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The present text is intended as lecture notes of the course on semiclassical scattering
and resolvent estimates at the summer school Semiclapp: Semiclassical Analysis and Ap-
plications1, held at the Université de Côte d’Azur in Mai 2024. The presented material is
mostly based on the book [6] by S. Dyatlov and M. Zworski, and on the lecture notes [10]
by J. Sjöstrand. For further reading we refer also to the monographs [9] by R. B. Melrose
and [11, 12] by D. R. Yafaev. The reader looking for a compact introduction to the subject
and a survey of some recent results may also want to consult the review [13] by M. Zworski.

The present lecture is proceeded by courses on Tools of Semiclassical Analysis by M.
Tacy2, on WKB method, Propagation of Singularities by J. Wunsch3, and Introduction to
Scattering Theory by M. Ingremeau4. We will freely make use of the materials and notions
discussed in these lectures1.

The exercise classes for the present course will be held by D. Lafontaine5. The corre-
sponding exercise sheets can be found on the summer school homepage1.

1. Introduction and Motivation

We have seen in the introductory lecture by Maxime Ingremeau that the term «scatter-
ing» may refer to various problems and settings. One example is that scattering resonances
are the rates of decay and of oscillation of solutions to the wave equation with compactly
supported bounded potentials V ∈ L∞

c and compact initial data,
(∂2t −∆x + V (x))u = 0,

u(0, x) = u1(x) ∈ H1
comp,

∂tu(0, x) = u2(x) ∈ L2
comp.

Date: May 14, 2024.
1The website https://semiclapp.sciencesconf.org/ contains more relevant information
2University of Auckland, https://profiles.auckland.ac.nz/melissa-tacy
3Northwestern University, http://math.northwestern.edu/~jwunsch/
4Université de Côte d’Azur, https://math.univ-cotedazur.fr/~ingremeau/
5CNRS & Institut de Mathématiques de Toulouse, https://www.math.univ-toulouse.fr/~dlafonta/
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Roughly speaking, we have the resonance expansion

u(t, x) =
∑

Imλj>−A

e−iλjtaj(x) +OH2(K)(e
−tA), x ∈ K ⋐ Rn. (1.1)

Here λj ∈ C are the resonances (assumed to be simple here) of

P = −∆+ V (x), (1.2)

i.e. the poles of the corresponding meromorphically continued resolvent (P −λ2)−1 seen as
an operator L2

comp → H2
loc. The functions aj are the corresponding resonance states thus

solving (P − λ2)aj = 0. See for instance [6, Theorem 3.11] for a precise statement.
From (1.1) we see that Reλj is the rate of oscillation and −Imλj the rate of decay of

the resonance λj.

Exercise 1.1. Compare (1.1) with the corresponding expansion on the compact manifold
R/Z.

In view of (1.1), we can ask a couple of natural questions
(1) Are there any resonances at all?
(2) Are there any real resonances?
(3) How close to the real axis can the resonances be?
(4) How many resonances are there? (We will not tackle this question here. The

interested reader my look for instance at [6, 10])
The first question can already be quite subtle. Indeed, in dimension n = 1, any complex-
valued non-zero potential V ∈ L∞

c (R;C) always gives rise to infinitely many resonances,
see [6, Theorem 2.16]. In contrast, in higher dimensions, there exists non-trivial complex-
valued potentials V ∈ L∞

c (Rn;C) having no resonances, see [6, Theorem 3.29]. However,
real-valued potentials V ∈ L∞

c (Rn;R) always have infinitely many resonances. Until fur-
ther notice, we will restrict ourselves to the case of real-valued potentials.

The answer to the second question was already provided in the course of Maxime Ingre-
meau.

Proposition 1.2. Let V ∈ L∞
c (Rn;R). Then, the Schrödinger operator (1.2) has no non-

zero real resonances, i.e., the meromorphically continued resolvent (−∆ + V − λ2)−1 has
no poles for λ ∈ R\{0}.

