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RESUME / ABSTRACT

Résumé

Dans cette these, nous nous intéressons aux propriétés spectrales des opérateurs non-auto-ad-
joints aléatoires. Nous allons considérer principalement les cas des petites perturbations aléa-
toires de deux types des opérateurs non-auto-adjoints suivants:

1. une classe d’opérateurs non-auto-adjoints h-différentiels Pj, introduite par M. Hager [32],
dans la limite semiclassique (h — 0);

2. des grandes matrices de Jordan quand la dimension devient grande (N — c0).

Dans le premier cas nous considérons I'opérateur P, soumis a de petites perturbations aléa-
toires. De plus, nous imposons que la constante de couplage § vérifie e V/¢" < § « h¥, pour
certaines constantes C,x > 0 choisies assez grandes. Soit Z I'adhérence de 'image du symbole
principal de Py. De précédents résultats par M. Hager [32], W. Bordeaux-Montrieux [4] et J. Sjos-
trand [67] montrent que, pour le méme opérateur, si I'on choisit § > e~1/C", alors la distribution
des valeurs propres est donnée par une loi de Weyl jusqu’a une distance > (-hlné h)% du bord de
2.

Nous étudions la mesure d’intensité a un et a deux points de la mesure de comptage aléa-
toire des valeurs propres de 'opérateur perturbé. En outre, nous démontrons des formules h-
asymptotiques pour les densités par rapport a la mesure de Lebesgue de ces mesures qui décrivent
le comportement d'un seul et de deux points du spectre dans X. En étudiant la densité de la
mesure d’intensité a un point, nous prouvons qu’il y a une loi de Weyl a I'intérieur du pseudo-
spectre, une zone d’accumulation des valeurs propres diie a un effet tunnel pres du bord du
pseudospectre suivi par une zone ot la densité décroit rapidement.

En étudiant la densité de la mesure d’intensité a deux points, nous prouvons que deux valeurs
propres sont répulsives a distance courte et indépendantes a grande distance a I'intérieur de X.

Dans le deuxieme cas, nous considérons des grands blocs de Jordan soumis a des petites per-
turbations aléatoires gaussiennes. Un résultat de E.B. Davies et M. Hager [16] montre que lorsque
la dimension de la matrice devient grande, alors avec probabilité proche de 1, la plupart des
valeurs propres sont proches d'un cercle. De plus, ils donnent une majoration logarithmique du
nombre de valeurs propres a l'intérieur de ce cercle.

Nous étudions la répartition moyenne des valeurs propres a 'intérieur de ce cercle et nous en
donnons une description asymptotique précise. En outre, nous démontrons que le terme princi-
pal de la densité est donné par la densité par rapport a la mesure de Lebesgue de la forme volume
induite par la métrique de Poincaré sur la disque D(0, 1).

Mots-clefs Théorie spectrale; Opérateurs non-auto-adjoints; Opérateurs différentiels semiclas-
sique; Perturbations aléatoires.
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SPECTRAL PROPERTIES OF RANDOM NON-SELF-ADJOINT
OPERATORS

Abstract

In this thesis we are interested in the spectral properties of random non-self-adjoint operators. We
are going to consider primarily the case of small random perturbations of the following two types
of operators:

1. a class of non-self-adjoint h-differential operators Py, introduced by M. Hager [32], in the
semiclassical limit (h — 0);

2. large Jordan block matrices as the dimension of the matrix gets large (N — c0).

In case 1 we are going to consider the operator Pj, subject to small Gaussian random perturba-
tions. We let the perturbation coupling constant § be e /¢ < § « h¥, for constants C,x > 0 suit-
ably large. Let X be the closure of the range of the principal symbol. Previous results on the same
model by M. Hager [32], W. Bordeaux-Montrieux [4] and ]. Sjostrand [67] show that if § > e VCh
there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudo-
spectrum up to a distance > (—hlnéd h)§ to the boundary of X.

We will study the one- and two-point intensity measure of the random point process of eigen-
values of the randomly perturbed operator and prove h-asymptotic formulae for the respective
Lebesgue densities describing the one- and two-point behavior of the eigenvalues in ~. Using
the density of the one-point intensity measure, we will give a complete description of the average
eigenvalue density in X describing as well the behavior of the eigenvalues at the pseudospectral
boundary. We will show that there are three distinct regions of different spectral behavior in X:

The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its bound-
ary there is a strong spectral accumulation given by a tunneling effect followed by a region where
the density decays rapidly.

Using the h-asymptotic formula for density of the two-point intensity measure we will show
that two eigenvalues of randomly perturbed operator in the interior of Z exhibit close range repul-
sion and long range decoupling.

In case 2 we will consider large Jordan block matrices subject to small Gaussian random per-
turbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix
gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however,
only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle.

We study the expected eigenvalue density of the perturbed Jordan block in the interior of that
circle and give a precise asymptotic description. Furthermore, we show that the leading contribu-
tion of the density is given by the Lebesgue density of the volume form induced by the Poincaré
metric on the disc D(0, 1).

Keywords Spectral theory; Non-self-adjoint operators; Semiclassical differential operators; Ran-
dom perturbations.
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INTRODUCTION

The main focus of this thesis lies on the spectral theory of random non-self-adjoint operators. In
the case of self-adjoint or more generally normal operators on a complex Hilbert space we have a
very good spectral theory due to the spectral theorem. However, for non-normal operators there is
no such general result. This produces new challenges and makes the approach to this theory quite
varied and exciting. Studying non-self-adjoint problems is an important area of mathematical
research as they appear naturally in many different problems, such as

¢ in the theory of linear partial differential equations given by non-normal operators, e.g.:

the solvability theory

evolution equations given by a non-normal operator

the Kramers-Fokker-Planck type operators

the damped wave equation

linearized operators from models in fluid dynamics

* in mathematical physics, for example when studying scattering poles, also known as quan-
tum resonances.

We begin by recalling some basic facts from operator theory. Let # be a separable complex Hilbert
space and let P: D(P) — /€ be a closed linear operator with domain D(P), dense in 4. We denote
the resolvent set of P by

p(P):={z€ C; (P-z): D(P) — 7 is bijective with bounded inverse} .
For z € p(P) we call (P — z)~! the resolvent of P at z. The spectrum of P is defined as
o(P):=C\p(P).
To define the adjoint of P, set
D(P*):={ue A; Jve #: (Pwlu) = (w|v) for all w e D(P)}.

For each such u € D(P*), we define P*u = v where P* is called the adjoint of P. If P* = P, we say
that P is self-adjoint. In this case (and even more generally in the case of normal operators, that is
when P* P = PP*) the spectral theorem (cf for example [56]) yields the following resolvent bound:

1

— -1 P
1P =2l dist(z,0(P))’

A striking difference to the case of normal operators is that when dealing with a non-normal op-
erators P : D(P) — /€ the norm of the resolvent of P can be very large even far away from the
spectrum o (P), as generally we only have the lower bound

— _1 —_—
IP=2"1 = G o®y
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Consequently, the spectrum can be highly unstable even under very small perturbations. This
can be profoundly troublesome, for example, in numerical mathematics when we are interested
in calculating the eigenvalues of a large non-normal matrix. It can, however, be also the source of
many interesting effects.

Spectral instability and pseudospectrum Interest in the phenomenon spectral instability has
sparked renewed activity in the study of non-self-adjoint operators originating in numerical anal-
ysis. It has been studied, amongst others, by L.N. Trefethen in [80] where he was interested in
computing numerically the eigenvalues of large non-normal matrices. Such matrices can come
for example from discretizations of differential operators. Understanding spectral instability is in
this case of vital importance for the precision of the numerical result. Emphasized by the works of
L.N. Trefethen, M. Embree, E.B. Davies, M. Zworski, J. Sjéstrand, cf. [20, 80, 13, 12, 14, 17, 67, 51,
53, 9], and many others, spectral instability of non-self-adjoint operators, in particular the case of
(pseudo-)differential operators has been become an active area of research.

A crucial tool for quantifying the spectral instability is the e-pseudospectrum which, in addi-
tion to the spectrum, consists of the superlevel sets of the resolvent, i.e. the points in the resolvent
set where the norm of the resolvent is larger than 1/¢. Following L.N. Trefethen and M. Embree
[20], it can be defined as follows.

Definition 0.0.1. Let P be a closed linear operator on a Hilbert space / and let € > 0 be arbitrary.
We denote the set of bounded operators on # by 8(#). Then, o.(P), the e-pseudospectrum of P
is defined by

0¢(P):={zep(P); I(P-2) > }ua(P), (0.0.1)
or equivalently
oe(P)= | J o(P+B), (0.0.2)
Be%B(A)
IBl<e
or equivalently
z2€0:(P) < zeoP)ordueD(P), |lul=1s.t:||[(P-2)ul <e. (0.0.3)

The last condition also implicitly defines the so-called quasimodes or e-pseudoeigenvectors.

Example: Large Jordan block Let us consider the example of a large Jordan block Ay :

01 0 0 ... 0
0 1 0 ... O
o 001 ... 0
Ao=|. . . . . . |:CN=C"
0 0 0 0 ... 1
0O 0 00 ... O

Ay is clearly non-normal and has the spectrum o (Ag) = {0}. Perturbations of a large Jordan block
have already been studied, cf. [74, 86, 16, 30]. We will discuss the contributions of these authors
in more detail further on in this text. M. Zworski [86] noticed that for every z € D(0,1), there are
associated exponentially accurate quasimodes when N — oco. Hence the open unit disc is a region
of spectral instability.

A simple way to see this is to notice that the Jordan block Ay is nil-potent, i.e. Aév =0. There-
fore, for 0 < |z| < 1 using a Neumann series, one computes that

_ R
(Ap-2)t===Y (-z7'Ap)".
2 n=0
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CHAPTER 0. INTRODUCTION

0.6~

0.2

Figure 1: The red star (in the center) depicts the spectrum of Ay and the blue circles show the eigenvalues
of Ag, a perturbation of A (N =500) with a Gaussian random matrix and coupling constant § = 1074,

Setting ey = (0,...,0,1)* € CV, it follows that

_ _ 1
1A -2 = (Ao —2) " enll = L
where we use the matrix norm corresponding to the 2-norm on CN. For 0 < |z| < 1 the norm
of the resolvent of Ay is much larger than the inverse of the distance of z to the spectrum of Ay
(drastically opposed to what we would expect in the self-adjoint case), since here

Ag—2) > ——— = —.
102 1> Gt otag) ~ T4
In other words, the disc |z| < i) < 1 is contained in the n"-pseudospectrum of Aj.
In C\ D(0,1) we have spectral stability (a good resolvent estimate), since || Agll = 1 which im-
plies that for |z] > 1

Ag—2) 7Y < .
It40=27" 1= g

Thus, if As = Ag+6Q is a small perturbation of Ay we expect the eigenvalues to move inside a
small neighborhood of D(0,1) (cf Figure 1). In the special case when Qu = (u|e;) ey, where (ej)jlv
is the canonical basis in C¥, the eigenvalues of As are of the form

61/1\7627[”6/1\7’ ke Z/NZ,

soif we fix 0 < § < 1 and let N — oo, the spectrum “will converge to a uniform distribution on St

Example: Evolution equations Consider the case of evolution equations given by non-normal
operator: Let

(0.0.4)

0u(t, x) = Pu(t, x),
u(x,0) = ug(x),

where we suppose that P is a closed, non-normal, densely defined operator on some complex
Hilbert space /. A solution to (0.0.4) is formally given by e*” 19 (x). However, for this expression to
make sense, we need to know when P is the generator of a semi-group. The Hille-Yosida theorem
(cf [21, 84]) states that P is the generator of e’” (¢ = 0), a contraction semi-group (i.e. [e’’| < 1) if
and only if

10,c0[c p(P) and [(P-A)" <A ford>0.

Xiii



On the other hand we have the following lower bound on the semi-group

|le’?||= e, ¥t=0, where y= sup Rez.
zeo (P)

The precision of this bound depends strongly on the spectrum of P and is therefore strongly in-
fluenced by the effects of spectral instability. This can become of particular relevance when we
are interested in solutions with respect to small perturbations of P or for the stability of numerical
algorithms.

In the case of a certain class of non-linear evolution equation B. Sandstede and A. Scheel [58]
showed that in spite of the problem being spectrally stable (meaning that the relevant linearized
operator has its spectrum in Re z < y < 0) the solutions blow up with arbitrarily small initial data.
This was generalized by J. Galkowski [24, 25] to a large class of non-linear evolution problems.
He linked the blow up of the solutions to the fact that although the spectrum of the linearized
problem is uniformly bounded away from Re z = 0, the pseudospectrum of this operator has non-
empty intersection with Re z = 0. He emphasized therefore the importance of the pseudospectrum
for the study of stability of solutions to non-linear evolution equations.

For a similar and simpler example illustrating with a Jordan block matrix this pseudospectral
instability for non-linear systems, we refer the reader to the work of A. Raphael and M. Zworski
[54, Sec. 3].

Example: Resonances Questions regarding the spectral theory of non-self-adjoint operators can
appear very naturally even when studying a self-adjoint problem to begin with. A prominent ex-
ample for this is the study of scattering poles or resonances for the Schrédinger equation in math-
ematical physics.

Recall that a particle such as an electron immersed in an electrostatic potential (as in the case
of a hydrogen atom where the electron is immersed in the electrostatic potential emitted by a
proton) moving through d-dimensional space is described via a square integrable function v €
L*(R%) called a state. According to the Copenhagen interpretation of quantum mechanics the
quantity

1
2
(/ |1//o|2dx) ,  AcR? measurable,
A

corresponds to the probability to find the particle in A. The time evolution (# = 0) of the state ¥
is determined by the Schrddinger equation

i , = H ) )
{z@ﬂ/f(t x) = Hy(t,x) (0.0.5)

¥ (0,x) = o (x).

Here H = —A + V is called the Schrodinger operator where A denotes the Laplace operator and V
a multiplication operator describing an electrostatic potential. We assume here V € L7, ,(R"; R)
for simplicity. H is an unbounded self-adjoint operator in L?(IR") with domain given by the Sobo-
lev space H?(R"). The essential spectrum of H is given by [0, +oo[ (i.e. the essential spectrum
of —A) and in ] — 0o, 0[ there can be only discrete eigenvalues — ,u? which correspond to bounded
states of the system determined by H.

The equations (0.0.5) have a unique solution given by e ¥o. For the large time evolution,
we need to take into account not only the effects of the discrete spectrum but also of the essential
spectrum. A way to do this is by considering resonances which are given by showing that the
resolvent (H — A2)~! has a meromorphic continuation (cf [65]) from the upper half plane C* to

—itH

¢ (, in case the dimension 7 is odd,

* the logarithmic covering space of C*, in case the dimension 7 is even,

Xiv



CHAPTER 0. INTRODUCTION

with values in the bounded operators from H?,,, pR"M to leo .R™. The poles of this meromor-
phic continuation are called resonances, with exception of the iy}, and they can be used to study
the large time behavior of e /%, in particular to expand solutions to the Schrodinger equation
in exponentially decaying resonant modes. It is the resonances closest to real axis that give the
principal contribution to this, wherefore there has been a large interest in the studying those for

various operators (see for example [72, 73, 6, 7, 43, 77, 78, 45, 70]).

However, finding the poles of the meromorphic continuation is not a self-adjoint problem
anymore. Therefore, effects from spectral instability become relevant and interesting, as for ex-
ample in the case of resonances of Random Schrédinger equations where we consider equations
of the same type as (0.0.5) with the potential V being random. This describes physical systems
of particles being immersed in a random environment which can be used to model for example
disordered system such as “dirty” (super-)conductors, see for example [8, 42].

Objective - Random perturbations

In view of (0.0.2) it is very natural to investigate the effects of small random perturbations upon
the spectrum of non-self-adjoint operators. The principal aim of this thesis is to study this in the
following two cases:

Semiclassical differential operators We will study the effects of small random perturbations on
the spectrum of non-normal semiclassical differential operators. Our principal interest is to
study the average density of eigenvalues and their two-point interaction. We will discuss the
framework, previous results and new results obtained in this thesis in Sections 1.1, 1.2 and
1.3.

Jordan block matrices We will consider Jordan block matrices subject to small random pertur-
bations and study the average density of eigenvalues in the interior of the zone of spectral
instability (as described above). We will discuss the previous results and obtained results in
Section 1.4.

Organization of this thesis

Before continuing we give a short overview on the structure of this thesis.

Chapter 1 In the first chapter we present an introduction to some problems and questions con-
cerning the spectral instability of non-self-adjoint operators. We will also discuss the spe-
cific framework of the two principal problems under consideration in this thesis, that is
small random perturbations of a class of non-self-adjoint semiclassical differential opera-
tors and of large Jordan matrices. As mentioned above the results obtained in this work
concerning both cases will be discussed in Sections 1.2, 1.3 and 1.4.

Chapter 2 In this chapter we will prove the results discussed in Section 1.2. We will present con-
structions of quasimodes, Grushin problems and techniques developed in this thesis to ob-
tain results on the average density of eigenvalues of a certain class of non-self-adjoint semi-
classical differential operators.

Chapter 3 In this chapter we will continue to treat the class of operators under consideration in
Chapter 2 and present the proofs of the results discussed in Section 1.3. We will build on the
methods displayed in Chapter 2.

Chapter 4 This chapter deals with the case of random perturbations of large Jordan matrices. We
discuss the proofs of the results presented in Section 1.4. The techniques used in this chap-
ter are similar to those of Chapter 2.



Appendix A In the appendix will display the MATLAB code used to obtain the numerical simula-

tions presented throughout this thesis.

Notation

In this work we are going to use the following notations:

1.

2.

We will denote the Lebesgue measure on cé by L(dz).
For a € N4, we define |a| := a1l +---+|agy| and in particular, for d = 3, we set

OZEX = 6?‘6;262‘3.
We denote by f(x) = g(x) that there exists a constant C > 0 such that
Clg(®) < f(x) < Cgx)

Moreover, when we write = 17, we mean some function f such that f = 1.

. We work with the convention that when we write f = ©(1)~! then we mean implicitly that

0< f=0().

. We denote by f(x) <« g(x) that there exists some large constant C > 1 such that

fx) <C lgx).

We write y; (x) > y2(x), with y; € €5°, if supp y2 < Csupp (1 - x1).



CHAPTER1

SPECTRA OF NON-SELF-ADJOINT
RANDOM OPERATORS

1.1 | Random perturbations of non-self-adjoint semiclassical differ-
ential operators

Semiclassical differential operators and the Weyl law We begin by recalling some standard no-
tions of the framework of semiclassical differential operators which can be found for example in
(87, 18].

For h €]0,1] consider

10
P(x,hDy)= ) aq(x)(hDy)% Dy=-—, (1.1.1)
IdI=N i0x

where a = (ay,...,a,) e N, |la|=a; +---+a, and
aq(x) € €;°(R™) :={uec €¢°R"); VaeN" 0%ue L°R").}
The natural domain of P(x, hD,) is the semiclassical Sobolev space H ?C’ (R"™) defined by
HY®R™ := { ue L*(R"); Y I(hDy%ul® < oo}.
la|<=N

The formal adjoint of P is given by

P*(x,hDy) = ) (hDy)%aq(x).
la|lsN

On the phase space T*R", we denote by

px,d)= ) aex)E, (x&eT*R", (1.1.2)
la|l=N

the semiclassical principal symbol of P(x, hD,), and we recall that the Poisson bracket of p and p
is given by

{p,pt=0sp-0xp—0xp-0cp.
We are interested in the spectral properties of P(x, hDy) in the limit 7 — 0, which is called the
semiclassical limit. The fundamental motivation behind studying such limits is to understand

1
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the relation between classical dynamics in phase space and quantum mechanics, when 2 — 0. A
famous example is the Wey! law for the eigenvalues of the Schrédinger operator

P(x,hDy) = —h*A + V(x).
with a smooth potential V € €°°(IR"; R) satisfying suitable growth conditions

0%V (x)] < Cu(x)%, Ya e N",
Vix) = c(x)k, for |x| =R,

where R, k, C,, ¢ > 0 are some constants. Then we have the following celebrated result linking the
asymptotic behavior (as & — 0) of the number of eigenvalues of P(x, hD,) in an interval I c R to
the symplectic volume in phase space of p_1 (I) (which is a classical quantity) where p = | 12+ V(x)
is the semiclassical principal symbol of P(x, hD,):

Theorem 1.1.1 (Weyl's law, see e.g. [87]). Let P = P(x, hDy) be as above and let I c R be an interval.

Thel’l
#(o P HN=— dxdé +o(1)].
( ( ) ) (znh)n (ﬂpl(l) ( )

Such a Weyl law is known to hold for a large class of semiclassical self-adjoint pseudo-diff-
erential elliptic operators, see for example [18, 39, 34].

Spectral instability for non-self-adjoint semiclassical differential operators Next, we are going
to put the concept of spectral instability into context with the framework of semiclassical differ-
ential operators.

Since the principal symbol of the commutator

1 1
—[PP*]=—=(PP*-P*P
h[ ] h( )

is given by i ~!{p, p}, we see that the Poisson bracket of p and 7 being different than zero implies
that the operator P is non-normal.
In [15] E.B. Davies considers the one dimensional Schrodinger operator with complex poten-
tial
P(x,hDy) = (hDy)*+ V(x), VeE™[R) (1.1.3)

and gives a construction of quasimodes. He proves that for all (x,¢) € T*R satistying ¢ # 0 and
ImV'(x) #0,and all Ne IN

Jup € LA(R), I(P(x, hDy) - 2)upll < CyhNlupll 2, z=E+V(x).

K. Pravda-Starov generalized this in [51] by observing that there also exist quasimodes correspond-
ing to points (x,¢) € T* R satisfying

E#£0, ImVP(x) =0, for j=1,...,2p, and Im VPV (x) £ 0.

M. Zworski then observed in [85] a relation between Davies’ quasimode construction and L. Hor-
mander’s Poisson bracket condition (cf. [36]) in the context of local non-solvability of linear partial
differential equations stating that a (classical) differential operator P(x, D) with smooth coeffi-
cients and principal symbol p is non-solvable in an open set Q c R if

1, _
Jp € T*Q\{0} s.t.: p(p)=0and Z{p,p} (p) #0.

M. Zworski concluded in [85] from the results of L. Hormander [37, Sect. 26] and of J.J. Duister-
maat and J. Sjostrand [19] that for P as in (1.1.1) (in fact for the more general case of semiclassical

2
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pseudo-differential operators) with semiclassical principal symbol p (see (1.1.2)) we have that for
all
ze A_(p) ={p(p): {Rep,Imp} (p) <0} = Z(p):= p(T*R") (1.1.4)

there exists a uy, € L?(R") with the property
I(P(x, kD) — 2)up || = O (h™) lupll 2, (1.1.5)

where uy, is localized to a point in phase space p with p(p) = z, i.e. WF(uy,) = {p}. We recall that
for v=wv(h), vl = G (h~N), for some fixed N, the semiclassical wavefront set of v, WFj,(v), is
defined by

C{x,&) e T*R":3ae L(T*R™M), a(x,&) =1, lla“ vi;2 =O(h*®)}

where a" denotes the Weyl quantization of q, i.e.

1 iix_1). xX+y
w . (x=y)n
a" (x,hDy)v(x) := (2nh)”ffeh a( 5 ,17) v(y)dydn.

In the case where P(x, hDy) has analytic coefficients, we may replace @ (h*°) with @(e""/¢") in

(1.1.5). We also refer the reader to the thesis of K. Pravda-Starov [52] where he relates the non-
negativity of odd iterations of the above bracket condition to the construction of quasimodes sim-
ilar to the above.

In case of the one dimensional semiclassical Schrédinger operator with complex potential
(1.1.3) considered by E.B. Davies, the condition {Re p,Imp} (x,&) < 0 from (1.1.4) simplifies to
Im V'(x) # 0 and ¢ # 0, as shown by Davies.

In the case of multi-dimensional semiclassical Schrodinger operator with smooth complex po-
tential the bracket condition from (1.1.4) becomes Im (£]|0, V (x)) # 0.

Finally, let us remark that N. Dencker, J. Sjostrand and M. Zworski give in [17] a direct proof of
(1.1.5) (also in the context of semiclassical pseudo-differential operators).

1.1.1 - Hager’s model

To study the effects of spectral instability in the framework of semiclassical (pseudo-)differential
operators, M. Hager introduced in [32] the following model operator:

Hypothesis 1.1.2 (Hager’s model). Let 0 < h <« 1, we consider on S! = R/2nZ the semiclassical

differential operator Py, : L2(8H — 12(8hH given by

1d
Pj:=hDy +g(x), Dx;:-,d_, geE™ (S, (1.1.6)
Lax

where g € €°°(S!) is such that Im g has exactly two critical points and they are non-degenerate,
one minimum and one maximum, say in a and b, with a < b < a+ 27 and Im g(a) < Im g(b).
Without loss of generality we may assume that Im g(a) = 0.

The natural domain of Py, is the semiclassical Sobolev space
1
Hy(8Y) = {ue 128" : (Iul®+ IhDull®)? <oof,

where |-|| denotes the L?-norm on S! if nothing else is specified. We will use the standard scalar
products on L2(SY) and CV defined by

(flg):= / f(x)gxdx, f,gel*SY,
Sl

and

N
XIY):=)Y X;Y;, X, YeCV,
i=1
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OPERATORS
We denote the semiclassical principal symbol of Py, by
P& =¢+gl), (ROHeT™S. (1.1.7)
The spectrum of Py, is discrete with simple eigenvalues, given by
o(Pp)={ze€C: z=(g)+kh, ke Z}, (1.1.8)

where (g) := 2m)~! Js g ady.

1.1.2 - Adding a random perturbation
We are interested in the following random perturbation of Pj,:

Hypothesis 1.1.3 (Random Perturbation of Hager’s model). Let Pj, be as in in Hypothesis 1.1.2.
Define
PY:= Py +8Qy = hDx + g(x) +6Qu, (1.1.9)

where 0 < § < 1 and Q,, is an integral operator L?(S') — L?(S!) of the form

Quux):= Y ajr(uledel (x). (1.1.10)
k<] S|

Here | x| :=max{n e IN: x = n} for x € R, C; > 0 is big enough, ek(x) := (Zn)’llzeikx, k € Z, and
@ j ;. are complex valued independent and identically distributed random variables with complex
Gaussian distribution law A¢ (0, 1).

Recall that a random variable a has complex Gaussian distribution law A (0, 1) if
]_ _
a«(Pldw)=—e *Lda)
b8

where L(da) denotes the Lebesgue measure on C and w is the random parameter living in the
sample space .4 of a probability space (/,</,IP) with o-algebra o/ and probability measure IP.
a ~ A¢(0,1) implies that

Ela]=0, and E[laf]=1,

or in other words a ~ A¢(0,1) has expectation 0 and variance 1. In the above, [E[-] denotes the

expectation with respect to the random variables.
The following results were obtained by W. Bordeaux-Montrieux [4].

Proposition 1.1.4 (W. Bordeaux-Montrieux [4]). There exists a Cy > 0 such that the following holds:
Let Xj ~ N¢ (0,0?), 1 = j = N < oo be independent complex Gaussian random variables. Put s =

maxa?. Then, for every x >0, we have

P
281

N
Y IXjlP=x
j=1

Co N X
Sexp(ﬂz:a?——).
=1

Corollary 1.1.5 (W. Bordeaux-Montrieux [4]). Let h > 0 and let |Qy llus denote the Hilbert-Schmidt
norm of Qy. If C > 0 is large enough, then

C 1
IQullss < with probability=1~e o

Here, the constant C > 0 in the probability estimate is not necessarily the same as before.

Since [|Qg ”%{s =Y laj «()|?, we can also view the above bound as restricting the support of
the joint probability distribution of the random vector a = (a jk)jktoa ball of radius C/h. Hence,
to obtain a bounded perturbation we will work from now on in the restricted probability space:

4
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Hypothesis 1.1.6 (Restriction of random variables). Define N := (2|C;/h] + 1)2 where C; > 0 is as
in (1.1.10). We assume that for some constant C > 0

C
a€B(O,R) cCV, R=. (1.1.11)
Furthermore, we assume that the coupling constant § > 0 satisfies
5§ < h®?, (1.1.12)

which implies, for @ € B(0,R), that §]|Qy |l s < Ch®?. Hence, for a € B(0,R), the operator Q,, is
compact and the spectrum of Pg is discrete.

Zone of spectral instability Since in the present work we are in the semiclassical setting, we
define similarly to (1.1.4)

>:=p(T*SYH <C, (1.1.13)

where p is given in (1.1.7). In the case of (1.1.6) and (1.1.7) p(T*S!) is already closed due to the
ellipticity of Py,.

Next, consider for z € Q 3 the equation z = p(x,¢). It has precisely two solutions p. (z) :=
(x+(2),¢+(2)) where x. (z) are given by

Img(xs(2)) =Imz, iImg’(xJ_,(z))<0 and ¢4(z) =Rez—Reg(x.(z)). (1.1.14)

By the natural projection IT: R — S' = R/27Z and a slight abuse of notation we identify the points
x+ € S! with points x. € R such that x_ — 27 < x, < x_. Furthermore, we will identify S! with the
interval [x_ — 27, x_[.

Therefore, we see that in the case of (1.1.7), the bracket condition given in (1.1.4) is satisfied
foranyze Qe 3 since by (1.1.14)

{Re p,Im p} (x4 (2),€+(2)) =Im g’ (x4 (2)) <O0.

We will give more details on the construction of quasimodes for Py, in Section 2.1.

For z close to the boundary of X the situation is different as we have a good resolvent estimate
on 0. Since {p,{p,p}}(p) #0forall zp e X and all p € p_l(zo), Theorem 1.1 in [69] implies that
there exists a constant Cy > 0 such that for every constant C; > 0 there is a constant C, > 0 such
that for |z — zy| < C; (hln %)2/3, h< iz, the resolvent (P, — z)~1 is well defined and satisfies

C
1Py —2) 7l < Coh—iexp(%z—zoﬁ). (1.1.15)
This implies for @ as in (1.1.11) and § = @(h™), M = M(Cy, C) > 0 large enough, that

o(Pp+6Qu)ND

2/3
20,C (hlnﬁ) ):@. (1.1.16)

. . 2/3 .
Thus, there exists a tube of radius C; (kIn)” around 0% void of the spectrum of the perturbed
operator PZ. Therefore, since we are interested in the eigenvalue distribution of P§, we assume
from now on implicitly that

Hypothesis 1.1.7 (Restriction of X). Let X c C be asin (1.1.13). Then, we let

Q € X be open, relatively compact with dist (Q2,0%) > C (hln h‘l)Z/3 for some constant C > 0.
(1.1.17)
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1.1.3 — Review of previous and related results

In [32] M. Hager showed the striking result that, although the eigenvalues of P, (cf (1.1.8)) do
not follow a Weyl law, after adding a tiny random perturbation the eigenvalues of the perturbed
operator PZ follow in the interior of X a Weyl law with probability very close to one:

Theorem 1.1.8 (M. Hager [32]). LetQ & S be open and relatively compact such that dist (Q2,0Z) >
1/C, foraC > 1. LetT’ € Q be with €™ boundary. Letx > 5/2 and let gy > 0 be sufficiently small. Let

6 = 8(h) satisfy e é0'" < § < h* and put € = e(h) = hIn(1/5). Then with probability = 1 —@( &

)
5 1 VeE
#(U(Ph)ﬁr)—%\[/l;l(r)dde'F@(T).

M. Hager’s result is particularly interesting when
2

Veh?

as it would be for example the case when

«1 and Ve,

ln%« %, o< h%.

Hager’s result has been extended by W. Bordeaux-Montrieux in [4] to strips at a distance > (—hlnd h)%
to the boundary of X:

[;:={z€X; C;<Rez<C,, Imz=1}, with(-hln(6h)*?<1«<1 (1.1.18)

where Cj, C, are constants independent of 7. W. Bordeaux-Montrieux showed in [4] that the eigen-
values of the perturbed operator Pg follow also in I'; a Weyl law:

Theorem 1.1.9 (W. Bordeaux-Montrieux [4]). Letk,y >0 and letT'; be as above. Let § = 6 (h) satisfy

VhTl4R2Y

Ch¥ <<
< TImn)3

and pute =¢€(h) = Cyhln(hé)‘l. Then with probability=1—-0 (%),

1 £
#loPhnr,) = ﬁffp-l(m dxdé +0 (%) .

Furthermore, Hager and Bordeaux-Montrieux generalized their respective results to the case
of one-dimensional semiclassical pseudo-differential operators, see [31, 4]. In [33], M. Hager
and J. Sjostrand generalized Hager’s result to the case of multi-dimensional semiclassical pseudo-
differential operators.

There are many more interesting results about Weyl asymptotics of the eigenvalues of non-
self-adjoint operators: in [9] M. Zworski and T.J. Christiansen proved a probabilistic Weyl law for
the eigenvalues in the setting of small random perturbations of Toeplitz quantizations of complex-
valued functions on an even dimensional torus. In [68, 66] ]. Sjostrand proved a Weyl law for the
eigenvalues the case small multiplicative random perturbations of multi-dimensional semiclassi-
cal pseudo-differential operators similar to the class under consideration in [33].

1.1.4 — Questions treated

The above mentioned results concern only the eigenvalues in the interior of the pseudospec-
trum and numerical simulations suggest that Weyl asymptotics break down when we approach
the boundary of the pseudospectrum (cf Figures 1.1, 1.2 and 1.3). Furthermore, there have not
been any results concerning the statistical interaction between eigenvalues.

Therefore, in the first part of this thesis we go back to the model operator Py, introduced by
Hager (cf Hypothesis 1.1.2) and we are interested in the following questions:

6
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Figure 1.1: Sections of the spectrum of the discretization of hD +exp(—ix) (approximated by a 6000 x 6000-
matrix) perturbed with a random Gaussian matrix §R with 7 =2-10"* and § = 2-10~!%. The right hand side
is a magnification of the upper boundary region of the picture on the left hand side.
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Figure 1.2: On the left hand side we present the spectrum of the discretization of 2D + exp(—ix) (ap-
proximated by a 3999 x 3999-matrix) perturbed with a random Gaussian matrix R with & = 2-1073 and
5 =2-107'2. The black box indicates the region where we count the number of eigenvalues to obtain the
image on the right hand side. There we show the integrated experimental density of eigenvalues, averaged
over 400 realizations of random Gaussian matrices, and the integrated Weyl law. We can see clearly a region
close to the boundary of the pseudospectrum where Weyl asymptotics of the eigenvalues breaks down.

1) Density of eigenvalues What is the precises description of the density of eigenvalues of the ran-
domly perturbed operator PZ (cf (1.1.9)) in all of X (cf (1.1.13))?

