2208.02109>.
- [DGK17] Jeffrey Danciger, François Guéritaud, and Fanny Kassel. Convex cocompactness in pseudo-Riemannian hyperbolic spaces. 2017.
- [DGR23] Subhadip Dey, Zachary Greenberg, and J. Maxwell Riestenberg. Restrictions on Anosov subgroups of $Sp(2n, R)$. 2023. arXiv: [2304.13564 \[math.GT\]](https://arxiv.org/abs/2304.13564). URL: [https:](https://arxiv.org/abs/2304.13564) [//arxiv.org/abs/2304.13564](https://arxiv.org/abs/2304.13564).
- [DK23] Subhadip Dey and Michael Kapovich. "Klein–Maskit combination theorem for Anosov subgroups: free products". In: *Mathematische Zeitschrift* 305.2 (Sept. 2023). ISSN: 1432-1823. DOI: 10.1007/s00209-023-03365-9. URL: [http://dx.doi.org/10.](http://dx.doi.org/10.1007/s00209-023-03365-9) [1007/s00209-023-03365-9](http://dx.doi.org/10.1007/s00209-023-03365-9).
- [Esc88] J.-H. Eschenburg. "The splitting theorem for space-times with strong energy condition". In: Journal of Differential Geometry 27.3 (1988), pp. 477-491. DOI: [10.4310/jdg/](https://doi.org/10.4310/jdg/1214442005) [1214442005](https://doi.org/10.4310/jdg/1214442005). url: <https://doi.org/10.4310/jdg/1214442005>.
- [Ger70] Robert Geroch. "Domain of Dependence". In: Journal of Mathematical Physics 11.2 (Feb. 1970), pp. 437-449. DOI: [10.1063/1.1665157](https://doi.org/10.1063/1.1665157).
- [GW18] Olivier Guichard and Anna Wienhard. Positivity and higher Teichmüller theory. 2018. arXiv: [1802.02833 \[math.DG\]](https://arxiv.org/abs/1802.02833). url: <https://arxiv.org/abs/1802.02833>.
- [KT24] Clarence Kineider and Roméo Troubat. Connected components of the space of triples of transverse partial flags in $SO(p,q)$ and Anosov representations. 2024.
- [Mes07] Geoffrey Mess. Lorentz spacetimes of constant curvature. 2007.
- [Tro24] Roméo Troubat. Global hyperbolicity in higher signatures. 2024.

Roméo Troubat, Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, France