The third question, however heavily depend on further assumptions on the potential.
This is numerically illustrated in Figures 1 and 2. The aim of this course is to study this
question under dynamical conditions on the potential V .

Notation. We will use the following notations and conventions freely throughout this
text. We write χ1 ≻ χ2 for two compactly supported functions taking values in [0, 1] and
suppχ2 ⊂ ∁ supp (1 − χ1). We will denote generic constants by C > 0 which may change
from line to line without us stating this explicitly. When a constant depends on some
parameter r, we will write Cr.

2. The free resolvent

For the sake of simplicity, in particular to avoid discussions of the logarithmic covering
of C∗, we will restrict ourselves to the case of n = 3.

We begin by recalling some facts about the “free” Laplacian

P0 = −∆ = −
n∑
1

∂2xi
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Figure 1. The bottom picture shows this first (according to size of the imaginary
part) numerically computed resonances of the bump potential V depicted on the
top. The middle panel shows the level sets of the Hamiltonian p(x, ξ) = ξ2+V (x).
The first and last picture have been produced with the Matlab code6 splinepot.m
by D. Bindel [1].

and its resolvent R0(z). We see P0 as an unbounded operator L(Rn) → L2(Rn) with
domain given by the standard Sobolev space H2(Rn). Using the Fourier transform, we see
that its spectrum is given by [0,+∞[ and it is purely absolutely continuous. For Imλ > 0,
we see that λ2 /∈ [0,+∞[, so P0 − λ2 : H2(Rn) → L2(Rn) is bijective with bounded
inverse R0(λ) : L

2(Rn) → H2(Rn). It depends holmorphically on λ in the complex upper
half-plane {Imλ > 0} and, by the spectral theorem, satisfies the estimate

∥R0(λ)∥L2→L2 =
1

dist (λ2, [0,+∞[)
≤ C

|λ|Imλ
.

Here, the last inequality follows by studying the cases |Reλ| > Imλ and |Reλ| ≤ Imλ
separately.

We have seen in the course of Maxime Ingremeau the following result

Theorem 2.1. The free resolvent R0(λ) : L2
comp(R

3) → H2
loc(R

3) admits a holmorphic
continuation from {Imλ > 0} to C. Moreover, its Schwartz kernel is given by

R0(λ, x, y) =
eiλ|x−y|

4π|x− y|
(2.1)

Remark 2.2. 1. Since neither L2
comp nor H2

loc are Banach spaces, let us recall that
the conclusion means that for every cut-off function χ ∈ C∞

c (Rn), the cut-off resolvent

6Available as part of the MatScat package by D. Bindel at https://www.cs.cornell.edu/~bindel/
cims/matscat/

https://www.cs.cornell.edu/~bindel/cims/matscat/
https://www.cs.cornell.edu/~bindel/cims/matscat/
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χR0(λ)χ : L2 → H2 admits a holmorphic continuation from {Imλ > 0} to C.
2. Notice that

R0(λ,w) =
eiλ|w|

4π|w|
is locally integrable since the singularty |z|−1 is integrable in R3 (pass to polar coordinates).

Our first goal is to estimate the norm of the free resolvent. We will do this using the
strong Huygens principle. Indeed, we will prove such an estimate by relating the free
resolvent R0(λ) to the propagator of the wave equation7

U(t) :=
sin(t

√
−∆)√

−∆
.

This is defined via the Fourier transform F by

U(t)u = F−1 sin(t|ξ|)
|ξ|

Fu, u ∈ S(R3).

Since supλ∈R | sin(t|ξ|)|/|ξ| = |t|, this extends to a bounded operator L2 → L2. A version
of the strong Huygens principle then states

ϕ ∈ C∞
c (B(0, R)) =⇒ B(0, R) ∩ suppU(t)ϕ = ∅, when t > 2R. (2.2)

Exercise 2.3. Prove the strong Huygens principle (2.2). For this prove that

U(t)ϕ(t) =
1

4πt

∫
∂B(0,R)

ϕ(y)dS(y), t > 0.