2) 2-point interaction of eigenvalues How is the two-point interaction of eigenvalues of Pg in the
interior of X? Is it repulsive, attractive or neither?
Average density of eigenvalues of Hager’s model

We begin by establishing how to choose the strength of the perturbation. For this purpose we
discuss some estimates on the norm of the resolvent of Pj,.

1.2.1 — The coupling 6

We give a description of the imaginary part of the action between p. (z) and p_(z).

7
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Figure 1.3: On the left hand side we present the spectrum of the discretization of kD + exp(—ix) (ap-
proximated by a 1999 x 1999-matrix) perturbed with a random Gaussian matrix R with & = 5-1072 and
6 = exp(—1/h). The black box indicates the region where we count the number of eigenvalues to obtain the
image on the right hand side. There we show the integrated experimental density of eigenvalues, averaged
over 400 realizations of random Gaussian matrices, and the integrated Weyl law. Here, the Weyl law breaks
down even more dramatically than in Figure 1.2.

Remark 1.2.1. Much of the following is valid for z € O € X with
Q € = open, relatively compact with dist (Q,9%) > h?/3, (1.2.1)

instead of for z € Q as in Hypothesis 1.1.7.

Definition 1.2.2. Let Q) € X as in (1.2.1), let p denote the semiclassical principal symbol of Py, in
(1.1.7) and let p4 (2) = (x4 (2),¢+(2)) be as above. Define

X— X_—271
S(z):= min(lm/ (z—g(y))dy,lm/ (z—g(yndy|.

Proposition 1.2.3. LetQ € X be as in (1.2.1) and let S(z) be as in Definition 1.2.2, then S(z) has the
following properties for all z € Q:

* S(z) depends only onlm z, is continuous and has the zeros SIm g(a)) = S(Im g(b)) = 0,

e S(z2)=0;

forImz = (Img) the two integrals defining S are equal; S has its maximum at (Im g) and is
strictly monotonously decreasing on the interval [(Im g),Im g(b)] and strictly monotonously
increasing on [Im g(a), (Im g)1;

* its derivative is piecewise of class €°° with the only discontinuity atIm z = (Im g). Moreover,

Imz
S(z) =/ (OmzS)(B)dt+SKImg)),
(Img)

xX_(t)—x4(1), if t=(Img),
X_(t)=2m—x4(2), if t>(Img).

(6Imz8)(t) = { (1.2.2)

S has the following asymptotic behavior for z € Q
S(2)=d(2)?, and 10m=S(2)|=d(2)*,

where d(z) := dist(z,0X).
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Figure 1.4: To illustrate Proposition 1.2.3 we show on the left hand side S(Im z), for g(x) = e~*, compared

to 2-d(z)3'? for 0 < Imz < 1. Due to the above choice of g we have thathere d(z) = (1-Imz) forzeXn{ze
C; Imz = 0} (cf. (1.1.13)). Similarly, we show on the right hand side |0py, ;S(Im z)| compared to 3 - d(z)V2,

Remark 1.2.4. Note that in (1.2.2) we chose to define 0y, ;S(2) := x_(2) — x4 (2) for Imz = (Im g).
We will keep this definition throughout this text. Furthermore, we will keep the definition d(z) :=
dist (z,0X) throughout this entire work.

With the convention | (P, — z)~!|| = co for z € o(P},) we have the following estimate on the

resolvent growth of Pj,:
Proposition 1.2.5. Let g(x) be as above. For z€ C and h > 0 define,
2mi .
-5 (2—(g), if Imz <(Img),
q)(z, h) ::{gnl’h g ‘ f g
S (z—(g), if Imz>(Img),

where Re®(z, h) < 0. Then, under the assumptions of Definition 1.2.2 we have for z € Q € X as in
(1.2.1) that

Ve —eq’(z’h)rle%

I(Pr—2) "1l = _ , -(1+0(h) (1.2.3)
Vh(%ip, P 5P, pHp-)?
S(2)
e n
=— forllmz—-{Img)|>1/C, C>1,
\/ﬁd(z)lm f g
where |1 —e®@"| =0 ifand only if z € a(P},). Moreover,

|1 _eq>(z,h)| -1 +@>(e—27”|1mz—(lmg)|)'

This proposition will be proven in Section 2.8.1. The growth of the norm of the resolvent away
from the line Imz = (Im g) is exponential and determined by the function S(z). A similar result
valid for z € I'; with h?/3 « 1« 1 (cf (1.1.18)) has been obtained by W. Bordeaux-Montrieux [4, 5].

It will be very useful to write the coupling constant 4 as follows:

Hypothesis 1.2.6. For i > 0, define

eg(h)

5:=6(h):=Vhe n

with (K - %) hin(h ™Y + Ch < ey(h) < S(Img)) for some x > 0 and C > 0 large and where the last
inequality is uniform in /& > 0. This is equivalent to the bounds

_ SWmg)
Vhe = & <8< K-,

Remark 1.2.7. The upper bound on €y(h) has been chosen in order to produce eigenvalues suf-
ficiently far away from the line Im z = (Im g) where we find o (P;,). The lower bound on gy(h) is
needed because we want to consider small random perturbations with respect to Py, (cf. (1.1.12)
and (1.1.16)).
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1.2.2 - Auxiliary operator.

To describe the elements of the average density of eigenvalues, it will be very useful to introduce
the following operators which have already been used in the study of the spectrum of PZ by Sjos-
trand [67]. For the readers convenience, we will give a short overview:

Let z € C and we define the following z-dependent elliptic self-adjoint operators

Q(2),0(2): L>(S') — L?(SY) where
Q@) :=(Pr—-2)"(Pp—2), Q(z):=(Py—2)(Ph—2)" (1.2.4)

with domains 2(Q(2)),2(Q(z)) = H?(S'). Since S! is compact and these are elliptic, non-negative,
self-adjoint operators their spectra are discrete and contained in the interval [0, c0[. Since

QRu=0=> (P,—2)u=0

it follows that A (Q(z)) = A (Py, — z) and W(Q(z)) = N ((Py — 2)*). Furthermore, if 1 # 0 is an
eigenvalue of Q(z) with corresponding eigenvector e) we see that f) := (P, —z)e, is an eigenvector
of Q(z) with the eigenvalue A. Similarly, every non-vanishing eigenvalue of Q(z) is an eigenvalue
of Q(z) and moreover, since Py, — z, (P, — z)* are Fredholm operators of index 0 we see that

dim A (P), — 2) = dim A (P}, — 2)¥).
Hence the spectra of Q(z) and Q(z) are equal
0(Q(2) =0(Q2) =1{t5,5,...}, 0= t; / co. (1.2.5)

We will show in Proposition 2.1.7 that for z€ Q € Z (cf (1.2.1))

1
1 _2s d(z)zh
@ =0(d@ihe ), £z o (1.2.6)
Now consider the orthonormal basis of L2(S!)
teo,e1,...} 1.2.7)

consisting of the eigenfunctions of Q(z). By the previous observations we have
(Pp—2)(Pp—2)* (Pp—2)ej = tjz-(Ph -2)e;.

Thus defining f; to be the normalized eigenvector of Q corresponding to the eigenvalue tg and the
vectors fj € L2(SY, for j €N, as the normalization of (Pj, — z)e j such that

(Ph—z)ej = ajfj, (Ph—Z)*fj = ,Bjej with (Xjﬁj = tjz-, (1.2.8)

yields an orthonormal basis of L?(S')

{fo, f1,...} (1.2.9)

consisting of the eigenfunctions of Q(z). Since
aj = ((Pn—-2)ejlfj) = (ejl(Ph—2)* f) = B,
we can conclude that a;a; = tjz..
It is clear from (1.2.6), (1.2.8) that ey(z) (resp. fo(z)) is an exponentially accurate quasimode

for Py, — z (resp. (P, — 2)*). We will see in Section 2.1 that it is localized to p(2) (resp. p-(2)). We
will prove in the Sections 2.2.2 and 2.2.4 the following two formulas for the tunneling effect:

10



CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

Proposition 1.2.8. Let z € Q € X be as in (1.2.1) and let ey and fy be as in (1.2.7) and in (1.2.9).

2
Furthermore, let S be as in Definition 1.2.2, let p be as in (1.1.7) and p+ be as in (1.1.14). Let h3 <
d(z), then forallze Q with|Imz—-(Img)|>1/C, C>1,

1
4

(£ip, PHp) 2P, p}(p-)
Vrh

where K (z; h) depends smoothly on z and satisfies for all § € IN? that

(2)

l(eol fo)l = 0m2S(2)| (1 + K(z; h))e™ i,

o Kizh) =0(d* ).

Proposition 1.2.9. Under the same assumptions as in Proposition 1.2.8, let y € €;°(S Ywithy=1
in a small open neighborhood of {x_(z) : z€ Q}. Then, for h§ < d(2),

Lip, Y o) (P, pHp-)
ﬂz

I([Ph,x]eolfo)|=\/ﬁ( ) 1+ K(zh)e T+,

where K (z; h) depends smoothly on z and satisfies for all § € IN? that

1B-3 |
o K(zh) = @(d(z)Thl ('ﬁ‘)).

1.2.3 — Average density of eigenvalues.

We begin by defining the point process of eigenvalues of the perturbed operator PZ (cf Hypothesis
1.1.3).

Definition 1.2.10. Let Pg be as in Hypothesis 1.1.3, then we define the point process

Ei= ) 6 (1.2.10)

zea(PY)

where the eigenvalues are counted according to their multiplicities and J, denotes the Dirac-
measure at z.

Z is a well-defined random measure (cf. for example [11]) since, for & > 0 small enough, PZ
is a random operator with discrete spectrum. To obtain an h-asymptotic formula for the average
density of eigenvalues, we are interested in intensity measure of = (with respect to the restriction
in the random variables, see Hypothesis 1.1.6), i.e. the measure u; defined by

T () :=E[E((P)]1B(O,R)] =/ (p(Z)dul(Z)
C

for all ¢ € 6y(Q) with Q € Z as in Hypothesis 1.1.7. The measure p; is well defined since T is a
positive linear functional on 6, (Q2).

Remark 1.2.11. Such an approach is employed with great success in the study of zeros of random
polynomials and Gaussian analytic functions; we refer the reader to the works of B. Shiffman and
S. Zelditch [61, 62, 60, 59], M. Sodin [75] an the book [38] by J. Hough, M. Krishnapur, Y. Peres and
B. Virag.

Our main result giving the average density of eigenvalues of Pg is the following:

Theorem 1.2.12. LetQ € X be as in Hypothesis 1.1.7. Let C >0 be as in (1.1.11) and let C; > 0 be as
in (1.1.10) such that C — Cy > 0 is large enough. Let 6 > 0 be as in Hypothesis 1.2.6 with x > 4 large
enough. Define N := (2|C1/h] +1)? and let B(0,R) = CV be the ball of radius R := Ch™! centered at
zero. Then, there exists a C, > 0 such that for h > 0 small enough and for all ¢ € 6€,(Q)

(&)
E[ Z@1p0n | = /(p(z)D(z, h,8)L(dz) +@’(e72), (1.2.11)

11



1.2. AVERAGE DENSITY OF EIGENVALUES OF HAGER’S MODEL

with the density

1+@’(6h—%d(z)—1’4)
D(z,h,6) =

Y(z; h,0) exp{—0O(z; h, )}, (1.2.12)

which depends smoothly on z and is independent of ¢. Moreover, ¥ (z; h,6) = V1(z; h) + VY2 (z; h,6)
and for z € Q with d(z) > (hlnh™1)?/3

1 i i
Yi(z;h) = — — — 0(d(z)7?),
1@ h) h{{p,p}(p+(z))+{p,p}(p_(z))}+ (4@7~)
I (GOl ~3/41/2
\Ijz(Z,h,é)—T(l+@’(d(z) h )),
Py, 6(d _1/41’1_5/252 2 aw3?
@(z;h,5)=|([ w x)eol fo) + 0 (d(2) )| (1+@(e-‘“h”)). 1.2.13)
62(1 + @G (h™>))

C-
Furthermore, in (1.2.11), @(e_h%) means (T, ), where Ty, € 2'(C) such that

_&
T, @) = Cllglloce #
for all p € €,(Q) where C > 0 is independent of h, 6 and ¢.

Let us give some comments on this result. The dominant part of the density of eigenvalues
D consists of three parts: the first, ¥1, is up to a small error the Lebesgue density of p. (dé A dx),
where d¢ A dx is the symplectic form on T*S! and p is as in (1.1.7). We prove in Proposition 2.4.2
that
2i . 2i
PP+ (2)  (P,pip-(2))

p«(déndx)=0(z)L(dz), witho(z):= (1.2.14)

The second part, W, is given by a tunneling effect. Inside the (v/28)-pseudospectrum its contri-
bution can be absorbed in the error term of W;. However, close to the boundary of the §-pseudo-
spectrum W, becomes of order h~2 and thus yields a higher density of eigenvalues. This can be
seen by comparing the more explicit formula for ¥, given in Proposition 1.2.13 with the expres-
sion for the norm of the resolvent of Pj, given in Proposition 1.2.5. More details on the form of ¥,
in this zone will be given in Proposition 1.2.17.

The third part, exp{—0}, is also given by a tunneling effect and it plays the role of a cut-off
function which exhibits double exponential decay outside the §-pseudospectrum and is close to
1 inside. This will be made more precise in Section 1.2.4.

We have the following explicit formulas for these functions and their growth properties:

Proposition 1.2.13. Under the assumptions of Definition 1.2.2 and Theorem 1.2.12, define for h >0
and 6 > 0 the functions

1
2

_28
e hn

h(%ip, PHp) 3P, pp-)

0,,. —
®"(z; h,0) := - 57

Then, for|Imz—(Img)|>1/C,C>1,

D=

ig, = i 1/2
(z{p’p}(p”z{p’f}(p‘)) 101m=S(2)* |1+ 0| —
mhé? exp(%} d(z)s

5 i 2
@(z;h,&)z@o(z;h,é)(l+6’( f ))+@(d(z)6+ 0 ) (1.2.15)

d(z)i % d(z):i kb

Wy (z;h,0) =

The estimates in (1.2.15) are stable under application of d(z)~ Z h'ﬁ'afz, for B e IN?,

12



CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

Proposition 1.2.14. Under the assumptions of Definition 1.2.2 and Theorem 1.2.12 we have that
i N i o1
{p,pHp+(2) {p,pHp-(2)) Vd(2)

i'{ P )i{_ Hp-) = d(2)
2 P, Ps{P+ 2 p,ps\p-) = alz),

and
28

dz)32e% -2
@y e ' 0°(zih,6) = h/d(a) [1 "= | .

Y, (z;h,0) = 152

In the next Subsection we will explain the asymptotic properties of the density appearingin (1.2.11).

1.2.4 — Properties of the average density of eigenvalues and its integral with
respect to Imz

It will be sufficient for our purposes to consider rectangular subsets of Z: for ¢ < d define

Zed = {ze 2| minlmg(x) <Imz < ma;ldmg(x), c<Rez< d}. (1.2.16)
XeS

xeS!
Roughly speaking, there exist three regions in X:
1N zexWes < |(P,-27 "> Vhe) ™,

2 zexRcy < |(Ph-2)'I1=671,

@) zezVcs < |(P,-2) <67,

which depend on the strength of the coupling constant § > 0. In =", the average density is of
order 1! and is governed by the symplectic volume yielding a Weyl law. In =¥, the average density
spikes and ¥, becomes the leading term and is of order =2 and it yields in total a Poisson-type
distribution, cf. Proposition 1.2.17. In £V, the average density is rapidly decaying, since

O = (P,-2) 72672,

which follows from Proposition 1.2.9 and Proposition 1.2.5.

EV
ERi\
h
7
h
s
ER I\\/
EV 777777777777777777777777777777777777777777777777777777

Figure 1.5: The three zones in X with a schematic representation of yﬁ. The two boxes indicate zones where
the integrated densities are equal up to a small error.

We will prove that there exist two smooth curves, I'", close to the boundary of the §-pseudo-
spectrum of P?, along which the average density of eigen_values obtains its local maxima. Note that
this is still inside the (Ch~'8)-pseudospectrum of PZ (cf Hypothesis 1.1.6) since pseudospectra are
nested (meaning that o, (Pg) C O, (Pfl) for g1 < &7).

13



1.2. AVERAGE DENSITY OF EIGENVALUES OF HAGER’S MODEL

Proposition 1.2.15. Letz€ Q € X, 4 withZ, 4 as in (1.2.16), let S(z) be as in Definition 1.2.2 and
let tg(z) be as in (1.2.5). Let 6 > 0 and €¢(h) be as in Hypothesis 1.2.6 with x > 4 large enough.
Moreover, let D(z, h,5) be the average density of eigenvalues of the operator of PZ given in Theorem
1.2.12. Then,

1. for0 < h « 1, there exist numbers y. (h) such that g9g(h) = S(y+ (h)) with

1 2
(hinh™)3 < y_(h) <(Img) - chlnh™*

Ol

wiry

1
<({Img)+chlnh™! <y, (h) <Img(b) - o (hInh™1)3,
for some constants C,c > 1. Furthermore,

y_(h),Amg(b) — y, (h)) = (o(h))?'3;

. there exists hy > 0 and a family of smooth curves, indexed by h €] hy, 0],

Y :1e,dl— C withRey" (1) = ¢

such that
(Y2 (1)) = 6.
Moreover,
IP, =y () =671,
and

h
Imy" (Rez) = y:(eo(h)) (1 +0 (%)) .

Furthermore, there exists a constant C > 0 such that
dimy”

T(t) = @’(exp

&) )
Ch )

. there exists hy > 0 and a family of smooth curves, indexed by h €] hy, 0],
I'":)¢,d[— C, Rel'! (1) = 1,

withT'_ c{lmz <{(Img)} and T, c {Imz > (Im g)}, along whichIm z — D(z, h) takes its local
maxima on the vertical line Re z = const. and

d.__p (R
EIrrlri(t)_@>(£0(h)4).

Moreover, forallc<t<d

T () -y (2] s@"(h—s).
+ + E()(h)l?’/s

With respect to the above described curves we prove the following properties of the average

density of eigenvalues:

Proposition 1.2.16. Let d¢ A dx be the symplectic form on T*S' and p as in (1.1.7). Let £y = £¢(h)
be as in Hypothesis 1.2.6. Then, under the assumptions of Theorem 1.2.12 there exist a, 3 > 0 such

14



CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

1. forze X,  with

el/3 el/3
Imy_(Rez)+ amanT <Imz<Imy,(Rez)— amlnoT
0 0

we have that

D(z;h,6)L(dz) = ﬁ p«(déndx)+0 (d(z)"%) L(d2),

where D(z; h,0) is the average density of eigenvalues of the operator of PZ given in Theorem
1.2.12.

2. for

£1/3 h

h el/3
O1(B) := {z €24 ’ Imy_(Rez)— —=In (,Blno—)
0

81/3

h el/3
<Imz<Imy,(Rez)+ —=In (,Bln OT) },
0

we have that

_ p(dindx) [ -
/ D(z; h;(S)L(dZ) = / T-’r@ 603 .
ZEQI(,B) Zc,d

3. foralle >0 and allQ(€) c 2. 4\Q2 (B, €) satisfying Hypothesis 1.1.7, where

h 8(1)/3
Q(B,e) = {z €Zea | Imy-(Rez) - —zIn| pin = | e
0

h 81/3
<Imz<Imy,(Rez)+ mln (ﬁ]n(’_) +£},
€ h

0

we have that
/Q(E)D(z; h,8)L(dz) :@’(exp{—eﬁ}).

Proposition 1.2.16 makes more precise the rough description of the behavior of the average
density of eigenvalues, given at the beginning of this section: Point 1. tells us that in the interior of
the 6-pseudospectrum, up to a distance of order 2In % to the curves y’; (see Figure 1.5), the density
is given by a Weyl law. Assertion 2. tells us that the eigenvalues accumulate strongly in the close
vicinity of these curves such that when integrating the density in the box Q; € X, ; the number
of eigenvalues is given (up to small error) by the integrated Weyl density in all of =, ;4 (cf Figure
1.5). This augmented density can be seen as the accumulated eigenvalues which would have been
given by a Weyl law in the region from y’; up to the boundary 0% (see also Figures 1.6 and 1.7 for
an example).

The last point of the proposition tells us that outside of a strip of the form of Q; the density
decays double-exponentially.

The density in the zone of spectral accumulation We give a finer description of the density of
eigenvalues close to its local maxima at I':

Proposition 1.2.17. Assume the hypotheses of Theorem 1.2.12. Let S(z) be as in Definition 1.2.2 and
let¥Wy(z; h,0) and ©(z; h,6) be as in Theorem 1.2.12. Then for |Imz—(Img)| > 1/C with C > 1 large
enough,

|6Imzs(z)|2

W, (z; h,8)e”O@n0) = =

O(z; h,0) (1+6 (d(2)*'*h"?)) + 6(d(2)>'*) | e ©=0),

15



1.2. AVERAGE DENSITY OF EIGENVALUES OF HAGER’S MODEL

Let us give some remarks on this result. First, we see that we can approximate the second part
of the density of eigenvalues by a Poisson type distribution. Second, since © = || (P}, — 2)7?|I71672,
we see that the effects of the second part of the density vanish in the error term of ¥; as long as
(P, —2)7 || > (vVhé)~L. However, for || (Py, — 2)~Y = 6 litis of order @(d(z)h~?) and dominates
the Weyl term.

1.2.5 - Example: Numerical simulations

To illustrate our results we look at the discretization of Pj, = hD + e~ ** in Fourier space which is

approximated by the (2N +1) x (2N + 1)-matrix H = hD+ E, N € IN, where D and E are defined by

5 joifj=k, . 1 ifk=j+1,
= an R
pk 0 else Ik 0 else,

where j, k€ {-N,-N+1,...,N}. Let Rbe a (2N +1) x (2N +1) random matrix, where the entries Rjk
are independent and identically distributed complex Gaussian random variables, R;  ~ A¢(0,1).
For h>0and 6 >0 as in Theorem 1.2.12, we let MATLAB calculate the spectrum o (H + § R). Since
here g(x) = e** (cf. (1.1.6)), it follows that in this case X is given by {z € C; |[Im z| < 1} (cf. (1.1.13)).

Remark 1.2.18. Details regarding the MATLAB code used to obtain these simulations can be found
in Appendix A.

We are going to perform our numerical experiments for the following two cases:

Polynomially small (in /) coupling 6 We set the above parameters to be 7 = 2- 1073, 6=2-
10712 = 0.1- h* and N = 1999. Figure 1.6 shows the spectrum of H + R computed by MATLAB.

1

)
.

0.8

0.6

04l &

Figure 1.6: On the left hand side we present the spectrum of the discretization of kD + exp(—ix) (ap-
proximated by a 3999 x 3999-matrix) perturbed with a random Gaussian matrix R with h = 2-1073 and
5 =2-107'2, The black box indicates the region where we count the number of eigenvalues to obtain Fig-
urel.7. The right hand side is a magnification of the central part of the spectrum depicted on the left hand
side.

The black box indicates the region where we count the number of eigenvalues to obtain the density
of eigenvalues presented in Figure 1.7. Outside this box the influence from the boundary effects
from our N-dimensional matrix are too strong. Figure 1.7 compares the experimental (given by
counting the number of eigenvalues in the black box restricted to Im z = 0 and averaging over 400
realizations of random Gaussian matrices) and the theoretical (cf Theorem 1.2.12) density and
integrated density of eigenvalues.
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20

o 1 1
i i [}
18- O Density of eigenvalues O Integrated density of eigenvalues )t J
Th tical d ity of ei | 0.9+ — ~ ~ Integrated Weyl law /
16 coretica’ densily of elgenvales Integrated theoretical density of eigenvalues [0} /’
0.8 ¢,
o,
14+
0.7r
e 0.6
tor 0.5
8 04t
6 0.3
4 0.2
2F 01l
08 I I I I I I I I I )
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.7: On the left hand side we compare the experimental and the theoretical (cf. Theorem 1.2.12)
density of eigenvalues. On the right hand side we compare the experimental and the theoretical integrated
density of eigenvalues with the integrated Weyl law. Here h=2-1073 and § =2-107'2.

Exponentially small (in /) couplingd We set the above parameters to be i = 5- 1072,6 = exp(—1/h)
and N = 1000. Figure 1.8 shows the spectrum of H + § R computed by MATLAB. Similar to the

0.5
L R T L L DL P T PP LIPTLL oottt 0l
041 - . o~ 00t S
.
0al | o03fF ° . * . . 1
02f 4 o2 ]
.-. .-'-._, .o . e Y L . . . .
. ~
. s : ol |
0 - - . b, -
- e o
. S " o . -0.1 4
-0.1 '.‘. - oo .‘. ]
. . . . .' . .
2 DA o« oo e o -0.2 . . o
T S PR PR PR AP DL Y PR .
ool oo : 0® °* P . e 00t s g Y i -0.3 4
03 . S . e % "0 et e A . 7 . . .
I SR o ® e )
T L i
05 ; ; ; ; ; -05¢L s s s s ‘ ‘ s
-60 -40 -20 0 20 40 60 -4 -3 -2 -1 0 1 2 3 4

Figure 1.8: On the left hand side we present the spectrum of the discretization of 2D + exp(—ix) (ap-
proximated by a 1999 x 1999-matrix) perturbed with a random Gaussian matrix R with & = 5-1072 and
0 = exp(—1/h). The black box indicates the region where we count the number of eigenvalues to obtain
Figure 1.9. The right hand side is a magnification of the central part of the spectrum depicted on the left
hand side.

above, the black box indicates the region where we count the number of eigenvalues to obtain the
density of eigenvalues presented in Figure 1.9. This figure compares the experimental (given by
counting the number of eigenvalues in the black box restricted to Im z = 0 and averaging over 400
realizations of random Gaussian matrices) and the theoretical (cf Theorem 1.2.12) density and in-
tegrated density of eigenvalues.

The Figures 1.6, 1.7, 1.8 and 1.9 confirm the theoretical result presented in Theorem 1.2.12
since the green lines, representing the plotted average density of eigenvalues given by Theorem
1.2.12, match perfectly the experimentally obtained density of eigenvalues. Furthermore, these
figures show the three zones described in Section 1.2.4 (see also Proposition 1.2.16):

The first zone, is in the middle of the spectrum (cf. Figures 1.6, 1.8) corresponding to the zone
where || (P}, — 27 > (vVh6)~L. There we see roughly an aequidistribution of points at distance
V'h. The right hand side of Figures 1.7 and 1.9 shows that the number of eigenvalues in this zone
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1.3. TWO-POINT EIGENVALUE INTERACTION OF THE EIGENVALUES IN HAGER’S MODEL

. il f ,

O Density of eigenvalues 09 @
~ Theoretical density of eigenvalues ® ,’
s

0.8 h< ,
0.7 ¢ ,
06} $ /

05 o] -

04 F -

0.3 L

0.2

©  Integrated density of eigenvalues
— = ~ Integrated Weyl law
Integrated theoretical density of eigenvalues

0.1

o I I I I I I I I I )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

. . .3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 1.9: Experimental (each point represents the mean, over 1000 realizations, number of eigenvalues

in a small box) vs predicted eigenvalue density (i.e. the principal terms of the average eigenvalue density
given in Theorem 1.2.12) for h =5-10"2 and 6 = exp(~1/h).

is given by a Weyl law, as predicted by Proposition 1.2.16.

When comparing Figure 1.7 and 1.9 we can see clearly that the Weyl law breaks down earlier
when the coupling constant § gets smaller. Indeed, when § > 0 is exponentially small in & > 0, the
break down happens well in the interior of %, precisely as predicted by Proposition 1.2.16.

Another important property of this zone is that there is an increase in the density of the spec-
tral points as we approach the boundary of Z, see Figure 1.7. This is due to the fact that the density
given by the Weyl law becomes more and more singular as we approach 9Z (cf. Proposition 1.2.14).

We will find the second zone by moving closer to the “edge” of the spectrum, see Figure 1.6 and
1.8. It can be characterized as the zone where ||(P}, —2) ' = 6% Figures 1.7 and 1.9 show that
there is a strong accumulation of the spectrum close to the boundary of the pseudospectrum. Fur-
thermore, we see in the image on the right hand side of Figure 1.6 and of Figure 1.8 that the zone
of accumulation of eigenvalues is in a small tube around roughly a straight line. This is exactly as
predicted by Proposition 1.2.15 and Proposition 1.2.17. Finally, let us remark that when looking
at the Figures 1.6 and 1.8, we note that in this zone the average distance between eigenvalues is

much closer than in the first zone.

The third zoneis between the spectral edge and the boundary of £ where we find no spectrum
at all. It can be characterized as the zone where ||(Pj, — z)~!|| < 67}, a void region as described in
Proposition 1.2.16 (cf. Figures 1.7 and 1.9).

Let us stress again that as 0 gets smaller the zone of accumulation moves further into the in-
terior of X, thus diminishing the zone determined by the Weyl law and increasing the zone void of
eigenvalues. This effect is most drastic in the case of 6 being exponentially small in £, see Figure

1.9.

1.3 | Two-point eigenvalue interaction of the eigenvalues in Hager’s
model

To study the two-point eigenvalue interaction we are interested in the second moment of the point
process Z, see Definition 1.2.10. We begin by recalling some facts about second moments of point
processes from [38, 11], using the example of =. The second moment (with respect to the restric-
tion of the random variables introduced in Hypothesis 1.1.6) of = is defined by the positive linear
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functional on €, (Q?), T», defined by

Tr(p):=IE

> w(z,W)]lB(o,R)] =/ ¢(z, w)d s (z, w)
CZ

Z,LUEO'(PZ)

for all ¢ € 6y(Q?). Here, we choose Q € £ to be a subset of the interior of X:

Hypothesis 1.3.1. We assume that there exists a C > 1 such that
. 1
Q € X is open, convey, relatively compact and simply connected with dist (Q2,0%) > ok (1.3.1)

Furthermore, we assume

Hypothesis 1.3.2. The coupling constant 6 >0 in (1.1.9) satisfies
eg(l
§:=68(h) = Vhe " (1.3.2)
with (k — 3) hIn(h™") + Ch < eg(h) < min__g S(2)/C for some k >7/2 and C > 0 large and where the
last inequality is uniform in & > 0. Equivalently, 6 satisfies the inequality

\/ﬁexp{_

min_5 S(2)
Ch
Remark 1.3.3. We chose these hypotheses (cf. Hypothesis 1.3.1 and 1.3.2) because the aim of this

section is to treat the two-point eigenvalue interaction in the interior of the pseudospectrum. The
two-point interaction close to the pseudospectral boundary remains an interesting open problem.

}<6<<h".

Continuing, note that we have the splitting

L) =E| Y ¢&alpor|+E Y. @z, w)lpenr
zeo(Pz) Z,WEU(PZ)
Z#EW

=/ w(z,Z)dﬁz(z,ZH/ ¢z, w)dv(z, w).
c? c?

Both terms are positive linear functionals on 6, (Q?), and thus the above representation by the two
measures [ip and v is well-defined. The measure (i, is supported on the diagonal D := {(z, z); z € Q}
and is given by the push-forward of ; under the diagonalmap f: Q — D: x— (x,x),i.e. iz = fx 1.
The second measure, v, is called the two-point intensity measure of = and it is supported on
Q?\D. Their sum naturally yields py, i.e. u = fio +v. We see that u, is not absolutely continuous
with respect to the Lebesgue measure on C2. However, this may be the case for the measure v.

To study the correlation of two points of the spectrum of P9, we are interested in the two-point
intensity measure v, given by

E| Y o¢Gwlgor :/ ¢z, w)dv(z, w). (1.3.3)
CZ

z,wt—:a(Pg)
ZAW

In particular, we will give an h-asymptotic formula for its Lebesgue density valid at a distance
> K35 from the diagonal. For Q as in (1.3.1) and C, > 0, we define the set

Dy(Q,Cy) :={(z, w) € Q% |z— w| < C, K"}, (1.3.4)

Before we state our main result of this section, recall from (1.2.14) that the direct image p. (d{Adx)
of the symplectic volume form dé A dx on T*S! is of the form

p«(déndx)=0(z)L(dz), (1.3.5)

where 0(z) is smooth.
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Theorem 1.3.4. Let Q € X be as in (1.3.1). Let 6 > 0 be as in Hypothesis 1.3.2 with x > 51/10. Let
v be the measure defined in (1.3.3) and let 0(z) be as in (1.3.5). Then, for|z—w|<1/C withC > 1
large enough, there exist smooth functions

s oplz,w) =0 (52L)+0(h),

o K(z,w;h) = oz, w) E2E (14 6 (12— wl + 7)),
8 _D .
® D6(Z,W;h):%(14‘@(5}1_5))4—@(6 hz),u/lﬂ’l

ANz, w; h) =0y (z,2)on(w, w)+op(z, w)2(1 +0(|z— wl))e_ZK

onlz,w)*(1+0(1z— w))
+
eKsinh(K)
+ @(h"o + 5h—%)

(2K? coth(K) — 4K)

and there exists a constant ¢ > 0 such that for all ¢ € ‘6(‘)’°(QZ\D;,(Q, c)) with

/ ¢z, w)dv(z, w) = / ¢(z, w)D° (z, w; K)L(d(z, w)).
(4 (64

Recall from Theorem 1.2.12 that the one-point density of eigenvalues in Q, as in (1.3.1), is given
by

EE@Lponr] = /tp(Z)d(Z; h)L(dz), Y¢e%€r(Q),
where )
d(zh) = -—0(2)+0(1), (1.3.6)
2nh

where 0 (z) is as in (1.3.5). In other words, we know from Theorem 1.2.12 that the average density
of eigenvalues in Q is up to first order determined by symplectic volume form in phase space (we
recall that here we only treat the case of Q being in the interior of the pseudospectrum).

Theorem 1.3.4 agrees very well with this result as that the leading terms to the density D° (z, w; h)
(cf. Theorem 1.3.4) are as well determined by symplectic volume form in phase space.

1.3.1 - Interaction
Using the formula obtained in Theorem 1.3.4, we will prove that two eigenvalues of PZ exhibit the
following interaction:
Proposition 1.3.5. Under the hypothesis of Theorem 1.3.4, we have that
. forh% <|lz-w|x h?

03 (z, w)|z — wl? —wl?
D%z, w; h) = L anh)z (1+@(|Z hLUI +6h‘180));

e forlz—w|> (hnh™1)2

3 o(2)o(w)+0(h)

5 )
D%(z,w; h) 2hn)?

(1+0(sn75)).