Let Imλ > 0. Then the free resolvent R0(λ) can be expressed as

R0(λ) =

∫ ∞

0

eiλtU(t)dt, (2.3)

where the integral converges in operator norm.

Exercise 2.4. Prove (2.3) by taking the Fourier transform and using a contour deforma-
tion.

Theorem 2.5. For R > 0 and χ ∈ C∞
c (B(0, R)) we have

∥χR0(λ)χ∥L2→Hs ≤ C⟨λ⟩s−1e2R(Imλ)− , s = 0, 1, 2. (2.4)

Remark 2.6. The estimates provided by Theorem 2.5 can be interprated as a high energy
estimate as it provides quantitative control for |Imλ| = O(1) as |Reλ| → ∞. This is
a regime where semiclassical methods are very useful. Indeed, put z = λ2h2, with h =
|Reλ|−1, then |Im z| = O(h), h → 0. Here, since we are in odd dimensions, z is seen as
an element of the z2-covering Λ of C, given by the graph of C ∋ λ 7→ λ2. The estimate
(2.4) then gives that for Re z ∈ K ⋐ R∗

+ and |Im z| ≤ Ch

∥χ(−h2∆− z)−1χ∥L2→L2 ≤ C

h
. (2.5)

Proof. 1. Using the strong Huygens principle (2.2) shows that χU(t)χ = 0 for t > 2R. So,
in view of (2.3), for Imλ > 0

χR0(t)χ =

∫ 2R

0

eiλtχU(t)χdt : L2(R3) −→ L2(R3). (2.6)

7Given ϕ ∈ L2(R3), the function u(t, x) = U(t)ϕ solves the (∂2
t −∆)u = 0 with initial data u(0, x) = 0

and ∂tu(0, x) = ϕ(x).



SEMICLAPP SUMMER SCHOOL SEMICLASSICAL SCATTERING AND RESOLVENT ESTIMATES 5

By analytic continuation, this also holds, and is holomorphic, for all λ ∈ C. Notice that

∥U(t)∥L2→H1 ≤ C∥U(t)∥L2→L2 + C∥
√
−∆U(t)∥L2→L2

≤ C(1 + |t|).
(2.7)

Here, we used that

∥U(t)∥L2→L2 = sup
λ∈R

∣∣∣∣sin tλλ
∣∣∣∣ = |t|,

∥
√
−∆U(t)∥L2→L2 = sup

λ∈R
|sin tλ| = 1.

(2.8)

Combining (2.6), (2.7) yields

∥χR0(λ)χ∥L2→H1 ≤ Ce2R(Imλ)− .

Note that the constant C > 0 depends on χ.

2. For the case s = 0, combine first (2.6), (2.7), to get

∥χR0(λ)χ∥L2→L2 ≤ Ce2R(Imλ)− . (2.9)

To improve this estimate, write

λχR0(λ)χ =

∫ 2R

0

Dt(e
iλt)χU(t)χdt = −iχ(e2iλRU(2R)− U(0))χ−

∫ 2R

0

eiλtχDtU(t)χdt.

Notice that DtU(t) = −i cos t
√
−∆. Using (2.8), and making a similar estimate, we get

that
|λ|∥χR0(λ)χ∥L2→L2 ≤ Ce2R(Imλ)− , (2.10)

which gives the result when s = 0, upon combining (2.9), (2.10) and dividing by 1 + |λ|.

3. Finally, for s = 2, consider a χ1 ∈ C∞
c (B(0, R)) with χ1 = 1 near suppχ. Since

(−∆−λ2)R0(λ) = 1, as an operator on L2(R3) when Imλ > 0, so by analytic continuation
for all λ ∈ C, after applying cut-off functions. Therefore,

∥χR0(λ)χ∥L2→H2 ≤ C∥∆χR0(λ)χ∥L2→L2 + C∥χR0(λ)χ∥L2→L2

≤ C∥χ∆R0(λ)χ∥L2→L2 + C∥[∆, χ](χ1R0(λ)χ1)χ∥L2→L2

+ C∥χR0(λ)χ∥L2→L2

≤ C(1 + |λ|)∥χR0(λ)χ∥L2→L2 + C∥(χ1R0(λ)χ1)χ∥L2→H1

≤ C⟨λ⟩e2R(Imλ)− ,

concluding the proof. □

Remark 2.7. Another consequence of the strong Huygens principle is the analytic contin-
uation of R0(λ) from Imλ > 0 to C.

3. Resolvent bounds for non-trapping potentials

In this section we will show bounds on the cut-off resolvent of semiclassical Schrödinger
operators

P = −h2∆+ V, V ∈ C∞
c (Rn;R). (3.1)

Note that Ph has semiclassical principal symbol p(x, ξ) = |ξ|2+V (x). Let Ph be as in (3.1)
and write

R(λ, h) = (P − λ2)−1.

We will write P0 = −h2∆, and the free resolvent as

R0(λ, h) = (P0 − λ2)−1.
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Recall from Maxime Ingremeau’s course that R(λ, h) admits a meromorphic continuation
from Imλ > 0 to C as an operator L2

comp → H2
loc. When z = λ2, we will abuse notation

and write R(z, h) = (P − z)−1 and R0(z, h) = (P0 − z)−1.

The aim of this section is to show cut-off resolvent estimates near energies E > 0 where
the potential V is non-trapping, that is, energies for which all trajectories of the Hamilton
flow in the energy shell p−1(E) escape to infinity (both in the past and in the future).

Proposition 3.1. The Schrödinger operator (3.1) has no non-zero real resonances, i.e.,
the meromorphically continued resolvent R(λ, h) has no poles for λ ∈ R\{0}.

Proof. We leave the proof as an exercise. Alternatively, see [6, Theorem 3.33] or [10, Section
2.4]. □
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Figure 2. The bottom picture shows this first (according to size of the imaginary
part) numerically computed resonances of the bump potential V depicted on the
top. The middle panel shows the level sets of the Hamiltonian p(x, ξ) = ξ2+V (x).
The first and last picture have been produced with the Matlab code6 splinepot.m
by D. Bindel [1].

Theorem 3.2. (No dynamical assumptions) Let V, ∂rV ∈ L∞
comp(R

d;R), let I ⋐ R∗
+ be a

compact interval and let E ∈ I. Then, there exists a C > 0 such that for every χ ∈ C∞
c

there exists a C1 > 0 such that

∥χR(E, h)χ∥L2→L2 ≤ C1e
C/h.

This result due to [5] goes back to N. Bruq [2, 3] for smooth potentials. In dimension
d = 1, we do not need to assume a bounded radial derivate, see the exercises. We refer the
interested reader to [6, Section 6.6] for references to further developments.
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3.1. Geometry of trapping. Recall from Jared Wunsch’s lecture that p induces the
Hamilton vector field

Hp =
n∑
j=1

∂ξjp ∂xj − ∂xjp ∂ξj

and the Hamilton flow

Φt = exp(tHp) : T
∗Rn → T ∗Rn, t ∈ R.

so that the classical trajectories ρ(t) = (x(t), ξ(t)) = Φt(ρ0) solve Hamilton’s equations
d

dt
ρ(t) = Hp(ρ(t)), ρ(0) = ρ0 ∈ T ∗Rn. (3.2)

Trajectories of the Hamilton flow corresponding to a certain potential are illustrated in
Figure 3.

Exercise 3.3. Check that the Hamilton flow exp(tHp) is a global flow.

Since V has compact support, there exists an R0 > 0 such that suppV ⊂ B(0, R).
Consequently, for |x| ≥ R0 we have p(x, ξ) = |ξ|2 and

d

dt
x(t) = 2ξ(t),

d

dt
ξ(t) = 0. (3.3)

This means that outside the support of V , the classical trajectories are straight lines.

Next, we discuss notions of trapped trajectories ρ(t), see (3.2), of the Hamilton flow. The
introduced notions are illustrated in Figure 3 below.