Let us give some comments on this result: The fact that we cannot analyze the eigenvalue in-
teraction completely up to the diagonal is due to some technical difficulties. In the above propo-
sition, two eigenvalues of the perturbed operator PZ show the following types of interaction:

Short range repulsion The two-point density decays quadratically in |z—w/| if two eigenvalues are
. . e 1
too close, and we conjecture that this is the case for all z, w as above satisfying |z— w| < hz.

Long range decoupling If the distance between two eigenvalues is > (hln h1)5 the two-point
density is given by the product of two one-point densities (cf. (1.3.6)). This means that at
this distance two eigenvalues are placed in average in an uncorrelated way.
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1.3.2 — Conditional density function

We can reformulate Proposition 1.3.5 in terms of the conditional density function: It follows from
(1.3.6), (1.2.14) that for h > 0 small enough d(z;h) > 0 for all z € Q as in (1.3.1). Hence, under
the assumptions of Theorem 1.3.4, the conditional average density of eigenvalues of PZ given that
wp € O'(PZ) is well defined and given by

D°(z, wo; h)
D% (zh):= ———"—
L T
We have the following asymptotic behavior of conditional average density D‘EUU (z; h):

Proposition 1.3.6. Under the hypothesis of Theorem 1.3.4, we have that for wy € Q
o forh% < |z—wp| < hs

07 (2)z— wol? — wol?
Di}O(Z;h) = % (1 +@(%+6h_g)) <1
JT

e forlz—wo| > (hInh™1)2

s .. 0@+0h) _8
DYy (&) = = —=(1+06(6n7%)).

In the above proposition we see that, given an eigenvalue wy € a(Pg), the density of finding
another eigenvalue in the vicinity of wy shows the following behavior:

Short range repulsion The density D‘ZUO (z; h) decays quadratically in 0, (z)|z — wy| if the distance

between z and wy is smaller than a term of order hz. Recall from Proposition 1.2.14 that
o (z) grows towards the boundary of Z, hence the short range repulsion is weaker for Q close
to the boundary of Z, as we expected from the numerical simulations, see Figure 1.6.

Long range decoupling If the distance between z and wy is larger than a term of order (hlnh™1) 2 ,
the density D‘ZUO (z; h) is given up to a small error by the 1-point density d(z; h) (see (1.3.6)).

Hence, we see that at these distances two eigenvalues of PZ are up to a small error uncorre-
lated.

1200t

1000G-

8000 B

2-point density
@
3
1S}
s
T
|

4000~ B

2000~ -

I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
lz-w|

0

Figure 1.10: Plot of the principal terms of conditional average density D‘Z,O (z; h) for wy = 0.

To illustrate Proposition 1.3.6, Figure 1.10 shows a plot of of the principal terms of the conditional
density D‘Z,,O as a function of |z|, for wy = 0 and & = 0.01, assuming for simplicity that o(z) = const.
On the left hand side of the graph we see the quadratic decay, whereas on the right hand side the
density is given by (27h) 1o (2).
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1.4 | Perturbations of large Jordan blocks

We now turn away from the case of semiclassical differential operators and towards the case of
large Jordan matrices. We are interested in the spectrum of a random perturbation of the large

Jordan block Ay :
01 0 0 ... O
0 1 ... 0
0 0 0 1 ... 0
Ao=|. . . . . |:C¥=cCN (1.4.1)
0 0 0O 1
0 0 0O 0
The spectrum of Ay is
0 (Ag) =1{0}.

As established in the introduction above, we have that the closed unit disc D(0, 1) is a zone of spec-
tral instability and if A5 = Ag+0Q is a small random perturbation of Ay we expect the eigenvalues
to move inside a small neighborhood of D(0, 1).

We are interested in the distribution of eigenvalues as the dimension of the matrix gets large,
i.e. the limit N — oco. This situation is inherently different from the above case of semiclassical
differential operators since now we are considering here a problem with boundary.

We are interested in the small random perturbations of Ag:

Hypothesis 1.4.1 (Random Perturbation of Jordan block). Let 0 < § « 1 and consider the following
random perturbation of Ay as in (1.4.1):

As=Ap+06Q, Q=(qjk@)i<jk=N (1.4.2)

where g jk(w) are independent and identically distributed complex random variables, following
the complex Gaussian law A¢ (0, 1).

E.B. Davies and M. Hager [16] studied random perturbations of Ay. They showed that with
probability close to 1, most of the eigenvalues are close to a circle:

Theorem 1.4.2 (E.B. Davies-M. Hager [16]). Let As be as in Hypothesis 1.4.1. If0 <6< N~',R =
SYN o >0, then with probability =1 — 2N~2, we have o(As) < D(0, RN3'NY and

o 2 4
#(0(As)ND(O,Re™®)) < =+ —InN.
(o o

A recent result by A. Guionnet, P Matched Wood and O. Zeitouni [30] implies that when § is
bounded from above by N~*"/2 for some x > 0 and from below by some negative power of N,

then )
N Z 6(z— ) — the uniform measure on Sl,
HET(As)
weakly in probability.
Question

Our main focus lies on obtaining, for a small coupling constant §, more information about the
distribution of eigenvalues of As in the interior of a disc, where the result of Davies and Hager
only yields a logarithmic upper bound on the number of eigenvalues (see Theorem 1.4.3 below).
In particular we are interested in a precise asymptotic formula (as N — oco) for the density of eigen-
values in this region.

In order to obtain more information in this region, we will study the expected eigenvalue den-
sity, adapting the approach of [83]. (For random polynomials and Gaussian analytic functions

such results are more classical, [40, 61, 38, 75, 62, 59].)
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1.4.1 — Main results on perturbed Jordan block matrices

According to Proposition 1.1.4 we have

G x
P(IQl4s = 1) < eXp(TONz _ E)

and hence if C; > 0 is large enough,
1QI% < C2N?, with probability =1-e™'. (1.4.3)
In particular (1.4.3) holds for the ordinary operator norm of Q. We now state the principal result.

Theorem 1.4.3. Let As be the N x N-matrix in (1.4.2) and restrict the attention to the parameter
range e N'0W) < § « 1, N > 1. Let ry belong to a parameter range,

——<rg<1-—,
6) N
rN—l
06 (1-re)?>+6N3 <1, (1.4.4)
so that§ < N73. Then, for all ¢ € €,(D(0,ro— 1/ N))
E|1 A = L E(z)L(d
B 0aM(Q ) oW | =— [ ¢(2E(2)L(dz),
Aea(As)
where Nol
- 4 |z|" "N 2 3))
2(z) = — |1+0| ——(1 - SN3||. 1.4.5
(2) (1_|Z|2)2( + ( 5 ¢ |z)" + (1.4.5)

is a continuous function independent of ry. Cy > 0 is the constant in (1.4.3).

Let us give some comments on this result: Theorem 1.4.3 states that the average density of
eigenvalues in the disk of radius ro— N~! is given by (1.4.5). The result of E.B. Davies and M. Hager
[16] (cf. Theorem 1.4.2) only yields a logarithmic upper bound in this region. Conditions ﬁ <
ro<1—N~!and (1.4.4) are needed to restrict the support of the test function ¢ to the disk inside
the pseudospectrum where the average density of eigenvalues is determined by (1.4.5). Outside
this disk we obtain no information, however we refer the reader to [63] which treats this case and
obtains a probabilistic angular Weyl law in a small neighborhood of the unit circle assuming larger
perturbations.

Remark 1.4.4. However, we strongly believe that our methods can be extended to yield a complete
average density of eigenvalues in the disk of radius ry satisfying % <719 =<1-2/N, similar as in
the case of Hager’s model operator (cf. Section 1.2).

Condition (1.4.4) is equivalent to § N3 « 1 and
0
N-1 2
T 1-rp) < —.
0 ( 0) N
For this inequality to be satisfied, it is necessary that
ro<1-2(N+1)7L

For such ry the function [0,79] 3 r — rN~1(1 — r)? is increasing, and so inequality (1.4.4) is pre-

served if we replace ry by |z| < rp and the remainder term in (1.4.5) is small.

The leading contribution to the density Z(z) is independent of N and is equal to the Lebesgue
density of the volume form induced by the Poincaré metric on the disc D(0,1). This yields a very
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small density of eigenvalues close to the center of the disc D(0, 1) which is, however, growing to-
wards the boundary of D(0,1).

A similar result has been obtained by M. Sodin and B. Tsirelson in [76] for the distribution of
zeros of a certain class of random analytic functions with domain D(0, 1) linking the fact that the
density is given by the volume form induced by the Poincaré metric on D(0,1) to its invariance
under the action of SL, (R).

1.4.2 — Numerical Simulations

To illustrate the result of Theorem 1.4.3, we present the following numerical calculations (Figure
1.11 and 1.12) for the eigenvalues of the N x N-matrix in (1.4.2), where N = 500 and the coupling
constant § varies from 107 to 1072.

1

0.8

0.6

0.4

0.2

- . . . . . . . . . . . . . 0.4 0.6 0.8

0.4 0.6

Figure 1.12: On the left hand side 6 = 1073 and on the right hand side § = 1072.

In Figure 1.11 and 1.12 we can see that most eigenvalues are in a close vicinity of the unit circle,
confirming the results obtained by E.B. Davies and M. Hager [16] (cf Theorem 1.4.2) as well as by
A. Guionnet, P Matched Wood and O. Zeitouni.
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Figure 1.13: The left hand side shows the experimental density of eigenvalues (averaged over 500 realiza-
tions), as a function of the radius, of a 1001 x 1001-Jordan block matrix perturbed with a random complex
Gaussian matrix and with coupling § = 2-1071°. The red line is the radial part of density of the hyperbolic
volume form on the unit disk. The right hand side presents a magnification of the left hand side, enlarging
the zone where the approximation with the hyperbolic volume fails.
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Figure 1.14: The left hand side shows the experimental integrated density of eigenvalues (averaged over
500 realizations), as a function of the radius, of a 1001 x 1001-Jordan block matrix perturbed with a random
complex Gaussian matrix and with coupling § = 2-107!°. The red line is the hyperbolic volume on the unit
disk as a function of the radius. The right hand side presents a magnification of the left hand side, enlarging
the zone where the approximation with the hyperbolic volume fails.

Furthermore, we can see that the density of eigenvalues in the interior of the unit disc grows
towards the boundary of the disc, which is in agreement with the results obtained in Theorem
1.4.3 since the density = (given in 1.4.5) grows towards the boundary.

Figures 1.13 compares the radial part of the density of the hyperbolic volume on the unit disk
with the radial experimental (averaged over 500 realizations of random complex Gaussian matri-
ces) density of eigenvalues of a 1001 x 1001-Jordan block matrix perturbed with a random complex
Gaussian matrix with coupling § = 2-107'°. Figures 1.14 shows the same for the respective inte-
grated densities as functions of the radius. These Figures show that the average density and the
average integrated density of eigenvalues of (1.4.2) are determined by the hyperbolic volume on
the unit disk, as predicted by Theorem 1.4.3. Moreover, they show that here this approximation
starts to break down at a radius of ry =~ 0.977 which is where condition (1.4.4) starts to fail (for the
above values of N and §).

Finally, let us remark that on the right hand side of Figure 1.12 we can see the onset of a differ-
ent phenomenon discussed in [63]: When the perturbation becomes too strong the spectral band
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will grow larger since the effects of the random Gaussian matrix will start to dominate over the
Jordan block (we refer also to the circular law for the average density of eigenvalues of random
complex Gaussian matrices, see for example [79]).

1.5 | Methods and ideas of the proofs

Chapters 2, 3 and 4 present the proofs of our main results and although they are self-contained we
will give a short overview over the general strategy of the proofs of our main results (cf Theorems
1.2.12, 1.3.4 and 1.4.3) as a rough road map through the “labyrinth” of estimates.

Let # denote a complex separable Hilbert space. We are interested in the spectrum of a ran-
dom perturbation of an operator P : D(P) — #, of the form

Ps o :=P+0Qy
where 0 < § «< 1 and Q,, is a random operator of the form

Qu = Z ajr(wee;,
JjksN

*

where N is sufficiently large, ey, e2,... is an orthonormal bases of .#° and where e eju = (uleyej,
u € /. Furthermore, a jk@) ~ Ac(0,1) are independent and identically distributed Gaussian
random variables with expectation 0 and variance 1. To obtain a compact perturbation we re-
strict the random variables to a large open ball, i.e. we assume that a € B(0,CN) c cN 2, for some
constant C > 1 large enough.

To obtain an effective description of the spectrum of Ps ,, we will set up an auxiliary problem.

Grushin problem We give a short refresher on Grushin problems since they have become an
essential tool and they form a key method in the present work. As reviewed in [74], the central
idea is to set up an auxiliary problem of the form

P-z R_
© 0 e s — ey,
R, O
where P—zis the operator of interest and R are suitably chosen. We say that the Grushin problem
is well-posed if this matrix of operators is bijective. If dim /- = dim ./£; < co, one usually writes
P-z R\ (E@ Ei(2
Re 0] \E-(a E+(a)

The key observation, going back to the Shur complement formula or equivalently the Lyapunov-
Schmidt bifurcation method, is that the operator P(z) : # — #% is invertible if and only if the
finite dimensional matrix E_, (z) is invertible and when E__ (z) is invertible, we have

PY(2) = E(2) - E+ (2)EZL (D) E-(2).

E_.(z) is sometimes called effective Hamiltonian. In the case of the large Jordan block we may
take the vectors

e1:=(1,0,...,00'e CY, eyn:=(0,...,0,1)teCV,

and set Ryu = (ule;) and R_u— = u_ey (cf Section 4.2 and [74]) to gain a well-posed Grushin
problem. In the case of Hager’s model operators will use quasimodes, see the paragraph entitled
“quasimodes” below.

26



CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

Grushin problem for the perturbed operator For § > 0 small enough, we can use the same R, as
for the unperturbed operator P, to gain a well-posed Grushin problem for the perturbed operator

Psw—2z R
0= 2 IO I — H 0 T,
R 0
with .
(P(;,w—z R_)‘ (B2 E9“(2)
R, 0 E2(z) E%(2))

Using Eff (z), we have an effective description of the spectrum of Ps ,,. In our case dim #; =1 (cf
Section 2.2 and 4.2), wherefore
0 (Ps,0) = (E29)7(0).

Quasimodes For Hager’s operator P (cf Section 1.1.1), we will use quasimodes e.. for the unper-
turbed operator P and its adjoint P* to construct the auxiliary operators R, by setting R, u = (u|e;)
and R_u— = u_e_ (details will be given in Section 2.1 and 2.2). For e., we will use two kinds of
quasimodes:

* The eigenfunctions ey and f; of the self-adjoint auxiliary operators Q(z) and Q(z) (cf Section
1.2.2), which have the advantage of being valid in all of Z, see (1.1.13), however, at the price
of being less explicit.

* Local WKB approximate solutions ek, and fy,xp of the form
ewkp(X, 2, h) = a(z; h)xe(x, z, hyeit-(2), Jwin(x,2,0) = b(z; )y 7 (%, 2, hyeit-a),
where ¢ (x, z) are phases satisfying the eikonal equations
p(x,0x¢1) =2z, and p(x,0x¢p_-)=7%,

where p is the semiclassical principal symbol of P and p the one of P*. Furthermore,
Xe,f(x,2, h) are smooth compactly supported cut-off functions and a(z; h) ~ h~Y4(ay(z) +
ha;(z)+...)and b(z; h) ~ h_1/4(b0(z) + hb;y(z) +...) are normalization factors.

These quasimodes are more explicit than ey and fy, they are, however, only valid in certain
subsets of X.

Moments of linear statistics Using the effective Hamiltonian Eff (z) of the perturbed operator,
we will study the first two moments of linear statistics of the random point process

= Z 0,= Z 0.

260 (Ps ) ze(E>?)-1(0)

[1]

More precisely, we will study p; the one-point intensity measure of Z, given by

E Y 9@ ]lB(o,CN)(Oé)] =/ @ (2)d (2)
C

Z€(E**)~1(0)

where ¢ is a continuous compactly supported function. Moreover, we will study v, the two-point
intensity measure of =, given by

I > ¢(z,w) Tpp,cn (@) :/ p(z, w)dv(z, w).
CZ

z,we(E>?)71(0)
Z#W

In particular, we will examine their Lebesgue densities and use these to obtain Theorems 1.2.12,
1.3.4 and 1.4.3 and their consequences.
There are two essential steps involved in obtaining these densities:
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1. We obtain a formula to describe these densities.

(@) Inthe case of the Jordan block, Eff depends holomorphically on z and on the random
variables a which is very useful. We will see that

T:={(z,@) € Q x BO,CN); E>¢(z,0) = 0}

is a a smooth complex hypersurface in Q x B(0,CN) < C x CN’, where Q < C is open,
bounded and connected. Exploiting this, we will show that

IE Y. 9@ Lpocnm(@

:/<p(z)e—“*“(2i)‘N2da/\ da, (1.5.1)
ze(E2,)1(0) r

where we view (2i) "V’ d@ A da as a complex (N2, N2)-form on Q x B(0, CN), restricted
to T, which yields a non-negative differential form of maximal degree on T.

(b) In the case of Hager’s model operator, Eff depends only smoothly on z but it satisfies
additionally a 0-equation, i.e. there exists a smooth function £ such that

0:E°, (2)+ fP(2)E® , (2) = 0.

Using this, together with approximations of the delta function, we obtain an explicit
formula for the one-point density:

E|l ) ¢®@1lpocw@ =lim / ¢(2)D¢(z; h,6)L(d2),
Z€(E°,)71(0) &=
E® ) 1 2 _
whereDg(z;h,é)::n_N/ E.za) =~ @Ei(z,a)’ e *Lda). (1.5.2)
B(0,CN) € €

Here, x € 6;°(C) such that y >0 and [ x(w)L(dw) = 1. The formula for the two-point
density is similar.

2. The second step to analyze these densities will be to choose appropriate coordinates in the
space of random variables: In the case of the one-point densities, we will find a vector X(z) €
€M’ such that | X(2)|| # 0 and

Ez,a)=0 = (Y(z) -aa) E2(z,a) #0.
Using this vector we have the following corresponding orthogonal decomposition
a=pX@2+p, peX@? peC.
Here, X (2)* is identified with CV*~! via an orthonormal basis. Performing a change of vari-

ables corresponding to this choice of basis in the integrals (1.5.1) and (1.5.2), we will obtain
(after a lengthy calculation) the desired asymptotic formulas describing the densities.

The case of the two-point density is similar.

1.6 | Some open problems

We end the introduction by discussing some interesting open problems on which we are currently
working.
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1.6.1 — Random perturbations of non-self-adjoint semiclassical pseudo-di-
fferential operators

We have seen above some consequences of random perturbations on the spectra of non-self-
adjoint operators. However, there are many more compelling open questions.

Generalizations of the results The methods used to prove the result on Hager’s model can be ex-
tended to a much broader class of one-dimensional semiclassical pseudo-differential oper-
ators. It would also be very interesting to consider the case of small multiplicative random
perturbations of differential operators since these allow us to remain in the class of differ-
ential operators.

Furthermore, to obtain similar results on the average density in all of the pseudo-spectrum
would be very interesting in the case of multi-dimensional semiclassical pseudo-differential
operators.

The Jordan block matrix can be see as a model for a differential operator with boundary
conditions. We have seen that in this case eigenvalues are produced through small random
perturbations even outside the image of the principal symbol. Further investigating this
phenomenon seems very promising.

Interaction close to the pseudospectral boundary In the above we have only given a description
of the interaction of two eigenvalues in the interior of the pseudospectrum. However, we still
miss a description of the interaction of two eigenvalues close to the pseudospectral bound-
ary. In view of the numerical simulations presented in Figure 1.1 and of Theorem 1.2.12
it is clear that the behavior of the eigenvalues changes completely when approaching the
pseudospectral boundary.

Weaker non-self-adjointness The class of semiclassical differential operators that we considered
in this thesis (cf Section 1.1.1) has the property that the semiclassical principal symbol p (cf
(1.1.7)) is complex valued. However, in the case of the damped wave equation (cf [64]) the
principal symbol is real-valued and the non-self-adjointness comes from the subprincipal
symbol. The effects of random perturbations in this case are as of yet unknown.

1.6.2 — Resonances of random Schrédinger operators

Following the discussion on resonances of Schrédinger operators at the beginning of this chapter,
we turn now to the particular case of discrete random Schrodinger operators. Here, the particle
is restricted to move on the lattice Z¢ instead of the space R?. More precisely, we consider the
random discrete Anderson model, introduced by PW. Anderson [3], that is, on £2(Z%),

H,=-A+AV,,
where —A is the free discrete centered Laplace operator given by

—Awm = Y u(m), foruet*ZY,

|m—n|=1
and V,, is a random potential
(Vo) () = Vy(mu(n), for ue (*(Z%,

and A > 0 the coupling constant. We assume that the random variables (V,), 7« are indepen-
dent identically distributed and that their common law admits a bounded compactly supported
continuous density g.
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Properties of the Anderson model The spectral theory of the Anderson model (and many other
types of random Schrodinger operators) has been study extensively, see for example [22, 81, 35,
10, 28, 49, 26, 46, 57] and the references in [42].

Let o0(H,) be the spectrum of H,. It is known (see e.g. [22]) that, w-almost surely,

o(Hy) =%:=[-2d,2d] +suppg. (1.6.1)
The Anderson model satisfies the following important hypotheses:

Wegner estimate (W) Let I € X be a relatively compact open subset of the almost sure spectrum
2. We say that a Wegner estimate hold in I, if there exists a C > 0 such that, for /< I, and a
cube A c Z%, one has

E [tr(1;(Hy(A)] < CUIIAI (1.6.2)

Here, IE[-] denotes the expectation with respect to the random variables and H,(A) denotes the
operator H,, restricted to the cube A c Z“ with Dirichlet boundary conditions (other boundary
conditions work as well, e.g. periodic boundary conditions). More precisely, for L = 1, Ay = A
denotes the cube [~ L, L]% := [~ L, L]* N Z% c Z4. In the sequel we will write | A| — oo, meaning that
L — .

A Wegner estimate has been proven for many different random Schrédinger operators, such as
the Anderson model, both in the discrete and the continuous case under quite general conditions
on potentials and randomness, see for example [81, 35, 10, 28]. The left hand side of (1.6.2) yields
an upper bound on the probability to have at least one eigenvalue of the operator H,(A) in J.

By (W), we have that the integrated density of states, defined by

#{leo(Hy(A)); A< E}

N(E):= lim )
|Al—o0 [A|

is the distribution function of a measure that is absolutely continuous with respect to the Lebesgue
measure on R. We denote by R 3 E — n(E), defined E-almost everywhere, the density of states
which is the Lebesgue density of the above measure. Furthermore, for any continuous function
¢ :R — R, we have that

/ @E)n(EYAE = E[{6o, p(Hw)b0)].
R

Here, §; € 02(Z%) is defined by 6;(j) =0 for i # j and §;(j) = 1 for i = j. In fact the collection
{01} jeza is an orthonormal basis of £2(Z%).

Another important consequence of (W) is that any given E € J isnot an eigenvalues of 0 (H,, (A))
for almost all w.

Minami estimate (M) Let I € X be a relatively compact open subset of the almost sure spectrum
Y. We say that a Minami estimate hold in I, if there exists a C > 0 such that, for J < I, and a
cube A c Z4, one has

E [tr (1 (Hy, (M) [tr (1 (H, (M) - 1]] < CUJIAD?. (1.6.3)

The Minami estimate is proven for much less models than the Wegner estimate. However, in the
case of the discrete Anderson model it has been proven to hold for I = X, see [49]. The right hand
side can be lower bound by the probability to find at least two eigenvalues in /. The Minami
estimate tells us that the eigenvalues of H,(A) are w-almost surely simple.

Localization (Loc) Let I c X be a compact interval. We say that I lies in the region of complete
localization if for all ¢ €]0, 1[, we have

sup sup E| Y e |1 f(Hy ALy, | < oo. (1.6.4)
L>0 supp fel  \yezd
If1=1

Here, f is a Borel function on R.
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We note that (Loc) implies that the spectrum of H,, is pure point in I (cf [42, 27]) with associated
sub-exponentially decaying eigenfunctions. It is known that there exists a A¢ such that for all
A = Ay we have that (Loc) holds for all I c X (cf [1]).

In case of the discrete Anderson model we have the finite volume fractional moment method
available. For I satisfying the finite volume fractional moment criteria (cf [2]) for large enough
cubes A, we may replace e in (1.6.4) by " with n > 0. In particular for large enough coupling
A we have this for I = Z, for large enough cubes A, with associated exponentially decaying eigen-
functions (cf [44, 1]):

There exists v(A) > 0 such that, for any p > 0, there exists g > 0 and Ly > 0 such that, for L = L,
with probability = 1 - L7P, if

(1) ¢n,e is anormalized eigenvector of H,(A) associated to an eigenvalue Ej, ,,(A) € Z,
(2) Xpw€ Aisamaximum of x — [pg,(x)]in A,

then, for x € A, one has
Qo) < LIe™YWVIx—Tnol (1.6.5)

Here, the point x,,, is called a localization center for ¢, (.

Resonances for a random potential restricted to a large box The main object of interest is the
self-adjoint operator
Hw'ASZ —A+/1Vw)(/\ (1.6.6)

as |A| — oco. Here, ya(n) =1if n€ A and 0 if not.

Since V,, x is compact and self-adjoint, it follows from Weyl’s essential spectrum theorem (cf
for example [55]) that the essential spectrum of H,, 5 is that of —A, that is [-2d,2d]. The operator
H,, A has therefore only discrete spectrum in R\[-2d, 2d].

We are interested in giving a description of the resonances of the operator close to the real
axis. These can be defined as the poles of the meromorphic continuation of the resolvent of H,,
through ] -2d,24d].

Meromorphic continuation of the resolvent By the discrete Fourier transformation & : ¢2(Z%) —
L2(R4/(2nZ%)), we see that Hj is a Fourier multiplier with symbol

d
p@):=2Y cosbye[-2d,2d] =:T. (1.6.7)
k=1
p is a Morse function with critical values given by

Ao:={-2d+4k; 0<k=d}. (1.6.8)

Using (1.6.7), one has, for Hy := —A, for Imz > 0 and for n,m € 74, that the kernel of Ry(z), the
resolvent of Hy, is given by

1 ei(n—m)G
Ry(z; n, =((Hy— -1 mlOn/ = . L.6.
o(z;n,m):={(Hy—2)" Omldn) 2n)? /Td p(g)_de (1.6.9)

We are interested in the analytical continuation of (1.6.9) from C* when z crosses through ] —
2d,2d[. Analogous integrals have already been studied extensively, see e.g. [50, 23, 43, 45], and
one can prove the following result.

Theorem 1.6.1. The operator valued function C* 3 z— (Hy—z)~' admits an analytic continuation
form C* to

C\|l-o0,-2dlu | (—2d+4k—i]R+)U[2d,oo[)
1<k=d-1

with values in the operators from Zf,omp(Zd) to ﬁ%oc(Zd).
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Using analytic Fredholm theory, one deduces from Theorem 1.6.1 the following result.

Theorem 1.6.2. The operator valued function C* 3 z — Ry A(2) = (Hyp— 2)~! admits a meromor-
phic continuation form C* to

C\|[l-o0,-2dlu |J (-2d+4k-iR+)Ul2d,00[
lsk=d-1

with values in the operators from VZ (Z%) 10 02 (Z%).

comp loc

The resonances are defined as the poles of this meromorphic continuation, see Figure 1.15.

Figure 1.15: Resonances as poles of the meromorphic continuation of the resolvent (Hy, 5 — 2)~!.

The case of d = 1 has been studied extensively by E Klopp, see [45]. Therein, Klopp gives a
detailed description of the resonances of H, o and compares them to the case of resonances of
periodic Schrodinger operators (i.e. the potential V is periodic and not random). He proves that
in both cases there is a gap between the real axis and the resonances. However, remarkably, in the
random case the width of this gap is exponentially small in L, whereas in the periodic case it is
only polynomially small in L.

Theorem 1.6.3 (E Klopp [45]). Letd =1 and let I be a compact interval in ] —2,2[n% (cf (1.6.1)).
Then, w-almost surely, one has that for € €]0, 1|, there exists Ly > 0 such that, for L = Ly, there are no
resonances of Hy, a in the rectangle

{zeC; Reze I, Imz = —e LU}
where p is the maximum of the Lyapunov exponent p(E) on I.
We recall that the Lyapunov exponent p(E) is defined as follows.
In||T(E, w)ll

E):= lim ———,
pLE) Ll—»r{.lo L+1

where T (E, w) is the L-step transfermatrix, i.e.

E-V,(L) —1)__.(15— V,(0) —1)

TL(E"”):( 1 0 1 0

The number resonances of H,, 5 closest to the real axis is given asymptotically by the integrated
density of states. Indeed, E Klopp proves in [45] the following result.

Theorem 1.6.4 (E Klopp [45]). Letd =1 and let I be a compact interval in | —2,2[0&. Then, for any
x €]0, 1{, w-almost surely, one has

#1z resonanceof Hy, p s.tReze€l, Imz<-eL*
{ f Ho.n - }—>/n(E)dE, L — oo.
I
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To prove this result Klopp uses the eigenvectors ¢, , associated to the energies Ej, o, (cf (1.6.5))
as quasimodes for the operator H,, 5 to construct resonances (we refer also to the similar works
[78, 77]).

Using (M) and (Loc), for a large enough coupling constant A, we have exponentially decaying
eigenvectors ¢, , associated to almost surely simple energies Ej, ,,. This should allow us to follow
a strategy similar to Klopp’s to prove the extension of Theorem 1.6.4 to d-dimensions. Due to some
preliminary results we strongly believe that Theorem 1.6.4 holds true in the d-dimensional case.

Conjecture 1.6.5. Let I <] —2d,2d[nE be a compact interval. Then, for some constant C > 1, w-
almost surely, one has

#{z resonance of H, p s.tRezel, Imz < —e €

L

L
}—>/n(E)dE, L — oo.
I
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CHAPTER 2

AVERAGE DENSITY OF EIGENVALUES
FOR A CLASS OF NON-SELF-ADJOINT
OPERATORS UNDER RANDOM
PERTURBATIONS

The intention of this chapter is to prove the results discussed in Section 1.2. We consider Hager’s
model operator (cf (1.1.9)), anon-self-adjoint h-differential model operator Pj, in the semiclassical
limit (& — 0), subject to small random perturbations.

We study the intensity measure of the random point process of eigenvalues and prove an h-
asymptotic formula for the average density of eigenvalues. With this we show that there are three
distinct regions of different spectral behavior in X: The interior of the pseudospectrum is solely
governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a
tunneling effect followed by a region where the density decays rapidly. The material presented in
this chapter can be found in [83].

2.1 | Quasimodes

The purpose of this section is to construct quasimodes for the operator
Py,—z
for z € Q € X with
Q € X is open, relatively compact with dist (Q,0%) > Ch*'3 for some constant C > 0. (2.1.1)

We will in particular always assume that this assumption on Q € X is satisfied, if nothing else is
specified.
We make the distinction between the following two cases:

Quasimodes in the interior of  We consider z being in the interior of 2, i.e. z€ Q; € 3 such that

there exists a constant Cq, > 0 such that

1
dist (Q;,0%) > —.
Ca,

In this case, following the approach of Hager [32], we can find quasimodes by a WKB con-
struction for the operator (P, — z);
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Quasimodes close to the boundary X We consider z being close to the boundary of %, i.e. z €
Qn (Q,‘; u Qf;) where, following the notation used in [4], we define for some constant C >0

Q,‘;:z{ SIszCn},

ze(C:
Q,l;:={z€(D:

Ol 0l

<(mg(bh)-Imz) < Cn}, 2.1.2)

with h?3 « 1 < const. (recall from Hypothesis 1.1.2 that Im g(a) = 0). The precise value
of the above constant C > 0 is not important for the obtained asymptotic results. We will
only consider the case z € Qf since z € QZ can be treated the same way. We may follow the
approach of Bordeaux-Montrieux [4] and find quasimodes by a WKB construction for the
rescaled operator

~ _ h .8 VX)) =z

P-—7Z:= Dx Z.=hD:+ 8 -2, 2.1.3)
h e T T8

with the rescaling

~ ~ h
S'sx=n% and h:= W

Note that in this case demanding 7 < 1 implies the condition #?/® <« 7. The rescaling is

motivated by analyzing the Taylor expansion of Im g(x) around the critical point a yielding
thatforImz —0

|x4(2) —al = /7, (2.1.4)

where x. (z) are as (1.1.14). This shows that the rescaling shifts the problem of constructing
quasimodes for z close to the boundary of X to constructing quasimodes for z well in the
interior of the range of the semiclassical principal symbol of the new operator ﬁ-ﬁ.

Remark 2.1.1. Throughout this text we shall work with the convention that when writing an
estimate, e.g. @’(éanhs) or A=n"h*, we implicitly set 7 = 1 when dist (z,0%) > 1/C but keep
nwhen z € Q.

Let us note, that by Taylor expansion we may deduce that S = S(z), as defined in Definition
1.2.2, satisfies
S(z) =2 (2.1.5)

2.1.1 — Quasimodes for the interior of

Definition 2.1.2. let z€ Q; € 3 and let Xx_, x4 be as in the introduction. Let y € <€(‘)’° (R) with
suppy <]0,1[ and [ (x)dx = 1. Define y, € G (x- —2m,x-[) and y r € 6;°(x+, x4 + 27[) by

o y—x-+271 X_ -y
revs= ) VT )T i

Y Y- X4 Xp+2m—y
(x,z; h) :=/ h 2{ ( )— (—)}d . (2.1.6)
1 B LA W/ B B Y

Furthermore, define for x €]x_ — 27m, x_|

bi(x,2):= / (z—g(y)) dy,
X4
and for x €]x,, x4 + 27|

P_(x,2):= / (z—g(y)dy.
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Consider the L2(S!)-normalized quasimodes
ewin (%2 1) 1= h™ 1 a(z; W) Ye(x, 2 e ®2) e €°(1x_ — 2, x_) 2.1.7)

and
Fukv(, 2 1) 1= K3 b(z; Wy £(x, 2 Meh? 5D € €8 (1x,, x4 +27]) (2.1.8)

where a(z; h) and b(z; h) are normalization factors obtained by the stationary phase method. Thus,
a(z;h) ~ ap(z) + hay(z) +--- # 0 and b(z; h) ~ by(z) + hb1(z) + - -- # 0 depend smoothly on z such
that all derivatives with respect to z and z are bounded when / — 0.

The quasimodes e, i, and f,x, are WKB approximate null solutions to (Pj, — z) and (P, — 2)*
since locally

(Pp— Z)el%¢+ (x,2) — 0, and Py, — Z)*eﬁﬁb—(x,z) =0.