Definition 3.4. 1. We say that a point ρ0 escapes to infinity as t→ +∞ (respectively as
t→ −∞) if for ρ(t) = Φt(ρ0)

|x(t)| → ∞ as t→ +∞ (respectively as t→ −∞). (3.4)

2. We define the incoming tail Γ− and the outgoing tail Γ+ to be the sets of points ρ0 which
do not escape to infinity as t→ +∞ and as t→ −∞, respectively. In other words

Γ± = {ρ0 ∈ T ∗Rd; |x(t)| ̸→ ∞, t→ ∓∞}.
3. The trapped set K ⊂ T ∗Rn is the set of points which do not escape to infinity in either
time direction

K := Γ+ ∩ Γ−

4. Given a set J ⊂ R, we define the trapped set at energies J as KJ := K ∩ p−1(J).
Specifically, when J = {E}, then KE := K{E}.

Remark 3.5. 1. By (3.3) we see that condition (3.4) is equivalent to |Φt(ρ0)| → ∞ as
t→ +∞ (respectively as t→ −∞).

2. All non-positive energies are trapping, i.e.

K]−∞,0] = p−1(]−∞, 0]).

This is illustrated by the green energy levels in Figure 2, whereas the red level sets corre-
spond to energies where trapping occurs. See also Figure 3.

3. If KE = ∅, then Γ± ∩ p−1(E) = ∅.

Exercise 3.6. Show that if E0 > 0 is a non-trapping energy for V , then every energy E
in a sufficiently small neighborhood of E0 is also non-trapping.
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V (x)

x

xξ

Γ−

Γ+

Γ+

Γ−

Figure 3. The second panel illustrates the Hamiltonian dynamics for the symbol
p(x, ξ) = ξ2 + V (x) for the potential V (x) in the first panel. The grey area show
trapped set. See Figure 2 for a corresponding numerical simulation. The thick
black lines thick black lines show incoming and outgoing tails.

3.2. Resolvent estimate at non-trapping energies. The aim here is to prove

Theorem 3.7. Suppose that E > 0 is a non-trapping energy for V , i.e. KE = ∅. Then,
for any χ ∈ C∞

c (R3;R) there exist C, h0 > 0 such that for 0 < h ≤ h0

∥χR(E, h)χ∥L2→L2 ≤ C

h
(3.5)

Remark 3.8. 1. The estimate (3.5) is natural since the free resolvent (2.5) satisfies it.
In [4] N. Burq showed the following stronger result: Consider a compact set J ∈ R∗

+ such
that KJ = ∅. Then, for any χ ∈ C∞

c (R3;R), any C0 > 0 there exist C, h0 > 0 such that
for 0 < h ≤ h0

∥χR(z, h)χ∥L2→L2 ≤ C

h
(3.6)

for any z ∈ K + i[−C0h,C0h] (z ∈ Λ as in Remark 2.6). In particular, (3.6) implies that
P has no resonances in K + i[−C0h,C0h].

2. For a recent study concerning the sharpness of the constant C > 0 (3.5), we refer the
reader to [7].

3. In view of Exercise 3.6, it is straightforward to obtain an estimate of the form (3.5)
uniform in energies E in a small compact neighborhood I of a non-trapping energy. Adapt-
ing the proof of [6, Theorem 6.26], one may then deduce that P has no resonances in the
strip I + i[−Ch,Ch], for some C > 0.

Before we turn to the proof of Theorem 3.7, we need some results in preparation.

Lemma 3.9. Let 1suppV ≺ ψ ∈ C∞
c (R3; [0, 1]). Let ϕ ∈ L2

comp and E > 0, then

(1− ψ)R(E, h)ϕ = R0(E, h)(1− ψ)ϕ−R0(E, h)[P0, ψ]R(E, h)ϕ. (3.7)
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Proof. 1. Let 1suppV ≺ ψ ∈ C∞
c (R3; [0, 1]), z = λ2 with Imλ > 0 and z /∈ Spec(Ph). Then,

for ϕ ∈ L2
comp

(P0 − z)(1− ψ)(P − z)−1ϕ = (1− ψ)ϕ− [P0, ψ](P − z)−1ϕ.

Applying (P0 − z)−1 gives

(1− ψ)(P − z)−1ϕ = (P0 − z)−1(1− ψ)ϕ− (P0 − z)−1[P0, ψ](P − z)−1ϕ.

This relation continues by analytic continuation to the non-physical sheets, and we get
(3.7). □

Proof of Theorem 3.7. 1. We follow the strategy of proof of N. Burq [4] (a similar strategy
in the context of the damped wave equation has been employed by G. Lebeau [8]) and
prove the result by contradiction: suppose that (3.5) fails to hold. Then there exists a
subsequence {ϕn}n∈N ⊂ L2 and {hn}n∈N such that

χϕn = ϕn, hn → 0, ∥χR(E, h)ϕn∥L2 >
n

hn
∥ϕn∥L2 .

We can and will assume that χ ∈ C∞
c (R3; [0, 1]) is equal to 1 near the support of V . Put

un := R(E, h)ϕn ∈ H2
loc(R

3),

so that (Ph − E)un = ϕn. We rescale un and ϕn as follows: Define ϕ̃n := ∥χun∥−1ϕn and
put ũn := R(E, h)ϕ̃n. Now drop the tilde and note that we have

un := R(E, h)ϕn, ∥χun∥L2 = 1, χϕn = ϕn, ∥ϕn∥L2 = o(hn). (3.8)

2. Next, we show that un ∈ L2
loc uniformly. Let ρ ∈ C∞

c , let ψ ∈ C∞
c as in Lemma 3.9, and

let ψ ≺ χ0 ≺ χ. Then, using Lemma 3.9,

ρun = ρψun + ρ(1− ψ)un

= ρψun + ρR0(E, h)(1− ψ)ϕn − ρR0(E, h)[P0, ψ]un.
(3.9)

By (3.8) we know that
∥ρψun∥L2 ≤ ∥ρψχun∥L2 ≤ C. (3.10)

Let χ ≺ χ1 ∈ C∞
c (R3; [0, 1]) be such that χ1 = 1 near supp ρ. Using (2.5) we get

∥ρR0(E, h)(1− ψ)ϕn∥L2 = ∥ρχ1R0(E, h)χ1(1− ψ)ϕn∥L2 ≤ Ch−1. (3.11)

Using elliptic regularity we can show that

∥χ0un∥H2
h
≤ C∥χ(P − E)un∥L2 + C∥χun∥L2

≤ C∥χϕn∥L2 + C∥χun∥L2

≤ C.

(3.12)

Here, we used that (P − E)un = ϕn. The constant C > 0 here only depends on χ0 and χ.

Exercise 3.10. Prove the estimate in the first line of (3.12). Use either a direct integration
by parts argument or elliptic regularity.

So, calling again upon (2.5) and using (3.12),

∥ρR0(E, h)[P0, ψ]R(E, h)ϕn∥L2 = ∥ρχ1R0(E, h)χ1[P0, ψ]un∥L2

≤ C∥ρχ1R0(E, h)χ1∥L2→L2∥[P0, ψ]χ0un∥L2

≤ Ch−1∥[P0, ψ]∥H1
h→L2∥χ0un∥H1

h

≤ C

(3.13)
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Here, we used as well that [P0, ψ] = O(h) : H1
h → L2 since the symbol of [P0, ψ] is given

by h
i
{ξ2, ψ} +OS(1)(h

2). Summing up, for every ρ ∈ C∞
c , there exists a Cρ > 0 such that

for all n ∈ N
∥ρun∥L2 ≤ Cρ. (3.14)

Notice that the constant only depends on the support of ρ and on ∥ρ∥L∞ .