This follows from the fact that ¢. (x, z) satisfy the eikonal equations
p(x,0x¢4+(x,2)) =2z, and p(x,0,¢p-(x,2)) =2,

where p is as in (1.1.7). Furthermore, e,,xp and f,xp are exponentially precise quasimodes since
we have that

||(Ph—z)ewkb||2:@(\/ﬁe_l§1), and ”(Ph—z)*fwkbnz:@(\/ﬁe_%),

where S = S(z) is as in Definition 1.2.2. These estimates can be obtained similar to the proof of
Proposition 2.1.7.

The factors a(z; h) and b(z; h) are the asymptotic expansions of the normalization coefficients
and it is easy to see that for all § € IN?

d°_a(z;h),8”_b(z;h) =0 (h™P). (2.1.9)
We have the following explicit expressions for the leading terms of a(z; h) and b(z; h).

Lemma 2.1.3.

ao:(%)[l’ andbo:(%)‘l' (2.1.10)

Proof. We will show the proof only for aé since the statement for bé can be achieved by analogous
steps. To gain the asymptotic expansion of the normalization coefficient use the stationary phase
method to calculate

—®0(x,2)

I, = h_;/xe(x,z;h)ze o dx,

where
X

—-D(x,2):=id;(x,2) — i+ (x,z2) =—2Im (z—gly)nday.

x4 (2)

On the support of y. the phase ®(x,z) has the unique critical point x = x,(z) and it is non-
degenerate since 02,®(x (z), z) = —2Im g’ (x, (z)) > 0. Thus the Morse Lemma (see e.g.: [29]) guar-
antees the existence of a local € diffeomorphism x: V — U, where V c R is a neighborhood of
x+(2) and U c R is a neighborhood of 0, such that

2
Dk 1(x),2) = D(x, (2),2) + %

x~1(0) = x, (z) and

dx 2 1 ;
E(M(Z)) = 0%, P(x+(2),2)|2 =/ —2Im g’ (x+(2)) # 0. (2.1.11)
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2.1. QUASIMODES

Let x € €;°(R) be supported in a small enough neighborhood of x. (z), assume that 1 > y > 0 and
suppose that y = 1 near x, (z). One then gets that

N1 h\" n N+1
Ih:‘/ZﬂZﬁ(E) A"wWO)+0 (L")
n=0 "

with u(y) = ye(x 1 (1), 2%y & ()K" (1)L, Since u(0) = (-2Im g’ (x4 (2))) "/,

T
n=—2 | +6m. 0
h (—Img’(x+(Z))) (h)

By the natural projection IT: R — S as in Section 1.1.1 we can identify
65 (x4, X1 +21)) ={ue €>°(SY): x; ¢ supp u}

and
6, (x-—2m,x_[) ={ue EXSYH: x_¢ supp u},

with the slight abuse of notation that on the left hand side x; € R and on the right hand side
x4 € S'. This identification permits us to define e,y (x, z; h), fwip(X, z; h) on € (Sh.

2.1.2 — Quasimodes close to the boundary of =

Now let z € Q. Following [4], we will construct quasimodes for the operator Py, — z, for z close to
the boundary of %, by looking at the rescaled operator 13;1 —Z as defined in (2.1.3).

Let us first note that %(/u (x,z) and ﬁgb_ (x, z) have the following behavior under the rescaling
described at the beginning of this section:
i

h/ (z—g(y))dyz%ﬁ (Z-g3) dy =: %&L(Eé,a 2.1.12)

i
E¢+ (x,2) =
and analogously for %(/)_ (x, z). Taylor expansion shows us that the rescaled phases (Ei (X,Z) have
for z € Oy a non-degenerate critical point X, (z) and they satisty the relation
x4+ (2) = V%2 (2). (2.1.13)

It is easy to see that locally N
(P, - Den? %7 =,

Thus, the natural choice of quasimodes for z € QN Q7 in the rescaled variables is as follows.

Proposition2.1.4. LetQ €%, zeQn Q,‘; and set h:= 173—h,2 Then there exist functions
a"Zh) ~ ag(@ + ha] @ +---#0, b'Zh) ~bj (@) +hb](2) +--- £0,

depending smoothly on Z such that all Z- and Z-derivatives remain bounded as h — 0 and hs < n—
0, such that

N

e & ZR) = (fm) " &y 2R er® 5P and

[l Gz R = (hn)

i

b )y (7 e,

are [2(S'/ VT, \/NdX)-normalized. Here, x,, fareasin Definition 2.1.2. Furthermore,

3 = (umg”(a)m(a ;a/\/ﬁ)(1+0(1))|)4, ceqp,
Img” (a)(%(3) - 1+ o)\ ?
bQ(E):(' mg’(a)(X-(2) ”a/\/ﬁ)( +o( ))I) | zeas.
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Remark 2.1.5. In Proposition 2.1.4, we stated the Taylor expansion of the first order terms of
a(z; h) and b"(z; h). However, note that we have

ol

ap(2) = a) (@),

—Img'(x; ()1 _
( n ) -1

where ay is the first order term of the normalization coefficient a of the quasimode e, xp; see
Lemma 2.1.3. Similar for bg.

Proof. We will consider the proof only for the case of ezj since the case of f:j «p 18 the same.

By (2.1.13), (2.1.6) one computes that

Xe(V/N%, 2, hINY?) = xo(X, 2 h)

kb

Consider || ye(-, z; h/n'/2)end+2) ”%2(51) and perform the change of variables x = ,/7x. Hence,

/Xe(x,z;h/n1’2)2e—ilm¢+(x'z)dx: \/ﬁ/Xe (%2 0) e i e GEDT g5 2.1.14)

The stationary phase method yields that (2.1.14)~ \/ﬁfﬁ (€ (2) + he1(2) +...), where the Cj(z) de-

pend smoothly on Z such that all Z- and Z-derivatives remain bounded as / — 0 and hs < n— 0.

On the other hand, the stationary phase method applied to | Xe€%¢* (&

2.1.1) yields that

(compare with Section

IxeC, 2 mer® 22, )~ b3 (co(2) + ey (2) +..)

o]
O tmg (20 )

with

Since yq(x, z; h) = ye(x, z; h/n”z) locally around x; (z), we may conclude that for all k € INy
~ 3k, 1
k() =n2"icj(2).

In particular, the Taylor expansion around the critical point a yields that

~ _ 4 a
Co2) = IImg" (@)X, (@ — al yPHA+o)|) ’ Z€ L.

Thus, we conclude the statement of the proposition. O

Considering the above describe quasimodes in the original variable x € S! leads to the follow-
ing

Definition 2.1.6. Let Q € X, ze Qn QT‘; and set 11 := n3_h’2 Then define

e

h N 7 i
ey 6z = (m) a(Z W ye(x, z; hin''?)en?**? and
n

h\ro i
fgjkb(X; Z, h) = (m) 4 bn(z, h)X?(x, z; h/nllz)eﬂ(P*(x’Z),

1/2) —

where XZf(x’ z;hin Xe,f(%,2; h/n”z). We choose this notation to make the distinctions be-

tween the two cases z € Q; and z € Q) more apparent.

Furthermore, we have the following estimates for the precision of the quasimodes eZ} and

n .
fwkb‘

kb

|(Pu=20€" I, =0 (n?n"e77), and  [[(Pr=-2" Fl,, ]I, =0 (n'2n" e i),

w

where S = S(z) is as in Definition 1.2.2 (recall as well that S = 1]3/ 2 ¢f. (2.1.5)). These estimates can
be obtained similar to the proof of Proposition 2.1.7.
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2.1.3 - Approximation of the eigenfunctions of Q(z) and Q(z2)

Recall Q and Q given in Section 1.2.2. We will use the above defined quasimodes to prove estimates
on the lowest eigenvalue of Q, tg. Furthermore, we will give estimates on the approximation of the
eigenfunctions ey and fy by the quasimodes e, x; and fi,xp. We will prove an extended version of
aresultin [67, Sec. 7.2 and 7.4].

Proposition 2.1.7. Letz€ Q € X and let S = S(z) be defined as in Definition 1.2.2. Then, for hs <
n=<1/C
2 1 _2S
ty(2) < @(172 he™ )
Furthermore, there exists a constant C > 0, uniform in z € Q, such that

1

n2h
C

£2(2) - 12(2) =

for h > 0 small enough.

Remark 2.1.8. The case z € Q with dist(Q,0%) > 1/C has been proven in [67, Sec. 7.1]. Since it
will be useful further on we shall give a proof of the statement and indicate how to deduce the
statement in the case of ze QN Q?).

Proof. Let us first suppose that z € Q; (cf. Section 2.1). Recall the definition of the self-adjoint
operator Q(z) given in (1.2.4) and define

ri=r(x 2 h) = Q2)ewkp(x, 2 h). 2.1.15)

Recall, by (2.1.7), that e, xp(x, z; h) = hoi alz; ) ye(x, z; h)eiiz“”(x’Z). Since x_(z) is smooth in z and
all its z- and z-derivatives are independent of £, it follows from (2.1.6) that for all a € IN3\{0}

aa

< Xtz =0(h7 ), (2.1.16)
with supportin X_ :=]x_ -2, x_ — 27 + hY2[ulx — hY2) x_|. By definition of ¢, (x, 2)
(P —2)ei @3 =
for x €]x_ — 2m, x_[. This implies
(Ph — 2)ewip(x,2) = h ™7 alz; W[(Py - 2), ye(x, 2 )] €79+ 52
=h7ia(z h)?ax)(e(x, z;h)ei¥+ D), 2.1.17)

Continuing, one computes that

(Pp—2)" (Pp—2)ewkp(x,2) = (2.1.18)

s
a(z; h)%{?@ixxe(x, Z1) + 0. e(x, 23 1) (004 +m)}el’;¢+.
where ¢, = ¢, (x, z). Since for x € X_
Oucp+ (x,2) + g0 — 2= 2— g(0) + () - 2 = ~2iIm (g(v) - 2) =62}, (2.1.19)
it follows from (2.1.16), (2.1.18) that
r=Q(2)ewkn(x,2) = @’(hﬁ) e #+ 02, (2.1.20)

which has its support in X_. Thus,
1 _ 0w
(ewknl QD) ewrp) = /@’(hZ)]lx (x)e” " r dx, (2.1.21)
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where ®(x,z) =2 yIm (z - g())dy. By Taylor’s formula

X
X:(z

®(x,2) = D(x_(2),2) +O(h), for x €]x_ — h'/2, x_|[
®(x,2) = O(x_(2) —27,2) + O (h), for x €]x_ — 27, x_ — 27 + h1/2]

and thus
_ D2 _28
e i < @( h ) :

where S = min (Im [& (z-g()dy,Im f;;_zn(z— g(y))dy). Hence,

1 28 28
(ewkblQDewin) <0(h2e™7) / Ly (dx=0(he”7), (2.1.22)
and, since Q is self-adjoint, it follows that tg (2) = @’(he_¥). Similarly, one computes that

Ir)? =@’(h2e‘%). (2.1.23)

The proof of the desired statement about tlz (z)— tg (z) for z € Q; can be found in the proof of Propo-
sition 7.2 in [67, Sec. 7.1].

Suppose now that z € QN Q. The desired statement follows by a rescaling argument. Recall
(2.1.3) and, using the quasimodes e?u b (X, 2), note that

31 = BB - 9" (P - 2 =6 (rPhe T,

where S is defined in the obvious way via ¢, and

5@ _ 5@ (2.1.24)
n h
Hence, rsio
22 =0 (h''2e ). (2.1.25)

The estimate on tf (2)— tg (2) in the case z € QNQy can be deduced as well by a rescaling argument:

note that 2 (Q(z)) = t?(n*(P; — 2)*(P; — 2)). The statement then follows by performing the same
steps of the proof of Proposition 7.2 in [67, Sec. 7.1] in the rescaled space L2(S! /\/fn), V/7Ndx) and
using the quasimode eZ} (X, 2) together with the estimate given in Proposition 4.3.5 in [4]. O

Proposition 2.1.9. Let z € Q € X. Then the eigenvalue tg (z) is a smooth function of z and the
eigenfunctions ey(z) and fy(z) can be chosen to have the same property.

Proof. Let us suppose first that z € ;. The operator Q(z) is bounded in H?(SY — [2(SY) and in
norm real-analytic in z since for zg € Q

Q(2) = Q(z0) — (P — 20)*(2— 29) — (P — 20) (2= 20) + |2 — 2o |*. (2.1.26)
Let { be in the resolvent set p(Q(z)) of Q(z) and consider the resolvent

R(,Q(2):=( -Q2) .

By [41, II - §1.3] we know that the resolvent depends locally analytically on the variables ¢ and z.
More precisely if (o ¢ 0(Q(zp)) for zyp € Q then R({, Q(z)) is holomorphic in { and real-analytic in z
in a small neighborhood of {y and in a small neighborhood of z,.

Remark 2.1.10. The proofin [41, IT - §1.3] is given in the case of finite dimensional spaces. How-
ever, it can be extended directly to bounded operators on Banach spaces.
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By [41, IV - §3.5] we know that the simple eigenvalue tg (z) depends continuously on Q(z).
Thus, by Proposition 2.1.7 and the continuity of tg(z) there exists, for i > 0 small enough, a con-
stant D > 0 such that for all z in a neighborhood of a point zp € Q

tz(z)>E
1 D'

Define y to be the positively oriented circle of radius //(2D) centered at 0 and consider the spectral
projection of Q(z) onto the eigenspace associated with tg(z)

1
Htg(Z):%/R((,Q(Z))d(-
Y

Since the resolvent R((, Q(z)) is smooth in z it follows that M2 (2) is smooth in z. Now set e(x, z) to
be a smooth quasimode for Py, — z for z € ; as in Section 2.1 which depends smoothly on z. Thus,
by setting

2 (2)ewrn(x, 2, h)

eo(x,z,h) = )
’ ITz (@ewrn(= 2, W

we deduce that also ey (x, z) depends smoothly on z. The statement for f;(z) follows by performing
the same argument for Q(z) instead of Q(z) and with the quasimode f,, k5.
Using that IT 2(2) and Q(z) are smooth and that the operator 11,2 QI has finite rank we see by

£(2) =t [z (2Q@M (2
that tg(z) is smooth.

In the case of z€ QN Qy for h?'3 « 1 < const. we follow the exact same steps as above, mutatis

mutandis. We take the estimate tf(z) > h%ﬁ for zin aneighborhood of a fixed zy € QHQT’; (following
from Proposition 2.1.7) and thus we pick, as above, ¥ to be the positively oriented circle of radius
h\/n!(2D) centered at 0. Hence, for ze QN Q,‘;’b

Mgz (2)ey,,, (%2, h)

Iz (2)el (=2 W

1
Htg(Z)=%/~R(C,Q(Z))dC, eo(x,z,h) =
Y

Following the same arguments as above we conclude the statement of the proposition also in the
case of z€ QN Q7. O

Proposition 2.1.11. Letz € Q € X and let ey and f, be the eigenfunctions of the operators Q and Q

with respect to their smallest eigenvalue (as in Section 2.2.1). Let S = S(z) be defined as in Definition
1.2.2. Then

e for ze Q withdist(Q,0X) > 1/C and for all f € IN?

102, (e0 = ewr)l, 102 (fo = furn)ll = 0Pl 7). (2.1.27)

Furthermore, the various z- and z-derivatives of ey, fo, ewrp and f,xp have at most temperate
growth in 1/ h, more precisely for all € IN?

102 ewpll, 167 furnll, 10 eoll, 107 foll = &(h~1P1); (2.1.28)

e for W’ <n<const.,zeQn Qp and forall f € IN?
16”_(eo - €” o 1y =0(nt kPl 2.1.29
b teo—el I 10 (fo— fl ) =0 (> b Ple). (2.1.29)
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Furthermore, the various z- and z-derivatives of ey, fo, eZ/ o and fZ «p ave at most temperate
growth in \/n/ h, more precisely

Bl _
102, €T e, 102 £, 1, 102 eoll, 102 foll =@(n= h™'F) (2.1.30)

zz W
forall B e IN?,
Remark 2.1.12. Let us recall that

o for z€ Q €3, in the case where Q is independent of i > 0 and has a positive distance to the
boundary of £ we have 1/C < S < C for some constant C > 0. Thus, we may formulate the
corresponding estimates of Proposition 2.1.11 uniformly in z;

e for h2/3

< n<const.and z€ QNQy (2.1.5) implies estimates uniform in z but 77 dependent.
This implies the following
Corollary 2.1.13. Under the assumptions of Proposition 2.1.11,

o forz € Q; there exists a constant C > 0 such that for all € IN?

102 e = ewin)l, 192 (fo - fuk)ll = @(n~Ple~7r); (2.1.31)
o forh*® <n<const., z€ QOQ,‘;’b and for all B € IN?
p n p 7 LN TR
10°;(e0 — e, ), 107 (fo— f)l =0z hPle” i |. (2.1.32)

Remark 2.1.14. The proof of Proposition 2.1.11 is unfortunately somewhat long and technical
and we have split it into several lemmas. Furthermore, we will only be discussing the results for
ewib(2), ez} (@) and ey(z), since the others can be obtained similarly.

Lemma2.1.15. LetQ € X such thatdist(Q,0%) > 1/C. Forz € Q definer :=r(x, z; h) := Q(2)eyp(X, 2)
as in (2.1.15). Then, for all B € IN?, suppafzr clx_ —2m,x_ —2n+h'?[ulx_ — hY2, x_[ and

B o= 1-1Bl — 4
10,71l =& (' Pl i).
Proof. Using (2.1.16), (2.1.18) we conclude by the Leibniz rule that for g € IN?
aﬁir — @(h%—lﬁl) eﬁ-¢+(x,z)
zZ

which is supported in ]x_ — 27w, x_ — 27 + h'/?[U]x_ — h'/2, x_[ and one computes that ||6fzr||2 =
o(r*-2Pe ). 0

Lemma 2.1.16. Let Q € X such that dist(Q2,0X) > 1/C and let z € Q). Moreover, let I 2shH —
Cey denote the spectral projection of Q(z) onto the eigenspace associated with tg. Then,

181
102 M (Do, =0 (7 ).

Proof. By virtue of Proposition 2.1.7 and the continuity of tg(z) there exists for z > 0 small enough
a constant D > 0 such that for all z in a neighborhood of a point zy € Q

tz(z)>£
1 D'
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Let y be the positively oriented circle of radius %/(2D) centered at 0. Note that  is locally inde-
pendent of z. Thus, we gain a path such that 0, tlz(z) ¢ v and which has length |y| = hn/D. For
A € y we have that

_ -1 _ 1 _ -1
(A —Q(2)) II——diSM’U(Q(z)))—@’(Iyl ). (2.1.33)

By (2.1.26) and the resolvent identity we see that
0:(A-Q2) ' =-A-Q&) ' (Pr-2)*(A-Q(2) " (2.1.34)

as well as
0-A-Q(2) ' =-(A- Q@) (Pr-2)A-Q2) . (2.1.35)

Similarly, we see that the higher derivatives 6’;6%” A- Q(z))_l, for (n, m) € IN?2\{0}, are finite linear
combinations of terms of the form

A= Q) T'ILQEIA- Q=)™+ 0% Q2N - Q2) ™! (2.1.36)
with a; = (1,0),(0,1),(1,1) and a; +--- + ay = (n,m). Thus it is sufficient to estimate the terms of
the form (P}, — 2)(Q(z) — A1)~ and (P}, — 2)* (Q(z) — 1) ~L. Since Q(z) = (P}, — 2)* (P}, — 2), it follows

that
1Py — 2)ull® = Iyl ul® < 1((Q(2) = Mulw)| < (Q(2) = M ulllull. (2.1.37)

Since Q(z) > 0 is self-adjoint and since dist (A, 0(Q(z))) = |y| we have the a priori estimate

1(Q(2) = M ull = Clylllul
forallue HSZC(SI), where C > 0 is a constant locally uniform in z. This implies

(P, — 2)ull® < (I1Q2) = Vull + Iyl el
~ C
< CI(Q2) - Mullllull = mn(o(z) - Dul’?,
where C > 0 is a constant uniform in z. Hence
-1 _1
1Py =2Q@ =) ez =0(yI7).

Finally, note that since [P, Pp] = Oz _. ;2 (h) we can replace P, by it's adjoint in (2.1.37) and gain
the estimate

I(Pr—2)*(Q(2) = )l pop :@(m—%),

Using (2.1.36) and the fact that |y| = hn/D we have that for all € IN?\{0}
- _1Bl+2
1024 Q@) e, =0 (= ). (2.1.38)

Since for u € L2(S1)

L,/(/I—Q(z))_lud/lzl'[tzu,
2mi ¥ 0

(2.1.38) implies
p [,
10 112 (@) 2z, = O (= ). O

Lemma 2.1.17. Under the assumptions of Lemma 2.1.16 we have

102 ewC, I 10 Tz e i, 21 = O ().
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Proof. Using (2.1.7), one computes that

0zewkp(x,2) = Wi { 0 xe(x,z;)a' (z; 1) + ye(x, 2 )0 a' (z; )

+Xe(x, z; ha'(z; h) %Oz(/b, (x,2) } e%‘l’* (x,2)
By the triangular inequality, we get

102 €win( D) < 71110, xe( 2) @' (z; e ®+ 0|
1 . i
+h7 1 xe (-, 2)0.a' (z; h)er?+02)|
+ R ye(2)al (2 Wik 0,4 (-, 2)en 02|

Recalling from (2.1.16) that 0, y.(x, z; h) = @(h~?) is supported in ]x_ — 27, x_ — 27 + h'?[U]x_ —
h'’2, x_[, one computes

Wi 102000, 2)a (z; e 02| = @(h_%e_%)'
Using (2.1.9), the stationary phase method implies
Wil e(, 20024 (z; ei 02| = o(h™).

Furthermore, since
X

0., (x,2) = / dy —&.(2)0,x4 (2) (2.1.39)

+(2)

it follows by the stationary phase method that
_1 ; i L (. 1
Wil Dal (3 W) 70:¢.(, 2)en? 0 = = 184(2)0:x. ()] +O (D).
Hence, by putting all of the above together
10zewin( 2 =0 (7).

Similarly, using (2.1.9), (2.1.16), the stationary phase method implies

10 ewinC, 21 = 0 ().
Lemma 2.1.16 then implies by the Leibniz rule that

10° g ewr :@(h—'ﬁ'). 0
Remark 2.1.18. Asin Lemma 2.1.17, we have for z € Q with dist(Q2,0>) >1/C

102, Fuko(, 2)1 = 0 ()

and
102,11,z furoll = 0 (n771).

where ﬁtg : L?(S") — Cfy is the spectral projection of Q(z) onto the eigenspace associated with the
eigenvalue 73
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Proof of Proposition 2.1.11. Part I - First, suppose that z € Q;. Let r be as in Lemma 2.1.15 and
consider for A € C
A - Q@) ewkp =Aewkp—T-

If A ¢ 0(Q(z)) U {0} we have
1 1 1 »
A =Q(2)  ewkp = Iewkb‘Fz(A_Q(Z)) r.

As in the proof of Lemma 2.1.15, define y to be the positively oriented circle of radius h/(2D)
centered at 0. y is locally independent of z. Thus, we gain a path such that 0, tf(z) ¢ ¥ and which
has length |y| = hn/D. Hence

L / (A= Q) ewpdA = ewiop + —— / Loy tran (2.1.40)
271 y 271 Y/l

By Lemma 2.1.15, (2.1.25) and (2.1.33)

i/y%m— Q(z))_lrd/IH - @’(e‘%)

2mi

By (2.1.40)
S
Iz ewkn — ewknll :@(97)_ (2.1.41)

Recall that e,k is normalized. Pythagoras’ theorem then implies
_28
”Htgewkbnz = lewrp = llewks — Htgewkbllz =1 —@(e g ) (2.1.42)

which yields
1

ep=—"""
T2 ewrepl

M ewkp = (1 +@’(e_%))l'[t§ewkb. (2.1.43)

Let us now turn to the z- and z-derivatives of ey — e,xp. By (2.1.43)

sz(eo(z) - ewkb(z))“ =

Ny z2ewkn(2)
2z IIHtg ewkp(2)|l
p (Mg =Dewkp+ A~ Izewkplewrn
2z ”H[gewkb(z) I

—Cwkb (Z))

First, note that Lemma 2.1.28 together with (2.1.42) implies
3P I zewisl =@’(h"ﬁ'). (2.1.44)
Using this result and (2.1.42) implies by the Leibniz rule applied to (2.1.43) that
10 eoll =0 (1)

Next, applying Lemma 2.1.15 and (2.1.38) to (2.1.40) yields

|

Using (2.1.42) and the fact that e, is normalized, it follows that

szﬁ/%(/l—Q(z))_lrd/IH :@"(h"ﬁ'e‘%). (2.1.45)
Y

afE(Htg - l)ewkb” =

2
gDl

1+ ewkpll

1- ||Ht§€wkb|| =
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This, together with (2.1.45), (2.1.44) and the Leibniz rule imply that
(1= IMgey) =0 (n 7).

Thus, Lemma 2.1.28 and (2.1.42) together with the Leibniz rule then imply

o_(e0(2) - ewry(2)| =0 (nPleh).

Part II - Now, let z € Qf with hs < 1 < const. The statements of the proposition follow from a
simple rescaling argument. For the rescaling we use the same notation as in the beginning of
Section 2.1. Let &(Z) be the L%(S'/,/7, dX)-normalized eigenfunction of the operator Q(2) = (ﬁfﬁ -

2" (ﬁﬁ —z) and note that ni ezjkb is L2(S1/ V7, dX)-normalized. Thus,

|0 @@ - el 2T

_oli183
12(St//7,d7) ’

where Sis as in (2.1.24). Since ey(z) = n~'/4&,(Z), it follows by rescaling that

| and on ||Ozﬁzeo | can be proven by the same rescaling argument. O

= @(n%‘ h_lﬁle_%).

3’ _(eo(2) €, (2))

L12(S,dx)

Ul

The results on IIOﬁ _e |
zz wkb

2.2 | Grushin problem for the unperturbed operator Pj,

To start with we give a short refresher on Grushin problems since they have become an essential
tool in microlocal analysis and it is a key method to the present work. As reviewed in [74], the
central idea is to set up an auxiliary problem of the form

p R_
@) e — 2000 5,
R, 0
where P(z) is the operator of interest and R, are suitably chosen. We say that the Grushin problem
is well-posed if this matrix of operators is bijective. If dim #°_ = dim ./#£; < co, one usually writes

(P(z) R_)_l

(E(Z) E+(Z))
R, O :

E_(z) E_((2)

The key observation, going back to the Shur complement formula or equivalently the Lyapunov-
Schmidt bifurcation method, is that the operator P(z) : #, — #> is invertible if and only if the
finite dimensional matrix E_, (z) is invertible and when E_ (z) is invertible, we have

P~'(2) = E(2) - E+(2) E_} (2) E_(2).
E_, (z) is sometimes called effective Hamiltonian.

The principal aim of this section is to introduce the three different Grushin Problems needed
to study PZ: one valid in all of Z which is however less explicit (here we will follow the construction
given in [67, Sec. 7.2 and 7.4]), and two very explicit Grushin Problems, one valid in the interior of
Y and one valid close to 6% (here we will recall the construction given by Hager in [32] respectively
Bordeaux-Montrieux in [4]).
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2.2.1 — Grushin problem valid in all of X
Following the ideas of [67], we will use the eigenfunctions ey and fj to set up the Grushin problem

Proposition 2.2.1. Let z € Q) € Z be open and relatively compact, and let ay be as in (1.2.8). Define

R.:H'(SY) — C: u— (uley)

R:C—L*SY: u_— u_fp. (2.2.1)
Then
P(2) = (P” ~ ¢ R‘) c HY(SY x C — I2(SY) x C
R, 0

is bijective with the bounded inverse

&(z) = ( E(z) Ei(2) )

E_(z) E_i(2)

where E_(2)v = (V| fo), E+(2)vy = vyeg and E(z) = (Py, —Z)_1|(ﬁ))L_,(eO)L and E_,(2)vy = —agV+.
Furthermore, we have the estimates

* forz e Q withdist(Q,0%) > 1/C

IE- (D)l 2 |1 E+ (@Dl g = B (1),
IE@) | 12— p = O3,

|E_,(2)| = @(\/ﬁe—%) :ﬁ(e‘ﬁ); 2.2.2)

o forzeQnQy with h < 7 < const.

IE-(2)ll 12— | Ex (Dl g i = O (1),
IE@) N 2— i = Oy ~Y?),

B () =0(Vhnie ) :@(ez"h). (2.2.3)

Proof. For a proof of the existence of the bounded inverse as well as the estimate for || E(z) || ;2_ g
in the case of dist (2,0X) > 1/C see [67, Section 7.2].

The other estimate for || E(z) || ;2_ ;1 can be proven by performing the same steps as in the case
of dist(Q2,0Z) > 1/C, mutatis mutandis, together with the estimate given by Bordeaux-Montrieux
in [4, Proposition 4.3.5]. The estimates for |E_; (z)| follow from Proposition 2.1.7, whereas the
estimates on || E_(z) | ;2_.¢ and | E+ (2)|l¢— g1 come from the fact that ep and f; are normalized.

Alternatively, one can conclude the result in the case of z € QN Qg by a rescaling argument
similar to the one in the proof of Proposition 2.1.11. O

2.2.2 — Tunneling

We prove now the following formula for a tunnel effect between ey which is microlocalized in
p+(z) and fy which is microlocalized in p_(z) (cf. (1.1.14) and Proposition 2.2.7), from which we
conclude Proposition 1.2.8. Recall in particular that S is the imaginary part of the action between
p+(2z) and p_(z) (cf. Definition 1.2.2).

Proposition 2.2.2. Letz € Q € X and let ey and fy be as in (1.2.6) and in (1.2.9). Furthermore, let

®(z, h) be as in Proposition 1.2.5, let S be as in Definition 1.2.2 and let p be (1.1.7) as in and p+ be
2

asin(1.1.14). Let hs < n < const. Then, forall z€ Q with |Imz—(Img)| >1/C,C>1,

(L ip, P} o) 2P, p}(po))*
Vrh

=l

|(eol fo)| = 101m 2S(2)| (1 +@>(n—%h%))e—
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where for all f € IN?
34,1 B_3 _igel
Aol nt) oy o).

This implies Proposition 1.2.8. Furthermore, Proposition 2.2.2 implies by direct calculation
the following result:

Proposition 2.2.3. Under the assumptions of Proposition 2.2.2 we have for h < 1 < const.

2(3p. P L1D o)’
Oim | (eol fo)* = p—=;

+@’(n5/4h_%e_%),

IGImZS(z)|2(—61sz(z))e_%

Onezl (€0l )12, e | (eol fo) = O(e™re 7).

Remark 2.2.4. Let us point out that we can find an even more detailed formula for |(egl fo)| (cf.
(2.2.9)) valid even for [Imz—({Img)| = 1/C:

(£ip, PHp) 5P, pH(p-)*
vrh
+@’(e_%) +@’(n3/4h_%e_%+Req’)

(eol fo)l =

277 — 101m 2 S
e—i|alm25|(1+—” 1Otm - 'eRe‘D)

|alsz|

Proof of Proposition 2.2.2. First, suppose that z € Q with dist(Q,0%) > 1/C. Then, by Proposition
2.1.11

(ol fo) = (€ol fuokn) +@’(e‘%) = @wkpl fukp) +@(e‘%). 2.2.4)

Recall the definition of the quasimodes e, and f,x, from Section 2.1. Moreover, recall from
Section 1.1.1 that by the natural projection IT: R — S! we identify S! with the interval [x_(z) —
27, x_(z)[. This choice leads to the fact that ¢, is given by

X
$s () = / (2 g(yndy
x4(2)

on this interval, whereas ¢_ is given by

/ (z—g(dy, forxe[xi(2),x-(2)]
X.

$p-(x) =4 7%
/ (z—gyndy, forxelx_(z)—2m x:(2)I.
x_(2)-2m
Define .
ab  (L{p, Pl i, pHpo)*
Ri=—= +0(Wh), (2.2.5)
vh vn

where we used Lemma 2.1.3, Proposition 2.1.4 and (2.2.22) to gain the equality. A straight forward
computation yields that

i px-(@-2m x4 (2)
(Cwkb| fukp) = Ret e ¢ g(y))dy/ Xe(X)xr(x)dx
X.

_(2)—2m
i px—(z x-(z
+ Ret Ja ((Z))(z—g(y))dy/
X4 (2)

)
Xe(X)xp(x)dx. (2.2.6)
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Using (2.1.6) and Definition 2.1.6, we have that

X4+ (2)
/ Xe(X) ¥ r(x)dx = x1(2) — (x-(2) —27)

_(2)—-2m
x_—2m+Vh X 427
—/ (l—xe(x))dx—/ (I-xr(x)dx

_ 271 xe+2n—Vh
= x4 (2) - (x_(2) — 2m) + @(\/ﬁ) , 2.2.7)
and similarly
xX_(2)
/ Xy, (0dx = x_(2) — x4 (2) +(ri(\/ﬁ). 2.2.8)
x4(2)

Now let us assume that we are below the spectral line of Py, i.e. Imz < (Im g). There, we see that
x—(2)
[(ewkpl frwkp)| = IRje” 5™ [ (Z‘g(y”dy| (x_(2) — x4(2)) + @(\/ﬁ)
+ (x+ (2) = (x_(2) — 2m) +@(\/ﬁ)) e~ Gt (a—(g |

Analogously, if we are above the spectral line, i.e. Imz = (Im g),

xX—(2)-2m

kbl fuokn)] = |RIe™H™ v =8 (., (2) - (x, (2) - 2m)
+ @’(\/ﬁ) + (x_(z) —x,(2) + 6’(\/%)) e (2= |

Together with (2.2.4), we conclude that

(Lip, PHp) 2P, p}po))*

_s 27 — |0t S| Re®
|Ceol fo)] = — e ho 5'(1+—ee )
0 fO — Imz |almZS|
+@’(e‘%) +@,(n3/4h—;e—g+Re®) (2.2.9)

where ® = ®(z, h) is as in Proposition 1.2.5. Note that exp {®(z, h)} is exponentially small for [Im z—
(Img)| >1/C. Thus,

({p, PP 5P, pHpo)*
Vah

Now let us discuss the 65 E-derivatives of the errors. First let us treat the error term ﬁ(ﬁ) from

the definition of R which is given as a product of the normalization coefficients of the quasimodes
ewkp and f,rp. Thus, it is easy to see that

o".0(Vh)=0(n1F=12). (22.11)

|(eol fo)l = e 1 |0mm2S(2)| (1 +@’(n—3’4h%)). (2.2.10)

The af E-derivatives of the error term in (2.2.7), (2.2.8) can be treated as follows: note that

x_—2n+Vh
62/ (1-xe(x,2)dx =
X.

_ =27
x_—2n+Vh
(xe(x_ —27,2) = Ye(x- — 27T+ \/E, z)) 0,x_ —/ 0zXe(x,2)dx.

X_—27

By (2.1.16)

x_—2n+Vh x_—2n+Vh
X—Xx_+2nm
0 (x,z)dx:—/ (—)6 x_(z2)dx
/x—Zn eAe X_—21 1// \/ﬁ ‘

= _azx_ (Z).
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Since ye(x_ —2m,2) =0and y.(x_ —27+Vh,2) =1,

x_—2n+Vh
62/ (1—-yelx,2))dx=0.
X.

_—=27

(2.2.8) as well as the respective z-derivatives can be treated analogously, and we conclude that
6526’(\/%) =0 for all B € IN?\{0}. Hence, we have

01070 (n "3/ h?) = @(n@-%h—'ﬁ“%).

Finally, in the case where z € QNQ; we can conclude the statement by a rescaling argument similar
as in the proof of Proposition 2.1.11. O

Remark 2.2.5. Tt is a direct consequence of (2.2.6), (2.2.4) and Proposition 2.1.11 that

1Bl+3/2

afg(emfo):@’(n 3 h_(lﬁlﬂlz)e_%),

where we conclude the case where z € QN Qg by a rescaling argument similar as in the proof of
Proposition 2.1.11.

Proof of Proposition 2.2.3. The first statement follows directly from Proposition 2.2.2. The state-
ments regarding the derivatives can be derived by a direct calculation from Proposition 2.2.2 to-
gether with the fact that the z- respectively the z-derivative of the error term increases its growth
at most by a term of order n'/2h~!. Moreover, we use that e® is exponentially small 1in h due to

IImz — (Im g)| > 1/C. Furthermore, we use that the prefactor (%{p,ﬁ} (p+)%{ﬁ, p}(p-))? is the first
order term of R (cf. (2.2.5)). Recall that R is defined via the normalization coefficients of the quasi-
modes e,y and fyrp- It is thus independent of Re z and its 0y, , derivative is of order & (n_” 4
which can be seen by the stationary phase method and a rescaling argument similar to the one in
the proof of Proposition 2.1.11. O

Now let us give estimates on the derivatives of the effective Hamiltonian E_. (z).

Proposition 2.2.6. Letz€ Q € X and let E_, (z) be as in Proposition 2.2.1. Then there existsa C >0
such that for h > 0 small enough and all f € IN?

1Bl+1/2

Iang_+(z)| = @(WT h—\ﬁ|+1/2e_%) '
Proof. Take the 05 derivative and the d, derivative of the first equation in (1.2.8) to gain
(P, — 2)8ze0 = (0za0) fo + @00z fo, (P, — 2)0ze0 — eo = (0, a0) fo + @00 fo.

Now consider the scalar product of these equations with fj and recall from Proposition 2.2.1 that
E_.(2) = —ag(2) to conclude

0zE-_+(2) = E_1.(2){(0zeoleo) — 0z fol fo)} and

0.E_.(2) = E_,(2) {(0e0le0) — Oz fol fo)} + (eol fo). (2.2.12)
The statement of the Proposition then follows by repeated differentiation of (2.2.12) and induc-

tion using Remark 2.2.5, the estimate |E_. (z)| = @’(nih%e’%) given in (2.2.2) and (2.2.3) and the
estimates given in Proposition 2.1.11. O

Finally, Proposition 2.2.2 permits us to prove the following extension of Proposition 2.1.11:

Proposition 2.2.7. Let z€ Q € X and let ey and fy be the eigenfunctions of the operators Q and Q
with respect to their smallest eigenvalue (as in Section 2.2.1). Let S = S(z) be defined as in Definition
1.2.2. Then
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e for ze Q withdist(Q,0X) > 1/C and for all « € N

102 (€0 = ewin)ll, 10%, (fo = Furn)l =6 (h~1"e 7).

ZZX

Here, we set0%_ = 03'02*0%°. Furthermore, the various z-, z- and x-derivatives of ey, fo, ewkp
and f,kp have at most temperate growth in 1/ h, more precisely

10% ewrnll, 10%  fuknl, 10% eoll, 0% foll = @(h™'™)
forall a € IN3;

e forh*’3 <n<const., ze QnQp and foralla e N3

aj+ay

10% (o — €l I, 10%, (fo— £, )l =6 [n ™2 Feaplele~).

Furthermore, the various z-, z- and x-derivatives of ey, fo, eZ; kb and sz kb have at most tem-
perate growth in \/n! h, more precisely

a)+ay

102 e Il 105 £, 1, 102 eoll, IIGgExfoII=@(n z +“3h““')

zzx wkb

forall a € IN3.

Proof. Will show the proof in the case of ey(z) since the case of f;(z) is similar. Suppose first that
z € Qwith dist(Q,0%) > 1/C. Recall from (1.2.8) that

(Ph—Z)eo = aofo and (Ph—Z)*f() Zaoeo (2.2.13)

First consider the 0707 derivatives of (2.2.13):

(Ph —z)dga’;eg(z) = nag—lageo(z) + Z (77+/3) (aﬂao(z))(aﬁfo(z)) (2.2.14)
lai+pil=n
laz+p2l=m
and
* AN AM _ nam-1 n+p = B
(Pp—2)" 00 fo(z) = mdz0z " fo(2) + > (0"Tay(2))0" ey(2)
lay+Bil=n 'B
laz+p2l=m
and thus
nam n-1am n+p n 8
hllDx0707 eo(2)| <nllo; 0 eI+ 3 1070 (2 110” fo(2)
laj+pil=n B
laz+p2l=m
+1g =zl (st - 1070% e (2)
and

hIDL"0 fo(2)| <mlo"0m o+ Y (’”ﬁ ) 107G (210 e (2]
lay+Bil=n ﬁ

laz+P2l=m
+1lg = zllgeo(s1) - 1070 fo (21l
By Proposition 2.2.6, there exists a constant C > 0 such that

050 ao(2)| = 1050LE_ . (2)] = O(h™*+De 7). (2.2.15)
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By (2.1.28) we conclude
ID070% eq(2)l, | D020% fo(2)ll = @(h~"*"*1),
Repeated differentiation of (2.2.14) and induction then yield that for all / € IN
IDL920 o2, ID10207 fo) | = @ (h~+m+m)

The estimate
IDL920% el I D420 fuoppll = €™

follows directly by the stationary phase method together with (2.1.9), (2.1.16). Finally, using (1.2.8),
(2.1.7), consider

h i
(Pj, — 2)(e0 — k) = @0 fo — h™ 1 al2)—dxyeei ™
l

which implies for k = 1 that (th)kc?Za?(eo —eykp) is equal to

h i
(hD)* 19207 (@0 fo) ~ (hDx) V070 | 173 a(R) =0 et
+(hD) ¥V 0702 (g(x) - 2) (€0 — ewk)-

By induction over k together with Proposition 2.1.11 and (2.2.15), (2.1.16), we conclude the first
point of the Proposition. The results in the case where z € O N Qy follow by a rescaling argument
similar as in the proof of Proposition 2.1.11. O

2.2.3 — Alternative Grushin problems for the unperturbed operator Pj,

In [32] Hager set up a different Grushin problem for Pj and z € Q; which results in a more explicit
effective Hamiltonian E~ +(z) To avert confusion, we will mark the elements of Hager’s Grushin
problem with an additional “H”.

Bordeaux-Montrieux in [4] then extended Hager’s Grushin problem to z € Qn Q,‘;. It is very
useful for the further discussion to have an explicit effective Hamiltonian. Thus we will briefly
introduce Hager’s Grushin problem 91 and show that E_, (z) and EZ, + (2) differ only by an expo-
nentially small error.

Proposition 2.2.8 ([32, 4]). Forze Q € X, let x.(z) € R be as in (1.1.14).
e forze Q withdist(Q,0%) > 1/C: let I. be open intervals, independent of z such that
x:+(2) €Ly, x:(2) ¢ I, forallze Q.
Let ¢ (x, z) be as in Definition 2.1.2. Then, there exist smooth functions c.(z; h) > 0 such that
ci(z; h) ~ B (cg(z) +hel(2) +...)

l(b (xz

and, fore, (z; h) := ¢, (z; h) exp(l(p*(xz )e HY\(I,) ande_(z; h) := c_(z; h) exp(——) € H\(1,),

lewllrzr,y =1=lle-llz2r)-

Furthermore, we have

dcl(z) =

(2) =

(—Img’(er(z)))‘11 (Img'(x—(z)))‘l*
m ' m '
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* forze QnQf with h*'3 <1 < const.: let ]+ be open intervals, such that

1
x: @€y, distUs, 1> =

Define I := S"\Jz. Let ¢+ (x, z) be as in Definition 2.1.2 and set h := hin'?. Then, there exist
smooth functions c. (z; h) > 0 such that

cl(z; fl) ~ ﬁ_in_lM (c?_r'n(z) + fwi’n(z) + )

and, fore (z; 1) = ¢ (z; i) exp(82) € HY(I,) and e’ (z; h) 1= " (z; ) exp(“=2) € (1),
I ez ||L2(I~+) =1= ”ez ”Lz(f_)'

Furthermore, we have

€ Q,‘;,

ITm g" (a)(%+(2) — al /p) (1 + o(1))] )‘1*

M(2) = ( -

Im " (@) (% (2) — al /A) (1 + o(1))]\ ¢
Img"(a)(X-(2) —al\/n)1+o( ))|) , ZEQ,‘;.

®(z) = (

b2
Proof. For aproof of the first statement see [32]. The second statement has been proven in [4] with
the exception of the representation of c?_r’" (z) which can be achieved by an analogous argument to
the one used in the proof of Proposition 2.1.4. O

Note that (P, —z)e’ (x,z) = 0 on I, and that (P, —z)* e’ (x, z) = 0 on I_. With these quasimodes
Hager and then Bordeaux-Montrieux set up a Grushin problem 22/ and proved the existence of
an inverse &7,

Proposition 2.2.9 ([32]). Forze Q; € £ and x+(2) asin (1.1.14). Let g € €°(S';C) be as in (1.1.6)
and leta < b < a+2n where a denotes the minimum and b the maximum ofImg. Let ], < (b, a+2m)
and J_ < (a,b) such that {x.(2): z€Q} < Jy. Let x4 € €°(13) be such that y» =1 on J. and
supp (x+) Nsupp (x-) = @. Define

RE:HY(SYHY — C: u— (uly ey)
RE:C—IL*SY: u—u_y_e_.

Then
Ph -z RE{
R 0

is bijective with the bounded inverse

2H(z) ::( ): H'(SYx C — 12(SH) x C

H H
&= (EH o I§E+I+((zz)))
where
IE" @)l 2 = O3, IEY (@)l 2 =0 W),
IEX ()l pp = O(D), IEM (2)] :@’(e‘ﬁ). (2.2.16)
Furthermore,

PN TR\ s
Ei(z)=((5{p,p}(p+)§{p,p}(p-)) (;) +@(hz))-

X—+27

(e% 5 =gmdy _ i [ (Z—g(y))dy) , (2.2.17)

where the prefactor of the exponentials depends only on Im z and has bounded derivatives of order

o(Vh).
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Proof. See [32]. O

Proposition 2.2.10 ([4]). LetQ €ZX. Forze Qn Qf,'b and x+(z) as in (1.1.14). Let g € €*°(S") be as
in (1.1.6). Let J+ and I, be as in the second point of Proposition 2.2.8. Let )(;7 € 6€:°(11) such that
=1 on J+ andsupp (y!) nsupp (y") = @. Define

RT:HY (") — C: u— (uly.el)
RT:C— L*SY): u_— u_y_e".
Then

Ph—Z R"

P2 )::(
“ RT 0

): H'(SHxC— 12(SH x C

is bijective with the bounded inverse

E(z) E'(2)
n _ +
&'@) = (Eﬂ(z) EL(z))
where

IEN (2l j2— i = O (/) ™), IET(2)ll2—c =G (1),

—p3/2

IE! (@) llgn = 0O (1), |E" . (2)| = @(n1’4h1’2e‘"h). (2.2.18)

Furthermore,

Eﬁ+(Z)=(cg”7(z)cg’ﬂ(z) (h\/ﬁ)%_,_@(h%n—sm))

, (e,% [ =gy _ o [3 " e-gmdy ) : (2.2.19)

where the prefactor of the exponentials depends only on Im z and has bounded derivatives of order
O(\/hyn).

Proof. See [4]. (2.2.19) has not been stated in this form on [4]. However, it can easily be deduce
from the results in [4] together with Proposition 2.2.8. O

Remark 2.2.11. The cut-off function xl in the above proposition can be chosen similarly to )(Z r in
Definition 2.1.6 (compare also with Definition 2.1.2).

2.2.4 — Estimates on the effective Hamiltonians

In [32] Hager chose to represent S! as an interval between two of the periodically appearing min-
ima of Im g and thus chose the notation for x; accordingly (this notation was used in (2.2.17)). In
our case however, we chose to represent S! as an interval between two of the periodically appear-
ing maxima of Im g. This results in the following difference between notations:

xi(@=x(z)-2n and x_(2)=x"(2).
Thus, in our notation, we have for e = H,n
E:+ (z2)=V"'(z,h) (eé f;;_m(z gymdy _ e}iz fL (z— g(y))dy) (2.2.20)

where V* = V*(z, h) satisfies

- i = AL ey ,
V.:{( P PRSP PI) (1) o) ife=H, zeq, 0201

M@ (hym): (14672 h)) if e =1, ze 0.
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Note that Taylor expansion around the point a yields

{p,P}p+) = —2ilm g’ (x4) (2.2.22)
= 2i\/ﬁ|Img"(a)(icJ_,(2) —al )1+ o\/ﬁ(l))‘ , for ze Q.

Therefore, we may writeforallze Q € X

1

Viz,h):=V'(z h)—(i{ B0 )21, Pl ))4(ﬁ);(1+@( “2h)) (2.2.23)
)= =15 PP AP PHP- o U] 2
where the first order term is n'/4 for ze Qn Qp. Note that

e [ emgdy _ o1 [ (Z—g(y))dy| Y

1-eE0), (2.2.24)
where ®(z, h) is defined already in Proposition 1.2.5. For the readers convenience:

_2mi(, _ i
Oz =4 0 @@, ifimz<mg),
Hl(z—(g)), ifImz> (Img),

Hence

|E*, (2)| = V(z, h)e ™ h

1 — @M | . (2.2.25)

The aim of this section is to prove the following proposition.

Proposition 2.2.12. Letz€ Q € Z, let D(z, h) be as in Proposition 1.2.5 and let E_(z) the effective
Hamiltonian given in Proposition 2.2.1. Then, for h > 0 small enough, there exists a constant C >0
2
such that for h3 < n < const.
=32
e h ) ) .

Furthermore, for all € N? the 6’; » derivatives of the error terms are bounded and of order

|E_. (2)| = V(z hye~ " 1+0

1- e@(z,h)'

3
@’(ng h"ﬁle_:nhz).
Proof of Proposition 1.2.9. Recall that (Py, — 2)ep = ag fo (cf. (1.2.8)). Suppose first that z € Q with
dist (Q2,0%) > 1/C. By Proposition 2.1.11 we find
(1= )P - 2)eol fo) = a0 (fol (1 - 1) fo)
_s
= a0 (Furol 0= fukn) +0 (e77)) .

Since the phase of f,x; has no critical point on the support of y, it follows that there exists a
constant C > 0, depending on y but uniform in z € Q, such that

(= 0Py~ 2eol fo) = 0 aoe™77).
By a similar argument we find that
((Pr—2)xeol fo) = ao (xeoleo) =0 (aoe_ﬁ) .
In the case where z € QN QF, we perform a rescaling argument similar to the one in the proof of

Proposition 2.1.11. Thus,

Ch

(A= 0P —2)eol fo), (Pr—2)xeol fo) =C (060 exp{_n_z} _
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Note that Proposition 2.1.11 implies that each z- and z- derivative of the exponentially small error
term increases its order of growth at most by factor of order @(n'/?h~1). Thus, using (1.2.8) yields

2

3
ao = ((1-x+X)(Pp—2eol fo) = ([x, Pnleol fo) + @ (ao exp { —% }) (2.2.26)
The statement of the Proposition then follows by the fact that |ay| = |E- (z)| (cf. Proposition 2.2.1)
together with Proposition 2.2.12. a
We give some estimates on the elements of the Grushin problems introduced in Section 2.2.

Proposition 2.2.13. LetQ € Z, let E* ,E}, R, E® be as in the Propositions 2.2.1, 2.2.9 and 2.2.10,
where « = —, H,n with “-” symbolizing no index. Furthermore, let S(z) as in Definition 1.2.2. Then
we have the following estimates

1. fore=—Handforze Q;cQ
PR d” E =0 (n 1P
107_R21, 107 EL| _@(h ﬁ),
_api_ly _S@ . ~
IdeEiI:@(h UBI-3) o= ), ||5§2E ||=@’(h (|ﬁ|+1/2))_
b
2. fore=—,nandforzeQp’cQ

B oo 148 mo = 5 (1 -
102 RL1 102 EL I =0 (> h™PY),
_312

|0/Z3ZEH+|:@’(Tlﬂzl/zh_(lﬁl_é)e_qh),

B prep _ V2 _(1B1+1/2
107_E ||_@(n > B+ ))‘

Proof. Recall the definition of R, and E. given in Proposition 2.2.1. By the estimates on the z- and
z-derivatives of ey and fj given in Proposition 2.1.11, we may conclude for z € Q that

B _
167, Ex 12 100, Re i = 10 eoll 2 =0 (0 71,
B
107 E- Nz 100, Rz = 102 folli2 =0 7 ™), (2.2.27)

“ »

and thus prove the corresponding “-”-cases in the Proposition. The estimates for the other cases
of R} and E then follow from (2.2.27), (2.2.28) and (2.2.32).
Recall from Proposition 2.2.1 that &(z)2?(z) = 1. Thus, note that

0,6(2) +E(2)(0,P(2)&(2) =0,
0:6(2) +8(2)(3:2(2)E(2) =0,

which implies

0,E=—-E@,(P,—2)E—E.(0,R.)E—E(0,R_)E-_
=E?>-E,(0,R,)E—E(,R_)E-

and
0zE(2) = —E4 (2)(0zR+)E(2) — E(2)(0zR_)E_(2).
Thus, by induction we conclude from this, from (2.2.27) and from Proposition 2.2.1 that for z € Q
B-1/2 1
102 E@I=0(n=> n02).
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The estimates on IIOf -E°(2)|, for « =1, H, can be conclude by following the same steps and by
using the corresponding estimates on R} and E; and the Propositions 2.2.9 and 2.2.10.
It remains to prove the estimates on |af EEL (z)] and |0i3 2]5 i (2)]: let us first consider the case

where z € Q; c Q. Recall (2.2.20) and recall from Proposition 2.2.9 that the prefactor V¥ (z) has
bounded z- and z-derivatives of order @ (v h). Thus, the statement follows immediately.

In the case where z € Qf]l’b c Q, recall (2.2.20) and from Proposition 2.2.10 that the prefactor
V'(z) has bounded z- and z-derivatives of order & (4/ h\/m). Using that

ok [ agdy _ of [ (=—gyndy

= e [T @-gmay _ ok I3 e-gndy

’

(2.1.5) implies

1BI+1/2 =32
2 ~(181-3) g

102 (@) =070l ET @) =0|n .

Proof of Proposition 2.2.12. Let e = H,nj denote the quasimodes and elements of the Grushin prob-
lems corresponding to the different zones of z.

Since 2°&* : [2(S') x C — L[2(SY) x C let us introduce the following norm for an operator-
valued matrix A: L*(S") x C — L*(S") x C:

2
Il Alloo := max Y 1A,
15152j:1

where | A;; | denotes the respective operator norm for A; ;. Next, note that

PE = (P +(P-P))E =1+ (P -P")&".

Estimates for (22 — 22°) Recall the definition of 22 and of 22° from the Propositions 2.2.1, 2.2.9 and
2.2.10 and note that

. ( 0 R-R
9—@_(&_& o |-

We will now prove that for all (n, m) € IN?

107 (Rs = R sty < 102, (eo =€)l
@(h-'ﬁ'e—ﬁ), for ze Q, dist(Q,05) > 1/C,

3
o3 (2.2.28)
@’(nglh‘m'e_nhz), for ze Qy,
where the first estimate follows from the Cauchy-Schwartz inequality. Note that
107_(eo — e < 107 (e}, — X1 e + 107 (00 — €], (2.2.29)
2 0 T A+ EIN=NOZ ey~ Xt G4 2z %0~ Cuwip) I <

By Proposition 2.1.11 it remains to prove the desired estimate on IIOS =€ — X1l Recall the
definition of the quasimodes e; , and e} from Section 2.1 and from Proposition 2.2.8.

Let us first consider the case of z € Q with dist (2,0%) > 1/C: recall from Proposition 2.2.9 that
all z- and z-derivatives of y; are bounded independently of i > 0, whereas for the derivatives of
XYe we have (2.1.16). Thus

afg?ﬁﬁf}%e = @(h_lﬁ”z).
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Thus, since y. (-, z) > x+ for all z € Q;, which implies that x, (z) ¢ supp (ye(-, 2) — x+) for all z€ Q;,
the Leibniz rule then implies

where F > 0 is given by the infimum of Im ¢(x, z) over all z € Q and all

05} ((XE(’ Z) - X+) eﬁ(lh(',z))

| < @"(h"ﬁ'e‘%). (2.2.30)

Xe (U supp (Xe('»z))) \{xel,: yy=1}.
zeQ

Note that F > 0 is strictly positive because x_(z) ¢ I, forall ze Q and y, € 6;°(I+) (cf. Proposi-
tions 2.2.9 and 2.2.8).

Recall that h71*a(z; h) and c, (z; h) are the normalization factors of ewkp and ey (cf. (2.1.7)
and Proposition 2.2.8). Hence, for z € Q;,

W5 az ), 0.z ) =0 (R IP12).
Thus the Leibniz rule and (2.2.30) imply
10°_c.(z: ) -0°_ha(z; )|
(Xe(.,z)e%<!’+(n2)) | _ ” (X+e£¢>+(~.Z))
|(Xe(.,z)e;%¢+(n2)) | H (X+eﬁ¢+(',z)) |
_ @(h—(|ﬁ|+1/2)e—%)'

||

zz

Since h™1a(z; h), ¢, (z; h) = @(h™1), the Leibniz rule and the above imply that for z € Q;
Ilaf2 (ewkn—x+es)ll < @(h_('ﬁ'“”)e‘%) )
Thus there exists a constant C > 0, for /& > 0 small enough, such that for z € Q;
10°_ (ewin — x+e4)l = @’(h“ﬁ'e‘ﬁ). (2.2.31)

Now let us consider the case z € Q ﬂQf;'b : recall the quasimodes eZ/ o and el as given in Definition
2.1.6 and Proposition 2.2.8. A rescaling argument similar to the one in the proof of Proposition

2.1.11 then implies

10 (¢} = X1e)I =0

w

1” 2

3
1B1+3/2 h_(|ﬁ|+1/2)e_:nhz) .

3
=n2
Absorbing the factor n intoe™ " then yields the desired estimate.
It is possible to achieve an analogous estimate for R_ — R®, namely that for all z € Q and for all
(n, m) € IN?

3/4h—1/2

16°_(R- = R*)llo s sny = 107 (fo— 1" el
@(h"me_ﬁ), for ze Q, dist(Q,0%) > 1/C,
3
=2 (2.2.32)
@(ngl h"ﬁ'e_?f) ,forze Q,‘;,
This can be achieved by analogous reasoning as for the estimate on R, — R?.

A formula for E_, Using (2.2.28), (2.2.32), it follows that for & > 0 small enough

(P - 2")E" oo < 1.

59



2.3. GRUSHIN PROBLEM FOR THE PERTURBED OPERATOR Pg

Thus, 1+ (£ —22°)&" is invertible by the Neumann series, wherefore
P& 1+ @-P28" ' =1.

We conclude that
=8 (-n"[(?-2%&"]".
n=0

Define g_ := R_ — R’ and g; := R, — R}. Hence, by Propositions 2.2.9 and 2.2.10 as well as by
(2.2.29) and (2.2.28), there exists a constant C > 0 such that

e .. (8-E° g.E° ole-wi| E,6(e
==L gg+Ef):(@ % é(eggh) ))-

By induction it follows that for n € IN

(@2-2%6"]" = (@'

We conclude that
E_(2)=E, (1 + glﬁ(ecnh)) =E", (1 +@"(e’ﬁ)) .

Finally, by the estimates on g, and g, obtained above and by the estimates given in Proposition
2.2.13 we conclude the desired estimates on the z- and z-derivatives of the error term. O

2.3 | Grushin problem for the perturbed operator PZ

For 4§ > 0 small enough, we can use the Grushin problem for the unperturbed operator Py, to gain
a well-posed Grushin problem for the perturbed operator PZ.

Proposition 2.3.1 ([67]). Let z € Q € X, let h*/3 < 1 < const. and let R_, R, be as in Proposition
2.2.1. Then
PP-z R

Ps(2) :z( R 0
+

): H'(SHxC— 12(SH x C

is bijective with the bounded inverse

wo=(e o)
where
E%(2) = E(2) + 012 (6h™%) =0 (/" h™"?)
E(2)=E_(2)+06(6n " h3%) =0(1)
ES(2)=E (2)+0(6n " h3%) =0 (1)
and

B2, ()= E4(2)~6|E-QuE+ + ) (=8)"E_Qu(EQu)"E;

n=1

=E_4(2)— 08 (E-QuE+ +0(6n 4 h™>"%) 2.3.1)

Proof. The statement follows immediately from Proposition 2.2.1 by use of the Neumann series.
O
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By (2.2.2) we get
E_QuEr= Y.  ajilele™-lIfy= Y ajra®fol).
L] 3| k=] S|

Recall from Corollary 1.1.5 that the random variables satisfy a € B(0, C/h). For a more convenient
notation we make the following definition:

Definition 2.3.2. For x € R we shall denote the Gauss brackets by |x] := max{k € Z: k < x}. Let

C; > 0 be bigenough as above and define N := (ZL%J +1)2. Forze QEZ, let X(z) = (Xf’k(z))|j| k=S €
) =Lth
CN be given by
~ = . . C
Xjk(2) =eo(z k) folz; j), forljl lkl< {#J
Thus, for ze Q € > and @ € B(0,C/h) c CN
E§+(z) =E . (2)-0[ X1 -a+T(z,a), (2.3.2)
where the dot-product X(z) - « is the bilinear one, and
o0
T(z,a):= Y (=0)"E-Qu(EQu)"E+ =0 ©n 4 h™5'3), (2.3.3)

n=1

where the estimate comes from Proposition 2.3.1. Note that T'(z, @) is € in z and holomorphic
in @ in a ball of radius C/h, B(0,C/h) c CV, by Corollary 1.1.5.

Proposition 2.3.3. Let z € Q € Z, let X(z) be as in Definition 2.3.2. Let h|k| = C for C > 0 large
enough, then the Fourier coefficients satisfy

~ N -M 4- _M . 2
&z k), folz: k) =0(IkI™Mdist(©,0%)7% ), dist(@,0%) > h’

forall M € IN. In particular
IX(2)ll2 =1+6(h™).

Proof. We will show the proof in the case of ey(z) since the case of fy(z) is similar. Let us first
suppose that z € Q with dist(Q,0%) > 1/C. Recall the definition of the quasimode e, given in
(2.1.7). By Proposition 2.2.7

é?o(z;k):/(ewkb(z,x)+@Coo(e_2§t))e_ikxdx.

For k € Z\{0}, repeated integration by parts using the operator
)
.= !

" kdx
applied to the error term yields by Proposition 2.2.7 that for all n € IN

é(z; k) = /ewkb(z, x)e kg + O(1kI™"h™).

Define the phase function ®(x, z) := (¢4 (x, z)h~ ' —kx). Since h|k| = Cis large enough and since Q
is relatively compact, it follows that

0P (x,2)| = 0x¢p+ (x,2)h ™" — k| = Cy k| > 0.

Repeated integration by parts using the operator

tr/ 1
=——D
0,P(x,2)

X

61



2.4. CONNECTIONS WITH SYMPLECTIC VOLUME AND TUNNELING EFFECTS

yields that for all n € IN

/ewkb(z, x)e *dx = o(1kl™").
Thus, for all n € IN
éo(z k) =@"(Ik|_").

For z € QN Qy one performs a similar rescaling argument as in the proof of Proposition 2.1.11.
Since in the rescaled coordinates k = \/fk, we conclude that for all n € IN

I%(z;k)lsﬁ(n‘glkl‘”).

Finally, by definition 2.3.2, Parseval identity and the estimates on the Fourier coefficients above, it

follows that
IX@I°= Y. 16z )P1folz kI = (eo(2)les(2) (fo(2)l fol2) + O (h™).
1l k<L)
Since | eoll, Il foll = 1, we conclude the second statement of the Proposition. O

The following is an extension of Proposition 2.3.3.

Proposition 2.3.4. Let z € Q € Z, let X(z) be as in Definition 2.3.2. Let h|k| = C for C > 0 large
2
enough, then for dist (QQ,0Z) > hs and for all n,m € Ny

0101 &) k), 0207 folz; k) = (| ki~ dist (©,05) 7% ).

Furthermore,
10202 X (2) | = @’(dist Q,03)" " h—<n+m)) _

Proof. Since
6202”50(5 k) = /agazmeo(z, xe kX gy,
We then conclude similar to the proof of Proposition 2.3.3 that for all N € N
0201 & (23 k)| = 0 (0% 1K1,

The second statement of the Proposition is a direct consequence of Parseval’s identity and Propo-
sition 2.1.11. O

2.4 | Connections with symplectic volume and tunneling effects

The first two terms of the effective Hamiltonian E®, for the perturbed operator PZ (cf. (2.3.2)
have a relation to the symplectic volume form on T*S! and to the tunneling effects described in
Section 2.2.2.

62
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2.4.1 - Link with the symplectic volume

Proposition 2.4.1. Letze Q €ZXZ andletp beasin(1.1.7) and p+ be asin (1.1.14). Let X(z) be as in
Definition 2.3.2. Then we have for h > 0 small enough and h*'® < 1 < const.

0 X117 1 ( i

l
0,X10,X) — S _
( | ) X112 h\ip,pHp+(2) {p,PHp-(2)

) +0n72),
where
{p, P} o)l = /1.

The 05 - derivatives of the error term 0 (n™?) are of order © (n@‘z W )

Proposition 2.4.2. Letz€ Q€ZX, letp beasin (1.1.7), let p. beasin (1.1.14), and let d¢ A d x be the
symplectic form on T*S'. Then,
1 i i
h\{p,pip+(2)) {p,Pp-(2)

)L(dz) = % (dé_Ndx_—déndxy)

1
= 5, P-dendx)

Proof of Proposition 2.4.2. In the following we will conform to ideas from [32, 4, 67]: Since p(x4,{1) =
z, we find the following system of linear equations

Ph-0zXs +pi-0z8: =1
Py +0zXs + P07+ =0

and since x4,é{+ € R
p;c'azxi + pé 'azfi =
Py 0% + ;0

This system can be solved and we find

— /

_pf pg
0,xy = ——(04), Ozx+ = ——(p+ 2.4.1
= P 0 =, 5 ) @41
and _, ,
Px —Dx
Oz = — y 05 + = T +J.
$+ 7 (p+), 02+ % (p+)

Hence we have

1
dfi A dxi = (sziagxi _azfiazxi) dzndz = (—(pi) dzNdz.

{p, p}

Since the Lebesgue measure with the standard orientation of C can be represented as

Ldz) = édz AdZ,

and the statement of the Proposition follows. O

To prove Proposition 2.4.1 we first prove the following result.

Lemma2.4.3. Letz € Q € X such that dist(Q,0%) > 1/C and let g € €°°(C) and p+ beas in (1.1.14).
Leteyip and fyp beas in (2.1.7) and (2.1.8). LetIl,,, : L*(S') — L*(S") and Iy, : L*(S") — L*(SY)
denote the orthogonal projections onto the subspaces spanned by e i and f, iy respectively. Then,

— . 2 = —
”(1 Hewkb)azewkb( ,Z) ” 2hImg’(x+(z)) +@(1)7

1
- - . 2__ -
I wakb)aszkb( ) 2hmg (. (2) +0(1).
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Remark 2.4.4. In the following, we shall regard z as a fixed parameter. Hence, by the support of
functions depending on both x and z we mean the support with respect to the variable x.

Proof. We will consider only the case of e}, since the case of f;,xp, is similar. One calculates

0zewikp(x,2) = b { 0zXe(x,2)a(z; h) + xe(x,2)0za(z; h)
+Ye(x,2)a(z; h) %Gz(lu (x,2) } er® D (2.4.2)

Thus

(Ozewkblewkb)=h‘5/((Ozxe(x,Z))Ia(z; n? +(0,a(z; W) alz; ) y(x, 2)
+|a(z;h)lzxe(x,z)%azwx,z)) Yelr, 206 dx, (2.4.3)

where ;

D(x,2):=—i(p4(x,2) —p4(x,2)) =2Im (z—gy)dy. (2.4.49)

x4+ (2)

First, we will compute

D(x,2)

h_;/(azxe(x,z))xe(x,z)la(z;h)lze_h'dx. (2.4.5)

Using (2.1.16) and the fact that 0, y.(z,-) has support in ]x_ — 27, x_ — 27 + h'/?[u]lx_ — h'/?, x_]|,
Taylor expansion of ®(-, z) at x_ and x_ — 27 yields that

_P(x,2) _ 28
e " h s@’(e h),

uniformly in Jx_ — 2w, x_ —27+ hY2[Ulx_ — h''2, x_[. Here S is as in Definition 1.2.2. Now, applying
this and (2.1.16) to (2.4.5), yields

-1 2 _0x2) _1 _z2s
W2 la(z )2 [ 0,xe(x,2) ye(x, 2)e dx:@’(h ie h). (2.4.6)

Next, we will treat the other two contributions to (2.4.3). First, consider

D(x,2)

h_% (0,a(z; h)) a(z; h) /xe(x, z)%e" 1 dx.