Remark 3.11. Notice by using (3.14) and by repeating the argument (3.12) with different
cut-off functions, we get that for any η ∈ C∞

c there exists a C > 0 such that

∥ηun∥H2
h
≤ C. (3.15)

3. Next, we study the outgoing behavior of the free resolvent. Let χ1, χ2 ∈ C∞
c have

disjoint supports. By Theorem 2.1 (and a rescaling as in Remark 2.6) we know that the
Schwartz kernel of χ1R0(E, h)χ2 is given by

K0(x, y) = ei
√

E
h

|x−y| χ1(x)χ2(y)

4πh2|x− y|
Applying the partial semiclassical Fourier transform (Fh)x→ξ, we get that the Schwartz
kernel of (Fh)x→ξ ◦ χ1R0(E, h)χ2 is given by

Ǩ0(ξ, y) =
1

4πh2

∫
R3

e
i
h

√
E|x−y|− i

h
ξ·xχ1(x)χ2(y)

|x− y|
dx.

Let χ0 ∈ C∞
c . Since χ0(hDx) = F−1

h χ0Fh, we get that the Schwartz kernel of (Fh)x→ξ ◦
χ0(hDx)χ1R0(E, h)χ2 is given by

Ǩ(ξ, y) =
1

4πh2

∫
R3

e
i
h

√
E|x−y|− i

h
ξ·xχ0(ξ)χ1(x)χ2(y)

|x− y|
dx. (3.16)

Strengthen the assumptions on χ0 to

suppχ0 ∩
{√

E
x− y

|x− y|
; x ∈ suppχ1, y ∈ suppχ2

}
. (3.17)

Consider, formally at first, the differential operator

L :=

∣∣∣∣√E (x− y)

|x− y|
− ξ

∣∣∣∣−2(√
E
(x− y)

|x− y|
− ξ

)
· hDx.

On the support of the integrand in (3.16), L is a differential operator with smooth, uni-
formly bounded coefficients. Furthermore, there

Le
i
h

√
E|x−y|− i

h
ξ·x = e

i
h

√
E|x−y|− i

h
ξ·x.

Performing repeated integration by parts shows that

Ǩ(ξ, y) = χ0(ξ)χ2(y)OC∞(R3
ξ×R3

y)
(h∞).

So
(Fh)x→ξ ◦ χ0(hDx)χ1R0(E, h)χ2 = O(h∞) : L2(R3

y) → S(R3
ξ)

Taking the inverse of the partial Fourier transform gives that for every χ1, χ2 ∈ C∞
c with

disjoint supports, every χ0 ∈ C∞
c satisfying (3.17), we get that

χ0(hDx) ◦ χ1R0(E, h)χ2 = O(h∞) : L2(R3) → S(R3). (3.18)

Exercise 3.12. Under the above assumptions show that for u ∈ L2

WFh(χ0(hDx) ◦ χ1R0(E, h)χ2u) ⊂
{√

E
x− y

|x− y|
; x ∈ suppχ1, y ∈ suppχ2

}
.
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4. With all preparations done, let us now turn to the proof of Theorem 3.7. We may
associate to the sequence un given in (3.8) a semiclassical defect measure µ. We define
this here in a slightly modified way: for every a ∈ C∞

c and η ∈ C∞
c equal to 1 near the

x-projection of the support of a, we consider the sequence

(Oph(a)ηun|un).
By the symbolic calculus, we note that the operator Oph(a)η is, up to operators L2 → L2

bounded by O(h∞), independent of the choice of the function η.
Similar as in the lecture of Jared Wunsch, we can show that there exists a subsequence

unj
and a positive Radon measure µ on T ∗R3 such that

lim
j→∞

(Oph(a)ηunj
|unj

) = ⟨µ, a⟩.

Furthermore, since un is a quasimode for (P −E), i.e. (P −E)un = χϕn = o(hn), see (3.8),
we have that

suppµ ⊂ p−1(E). (3.19)
and that µ is invariant under the action of the Hamilton flow Φt. That is (Φt)∗µ = µ.

5. We now show that
⟨µ, χ2⟩ = 1. (3.20)

Take ψ ∈ C∞
c equal to 1 near 0, and let χ ≺ χ1 ∈ C∞

c (R3; [0, 1]). Then, for ε > 0,
(P − E)(1− ψ(εhnDx))χun = [P0, (1− ψ(εhnDx))]χun + (1− ψ(εhnDx))(P − E)χun

= OL2(hn).