1
Since h~2|a(z; h)|? is the normalization factor of | e, x> We see that

P X2 0 ’ h
h_%aza(z; h)a(z; h) /)(e(x, z)ze_%dx = M. 2.4.7)
a(z; h)
Let us now turn to the third contribution to (2.4.3)
1 2 l 2 _P(x,2)
I, :=h 2|a(z; h)| Eazt,lu(x,z)xe(x,z) e " h dx.
The stationary phase method implies together with (2.1.10) that
i
I = Eazdu (x4 (2),2)+0C(1). (2.4.8)

Thus, by combining (2.4.6), (2.4.7) and (2.4.8)
i
(0zewknlewkn) = z0z¢+ (x+(2),2) +0O(1)
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and thus

0z€wib|Cwin)Cwkp (X, 2) = K1 {a(z; h) %azm (x4 (2),2) +0(1) } Yel(x, 2)ei P+, (2.4.9)

Subtract (2.4.9) from (2.4.2) and note that the term a(z; h)0,y.(x, z)e%‘/’“x’z) is exponentially small
in h like in (2.4.6). Thus

(1-II,,,)0z€wip (X, 2)
e%dh(x,Z)

A {“W R xe(x, Z)% (0201 (x,2) = 0.0+ (x4 (2), 2)) } +0p2(1). (2.4.10)

It remains to treat

. . 2
a(z; h) Yo (%, 2)— (02tbs (%, 2) — 0zb. (X4 (2), 2)) €19+ 5D
ni

= h—é/h(x,z)zm(z;h”z

Ih =

| 2 D(x,z
(04 (x,2) = 021 (x(2),2))| € Hdx, (24.11)

where ®(x, z) is given in (2.4.4). This can be done by the stationary phase method, as in the proof

of Lemma 2.1.3. Thus

I=V2r ) — (—) (A"w)(0) +@ (RN,
on\2 y

where

; 2
2 (004 (1), 2) — 020b4 (x4 (2), 2)

» la(zn)?
2) 7

_ -1
S O]

and x : V — U is a local € diffeomorphism from V < IR, a neighborhood of x.(z), to U c R, a

neighborhood of 0, such that
2

Dk 1(x),2) = D(x, (2),2) + %

x1(0) = x; (2) and

d 1
(0 (2) = 13,0 0x (2, )1 = /-2Im g/ (2. (2)) 0. (2.4.12)

This implies that #(0) = 0 and thus we have to calculate the second order term in the above asymp-
totics, i.e. Ayu(y) is equal to

2

| -
ZM) = (0204 (7' (),2) = 024 (x4, )

-1
(AW(K O o

d Sy e latz ) ) d 1 4 ~ 2
+2dy ()(e(K y),2) TNl dy 2 |6z¢+(1< »),2) 6z¢+(x+,z)|
;h 2 . B 2
+Xe("_l(y)’Z)2—|K|/a(f<z—1())l,))| y(%(az¢+(7< Y1), 2) = 0,004 (x4, 2)) )

Note that at y = 0 the first and the second term of the right hand side vanish. By (2.1.39)
l -
7 (0204671 (), 2) ~ 029+ (x4 (2), 2))

o )

Thus, since y.(x1(0), z) = ye(x4(2), 2) = 1 (cf. Definition 2.1.2),

d . |?
—x o) .

=2h~?
dy

y=0

2la(z; h)|?

By = e P
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Using (2.4.12)and (2.1.10), we have that

(Ayu)(0) = (-Img'(x,(2)) " +O ™)

1
V2mh?
which yields

Ip, o).

- - 4
2hIm g'(x4 (2))
This, together with (2.4.10), yields

1 -Te,,,)0zewkp( 2) 17 = o). O

2hIm g'(x+(2)) *

Proof of Proposition 2.4.1. Recall that ey(z) (respectively fy(z)) denotes an eigenfunction of the z-
dependent operator Q(z) (respectively Q(z)). Using Definition 2.3.2, Proposition 2.3.3, Corollary
2.3.4 and the Parseval identity one computes that

|0=X1X)1* _
1 X112
= (0;€010ze0) — 1(0€0le0)|* + 0z fol0zfo) = |(fol 0z fo)I* + O (h™).

Suppose that z € Q with dist(Q,0%) > 1/C. By Corollary 2.1.13 it then follows that (0,e/0,e0) —
|(0,eple0)]? is equal to

(0:X10.X) -

R
(azewkb|azewkb)_|(azewkb|ewkb)|2+@(h le Ch).
LetIle,,, and ¢, be asin Lemma 2.4.3 and note that

(1 = e,,,)0zewkpll* = 102wk > = 10zewkplewrs)|” and
(1 =T1f,,,)0z fukbll® = 10z fuknll® = 10z fuwkp| furn) - (2.4.13)
Hence

10, X1X)I?

0,X]0,X)—
+ X102 1X12

=11 - e, )0zewkpll* + (1 =T, )0z fukp®
+@"(h*1e*ﬁ + h°°). 2.4.14)
Since {p, p}(p+) = —2ilm g’(x.), it follows by Lemma 2.4.3 and (2.4.14) that

(aleazx) -

10 XIX)* 1 ( i

i
=— — -— +0(1 2.4.15
X112 h \{p, p}(p+(2)) {p,p}(p-(Z))) @ ( :

Now let us consider the case where z € QN Q. Similar to Lemma 2.4.3 we get that

—— +0(1),
2hIm g'(x4(2))

uj =\112 —
”(]-_Hez/kb)azewkb('rZ)”LZ(Sl/\/ﬁ,\/ﬁdj) -

1
- T e
Ia HfLZkb)aszkb( ’Z)”LZ(SI/\/ﬁr\/ﬁdX) B 2fzhng'(x_ (2) How

where [Im g'(x4(2))| = /7. A rescaling argument, similar to the one in the proof of Proposition
2.1.11, and Corollary 2.1.13 then imply

-1
9,010, —1(0, 2= —+0 h
(0ze0l0ze0) —1(0zeplep)l 2hIm g’ (x4 (2)) )

and similar for (03 fy|0z fo) — |(foldzfo)|>. Hence,

0:X1X)1° _ 1 i .\
IX12  h\ip,pHo+(2) 1p,PHo-(2)

with [{p,p}(p+(2))| = /7. The statement on the derivatives of the error estimates follow by the
Stationary phase method and the usual rescaling argument. O

(0,X10,X) — om?
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2.4.2 - Link with the tunneling effects
We will prove the following result in the light of Proposition 2.2.2.

Proposition 2.4.5. Letz € Q € Z, let X(z) be as in Definition 2.3.2 and let E_. (z) be as in Proposi-
tion 2.2.1. Let S be as in Definition 1.2.2. Then,

(0. X(2)1X(2))

0E_4(2)—E_.(2) X2 ”2

- (eolfo)

<o(net).
Proof of Proposition 2.4.5. Apply the 9, derivative to the first equation in (1.2.8),
(Pp—2)0ze0—eg = 0200 fo + @002 fo-
Taking the scalar product with f; (which is L?-normalized) then yields
(0zeol(Pr,—2)" fo) — (eol fo) = 0z a0 + ao (8 fol fo)-

Recall from Proposition 2.2.1 that E_. (z) = —ao(z) and use the second equation in (1.2.8) to see

0zE_+(2) — E_+(2)((0zeole0) — (02 fol fo)) — (eol fo) = 0. (2.4.16)
By Definition 2.3.2 we have the following identity

0:X1)= Y (0:80(z D o(z k) +2o(2: NOzo = b)) (Go(s P oz ).

11,1kl < S

Proposition 2.3.3, Corollary 2.3.4 and the Parseval identity then imply

(0:X1X)

X - (0zeoleo) + (foldzfo) + O(h™). (2.4.17)

Note that in the above we also used that ey and f; are normalized. Since (fy10% fo) = — (0 fol fo) we
conclude by the triangular inequality

(0:X(2)|X(2))

azE—+(Z) —-E_(2) 1X(2) ”2

—(eol fo)| = O(K™)|E-+(2)].

The statement of the proposition then follows by the estimate |E_ (2)| = @’(n% h%e‘%) given in
Proposition 2.2.6. O

2.5 | Preparations for the distribution of eigenvalues of Pg

To calculate the intensity measure of = we make use of the following observations:

2.5.1 — Counting zeros
Lemma 2.5.1. LetQ < C be open and convex and let g, F : Q@ — C be C* such that g # 0 and
028(2) +0zF(2)-g(2) =0 (2.5.1)

holds for all z € Q. The zeros of g form a discrete set of locally finite multiplicity. The notion of
multiplicity here is the same as for holomorphic functions, more details can be found in the proof.
Furthermore, for all ¢ € 6,(Q2)

g\ 1 2 >
X(=)=10:8"9)— ¢(z), €—0,
< (5)52| 8 zeg;(m

where y € ‘65’0(@) such that y = 0 and f x(w)L(dw) =1 and the zeros are counted according to their
multiplicities.

67



2.5. PREPARATIONS FOR THE DISTRIBUTION OF EIGENVALUES OF Pg

Proof. (2.5.1) implies that
ef@g(z) (2.5.2)

is holomorphic in Q. g has the same zeros as the holomorphic function (2.5.2). Thus, the zeros of
g in Q form a discrete set and the notion of the multiplicity of the zeros of g is well-defined since
we can view the zeros as those of a holomorphic function.

Let z9 € g~1(0) have multiplicity n. There exists a neighborhood W = Q of zy such that W n
g71(0) = z. Since e!@g(z) is holomorphic, there exists a neighborhood U c Q of zy and a holo-
morphic function f: U — Csuch thatforallze U

f(2#0, and e"@g(2) = f(2)(z—20)". (2.5.3)

Choose a A > 0 such that Ie_F(Z)f(z) - e_F(ZO)f(zo)l < Ie_F(ZO)f(zo)l for |z — zg| < A. In this disk we

can define a single-valued branch of {/e~F® f(z).
We take a test function ¢ € 6, (Q) with

supppc (UnWni{z: |z—zy|<A}) =N (2.5.4)
and consider for € > 0

g\ 1 1 g(2)
(1C) zlowst 0)= 2 [ 152 )0sorotarnian,
N

Let us perform a change of variables. Define
w:=g(a) = (z-20)"e " f(2), (2.5.5)
On computes that

0, w(2) = (z2—20)" e P (nf(2) + (2 20) (0. f (2) — 0. F(2) f(2))),
0zw(zy) =0. (2.5.6)

Let ry > 0 be such that D(zy, ry) < U, and define

C(rg):= min |f(z)] and M(rg):= max [|0,f(z)—0.F(2)f(2)I.

z€D(zy,10) z€D(zp,10)

By (2.5.3) it follows that C(rp) > 0 and we may assume that M (rp) > 0 since else, it follows immedi-
ately from (2.5.6) that 6, w(z) # 0 for all z € D(zg, ro)\{zo}.

Let 0 < r < min{C(rg)n/(2M(ry)), ro}, the triangular inequality applied to (2.5.6) then implies
that 0, w(z) # 0 for all z € D(zy, r)\{zp}. The implicit function theorem implies that we can invert
equation (2.5.5) for z in the disk D(zy, r)\{zp}, and w in the n-fold covering surface of w(D(zy, r)\{zo}).
Thus, if we denote the domain on each leaf of the covering by By, for k=1, ..., n, as a subset of C,
and the respective branch of g by g we get for € > 0 small enough

<x(§) Elz |6zg|2,<p> = ké giz /Bkw(g,;ltw))x (%) (1 +0w*) Lidw),
with g;1(0) = zo. In the above we used that
L(dw) = (10:8(2)1* - 10z8(2)*) L (2)
and the 5-equation (2.5.1) which implies
1028(2)° = 10:F (2)g(2)|* = O (w?),

Thus we can conclude

g1 2 -
X(—) - 102879 ) — > 9(2(0)) = ng(z), fore— 0. (2.5.7)
£/ € k=1
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Since g has at most countably many zeros in Q, there exists some index set I < IN such that we can
denote the set of zeros of g in Q by {z;}ie; := g‘l(O) N Q. Furthermore, let m(i) for all i € I denote
the multiplicity of the respective zero z;.

For each zero z; we can construct a neighborhood N;, as above, such that for a test function with
support in N; we have the convergence as in (2.5.7). By potentially shrinking the N; we can gain
N;inN;j=g@fori# j. Consider the following locally finite open covering of Q

Q= UQ\z;:iel}).

Uni

iel

Let {xi}icrui0; be a partition of unity subordinate to this open covering such that

1= xi+Xo

iel

Here y; € €;°(N;) and y; = 1 in a neighborhood of z; for all i € I. Furthermore, yo € €°°(Q2) and
z; ¢ supp o forall i € I. Let ¢ € 6,(Q2) be an arbitrary test function. By (2.5.7) we have for e — 0

1 1 .
<x (g) = |azg|2,<p> =2 <x (g) = |6zg|2r7(i(/’> = 2 m(yi(z)e(z).
iel

iel

Since g(z) # 0 for all z € supp yo we have for € > 0 small enough

<x(§)£i2|6zg|2,xw> =0

and we can conclude the statement of the Lemma. O

2.5.2 — An implicit function theorem

Lemma 2.5.2. Let R > 0 and a > ¢ = 0 be constants. Let D(0,R) c C be the open disk of radius R
centered at0 and let g, f : D(0, R) — C be holomorphic such that

lgloo<c, andforallze D(O,R): 0,f(z)=a+g(z). (2.5.8)

Assume that
£eD(f(0),(a-c)R) cC.

Then the equation

f@)=¢

has exactly one solution z = z(¢) € D(0, R) and it depends holomorphically oné.

Proof. For ze D(0,R)
f(z) :/ (a+gw))dw+ f(0)=az+ f(0) +G(z),
0

where G(z) := foz g(w)dw. Now let us consider the equation
az+ f(0)—&=0.
The unique solution lies in the disk D(0, R) since

¢ - f(O)] < Ia—CIR
a a

< R.

Now consider for € > 0 and for z € D(0, R — ¢) the equation
fl@y—=¢=az+ f(0)-&+G(z) =0.
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Recall that & € D(f(0), (a— ¢)R) which implies that there exists a €(¢) > 0 such that [¢ - f(0)| <
(a—c)(R—¢€(¢)). Thus for all € < (&)

laz + f(0) =&l =]azl—|f(0) —¢| > alzl - (a—c) (R—¢)
and, using that |G(z)| < c|z|, we may conclude that for |z| = R—¢
IG(2)| <laz+ f(0)—¢l.

By Rouché’s theorem we have that az + f(0) — ¢ and f(z) — ¢ have the same number of zeros in
the disk D (0,R—¢€). We also see that f(z) —¢ has no zero in D(0,R)\D(0,R —¢) and the result
follows. =

Proposition 2.5.3. Let a > ¢ = 0 be constants, n € IN, let Q < C" be open, bounded and of the form
Q={z=(2,z,)eC" : 2 €Q, |z, <Ry}
where R, > 0 is continuous in z'. Furthermore, assume that

* g,F:Q — C are holomorphic such that

Iglw=<c, andforallzeQ: 4, F(z)=a+g(2), (2.5.9)
e T €Q isopen so that in£ R, = const. >0,
z'e

* £€Nger D(F(2',0), (a-c)Ry) < C.

Then, when z' €T, the equation
F(Z,; Zn) = 6

has exactly one solution z,(z',&) € D(0, R,) and it depends holomorphically on ¢ andon z' €T.

Proof. Lemma 2.5.2 implies the existence an uniqueness of the solutions

zn(2',&) in each disk D(0, R,). By (2.5.9) it follows that
oF
—(2,z,(2,6) #£0
0z,

forallZ eTandall ¢ € D(F (z',0),(a—c)(Ry — )L)). Hence, the implicit function theorem implies
that z,(z’,¢) depends holomorphically on ¢ and z'. O

2.6 | A formula for the intensity measure of the point process of
eigenvalues of Pg

We prove the following formula for the intensity measure of = (cf (1.2.10)):

Proposition 2.6.1. Let h*/3 < n < const. and let Q := Qp €X. Let C> 0 and let Cy > 0 be as in
(1.1.10) such that C — Cy > 0 is large enough. Let 6 be as in Hypothesis 1.2.6 with x > 4, define
N:=(2|Cy/h) +1)? and let B(O,R) CN be the ball of radius R := Ch™! centered at zero. For z€ Q
let X(z) be as in Definition 2.3.2, let E_, (z) be as in Proposition 2.2.1 and let ey and fy be asin (1.2.6)
and (1.2.9). There exist functions

1
¥ (z;h,0) = (0, X10,X) — — (0, X|X)|?

X112
+5_2|(90|f0)(1 +@’(h°°))+@»(,71/452h—7/2)|2+@(53h_3)y 2.6.1)
|E_, (2) + O824 h5/2) 12
. ) 2.6.2
o) 2IX(2)2 ’ 26.2)
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and D >0 and C > 0 such that for all ¢ € €y(Q) and for h > 0 small enough

1+0(6n4n=3/2)
| X

E[Z@1s0nr | = / »(2) W(z; h,6)e @O [(dz)

+6’(e7h%).
Here, 0(n~*6h=%'2) is independent of ¢ and @"(e_h%) means {Ty,, ) where Tj, € 2'(C) such that

{Th, @) < CII(,ollooe_fTD2 for all p € 6,(QY) where C and D is independent of h, 6, n and ¢. Moreover,
the estimates in (2.6.1) and (2.6.2) are stable under application of n_HTm h"+magagl.

Proof. StepI Recall from Sections 2.2 and 2.3 that O'(Pg) = (E%,)71(0), thus Z (cf. Definition 1.2.10)

satisfies
= Y s
ze(E%,)1(0)

[1]

It has been shown in [67], that E?, (z) satisfies a d-equation, i.e. there exists a smooth function
f%:Q — C such that
0zE°  (2) + fP(2)E%, (2) = 0.

This implies that the zeros of E%, (z) are isolated and countable and we may use the same notion
of multiplicity as for holomorphic functions. In particular, E§+(z) satisfies condition (2.5.1). Let
x be as in Lemma 2.5.1, then by Lemma 2.5.1, Fubini’s theorem and the dominated convergence
theorem we have

E Y. 92 1ponr zlim/(p(z) (/ D(z, a)L(da))L(dz),
ze(E,)1(0) €0 B(O,R)
E° , 1 2 _
where D(z,a) =1 Ny —‘iz a))g—z azE§+(z,a)’ e %, (2.6.3)

Step II Next we give an estimate on 8, E%_ (z). By (2.3.2)
6ZE§+ (2) =0zE_+(2)—06(0;X(2)-a+0,T(z,a)), (2.6.4)

where the derivative 0, acts on X (z) component wise and the dot-product 8, X (z) - « is bilinear. To
estimate 0, T (z, ), recall (2.3.3) and consider the derivative

6ZE— Qw (EQw)nE+ = (azE—)Qw (EQw)nE+

+E-Qu | Y (EQw) 1 (0:E)Qu (EQw)" ™/ | E4 + E-Qu(EQy)"(0,E+),
j=1

with the convention (EQ,,)? = 1. Recall the Grushin problem from Proposition 2.2.1 and take the
derivative with respect to z of the relation &(z)2?(z) = 1 to obtain

0,8 (2)+E&(2)(0,22(2))&(2) =0.
A direct calculation yields

0,E=—-E@,(P,—2)E—E.(0,R.)E—E@0,R_)E-
=E>—E.(0,R,)E—E@,R_)E_.

Recall the definition of R, and R_ given in (2.2.1). By the estimates on the z- and z- derivatives of
ep and fy given in Lemma 2.1.11, we conclude that

102R: | i1~y 102 R- Nl g 12 = O (n** R 7Y).
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Similarly, we have the same estimates on |0, E. ||¢_ 2 and [|0, E_ || 1 _.¢- Thus, since |E(2) |l ;2 g1 =
O((hym~Y?) and | E+ | = 6(1), we have

102Ell 2. n = 6" *h™3"?).

Putting all of this together, we get that the series of 6,7 (z, @) converges again geometrically and
we gain the estimate

0. T(z,a) =0 (n'"*6h""?). (2.6.5)
Analogously, we conclude for all 8 € IN?
7 WP Tz, @) =60~V *6n5"2). (2.6.6)
Thus,

0.E® (2) = 0,E_.(2) — 00, X(2)- a + 0 ("6 h™"12).

Step III Consider the integral (2.6.3) and choose vectors ej, ez, - € CN as a basis of the a-space
such that e; = X/| X|| and such that e}, e, and X/|| X||,0,X span the same space: Therefore, we
perform a unitary transformation in the a-space such that with a slight abuse of notion

X 0, X 0, X(2)|X(z2)X

a (2) +arb| 22 (2)  (0:X(2)|X(2)) (z2) at, 2.6.7)
I X2 10: X2 10 X2 1 X2

where a1, a; € C and at € CV~3 and b > 0 is a factor of normalization,

b 10 X(2) I 1 X (=)l

(2.6.8)

VI0.X@I2 1X(2)]12 - 10, X (2 X (2)

This change of variables is well defined by Lemma 2.4.1. In the following we will also use the
notation (a;, @z, at) = (a1, a’). This choice of basis yields by (2.3.3) and (2.3.2)

E°,(2) = E_(2) - 81 X(Dllay + @ (V46252 (2.6.9)

and by (2.6.4), (2.6.7), (2.6.8)
(0:X(2)|X(2))
X2l

1(0.X(2)| X (2))
I1X(2)]I?

0:E° (2)=0.E_.(2)- & @

%
-0 (IlézX(z)ll2 - ) a+0(n'*8?n7?), (2.6.10)

Now let us split the ball B(0,R), R = Ch™!, into two pieces: pick Cy > 0 such that 0 < C; < Cy < C

and define Ry := Coh~!. Then we shall consider one piece such that ||a’ lcv-1 < Rg and the other
such that ||a'||gv-1 > Rg. Hence, (2.6.3) is equal to

lin?) @(z) / D(z,a)L(da)L(dz)+lin3/(p(z) / D(z,a)L(da)L(dz)

B(O,R) B(O,R)
la'llgn-1<Ro la'llgn-1>Ro
=: I (p)+ L(p). (2.6.11)

Step IV In this step we will calculate I; (¢) of (2.6.11). There we perform a change of variables such
that 8:= E% (z,a) is one of them. Due to (2.6.9) it is natural to express a; as a function of f and
a'. To this purpose we will apply Proposition 2.5.3 to the function E§+ (z,):
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E® .(z,a1,a) is holomorphic in @ in ball of radius R = Ch™! centered at 0. Here, a plays the
role of z in the Proposition, in particular a; plays the role of z,. Recall (2.3.2) and note that since
T(z,@) =0 (n 46 h™%2) (cf. (2.3.3)) we can conclude by the Cauchy inequalities that

00,0T (2, @) = @(n_1/462h_3/2)
which implies
0, B2, (z,a1,a') = —8|1 X (2) | + @ (n 462 h7372). (2.6.12)
By Proposition 2.3.3 we have that | X (z)]| = 1 + €@ (h*°) which implies that
00, B2, (z,a1,0) = =6 (1+0(h™® +n~ V46 h732)).

Hence, ES + (2, ) satisfies the assumptions of Proposition 2.5.3. Since we restricted a'to|lallgv-1 < Ry
and since
la1| < R* = ||| gv-1 =t Rar,

it follows by Proposition 2.5.3 that for

Be N D(E§+(z,0,a'),rw) (2.6.13)
la'l gn-1<Ro
with
VC -G snt
ra 28 (1+0(h+ 7 oh) F— > ——>o. (2.6.14)

and & > 0 small enough, = E§+(z, a1, a’) has exactly one solution a4 (B, a@’) in the disk D(0, Ry/)
and it depends holomorphically on § and a’. More precisely,
B _:6 + E_+(Z) +@(n—1/452h—5/2)

a1 (B,a’) = SIX @I . (2.6.15)

Furthermore,
L(da) =104, E° |2 L(dB) L(da’).

Since the support of y is compact, we can restrict our attention to $ and E§+(z,0, a') in a small
disk of radius € > 0 centered at 0. By choosing € < §h~1/C, C > 0 large enough, as in (2.6.14) we
see that ,6,E§+(z,0, a’) € D(0,¢) implies (2.6.13). By performing this change of variables and by
picking € > 0 small enough as above, we get

1
LI (p) =£%/(p(2){/)((§) g—zA(ﬁ,z)L(dﬁ)}L(dz), (2.6.16)
C

where A(f, z) depends smoothly on z and on § and, using (2.6.10), is given by

-2
A(ﬂy Z) ::T[_N / ]lB(O,R) (aly a,) 6a1E§+(a1y a/y Z)|

la'll gn-1<Ro

: _ X @IX(2) 1agz 12|
'A(a,z) i BIE B(z)az+0(n "*6°h™""?)
2
. _'B+E_+(Z) +@>(n—1/452h—5/2)
. —aa — ’
exp{ aa SIX DI Lda), (2.6.17)

where where a1 = a; (8, &/, z) and A(a, z), B(z) are defined as follows:
(0, X(2)1X(2))
1 X (=)
+@>(n1/462h—7/2)
= (eolf) 1+ @ (R™)) + @ (n"/*6% h™7'?)

Ala,z):=0,E_,(2)— (E—+(Z)+@’(n_l/462h_5/2))

32
= @’(n3/4h_ée_n’1) +o(n'*82n7?). (2.6.18)

73



2.6. AFORMULA FOR THE INTENSITY MEASURE OF THE POINT PROCESS OF EIGENVALUES OF Pz

The second identity for A is due to Proposition 2.4.5 and the following estimate

(0. X(2)1X(2))
1X(2)112

10, X (2l oo 1/27-1 1724 -1
< =(1+0C(h o} h™)=0 h
< X@ (1+6(r*))o(n )=6(n )

which follows from Propositions 2.3.3 and 2.3.4. In the last line we used Proposition 2.2.6 together
with (2.1.5). Furthermore, recall by Step II and Step III that A(a, z) is holomorphic in a.
Similarly, we define

3.X(2)|X(2)I? 2 _ 1
B(2) ::6(||GZX(Z)||2— I ”)((Z();)”gz))' ) :@(n Udsh z). 2.6.19)

The estimate in (2.6.19) follows from Proposition 2.4.1.

Remark 2.6.2. It follows from Proposition 2.4.5, Proposition 2.2.6, Proposition 2.3.4 and from
(2.6.6) that

ntm =5/
n h”*mOZOZmA(z) _ @(nmh;e"h) n @’(771/452}177/2):
RN B(2) = 6 (n s, (2.6.20)

Since A(B, z) is continuous in §, the dominated convergence theorem shows that
I1(<p)=/<p(Z)A(0,Z)L(dZ).

Next, let us look at the indicator function 15 gy (@1 (B, @', 2), @') for |a’|| < Ry: By (2.6.15) we have

|E_+(2) + G (62 h™%"?)|

0,a)| =
10, &) SIX @

Thus, 1g0,x)(@1(0,@',2),a') = 1if |21 (0,@)? < R2~R2 = &, ||a'|| < RZ and if R?~ R2 < |a; (0, &) <
R?, lla'll < R3 — a1 (0,a)|?, and 1p( g (a1(0,a',2),a’) = 0 if R? < |a;(0,a")|?, with C*:= C* - C3.
Hence, we split A(0, z) into

A(O,Z) :A(O,Z) H{WS%}(Z)+1{%<\/W<R}(Z)
=:MA1(0,2) + A2(0, 2), (2.6.21)
where
|E_+(Z) +@(62n—1/4h—5/2) |2

O(z; h,6) := 521X (2) 12

We start by treating A;. Note that the function
! l I 2
{la'llgyv—1 <Ro} 3@’ — eXp{— |1 (0,0, 2)] } €[0,1]

is continuous, bounded and recall that (2.6.15) holds for all @’ € {||a’|cv-1 < Ro}. Furthermore,
note that all factors in the integral (2.6.17) are positive. Since the ball {||a’||gyv-1 < Ro} is simply
connected the intermediate value theorem yields

— — — -2
M09 =N o D [0IX @I +0(n 6% ")

-expl{-0(z; h, 8)} / |A(a, 2) - 0B(2)az2 e Y L(da)). (2.6.22)

lla’ | gn-1<Ro

Here we also applied (2.6.12). Before we can further simplify (2.6.22), let us prove the following
technical Lemma:
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Lemma 2.6.3. Let h >0, let Cy,Cy >0 and let N := (2|2 +1)%. Letn e NV"!,me NN7!, let Ry =
Co/h and leta € CN. If Cy > C) > 0 are large enough and such that

eR2 R?
In (2 + 0 ) 0

N-2| 2(N-2)

then, for h > 0 small enough, there exists a constant Dy, ,, =: D > 0 such that

— — b
JII_N/ a’”a’me‘““L(da’) =6’(e h2)_
lla'llgn-1=Ro
Proof. Define
_ | Inl+1mi, ifitis even
~Inl+1ml+1, else
and notice
7'[1N/ a,ngmeia/wll(da,)
||le HcN 1>R0
(e o] 2 0o
Snl—N|82N—3| J2Ur2N=3=1% g0 _ / JUN-24-7 o
Ry S (N-2)
Repeated partial integration then yields
2 u+N-2 +N-2 )
DY (u ; )(u+N—2—i)!R§‘. (2.6.23)
(N-2)! =

Using Stirling’s formula one gets that (2.6.23)<

eVu+N-2) _pt 32

5 u+N—2)(u+N—2)“+N‘2‘iR2i
(N-2)! = i e 0
W+rN-2) _ Rz( e )N—z( 2+u+N—2)”+N_2
V21 (N -2) N-2 0

S e

Since u/(N —2) is bounded for /& > 0 small, it remains to consider

N-2
u 5 U+N-2)\%
RO+— .
N—2 e

5 Rie u » U+N-2
exp{—Ry+(N-2)In +1+ +uln|{Ry+ ——| ¢. (2.6.24)
N-2 N-2 e

However, there exists a 1 >« > 0 such that

~RZ+ (N—2)ln(]\};§_e2 1+ NLiZ) <Rl = —Z—‘Z’z,
which implies that (2.6.24) is dominated by
ors h?
ol o)}
and we conclude the statement of the Lemma for / > 0 small enough. a
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Let us return to (2.6.22): We are interested in the integral
N / |A-Ba,|* exp {—a’?} L(da). (2.6.25)
la'll gn-1<Ro

We will investigate each term of (2.6.25) separately. Since B is constant in a and since
/Iazlzexp(—a’E)L(da’) =N

we conclude, by Lemma 2.6.3 for Cy > C; > 0 large enough and & > 0 small enough, that there
exists a constant D > 0 such that
7 _D
N / |Basl2e™ Y L(da') = n7 | B? +@(n‘%62h‘1e 2 )

'l gn-1<Ro

The mean value theorem, (2.6.18) and Lemma 2.6.3 imply that there exists a constant D > 0 (not
necessarily the same as above) such that

a N / |AJ? exp{—a’?}L(d(x’) =n_1|A|2+@(e_h%).

' llov-1 <Ro

Note that after the equality sign we have A = A(a@’, z) for an @ € B(0, Ry) given by the mean value
theorem. Next, since (2.6.19) is independent of «,

a N ZBage_“WL(da') =nNB / Zage_“@L(da').

la'll gv-1<Ro la'll gn-1<Ro
Since A(a, z) is holomorphic in a we gain from (2.6.18) by the Cauchy inequalities

00, Al = G(n""*6%h%'%). (2.6.26)

Here we used that the first term in (2.6.18) is independent of a. Extend A to a function on CV~!
such that the above estimate still holds. Then, by Lemma 2.6.3 there exists a constant D > 0 such
that

_ = 32 D
n VB / Aage‘““L(da’):@(n“zh‘lae‘"h +53h‘4)e 2.

la'll gn-1=Ro

Here we used (2.6.18) and (2.6.19). Stokes’ theorem and (2.6.26) imply
VB / Aaze " Lda') =7 VB / (0z,4) e L(aa"
CN*I CN*I
<0(5°n™3).
Plugging the above into (2.6.25), we gather that there exist a constant D > 0 such that
-N 2 7 4
/4 / |A—Bas| exp{—aa}L(da)
la'll gn-1<Ro
=77 (1A@P +1B@P) +6(6°h +e 77
=:6°¥(z, h,0). (2.6.27)
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By (2.6.18) and (2.6.19), we see that 77 (|A(2)|? + |B(2)|?) is equal to
52 1

—(0:X10,X) — — (0, X|X)|?

(0:X10:5) - =5 10 X1

+672|(eol )1+ 0 (1) + 0 (n*'*6*h™7?) "),

The above, (2.6.27), (2.6.22) and

(1 + @(n—1/45h—3/2))
o%m| X (2)112

|6||X(Z) ” +@>(n—1/462h—3/2)|_2 —

’

imply that for & > 0 small enough, there exists a constant D > 0 such that

(1 +@(n—1/45h—3/2))
7| X (2)]2 (V/6(zh,6)<

A1(0,2) := ¢,(2)¥ (2, h,5) exp @@ (2.6.28)
h

Finally, let us estimate A, from (2.6.21): applying (2.6.18), (2.6.19) and Lemma 2.6.3 to (2.6.17)
yields
-& 4,1/2 1/23,-1 =2 -
A2(0,2) e 2@ |8*n2h " +nt2h 6e_h)=@’(e hz),
for some D > 0. Thus, we can substitute 1 (/oERD=E) (z) with 1 in (2.6.28), up to an error of order
D
Oe 7).

Step V In this step we will estimate I»(¢) of (2.6.11). Therefore, we increase the space of inte-
gration

2 _
30.E%, (2, a)‘ e (da)

E§+(z, a)l| 1
e e

&
B(0,R)
la'llgn-1>Ro
E . (z,a)) 1 2 -
< 2T = azE§+(z,a)) e L (da) =: W,.
& &
B(0,2R)

Ro<lla’ll oN-1<2Ry

It is easy to see that Lemma 2.5.2 holds true for the set B(0,2R) N {Ry < ||&’|cv-1 < 2Rp}, potentially
by choosing a larger C > 0 in Corollary 1.1.5 larger. We can proceed as in Step IV: perform the same
change of variables and the limit of € — 0. This yields

lim W =r N / 1p0.2m (@10,a,2), @) |0q, Blar, @', 2)|

Ro<lla'llgn-1<2Ro

|A(a, 2) - B(2)as|? exp {—a’ﬁ— Alz, h,6)2} Lda).

By (2.6.18), (2.6.19) and Lemma 2.6.3 we see that there exists a constant D > 0 such that

N / |A— Bay|>e" ¥ L(da')

Ro<lla’ | gpn-1<2Ro

—n3/2

< e_igﬁ(6417”2h_7 + nuzh_lée_wh) = @(e_h%) .
The statement about the derivatives of the error terms follows from (2.6.20), (2.6.6). O
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2.7 | Average Density of Eigenvalues

First, we will give the proof the principal result of Section 1.2:

Proof of Theorem 1.2.12. Due to (1.1.15) and Hypothesis 1.1.6 we have that, for k¥ > 4 (as in Hy-
pothesis 1.2.6) large enough, that (1.1.16) holds. Therefore, we assume that (hln%)Z/3 «<n=C,
where C > 0 is a constant.

In particular, we now strengthen assumption (2.1.1) and assume from now on that Q € X sat-

isfies Hypothesis 1.1.7 if nothing else is specified, i.e. we assume that

Q € 2 is open, relatively compact with dist (Q, %) > (hln h_l)Z/3 .

Recall the definition of QT‘; NQ given in (2.1.2):

o ={zeQ: = <Imz=Cn}

7
C
for some constant C > 0. Define

ﬁ,‘;::{zeQ: %slmstCn}.

Definen;:=C ~J, j € Ny, and consider the open covering of Q

’

-, —
ac U anu(Q\ U af
jelNo jeN

where dist (Q\Ujen, Q_,‘;j, 0%) > 1/C, thus, conforming with the previous notation, we may define

=0\ J QF.
JjeWNy

Let {)n,}jen, be a partition of unity subordinate to this locally finite open subcovering such that

1=} Xn; + Xno»
jeN

in a neighborhood of Q. Here, for j € IN, x;, € <€6’°((~2,’;), supported in either ﬁ,“]. Furthermore,
Xno € €°°(Q;). This partition of unity together with Proposition 2.6.1 yields

E[Z@1por | = ) E[Z@x)1son | +E[Z@xo 1oz |
jelN

1+0(n;Y46n=3/2
( ! )‘I’(z; h,8)e ®i L(dz)

=) | e@xn; 2

jeN X2
+/‘p(z)’“’(z)%‘?(z;h,5)e‘®0L(dz)+@’(e‘»?z).
ml X2
where
_ |E_+(z) +@(n;1/452h—5/2)‘2 e R

@] -

821 X112 o 821 X12

Note that to gain the exponentially small error estimate in the above we used that the bound on
the distribution T}, € D'(C) (cf. Proposition 2.6.1) is independent of 7. Thus,

_D
Y Tn@xn) | = KTn, @)l < Cligllooe™ 7.

jeN
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Analysis of the density V¥ Recall the formula for the density of eigenvalues given in Proposition
2.6.1. Define

1
Wi(z;h,8):= (0,X]0,X) — XP 10, XIX)|*+0(5°h™3) (2.7.1)

Since the error above is of order (1), it follows from Proposition 2.4.1 that

1 i i
W, (z,h,6) = — _ - O(dist (z,0%)7?),
1z 1, 0) h{{p,p}(p+(2)) {p,p}(p—(Z))}+ (dist (z,02)7)

where we used that Imz = 7; for z € Qj . Proposition 2.4.2 implies
J

Y, (z,h,0)L(dz) = i p«(dé A dx)+0(dist(z,02) %) L(d2).
Furthermore, Proposition 2.6.1 and Proposition 2.4.1 yield that
s ool ol
where 6’(17;2) is the error term of ;. Next, let us turn to the second part of \¥:

572 ’(e0|f0)(1 +0 (k™)) +@’(n}/452h‘7’2)'2
=572|(eol )| 1+ (h™)) + 0 (621" + 0 (1} B2 | (e fo)
=572|(eol fo)| 1+ (h™)) + 0 h~ e 7 +7}/2620 7).

In the last line, we applied an estimate on |(e0| f0)| which follows from Proposition 2.2.2 and from

Remark 2.2.4. The error term O () ; h_4e_%) isbounded by @'(n ;) because n > (—hln h)2/3. We then

absorb @(n;) into the error term @’(17;2) of ¥, as well as the error term @(n}./zéth) < 6’(17}./2).

Then, one defines

W, (z: h,6) = lteol )l (1 +@’( ‘3’4h“2)) 2.7.2)
2(z;h,0) 1= — n; ) 7.

As in (2.6.20), the error estimates don’t change if we applyn™ 2 h"+magag.

Analysis of the exponential ® Recall from Proposition 2.2.1 that —ag = E_; and use (2.2.26) to

find that a2
j
p )

Here y € <€5’°(Sl) with y = 1 in a small open neighborhood of {x_(z); z€ Q}. Thus, using | X]| =
(146 (h*™)) (cf. Proposition 2.3.3), we have the following equation for © given in Proposition 2.6.1

E_1(2) = ([P, xleol fo) (1 +@’(eXp

’E_Jr(z) + @(ﬂ;1/452h_5/2) ‘2

O(z, h,0) =
=m0 521 X2
2
[Py, x1eol fo) + 0 ;46217512
— 1+0Cle n 2.7.3
52(1+0/(h*)) ¢ &73
Asin (2.6.20), the error estimates stay invariant under the action of

17;T h"*’”dgd’z". Finally, to conclude the density given in the Theorem, note that

1+0(n; M 5n32) 1+6(dist(z,05) " V45h372) .

X2 T
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In the case of the operator P?, it is possible to state more explicit formulas for the different
parts of the density of eigenvalues given in Theorem 1.2.12:
It follows by Propositions 2.4.1 and 2.4.2 that

1 1 ‘ i
—pu(déndx) = —3 —— *5 L
2P (e 14 h{{p,p}(p+<z)) {PrPNP—(Z”} -

1
=———1(dz)
hy/dist(z,0%)

where we used that Imz =7; for z € Qf]. For our purposes we can assume that [Imz — (Im g)| >
1/C, C > 1, since inside this tube ¥, and © are exponentially small in & > 0. In the case of ¥,
this follows from the assumptions on § (cf. Hypothesis 1.2.6) and from Remark 2.2.4. In the case

of ©, this follows from the assumptions on 6 and Proposition 2.2.12 and (2.7.3). Thus, applying
Proposition 2.2.2 to (2.7.2) yields

(£4p, P} ) 1P, pHp-))?

Y2 (z;h,6) = e

10im=S(2) 1%~ 7 (1+6(n~34h12)). 2.7.4)

Asin (2.6.20), the error estimates don’t change if we apply n‘me h"+m0;‘0§. Moreover, since Im z =
njforze Q,‘;,
(dist (z,0%))3/2e~

hé?

‘I’g(z; h,0) =

Apply Proposition 2.2.12 to (2.7.3) gives that

_2s

28 =32
@(z,h,6)=V(z,h)286—2h(1+@(h°°)+@(e‘ i ))

+0(n;"26%07%) + 0 (VR ). (2.7.5)

Since0< V = @’(17}/4h”2) by (2.2.23), it follows that

D=

_2s
e

h(é{P»ﬁ}(mf{ﬁP}(p—)) _ (1+@(n;1/4h%))

+ @’(n;l/zézh_S) + @’(n}“h_ze_%) .

O(z,h,6) =

Furthermore, fore™ 0 672 <1, the error term © (n}./‘l h=2e” %) isbounded by G (17}./4 h~26) since there

we have that e < &. For e~ 82 < 1, we have that
@’(n}mh_ze_%) < @(n}/‘lh_zée_%ﬁz) < @(n}/4h2e_%6_2).

Thus,

O(z,h,0) =

1
R 10,5 (0 (5 Y (o) o=
(5ip p}(mj:{p p}(p-)) e62h (1+@>(n;“4h%))
+0(n}/*h726 402620 7) (2.7.6)

_B
Analogous to (2.6.20), the error estimates stay for 8 € IN? invariant under the action of n; 2 plp '65 -
Moreover,

_28
0°(zih,6) = h/dist (2,0%) =5

We have thus proven Proposition 1.2.14 and Proposition 1.2.13. Since we will need it later on we
will state the following formulas:
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Lemma 2.7.1. Under the assumptions of Theorem 1.2.12 and for (hIn h_1)2/3

_ 1 (Img"(x) Img"(x4) “2\ _ o (n-3127 -1
Ormz¥1= 4h((lmg'(x_))3 (Img’(x+))3)+ﬁ( J=0(mrh)

and for|Imz—(Img)| > 1/C, C > 0 large enough,

« 1] < const, we have

28

2 (L1p, B} p+) L 7, pHp-))?
(5{p, P}p+)3{P, P}p-)) |aImZS(z)|2(—01mz3(Z))e5_zh

mh?
(eofronn).

Omz¥2(z,h) =

1
2

2(3p. P ) 51D, pY(p2)
62 exp{—%}
+O(n*"*h 35+ 6%n7%),

Omz0(z, h) =

(~0um=S(2) (1+6(n~""*R? )

Proof. Let us first treat ¥;: Recall from the proof of Proposition 2.4.5 that ¥, was given by an
oscillatory integral where the phase vanishes at the critical point. Thus, the 0y, ; derivative of the
error term @ (n~2) grows at most by 1. Thus, taking the derivative of (2.7.1) yields

1 ( Img"(x-) Img" (x4)

- _ -3y _ -3/23-1
4h \((Img'(x-))®  (Img'(x4))3 Gn~)=0m""h"),

6Imz\yl =

where the last estimate follows from [2Im g’ (x4 | = |{p, p} (p+| = /7 (cf. Proposition 2.4.1) and from
the fact that the z- and z-derivative of the error term grow at most by a factor of @(n'/2h~1).

Now let us turn to ¥»: one calculates from (2.7.4) that for [Imz—(Im g)| > 1/C
1
2 _28

2(L{p, P} o) (D, p}(p-)
(2 b, ps\P+)5 P, Ps\p ) |aImZS(z)|2(—61mZS(Z))e§_2h

mh?
(ieofrnd).

Here we used that the z- and z-derivative of the error terms grow at most by a factor of @(n'/?h™1).
Finally, let us turn to ©: as in the proof of Proposition 2.2.3 one calculates the formula for
Orm 2® from (2.7.6). O

Omz¥2(z,h) =

2.8 | Properties of the density

In this section we will discuss and prove the results stated in Section 1.2.4.

2.8.1 — Local maximum of the average density
First, we prove the resolvent estimate given in Proposition 1.2.5.

Proof of Proposition 1.2.5. Recall from Section 1.2.2 that the operator Q(z) is self-adjoint and that
[to(2)] = |ao(2)]. It follows that

I(PL—2) "1 =102 = lag ().

Recall the Grushin problem posed in Proposition 2.2.1. Since E~! = —a, it follows by Proposition
2.2.12 that

exp{%}
V(2)|1-e®@| (1 +@,(e=nh2))

which together with (2.2.23) implies (1.2.3). The result about the asymptotic behavior of the resol-
vent follows from the above together with the fact that |{p, p}(p+)| = /7 (cf. Proposition 2.4.1). 0O

I(Pp—2)7 = 2.8.1)
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2.8. PROPERTIES OF THE DENSITY

We have split the proof of Proposition 1.2.15 into the following two Lemmata:

Lemma2.8.1. Letze Q€ X, 4 withZ 4z asin (1.2.16) and let S(z) be as in Definition 1.2.2. Let§ >0
and e(h) be as in Hypothesis 1.2.6 withk > 1 large enough. Moreover, let E_. (z) be as in Proposition
2.2.1. Then,

* for0< h < 1, there exist numbers y.(h) such that g = S(y+(h)) with

2
C'(hInh™')* < y_(h) <({Img)—chinh™!

2
<{(Img)+chlnh™' <y, (h) <Imgh)-C! (hln h_1)3 ,
for some constants C,c > 1. Furthermore,

y_(h), Im g(b) — y (h)) = (go(h))*'3;

* there exists hg > 0 and a family of smooth curves, indexed by h €] hy, 0|,
¥ e, dl— C withRey" (1) = ¢
such that
|E_+ (Y1 (0)] =6,

and

10~ el
Imy; (£) = y+(e0(h) (1 +@(€o(h) .

Furthermore, there exists a constant C > 0 such that

dlmyﬁ
dat

€3] =@’(exp ch

&) )

Lemma 2.8.2. Assume the same hypothesis as in Lemma 2.8.1 and let

1+ @(5h—%dist(z,azr“4)
D(z,h) :=

- W (z; h,6) exp{—0O(z; h,6)}

be the average density of eigenvalues of the operator ofP;z given in Theorem 1.2.12. Then, there exists
ho > 0 and a family of smooth curves, indexed by h €] hy, 0],

I :1c,dl— C, ReT" (1) = 1,

withT_ c{lmz < {Img)} andT; c {Imz > (Im g)}, along whichIm z — D(z, h) takes its local max-
ima on the vertical line Re z = const. and

d_ (R
—ImT2 (1) _@(Eo(h)4).

Moreover, forallc< t<d

I OERE0] s@’(h—s).
+ + E()(h)l?’/s

Proof of Proposition 1.2.15. The first two points of the proposition follow from Lemma 2.8.1 to-
gether with the observations that |E_ (z)| = |ag| = |t (2)| (cf. Proposition 2.2.1) and that by (2.8.1)

IPr—yM M I=67"

The third point has been proven with Lemma 2.8.2. O
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Proof of Lemma 2.8.1. Recall from Proposition 1.2.3 that S is strictly monotonous above and below
the spectral line, i.e. Im z = (Im g). Furthermore, recall from Hypothesis 1.2.6 that — (K — %) hinh+
Ch < ¢€p(h) < S((Im g)). Thus, the implicit function theorem implies that there exist y.(eg(h)) € R
such that S(y.(g9(h))) = €9(h). Note that in the case where £y (h) is independent of h, the same
holds true for y.(ep). For the rest of the proof we will only treat the case where Imz < (Im g)
(corresponding to y_) since the other case is similar.

Consider z € Q € X, ; with Rez = const. First, let us prove some a priori estimates: assume
that there exists a {_ with h?3 « Img(a) = (- < {(Img) such that |[E_.(Rez + i(2)|67! = 1. Recall
Proposition 1.2.3 and note that

Imz
S(z) —go(h) =/ (OmzS)(H)dt+ SKIm g)) — go(h)
{Img)

Imz
=/ (OmzS) (D) dt+ S(y-(e9(h)) —go(h). (2.8.2)
y-(eo(h)

Recall Proposition 2.2.12 and Hypothesis 1.2.6. It follows by (2.8.2), that if [(_ — (Im g)| < %, C>0

large enough, then |[E_, (Rez+i{_)|60 ' <@ (17”4e‘ﬁ) for some D > 0 large. Thus, we may assume
that, in case it exists,

(- —(Img)|> é (2.8.3)
We conclude from (2.8.2) that
y-(h) = (o (W)*" (2.8.4)
and that for C > 0 large enough
(Img) -y (@1 > . (2.85)

(2.8.4), (2.8.5) and Hypothesis 1.2.6 imply, for ¥ > 1 large enough, the first point of the Lemma.

Now let us prove the existence of the points {_. More precisely, we will prove that for ze Q. 4
withImz <({Img) —1/C (cf. (2.8.3)) and fixed Re z there exist exactly one {_ such that

|E_;(Rez,{ )67 =1.

ForzeQn Q,’; € 2. 4 one calculates from by Proposition 2.2.12 that

el
)

Recall that V is the product of the normalization factors of the quasimodes e, x;, and f,,, when
z € Q with dist (Q2,0%) > 1/C and the product of the normalization factors of the quasimodes ez} b
and f:} kb when ze QO n Q,‘; (cf. (2.2.21)). Since the derivative with respect to Im z of the imaginary
part of their phase function Im¢. is equal to zero at x., it follows that

Orm S
Ot 2| B+ (2] ={—V(z>““ZT(Z)|1 _ @)

+0mz | V(@1 -e®@||1+0

_S@@
}e i (2.8.6)

101m 2V (2)| = G (h' /2734, (2.8.7)
The a priori bound (2.8.3) implies that there exists a constant C > 1 such that
1-e®@ =140 (e‘ﬁ) , and Oy ;|1 —e2@| =@ (e‘ﬁ) . 2.8.8)

The fact that 01, ;S(2) > 0 (cf. (1.2.3)) implies that 0y, 2| E—+ (2)| < 0. Note that in the case where
dist(Q2,0%) > 1/C one sets in the above 1 = 1. Recall from Propositions 2.2.9 and 2.2.10 that V is
independent of Re z. Using

ORezl1 _e©(z)| = @(e_é);
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we conclude that

ORez|E—+(2)| = ORe

V(z)1-e®@ (1 +@’(e‘:"hz))

=) sw
=6’(e h )e h, (2.8.9)

This implies that the gradient |E_. (z)| is non-zero for all z with |[Imz - (Img)| > 1/C (cf. (2.8.3))
and thus we may conclude by the implicit function theorem, that for 6 as above there exist lo-
cally smooth curves yﬁ (Rez):= (Rez,{_(eg(h),Rez)such that |E_, (yﬁ )| = 0. Furthermore, we may
extend y_(Re z) smoothly for ¢ < Rez < d. By the mean value theorem applied to |E_. ()|, there
exists a { between y_(h) and Imy” (Re z) such that

|E_+(Rez+iy_(h))| - IE_+(yﬁ(Rez))||
= [(OmzlE-+(2))Rez+i{)|-|y-(h) —Imyﬁ(Rez)I.
Since |E_, | = @(\/ﬁn”‘le_%) (cf. Proposition 2.2.6) and Oy z| E—+| = —h‘1/2n3/4e_% (cf. (2.8.6)), it

follows that
ly—(h) —Imy" (Rez)| =@ (n™'"?h). (2.8.10)

n=y_(h) = (e9(h))?’® implies that also Imy" (Re z) = = (g9(h))*3, and we conclude that

Imy" Rez) = y_(eo(h)) (1 +0 goi(lh) ))
Finally, by
0= L|E,+(ﬂ (Re 2))|
dRez
= Opez|E—+ (y" (Re 2))| + O1m 2| E_ (y" (Re 2))| d;meyf (Rez).

and by (2.8.6 ) and (2.8.9) we may then conclude

dimy? oo @(eﬁj’z) (2.8.11)

dRez

which, using = y_(h) = (g9(h))?'3, yields the last statement of the Lemma. 0

Proof of Lemma 2.8.2. The idea of this proof is to search for the critical points of the average den-
sity of eigenvalues via the Banach fix point theorem. We shall only consider the case where Imz <
(Im g) since the other case is similar.

Recall from Proposition 1.2.13 the explicit form the density given in Theorem 1.2.12. Propo-
sition 2.4.1 and the fact that Im g has exactly two critical points imply that ¥, is strictly mono-
tonously decreasing. Thus, we may assume similar to (2.8.3) that for C > 0 large enough

1
Imz - (Img)| > Ik (2.8.12)

since else ¥, = @(e_ﬁ) with D > 0 large. Now, to find the critical points of the density of eigenval-
ues consider

701m 2D (2, h) = (01m ;¥ (z; h, 8) exp{—O(z; h,6)}) (1+ 6 (5074 h73/2))
+W(z; h,8) exp{—B(z; h,6)}@ (6n''*h™>'?)
=0. (2.8.13)
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~1/4p=3/2) increases its order of

Here we used that the z- and z-derivative of the error term @ (67
growth at most by a term of order @(n”zh‘l) (cf. Theorem 1.2.12). By

Omz¥Y(z; h, 5)e—®(z;h,6) = (Omz¥Y1+0mz¥Y2 — (V1 + ¥2)0m -0) e—@(z;h,é)y

and by Lemma 2.7.1 and Proposition 1.2.13, we can write (2.8.13) as

BB 1)+ 28 0 S P (O Sy (2 PP P2 P PLP-))
52 mh?
h(Lip, PHp) 2P, pip-))?
162 exp{—%}

'(1+6(T]—3/4h1/2)) (1+@(n—3/2h))_

-0, (2.8.14)
where F(z, h,0) is a function depending smoothly on z, satisfying the bound

h2
F(z,h,0) = ——.
773/2

Here we used i, W1 = —(n*’2h)~! which follows from Lemma 2.7.1 using the fact that Im g has
only two critical points: a minimum at a and a maximum at b.

Remark 2.8.3. In the case Im z > (Im g) we find similarly that F(z, h, ) = 17%

Furthermore, the functions in (2.8.14) are smooth in z and the z- and z-derivative increase
their order of growth at most by @(n'/?h~!). Recall |E_ + ()| as given in Proposition 2.2.12 and
define

h (%{p!ﬁ}(p+)%{ﬁ, p}(p_)) 2 e_sz

/4
Thus, (2.8.14) is equal to zero if and only if

G(z,h,0)+1(1-D =0, (2.8.15)
where G(z, h,6) is a function depending smoothly on z, satistying

F(z h,0) —3/47.1/2 h?
Gz, h,0) = 1+0 h -
(= 10) 2|01m 2S(2)12(=0im 2 S(2)) ( (n )) B

The z- and z-derivative increase the order of growth of G at most by @(n% h™Y). Forl=0tobea
solution to (2.8.15), it is necessary that

h2
1+ ——.
o)n?

Thus, ! = 1. Define the smooth function

3
n
z— t(z):= ﬁ(l(Z) -1,

with —¢p < t < Gy and ¢y, Cp > 0 large enough. As in (2.8.6) on calculates
h2 20 S 1/2
it = — I (14 G (32 ) I(Im 2) = _nT’
n

. . 1
where we used that O S = /7] (cf. Proposition 1.2.3) and that 0z (5{p, P}(p+) 5 {P, p}(p-))? is of
order @(n~1'?) due to the scaling Z = zn as in the proof of Proposition 2.1.11. The implicit function
theorem then implies that we may locally invert and that t — (Im z)(¢) is smooth. Since —¢y < t <
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Co we may continue (Im z)(¢) smoothly to all open subsets of the domain of ¢. Furthermore, we
conclude that

d(Imz
( ) - n—7/2 B3
dt
Substitute Im z = Im z(t) in (2.8.15). To find the critical points, it is then enough to consider

(2.8.16)

G(Imz(t),Rez, h,))

t—G(t,Rez,h,8) =0, G(t,Rez, h,8):=
(1, Rez,1,0) (LRe2 0= = e 32 s)

and one finds

d -~
—-Gl(t,Rez,h,0)) = O (h*n~3).

Thus, using ¢(y") = 0 as starting point, which corresponds to /(y") = 1, the Banach fixed-point the-
orem implies that for each Re z there exist a unique zero, t* (Re z), of (2.8.14), it depends smoothly
on Re z and satisfies

It* Rez) -ty <o (W?n~3). (2.8.17)

and
dt*(Rez) 3 1

— (OrezG)(t*,Rez, h,5))
dRez  1-(4£G) 2 Rez h,6)

1 -
T 1+o2n-3) *’R Ity .
1+6(h2n-3) (Ore-G)(t2,Rez, h,6))

Since the z- and z-derivative applied to G increase its order of growth at most by @(n'/?h~1), we
conclude that

dt*(Rez) 1241
—— =0 h™ ).
dRez M )

Taylor’s formula applied to (Im z)(#) yields that

t; (Re z) dimz

(Imz)(t; (Rez)) = Imz(t(Imy};(Rez))) +/ (m)dr.

tdmy" (Rez)) At
By (2.8.17) and (2.8.16) we conclude that

(Imz)(t} (Re2)) = Imy" (Re z) + @ (132 %) (2.8.18)
and using (2.8.11) that

d * _ -671,4
—dReZ(Imz)(ti(Rez))—@’(n h*).

It follows by Proposition 1.2.17 that the density has local maxima along the curves Fg(Re z) =
(Re z,Im z(t} (Re z))). Applying this definition to (2.8.18) yields that

IImI” (Re z) —Imy (Re 2)| < G (1~ /% h®)
forall z€ X, 4. By Lemma 2.8.1 we have that Imy" (Re z) = £9(h)?/3. Thus,
ImT” (Rez) = Imy" (Re2) (1+ 6 (eo(h)~°h%),
which in particular implies that Im FZ (Rez) =¢g (h)23. This concludes the proof of thelemma. O

Proof of Proposition 1.2.17. Proposition 1.2.13 implies that for [Imz—{Img)| > 1/C

($1p, PHo ) 3P, pHp-))?
mhé?

W, (z,h,6) = e 7 0 2SI (1+6 (3 V2 (2.8.19)
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and

O(z; h,0) =

h(Lp, PHo) LB, pHp)? e

1+0|n~ hi))
/2 62 ( (

+@(n1/4h_26+n_1/262h_5).

Thus, one calculates

1
2

¥, —

91z I @‘ _Gip.php) 517, pip-)

e 0m=S(2I20 (17t h?)

h? B whé?
+ @(175/4’1—45 + n1/262h_7) ,
which implies the result given in Proposition 1.2.5. a

Proof of Proposition 1.2.16. We will only consider the case z € 2,4 with Imz = (Img) since the
case of Im z > (Im g) is similar.

A priori restrictions on the domain of integration Let y_(/) and y_(Rez) be as in Lemma
2.8.1 and note that similarly to (2.8.2), we have

Imz

Om S (dt+ / (OmzS)(ndt. (2.8.20)

Imy"

Imy"

S(Im z) —e¢(h) :/
y-(h)

Recall from (2.8.10) that (Imy” — y_(h)) = @(hn~'"?). Then, one calculates using the mean value
theorem and Proposition 1.2.3, similar as in the proof of Lemma 2.8.1 (cf. (2.8.4)), that

Imyf
/ OmzS)()dt =0 (h).
-(h)

and that

Imz
/ (aImZS)(t)dt: (ImZ_ImYﬁ)nllzy
I

my"

where 7 should be set to 1 in case of dist(z,0Z.4) > 1/C. Next, (2.8.20) and Proposition 1.2.13
imply that

1/2 hy,1/2
. _n- _ (Imz—-ImyZ)n
O(z; h,0) ~60 exp{ A }

+@>(nl/4h—26+n—1/262h—5) .

Here, we used that § = \/ﬁexp{—go—}(f”}; see Hypothesis 1.2.6. Thus, for Imy” <Imz < (Img)

I -1 hy,,1/2
1+0 T]”Zexp{—( mz—Imy-)r }+n1/4h2)) (2.8.21)

exp{—0(z; h,6)} = ch

and for Imz < Imy"

(Im z — Imy")n'/?

Ch

1
Eexp{—Cnl/zexp }Sexp{—@(z; h,0)}

1/2

n 1/2
< Cexp{—T exp

CImz-Imy")n
h

}. (2.8.22)
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Similarly, by Proposition 1.2.13

3/2

Y,(z; h,0) < TOE

hy,1/2
“1y. ®(z,h) _(Imz-ImyZ)n
(1+@’(n e )exp{ o .

1/2
Thus, for Imy_(Rez) + ahn_”zln"T < Imz = (Img) with a > 0 large enough, we see that the
average density of eigenvalues (cf. Theorem 1.2.12)

1
D(z,h,0)L(dz) = nP (dEndx)+0n ) L(dz). (2.8.23)
We then conclude the first statement of the proposition.

Next, recall from Corollary 1.1.5 that restricting the probability space to the ball B(0, R) of ra-
1
dius R = Ch~! implies that ||Q,ll < C/h with probability > (1 - e_m). It follows from

1P -2t = H (Pr-2"" Y (8" (Qu (P —z)l)"”
n=1

that for z ¢ o(Py,) such that §||Qull|(Py, — 2)~'|l < 1, we have that z ¢ a(Pg) with probability =
(1 - e_ﬁ). Proposition 1.2.5 implies that with probability = (1 - e_ﬁ)

C|1—eq)(z'h)|_1 exp{S(z)—Eo(h)}

S1Qulll(Pr -2l < : - T .
R3'2 (5p, PHp+) 5 (P, p}(p-))*

Here we used as well Hypothesis 1.2.6. Since S(z) = %/?, it follows that 1 = £9(h)?/3. Using the
1
mean value theorem together with Proposition 2.8.1 implies that with probability = (1 - e_m)

there are no eigenvalues of Pg with

h | (Eo(h)lm

I <fB:=Imy"-C
mz< f; my JTSTE W

), C>1.

Thus, to count eigenvalues it is sufficient to integrate the density given in Theorem 1.2.12 over
subsets of
Z'C,d ={z€Z, 4l 1 <Imz<(Img), c<Rez<d}.

Similarly, for an « large enough as above, define

h 5()(]’1)1/3
ay:=Imy_(Rez)+ amln
£y h

and note that (2.8.23) implies the second statement of the proposition for Imz = a;.

Approximate Primitive Define d(z) := dist(z,0%) and recall from (2.1.2) that n = d(z). Recall that
the density of eigenvalues given in Theorem 1.2.12 is given by ¥, ¥, and © which are expressed
explicitly in Proposition 1.2.13 and Theorem 1.2.12. Since Img(x+) =Imzand {. =Rez—Re g(x.)
(cf (1.1.14)), we conclude together with Proposition 2.4.2 that for f; <Imz < a;

1 1
W1(2 1) = 570tz (x-(2) = %+ (2)) +0(d(2) %) = ﬁa%mZS(z) +0(d(2)7%).

Next, it follows by (2.8.19) and Lemma 2.7.1 that

28

12h¥3 — (O 2S) (—01m 0)| = O (d(z)3’4h1’2%) +0(d(2)**h%6).
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Thus,

L @(M(i_“%_slz) {(W1(z; 1) + P2 (z; h, §)) e OE0)

_ ﬁalmz Om=S(Ne O |+ Rig; h,)e” "), (2.8.24)
where

_2s
R(z:1,8) = @(d(z)‘2 + d(z)3/4h_1/266—2h) .

Let B < B2 < a;. Let us first treat the error term R. Similar as for (2.8.21), it follows that

_ h 1/2
R(z; h,a) :@)(d(z)—z +d(Z)_3/4h_1/2 eXp{— (Imz ImY—)d(Z) }) .

Ch
Hence,
a . [d(z)~"1g!
‘/ R(z; h,6)e_@(z'h’5)d(lmz)‘ < —lexp{—G)(Re z,a1;h,0)}
) 0Q1)
d(z)V4n1'? (Imz-Imy"d(2)'? | | |«
———————exp|—exp -
o) Ch B
B! (a1 —Imy™al’?
= —@(1) exp | —exp o
50(]’1)_2/3
=0 2.8.25
oW ( )
Next,
“ 6
20 Jy, Oimz[(Om 2S(2)e ®Fm | L(Im 2)
1 )
= 5 (x(Im2) - x, (Im e~ =" Z (2.8.26)
Since,
/ ! (déndx)(dz) ! (x—(a1) ( ))/ddR
— Dy x)(dz) = —(x_(ay) — x4 (a ez
Znhp 2nh ! i ¢
Zc,d
O<lmz<a,
we conclude by (2.8.22) the second statement of the proposition for
h go(h)l/3
B2 =Imy_(Rez) — INTSIE In (ﬁln - )
with B > 0 large enough. The last statement of the proposition can be deduced similarly from
(2.8.22), (2.8.26) and (2.8.25). O
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CHAPTER 3

EIGENVALUE INTERACTION FOR A
CLASS OF NON-SELF-ADJOINT
OPERATORS UNDER RANDOM

PERTURBATIONS

The objective of this section is to build on the results obtained in Chapter 2 and to prove the re-
sults discussed in Section 1.3. We consider Hager’s model operator Py, (cf (1.1.9)) subject to ran-
dom perturbations with a small coupling constant §. We study the 2-point intensity measure of
the random point process of eigenvalues of the randomly perturbed operator Pg and prove an
h-asymptotic formula for the average 2-point density of eigenvalues. With this we show that two
eigenvalues of PZ in the interior of Z exhibit close range repulsion and long range decoupling. The
results presented in this chapter can be found in [82].

3.1| A formula for the two-point intensity measure

In this section we will give a short reminder of a well-posed Grushin problem for the perturbed
operator PZ which has already been used in Chapter 2 (see also [67, 32]). We will then employ the
resulting effective Hamiltonians to derive a formula for the two-point intensity measure defined
in (1.3.3).

We recall that we always suppose that Q € 2 is such that Hypothesis 1.3.1 is satisfied, if nothing
else is specified.

A Grushin Problem for the perturbed operator P]‘Z As was discussed in Chapter 2, we us the
eigenfunctions of the operators Q and Q (cf (1.2.4)) to create a well-posed Grushin Problem.

Proposition 3.1.1. Letz € Q € X withdist(Q,0Z) > 1/C and let ay, eg and fy be as in (1.2.8). Define
R, :HYSY) — C: u— (uley)
R_:C—I%SYH: u_— u- fo.

Then
Ph -z R_
R, 0

is bijective with the bounded inverse

y(z)::( ): H'(SHxC— L*(SH)xC

é?(z):(E(Z) E+(Z))

E (z) E_i(2)
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where E_(z2)v = (V| fo), E+(2)v+ = vyeg, E(z) = (P, — Z)_1|(fb)1__,(eo)1_ and E_, (z2)vy = —agvs. Fur-
thermore, we have the estimates for z € Q

lE-(D 2o 1 E+ (@D lg— g =O(1),
IE@) 2 in =C(h™"?),
IE_.(2)] :@’(\/ﬁe‘%) :@’(e—ﬁ); 3.1.1)

Definition 3.1.2. For x € R we denote the integer part of x by [x]. Let C; > 0 be big enough as
above and define N := (ZL%J +1)2. Let ey and fobeasin (1.2.8), let ze Q € X and let éy(z;-) and

fo (z;+) denote the Fourier coefficients of ey and fy. We define the vector X(z) = (Xj x(2) k=1 €
=17
CN to be given by
~ = ) ) C
Xjk(2)=eo(z k) folz; j), forljl,lkl< {ZIJ .

Proposition 3.1.3. Letz€ Q € Z. Let N be as in Definition 3.1.2 and let B(0,R) c CN be the ball of
radius R:= C/h, C > 0 large, centered at0. Let R_, R, be as in Proposition 3.1.1. Then

5
Ph—z R_

Ps(z2) .= ( R, 0

): H'SHxC— 2(SH xC

is bijective with the bounded inverse

(B’ El(
5(2) = (Eé(z) Eﬁ(z))
where
E’(2)=E(2+0(6h™?) =0(h™''?
E(2)=E_(2)+0(6h3?) =0 (1)
E(2) = E+(2) +O(6h73?) =0 (1)
and

E§+(z) =E_ ,(2)-6X(12)-a+T(z;a), (3.1.2)
with X(z)-a =E_QuwE+, a € B(O,R), and

T(z,a):= Y (=0)"" E_Qu(EQu)"E+ =G (6*h™>'?). (3.1.3)
n=1

Here, the dot-product X (z) - « is the natural bilinear one.

Remark 3.1.4. The effective Hamiltonian E?, (z) depends smoothly on z € Q and holomorphically
ona € B(O,R) «c CV. Asin (2.6.6) and Proposition 2.2.6, we have the following estimates: for all
zeQ,all a € B(0,R) and all € IN?

asz_+(z) = @(h"ﬁlﬂ/ze_%), and
o Tzw=0 (62h‘('ﬁ'+5))

where S is as in Definition 1.2.2.
Moreover, as remarked in [67] the effective Hamiltonian E? , (z) satisfies a -equation, i.e. there
exists a smooth function f° : Q — C such that

0zE° (2) + [P (2)E%, (2) = 0.