Here, we used (3.8) and that [P0, (1−ψ(εhDx))], [P0, χ] = O(h) : H1
h → L2 in combination

with the same argument as in (3.12) combined in (3.14). For |ξ| > 0 large enough, P − E
is elliptic in the semiclassical sense, i.e. p(x, ξ)−E ≥ ξ2/2. Thus, for ε > 0 small enough,
we apply a suitable parametrix and get that

(1− ψ(εhnDx))χun = OL2(hn).

Let χ ≺ η, then
1 = (χ2un|un)
= (ψ(εhnDx)χun|ψ(εhnDx)χun) + 2Re ((1− ψ(εhnDx))χun|ψ(εhnDx)χun)

+ ((1− ψ(εhnDx))χun|(1− ψ(εhnDx))χun)

= (χψ(εhnDx)
2χun|un) +O(hn)

= (Oph(χ
2ψ(ε·)2)ηun|un) +O(hn).

Taking, first the limit hn → 0 gives that ⟨µ, χ2ψ(ε·)2⟩. We may choose a ψ such that
ψ(εξ) ↗ 1, as ε→ 0, so we conclude (3.20) by monotone convergence.

6. Given (3.20), if we can prove that µ ≡ 0 then we have shown a contradiction. To
this end we will show that µ is equal to 0 in a neighborhood of any trajectory of Hp, and
so it is identically 0.

Let R0, R1 > 0 be such that suppV ⊂ B(0, R0) and let R ≫ R1 > R0. Consider a
trajectory starting at ρ0 = (x0, ξ0) ∈ p−1(E). Since |x(t)| → ∞, as t → ±∞. There exists
a t1 < 0 such that for all t < t0 we have that |x(t)| > R. Thus, for t < t1 the trajectory
is ρ(t) = (x(t), ξ(t)) = (2ξ1t, ξ1), where ξ1 = ξ(t1). Since ρ(t) ∈ p−1(E) for all t, it follows
that |ξ1| =

√
E, and so for all t < t1

ξ(t) · x(t)
|x(t)|

= −
√
E < 0. (3.21)
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Choose a t such that |x(t)| > R. Let χ1 ∈ C∞
c be supported in a sufficiently small neighbor-

hood of x(t) and let χ0 ∈ C∞
c (R3; [0, 1]) be supported in a sufficiently small neighborhood

of ξ(t). Let χ2 ∈ C∞
c (B(0, R1); [0, 1]). Then, by (3.21), for R > 0 sufficiently large, we

have that for all x ∈ suppχ1, y ∈ suppχ2 and ξ ∈ suppχ0 that
ξ · (x− y)

|(x− y)|
= −

√
E +O(R−1) < 0. (3.22)

Upon potentially increasing R > 0, we may take a χ ≺ ψ and we may strengthen our
assumptions on χ2 by assuming that χ2 ≻ 1supp∇ψ. Then, by (3.7)

χ0(hDx)χ1un = −χ0(hDx)χ1R0(E, h)χ2[P0, ψ]un. (3.23)
Thanks to (3.22) the assumption (3.16) holds, and we get by (3.18) and (3.15) that

∥χ0(hDx)χ1un∥L2 ≤ ∥χ0(hDx)χ1R0(E, h)χ2∥L2→L2∥[P0, ψ]χ2un∥L2

≤ O(h∞)∥[P0, ψ]∥H1
h→L2∥χ2un∥H2

h

= O(h∞).

(3.24)

But this implies that (x(t), ξ(t)) /∈ suppµ. Since µ is invariant under the the action of
the Hamilton flow Φt, it follows that Φt(ρ0) /∈ suppµ for all t ∈ R. Since ρ ∈ p−1(E)
was arbitrary, it follows in view of (3.19) that µ ≡ 0, giving a contradiction to (3.20) and
completing the proof. □
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