This implies that the zeros of E? , (z) are isolated and countable and we may use the same notion
of multiplicity as for holomorphic functions.
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3.1.1 - Counting zeros

By the above well-posed Grushin Problem for the perturbed operator PZ we have that U(PZ) =
(E%,)~1(0). Hence, to study the the two-point intensity measure v defined in (1.3.3), we investigate
the integral

”_N/ ( Z p(z, w))e_“*'“L(da)z/ @(z1,22)dV(z1, z2)
B(O,R) c?

z,we(E2,)7'(0)
ZEW
with ¢ € 6, (Q x Q). Using Remark 3.1.4, we see that the integral is finite since the number of pairs
of zeros of E? , (-, @) in supp ¢ is uniformly bounded for a € B(0, R).
Recall the definition of the point process = given in (1.2.10). Using Lemma 2.5.1, we get the
following regularization of the 2-fold counting measure Z® =

B
(# 1022, (2)* L(dz) L(dzy),

2
(p,E2®E) = lim ff(p(zl,zz) [T %x
e—0* j=1

where y € 65°(C) such that [ x(w)L(dw) = 1. Assuming that ¢ € €, (Q x Q) is such that {(z, 2); z €
Q} & supp ¢, we see by the Lebesgue dominated convergence theorem that the two-point intensity
measure of the point process = is given by

/2<p(Z1,22)dV(zl,zZ) :Elil})l+ff¢(zlyzz)Kg(Zlyzz;h)L(dZI)L(dZZ) (3.1.4)
c .
with 5
2 E .
Kl (21,225 ) :=/ [Te%x ﬂ)|<3z,l~?§+(zz)lz e Y Lida).
B(OR) | i=1 €

Using (3.1.2), we see that the main object of interest is the random vector

E°,(2)
5
o | Ew
F°(z,w,a; h) = (OZE§+)(Z) (3.1.5)
(0:E2,) (w)
E_.(2) X(2) -« T(z,a)
_ E_.(w) : X(w) - «a . T(w,a)
| 0E-0)(2) 0:X)(2)-«a 0:7)(z, @)
(0:E-1)(w) 0:X)(w)-«a 0.1 (w,a)
It will be very useful in the sequel to define the following Gramian matrix G.
. A B 4x4
G:= (B* C)E(D , (3.1.6)
with
— ((X(Z)IX(Z)) (X(z)lX(w)))
X w)X(2) Xw)Xw)))’
o ((X(Z)|6ZX(Z)) (X(z)lan(w)))
T X (w)0:X(2) X(w)l0wX(w)))’
C:= ( (0:X(2)10,X(2)) (0:X(2)|[0w X (w)) ) 3.1.7)
OwX(wW)]0:X(2)) OwX(wW)l0yX(w))) o

Notice that the matrices A, B, C depend on k; see Definition 3.1.2. Next, we will state a formula for
the Lebesgue density of the two-point intensity measure v in terms of the permanent of the Shur
complement of G, i.e T':= C — B* A" B. The permanent of a matrix is defined as follows (cf. [47]):
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Definition 3.1.5. Let (M;;);; = M € C"*" be a square matrix and let S, denote the symmetric
group of order n. The permanent of M is defined by

n
permM := Z HMig(i). (3.1.8)
€S, i=1

Remark 3.1.6. Although the definition of the permanent resembles closely to that of the determi-
nant, the two object are quite different. Many properties known to hold true for determinants,
fail to be true for permanents. For our purposes it is enough to note that it is multi-linear and
symmetric. For more details concerning permanents and their properties we refer the reader to
[471].

We will prove the following result:

Proposition 3.1.7. Let Q € X be as in Hypothesis 1.3.1. Let 0 > 0 be as in Hypothesis 1.3.2 and let
I = C - B* A~ B. Moreover, let D(Q, C») be as in (1.3.4). Then, there exists a smooth function

permI'(z, w;h) +6’(e_ﬁ +5h‘%) b
5 +CO|e
2 (\/detA(z, wih) +0 (5h—%))

and there exists a constant C, > 0 such that for all ¢ € 6, (Q2\D n(Q,Cy))

D5(z, w;h) =

/(p(z,w)dV(z,w)=/ ¢(z, w)D(z, w, h,8)L(d(z, w)).
C? C?

Remark 3.1.8. The proof of Proposition 3.1.7 will take up most of the rest of this chapter. Therefore
we give a short overview on how we will proceed:

In Section 3.2, we give a formula for the scalar product (X (z)|X(w)) by constructing holomor-
phic quasimodes for the operators (P, — z) and (Pj, — z)* to approximate the eigenfunction ey and
fo, and by using the method of stationary phase.

In Section 3.3, we will use this formula to study the invertibility of the matrices G, A and T
Furthermore, we will study the permanent of I

In Section 3.4, we give a proof of Proposition 3.1.7.

3.2 | Stationary Phase

In this section we are interested in the scalar product (X (z)| X (w)). Recall from Definition 3.1.2 that

the vector X(z), z € Q, is given by X k= éy(z; k)fo(z; J), where ey and fj are the eigenfunctions of
the operators Q(z) and Q(z), respectizely, associated to their first eigenvalue tg.

The Fourier coefficients éy(z; k), fo(z; j) and their z- and z-derivatives are of order O (|k|™*),
O(j17°°), for | jl,|k| = C/h with C > 0 large enough (cf Proposition 2.3.3 and 2.3.4). The Parseval
identity implies that for z, w € Q

(X (2)| X (w)) = (eg(2)leo(w)) (fo(w)l fo(2)) + O (R™). (3.2.1)
The aim of this section is to prove the following result:

Proposition 3.2.1. LetQ € X be as in Hypothesis 1.3.1 and let x.(z) be as in (1.1.14). Furthermore,
for z € Q let 0(z) denote the Lebesgue density of the direct image of the symplectic volume form on
T*S! under the principal symbol p, i.e. 0(z)L(dz) = p(dé A dx).

Then, there exists a constant C > 0 such that for all (z, w) € Aq(C) :={(z, w) € Q% |z—w|<1/C}

1 AN . 2 .
(X(2)|X(w)) = e—ﬁd)(z,h) hCD(w,h)eh\P(z,w,h) +0 m(hoo)
where:
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* O(; h): Q— R is afamily of smooth functions depending only on ilm z, which satisfy

Xo Yo
®(z; h) =Im (z—g(y)dy—Im (z—gy)dy
x4 (2) x_(z)
N ln( nh )+ln( nh ) +Oh).
4 —Im g’ (x4 (2)) Im g’ (x-(2))

and )
2 . _
6Z§<I) (z;h) = ZU(Z) +0(h).

e W(,h):Aq(C)— C is a family of smooth functions which are almost z-holomorphic and al-
most w-anti-holomorphic extensions from the diagonal A := {(z, z); z € Q} € Aq(C) of ©(z; h),
ie.

1
WY(z,z;h) =D (E(Z—E); h) ,0z9,0,¥ =0(z— w|™).
Moreover, we have that ¥ (z, z) = ®(z) and for z, w € Aq(C) with|z— w| <« 1,

zZ+w
2

1
Y(z,w;h) = P
( ) |a+%522|“+ﬁ|a!ﬁ! 27z (

+0(z— w® +h™),

;h) (z—w)*w=2)°

and

2Re V¥ (z, w; h) — ®(z; h) — P(w; h)
Z+w
[

h)1z- w1+ 0z - w) + h);
e the function YV (z, w; h) has the following symmetries:
Y(z,w;h)=Y(w,z;h) and (0,¥)(z,w;h)=0z¥)(w,z;h).
Let us give some remarks on the above results: Note that the formula for ¥ stated above is
simply a special case of the more general Taylor expansion

Ch) — 1 anb . a—f
W(zo+(,20+w;h) = |a§52m6262® (zo; ) ("w
+0(({,w)° +h™),
with zp € Q and ||, |w] < 1.

Remark 3.2.2. Note that the formula for (X(2)| X (w)) is quite close to the notion of a Bergman
kernel (see for example [87, Sec. 13.3]). However, we will not use this notion in the sequel.

Next, we define for (z, w) € Aq(C), as in Proposition 3.2.1,

—K(z,w):=2Re¥Y(z,w; h) — ®(z; h) — ®(w; h) (3.2.2)

= (o(57) rom) |Z_4w'2 (1+0(z—wl +h>)).

From the above Proposition we can immediately deduce some growth properties of certain quan-
tities that will be become important in the sequel.

Corollary 3.2.3. Under the assumptions of Proposition 3.2.1, we have that
o« (X@IXw)| =e i +Ogeo (h);
o I X@IPIX (W) 2 £1(X(2)| X (w))]?
2K (z,w)
= (126755 + 0 (h™);
o I X@IPIX (W) 21X (2)] X (w))?
2K (z,w)

=e & +@Cg00(hoo)

To prove Proposition 3.2.1, we will study the scalar products (ey(z)|eg(w)) and (fo(w)|fo(2)).
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3.2.1 — The Scalar Product (ey(z)|ey(w))
We will prove

Proposition 3.2.4. Let QO € X be as in Hypothesis 1.3.1 and let x,(z) be as in (1.1.14). Then, there
exists a constant C > 0 such that for all (z, w) € Aq(C) :={(z, w) € Q% |z—w|<1/C}

(eo(2)eg(w)) = e T P1EM =7 P Wil P V1 W) | G (o0, (3.2.3)

where:

e ®,(;h): Q— R is a family of smooth functions depending only on ilm z, which satisfy

Xo

®;(z; h) =Im (z—g(y))dy+gln(

X (Imz)

) +0(h?).
—Img'(x;)

e ¥i(-,;h) : Aq(C) — C is a family of smooth functions which are almost z-holomorphic and
almost w-anti-holomorphic extensions from the diagonal A := {(z, 2); z € Q} € Aq (C) of @1 (z; h),
ie.

1
Yi(z,z;h) = Dy (E(z —-2); h) , 0z¥1,0,¥1 =0 (12— w|™).

Moreover, for z, w € Aq(C) with|z— w| < 1, one has that

z+w
2

1
Y(z, w; h) = — 3%l
1( ) |a+2ﬁ%522|a+ﬁla!ﬁ! 207 1(

+0(z- w® +h™),

;h) (z— w)*w=2)°

and that
2Re V¥ (z, w; h) — @y (z; h) — Oy (w; h)
— _0,0.D, (“T“’h) 12— w1+ Gz w] + h™®);

e the function V1 (z, w; h) has the following symmetries:

Yi(z,w;h) =¥Y1(w,z;h) and (0,¥1)(z, w;h) = (04¥1)(w,z; h).

To prove Proposition 3.2.4, we begin by constructing an oscillating function to approximate
eo(z). Let us recall from Section 1.1.1 that the points a, b € S! denote the minimum and the max-
imum of Im g(x) and that for z € Q the points x4 (z) € S! are the unique solutions to the equation
Im g(x) = Im z. Furthermore, we will identify frequently S' with the interval [b — 27, b[. Moreover,
let us recall that by the natural projection IT: R — S! = R/27Z we identify the points x.,a,b € S
with points x4,a,be Rsuchthat b-2n <xy <a<x_<b.

Let Ky c]b—2m, al be an open interval such that x, (z) € K forallze Q. Let y € <€(‘)’° (0b-2m,al)
and define for x e R

e(x,2):=y(x)exp (%uu, (x, z)) . (3.2.4)

where, for a fixed xg € K, B}
Y4 (x,2) :=/ (z—g(y)dy. (3.2.5)
X

0
Remark 3.2.5. Note that the function u = exp(iw 4 (x, z)/h) is solution to (P, — z)u = 0 on supp ¥,
since the phase function v, satisfies the eikonal equation

p(x,0x¥4) = z.

Furthermore, let us remark that €, (x, z) depends holomorphically on z.
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Next, we are interested in the L?-norm of &.

Lemma 3.2.6. Let Q) € Z be as in Hypothesis 1.3.1. Then, there exists a family of smooth functions
D,(;h):Q— R, such that

Xo h
®1(z;h) = @ (ilmz; h) =Im (Z—g(y))dy+zln(

x4+ (Imz)

2
—Img’(x+)) ro

and
~ 2 2
lléo(2)[I“ = exp Edh (z;h) ¢ .
Proof. In view of the definition of &y(z), see (3.2.4) and (3.2.5), one gets that
l&@)1° = / F0eh VBTV 0D g = / RO MY+ (02 gy,
The critical point for Imy ;. (x, z) is given by the equation

Imo,y.(x,2)=Imz—Img(x) =0, xesuppy.

The critical point, given by x, (Im z), is unique and it satisfies Im g’(x, (Im z)) < 0, see (1.1.14). This
implies in particular that the critical point is non-degenerate. More precisely,

Im (02 ,v4)(x4,2) = ~Im g’ (x3) > 0. (3.2.6)

The critical value of Im v, is given by

X; (Imz)
Imwy 4 (x4 (Im2), 2) :Im/ (z—gyndy<o.
Xo

Using the method of stationary phase, one gets

_ 9 Th { 2Imy (x4, 2) }
= 1+0(h -
leo(2)l \/Im(diwar)(er,z)( +0O(h)) exp A

:exp{%@l(z; h)},

where @, is smooth in z. Using (3.2.6), one gets that

Xo

®;(z; h) =Im (z—g(y))dy+gln(

x:(Imz)

”—) +O (D). =
-Img’(x;)

Recall from (1.2.7) that the function ey is an eigenfunction of the operator Q(z) (cf Section
1.2.2) corresponding to its first eigenvalue tg. We set

g (o0

o (e

eo(2) =

where I1 2" L%(SY) — Cey denotes the spectral projection for Q(z) onto the eigenspace associated
with #2.

Next, we prove that up to an exponentially small error in 1/ A, ey is given by the normalization
of 5().

Lemma 3.2.7. LetQ € X be as in Hypothesis 1.3.1. Then, there exists a constant C > 0 such that for
all z€ Q and all a € IN?

6?,2("0(2) ‘e_%wl(z;h)%(Z))” = @(h"“'e‘&).
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Proof. The proof of the lemma is similar to the proof of Proposition 2.1.11. O
This result implies that
(e0(2)]eo(w)) = &~ # P EM=EP1 W) G ()2 (10) + Grgoo 0T ) (3.27)

By Remark 3.2.5, (€y(z)|€y(w)) is holomorphic in z and anti-holomorphic in w. We can study this
scalar product by the method of stationary phase:

Proof of Proposition 3.2.4. Inview of (3.2.7), it remains to study the oscillatory integral

I(z, w) := (eg(2)|eg(w)) = /}((x) exp (%‘I’J,(x, z, w)) dx, (3.2.8)
where €y (x, z) is given in (3.2.4) and ¥, is defined by
VYi(x,z,w)=vi(x,2)-vi(x,w), z,we. (3.2.9)

Using (3.2.5),

* z+w

X
‘I’+(x,z,w)=/ Re(z—w)dy+2i/
X

0 Xo

im (=) —Img(y)] dy. (3.2.10)

Since the imaginary part of W, can be negative, we shift the phase function by the minimum of
ImVY,.

Minimum of Im¥,. The critical points of the function x — ImV¥(x, z, w) are given by the

equation Im(zz'”) =Img(x). Since Q is convex, this equation has, for |z — w| small enough, on

the support of y the unique solution x, (%) € R and it satisfies Im g’(x, (£5%)) < 0 (cf. (1.1.14)).

Moreover, it depends smoothly on z and w since g is smooth. Therefore,

(Oixlm‘lhr) (x+ (Z-'_Tw),z, w) =-2Img, (x+ (“Tw)) >0,

zZ+w

which implies that x. (5

) is a minimum point, and that

20:=2A(z,w):=ImW¥Y, (x+ (Z;w),z, w)

=2/x:+<“2"’> [Im(z-;w)—lmg(y)]dyso. (3.2.11)

We define O, (x, z, w) := VY. (x, z, w) — iA, and notice that Im®, (x, z, w) = 0. Hence, we can write
(3.2.8) as follows:

I(z,w) = e_% /X(x) exp (%Gu(x, z, w)) dx. (3.2.12)

To study I(z, w) by the method of stationary phase, we are interested in the critical points of ..

Critical points of ©,. Clearly they are the same as for ¥, (x, z, w). Note that for z = w one has
that

‘I’+(x,z,z):2ilm/ (z—gy)dy

which has, on the support of y, the unique critical point x; and it satisfies Img’(x;) < 0 (cf.
(1.1.14)). Therefore,
Im (6ix‘l’+)(x+(z),z, z) = —ZImg;(er(z)) >0

which implies that x. is a non-degenerate critical point.
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In the case where z # w the situation is more complicated. By (3.2.10) we see that if Re (z—w) =
0, for |z — w| small enough, the critical point is real and given by x., (ZJ“T“’), i.e. the minimum point
ofImY¥.,.

However, if Re (z— w) # 0, we need to consider an almost x-analytic extension of ¥, which we
shall denote by ¥.,.. As described in [48], the “critical point” of ¥, is then given by

ax\?+(x» Z, LU) = 07
and we will see, by the following result, that it “moves” to the complex plane.

Lemma 3.2.8. LetQ € X be as in (1.3.1). Let x be as in (3.2.4) and let p be the principal symbol of
Py, (cf (1.1.7)). Let x4+ (z) be as in (1.1.14). Furthermore, lety , denote an almost analytic extension
of W, to a small complex neighborhood of the support of x, and define ¥ (x) := ¥, (x). Then, the
there exists a C > 0 such that for (z, w) € Aq(C) the function

0x P (x, 2, w) = 0+ (x,2) — (029 1) " (x, W)
has exactly one zero, x$ (z, w), and:

* it depends almost holomorphically on z and almost anti-holomorphically w at the diagonal
A, ie.
0w (2, w),07x% (2, w) = O(lz — w|™);

* itis non-degenerate in the sense that

0%, 9 (x5 (2, w), 2, w) #0;

e forz,weQwith|z—w|<1/C, C > 1 large enough, one has

c z+w Re(z—w) 2
xi(z,w)=x -— +0(lz— wl).
. () PP ()

Remark 3.2.9. The proof of Lemma 3.2.8 will be given after the proof of Proposition 3.2.4.

Let ¥, denote an almost x-analytic extension of ¥, . Using the method of stationary phase for
complex-valued phase functions (cf. Theorem 2.3 in [48, p.148]) and Lemma 3.2.8, one gets that

%}W}Jr@(hoo)e—?_ (3.2.13)

Using that Lemma 3.2.6 and (3.2.11) imply A(z, w) + ®(z; h) + ®(w; h) = 0, we obtain (3.2.3) from
the above and (3.2.7).

I(z,w) = exp{

In (3.2.13), 2¥; (2, w) is given by the critical value of i ‘i’+ and by the logarithm of the amplitude
c(z, w, h), given by the stationary phase method, i.e.

2%V, (z,w; h) = i"IV’Jr(xfr (z,w),z,w)+ hlnc(z, w, h)

and c(z, w, h) ~ cy(z, w) + hey (z, w) +... which depends smoothly on z and w in the sense that all
z-,z-,w- and w-derivatives remain bounded as h — 0. V., (x, z, w) is by definition z-holomorphic,
w-anti-holomorphic and smooth in x. By Lemma 3.2.8, we know that the critical point x£ (z, w)
is almost z-holomorphic and almost w-anti-holomorphic in Aq(C), a small neighborhood of the
diagonal z = w. Hence, V¥ is almost z-holomorphic and almost w-anti-holomorphic in Ag(C).
Equivalently, ¥ is an almost z-holomorphic and almost w-anti-holomorphic extension from
the diagonal of ¥, (z, z; h). Since ¥(z, z; h) = ®;(z; h), we obtain by Taylor expansion up to order

2 of ¥ at (55, £5), that
1 zZ+w
Yi(z, w;h) = Z 6“65@1( ;h) (z—w)*Ww—2)"

|a+ﬁ|522|a+ﬁ|a!ﬁ! ‘

+0(z— w® +h™),
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for |z — w| small enough. Similarly,

zZ+

Zw;h) (z-w)*z=w)’

1
®,(z; h) = —— %P o
e = 3 i

+0(z— w+h™),

which implies that

zZ+w

2Re ¥, (z, w; h) = ®1(z; h) + © (w; h) — 0?65@31 ( ; h) lz— wl?
+0(z— wl® + 1™,
concluding the proof of the second point of the proposition.

Finally, let us give a proof of the stated symmetries. The fact that ¥, (z, w; h) = ¥ (w, z; h)
follows directly from the fact that (ey(z)|eg(w)) = (eg(w)|ep(2z)). One then computes that

0:Y1)(z,w; h) =0,V 1(z, w; h) =0z¥1(w, z; h) = 0xV1)(w, z; h)
which concludes the proof of the Proposition. O
Proof of Lemma 3.2.8. We are interested in the solutions of the following equation:
0=(0,94)(x,2)—(0¥) (x,w)=z-w—-gx)+ & (x), (3.2.14)

where g denotes an almost analytic extension of g. Since dist(Q,0%) > 1/C, it follows from the
assumptions on g that Img’(x) > 0 for all x € m c R. Since g depends smoothly on x, there
exists a small complex open neighborhood V < C of x, (Q) such that x, (Q) < (V nR) and such
thatforallxe V

é’v;(x) -g.(x) #0, [g“’;(x) - g;(%) =0 (IIm x|®).
Thus, it follows by the implicit function theorem, that for (z, w) € Aq(C), with C > 0 large enough,
there exists a unique solution x¢ (z, w) to (3.2.14) and it depends smoothly on (z, w) € Aq(C). Fur-

thermore, we have that x¢ (z, z) = x; (z) € R. Taking the z- and z- derivative of (3.2.14) at the critical
point x¢ yields that

1+ 0 (IIm xS (2, w)|*)
(0x8)(x% (2, W) — (0:8)* (xS (2, w))’
O(IIm x$ (z, w)|*)

0o (2, 10) = _ ) 3.2.15
W= G B @ w) - 0,0 Lz w) e

0.x5(z,w) =

and similarly that

-1+0(Imx& (z, w)|™)
(058) (xS (2, w)) — (0x8)* (xS (2, w))’

0,xl(z,w) = O(Im ¥ (2, W)I*) (3.2.16)
I (048) (26 (2, w)) — (0,8)* (xS (2, w)) -

0wx(z,w) =

Using that Im x¢ (2, z) = 0, one calculates that for z = w we have that

(0:x5)(z,2) = 0,x4+(2) = —(05x$) (2, 2),
and (0zx5)(z,2) =0=(0,x%) (2, 2), (3.2.17)

where
1

GZX+ (2) = —Zilmg’(x+ @) .
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Taylor’s theorem implies that

(-w

2
Sim g O

x5 (z+( z+w) =x.(2) +
Recall that the principal symbol of the operator Pj, is given by p(p) = ¢ + g(x) (cf (1.1.7)), which
implies that {p, p}(p+(2) = —2ilm g’ (x+(z)). To conclude the symmetric form of the Taylor expan-
sion stated in the Lemma, we expand around the point (z;w, Zzw), for |z — w| small enough, with
{=%" and 0 = -5, which is possible since Q is by (1.3.1) assumed to be convex.
Finally, by taking the imaginary part of the Taylor expansion of x{, we conclude by (3.2.15) and
(3.2.16) that

0wx$(z,w),0zx5 (2, w) =0 (lz — w|™). O

3.2.2 — The Scalar Product (fo(w)lfo(2))

We have, as in Section 3.2.1,

Proposition 3.2.10. Let Q) € X be as in Hypothesis 1.3.1 and let x_(z) be as in (1.1.14). Then, there
exists a constant C > 0 such that for all (z, w) € Aq(C) :={(z, w) € Q% |1z—w|<1/C}

(fo(w)| fo(2)) = e 1 P2 o= 3 P2(wih) o ¥ (2 w3 ) +0(h™),
where:
o ®,(:;h): Q— R is a family of smooth functions depending only on Im z, which satisfy

Ozl = —Im [ (2 g(y)d +ﬁln(n—h
2= gLnay Img(x_(2))

+0h?).
x_(2) 4 )

e Wy(-,sh) : Aq(C) — C is a family of smooth functions which are almost z-holomorphic and
almost w-anti-holomorphic extensions from the diagonal A := {(z, z); z € Q} € Aq(C) of P2 (z; h),
ie.

1
0z¥2,0,¥2=0(z-wl™), Y2(z,2;h) = D, (5(z—a; h)
Moreover, for z, w € Aq(C) with |z— w| < 1, one has that
1
Y, (z,w; h) = —aaaécb

+0(z—w+h™),

z+w
2

;h) (z— w)*w=2)"

and that

2Re V3 (z, w; h) — D2(z; h) — D2 (w; h)
= —0,0,, (“Twh) 12— w1+ 6z - w|+ h™));

e the function ¥, (z, w; h) has the following symmetries:

Yo(z,w;h) =¥Yao(w,z;h) and (0,Y2)(z, w; h) = (05¥2)(w,z; h).

3.2.3 - Link with the symplectic volume

Before the proof of Proposition 3.2.1, let us give a short description of the connection between the
functions @, (z; h), ®»(z; h) in Proposition 3.2.4, 3.2.10, and the symplectic volume form on the
phase space T*S'.
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Proposition 3.2.11. Let z € Q € X be as in (1.3.1) and let ®1 and ®, be as in Propositions 3.2.4
and 3.2.10. Furthermore, let p be the principal symbol of Py, (cf (1.1.7)), let p+ € T*S! be the two
solutions to p(p) = z, see (1.1.14). Then,

op(2): = [(0%,¥1) (2 h) + (0%,D2) (z; )|

il b +0(h)
4\ LB o-(2)  Lip P+ (2)

is, up to an error of order h, one-fourth of the Lebesgue density of the direct image, under the prin-
cipal symbol p, of the symplectic volume form dé Adx on T*S!, i.e.

1
0,(2)L(dz) = Zp* (dEndx)+O(h)L(dz)
Proof. Using that x4 (), with f =Im z, is the solution to the equation Im g(x4 (¢)) = ¢ with
FImg, (x+(1) <0

(cf (1.1.14)), we get that
1
— <0
Im g (x4 (1))
Using Propositions 3.2.4 and 3.2.10, one then computes that
1

2 . 2 - _ 1
OO+ OZO @) = 3 | s = s |+ O ).

(==

Since —%{p,ﬁ} (p+) =Im g’ (x4), we conclude by Proposition 2.4.2 that

[0%.@1)(z; h) + (0°.@2) (2; )] L(dz) = 711 p«(déAdx)+O(h)L(dz). O

Proof of Proposition 3.2.1. The results follow immediately from (3.2.1) and the Propositions 3.2.4,
3.2.10 and 3.2.11. O

3.3 | Gramian matrix

The aim of this section is to study the Gramian matrix G defined in (3.1.6) by

e A B 4x4
G._(B* C)eC ,

where

A .

((X(Z)IX(Z)) (X(Z)IX(LU)))
Xw)X(2) Xw)IXw))

,=((X(Z)IazX(Z)) (X(Z)Ian(W)))
Xw)00:X(2) X(w)0wX(w)))’

Com ( (0:X(2)10:X(2))  (0:X(2)|0, X (w)) )
OwX(W)|0:X(2)) OuwXW)oywXw)))

The invertibility of the matrix G will be essential to the proof of Proposition 3.1.7. Indeed, we prove
the following result.

Proposition 3.3.1. LetQ € X beas in (1.3.1) and let z, w € Q. Then,
detG(z,w)>0 for h% <|lz-w|x1.

To prove Proposition 3.3.1 we will first study the matrices A and, if A™! exists, the matrix I
given by the Shur complement formula applied to G, i.e.

r=C-B*A"'B. (3.3.1)
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3.3.1 — The matrix A

We begin by studying the determinant of A. It is non-zero if and only if the vectors X (z) and X (w)
are not co-linear. In particular we are interested in a lower bound of this determinant for z and w
close.

Proposition 3.3.2. Let Q € X be as in Hypothesis 1.3.1. For |z— w| < 1/C, with C > 1 large enough
(cf. Proposition 3.2.1), we have

2K (z,w)

detA(z,w)=1-€e" & +0g~(h*),

where K (z, w) is as in (3.2.2). Moreover,
e for|lz—w|> Vhinh!
det A(z, w) =1+6(h¢), C> 1;

e forlz—w|= ﬁ\/ﬁ

1
detA=——;
o)

e let N> 1 andlet C > 1 be large enough, thenfor%hN <|lz—w|l<LVh,

_Iz—wl2 z+w lz— wl?
det Az, w) = = ((2 )+@’(h)+@’(|z—w|)+6’ . ))

+@<gw(hm)

hZN—l

> .

o)

Since the matrix A is self-adjoint, we have a lower bound on the matrix norm of A by its small-
est eigenvalue. Using Proposition 3.2.1 we see that tr A = 2 + ¢ (h°°) and one calculates that for a
fixed N>1andfor |z—w|= @}% the two eigenvalues of A are given by

K(z,w)

Moz, w;h)=1xe” n +0O(h™).

By Taylor expansion we conclude the following result:

Corollary 3.3.3. Under the assumptions of Proposition 3.3.2, we have that for N = 1 and |z — w| =
hN

o)

min A= .
Aea(A) o)
Proof of Proposition 3.3.2. By Corollary 3.2.3 and (3.2.2), one has that

_ 2K(zw)

detA(z,w)=1-e" " +0gx(h™),

with

lz— w?
4

K(z,w) = (a(“Tw) +@’(h))

(1+0(lz— w|+ h™)).

The first two estimates are then an immediate consequence of the above formula. In the case
where |z— w| < %\/ﬁ, one computes, using Taylor’s formula, that

_Kew |z — wl? z+w |z — wl?
R T (a( . )+@’(h)+@’(|z—w|)+@’( : ))

103



3.3. GRAMIAN MATRIX

which implies that
lz—wf? zZ+w |z — w|?
det Az, w) = — ((2 )+(7’(h)+@"(|z—w|)+@’( - ))
+@><goo(hoo)
hZNfl
> )
o)

3.3.2 - The matrix T’

We prove the following result.

Proposition 3.3.4. LetQ € X beas in (1.3.1), and let Dq(C) and ¥ (z, w; h) for (z, w) € Dq(C) be as
in Proposition 3.2.1. LetT be as in (3.3.1). For (z, w) € Dq(C) let K(z, w) be as in (3.2.2) and define

ay:=ay(z,w;h):=0,¥Y)(z,z;h)— (0, ¥Y)(z, w; h),
ay := ax(z, w; h) := —ay (w, z; h).

Then, for N > 1 and %hN <|z—wl|, with C > 1 large enough, we have that

. -4 ( fqﬁlle_%K(z,w) alﬁzei(Zﬂm\i(z'w)_mz’w)))
h? (1 - e—%K(z,w)) ayaen-2im Y @w)-Kzw) ayae” iK1#)
L2 ( V(2,2 h) V(2 w; h)ei@ilm‘l’(zlw)"“%“’”)
n \Iﬂz/w(w’ z; h)en (C2iIm'¥ (z,w)-K(z,w) \[l’z’w(w, w; h)
+0(h™).

We will give a proof of this result further below. First, we state formulae for the trace, the
determinant and the permanent of I'.

Corollary 3.3.5. Under the assumptions of Proposition 3.3.4, we have that

trT = m [(\P’Z’w(z, 25 h) + W (w, w3 ) + 0 (h™)) (e#K &0 —1)

—2h M@+ @),

- _ 16 -2K(z,w) 2 ﬁ 2,2 .
detl’' = h4(1_e—%K(z,w))e I [Imagl + 2(Iall (0% (w, w; h)
~2Re {02, W)W,z W ar o} + | @ 0%V (2,2 )|

4 2
+ 5 (02 W) (2 2 @ W) (w, w3 ) = (02, 9) 2y wi ) 0% W) (w, 23 By KC)
+0(h*™)

and that

16 2 _2
permI = e_hK(Z'W)|a1a2|2(1+e hK(z’“’))

Bt (1 _ e—%l((z,w))2
8
- ; e 1K@ (1a; 202 W) (w, w; h)
(i i)

+2Re {(0°_ ) (w, z; ) a1 Gz} + | a|* (0% V) (2, 2 h))
4 2
+ o3 (02 ) (2 2 W@ W) (w0, w3 ) + (02 9) 2y wi ) 0 W) (w, 23 By 1K)
+ 0 (h™).
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Proof. The result follows from a direct computation using Proposition 3.3.4; for the definition of
the permanent of a matrix see (3.1.8). O

We have the following bound on the trace of I':

Proposition 3.3.6. Under the assumptions of Proposition 3.3.4, we have that for |z — w| > h
0<trC<O(h™).

Let us turn to the proofs of the above propositions. We begin by considering a very helpful
congruency transformation. In view of Proposition 3.2.1, we prove

Lemma 3.3.7. LetQ € X beasin (1.3.1), and let Dq(C), ®(z; h) and ¥ (z, w; h) be as in Proposition
3.2.1, for (z,w) € Dq(C). LetT be as in (3.3.1). Define the matrices

e%\{’(z,z;h) e%‘}’(z,w;h) e—%cb(z;h) 0 )
)

e%‘l’(w,z;h) e,%\l’(w,w;h) 0 e—%ﬂb(w;h)

) and A:=

I . 2\(z,z;h) I . 29 (z,w;h)
Bemopl ( Vo (z,z;h)en Yo (z, w;h)en )

2 . 2 .
PL(w, z; Wen? W WL, w; hyen P

and

29 (w,w;h)

2 . ) ]
C:=h2 c(z,z: e Y@ED (7, w: h)eh Y @wh)
= ) .
c(w, z; h)en W5 c(w, w; ke

with c(z, w; h) := 4¥,(z, w; h)‘P’w(z, w;h) + Zh‘P’Z’w(z, w; h). Then, we have for |z — w| = Wie0)
that
I'=A(C-B*A'B)A+ 0y (h™).

Proof. To abbreviate the notation, we define for (z, w) € Dq(C) the following function

7 @R o= 5 P(w;ih) o 7 ¥ (z,wih)

F(z,w):=e" e n

By Proposition 3.2.1, we see that F is bounded by 1 and that all its derivatives are bounded poly-
nomially in 47!, Furthermore, the matrices A, B and C are given by

Alz, w) = Ag(z, w) + Ogeo (h™),

B(z,w) = By(z, W) + Oz (h™),

C(z, w) = Cy(z, W) + Oz (K™,

where (z, w) € Dg(C) and

Aoz, w) = ( If ((LZUZZ)) 15((5),,3;)))’
and
Bo(z, w) = ((6wF)(z, 2 0Pz w))’
0F)(w,2) (05F)(w, w)
and

0°.F)(z,2) (0%, F)(z,w) )

Co(z, w) = ((aiwp)(w,z) (ain)(w, w))’

One computes that

1 1 . 1 .
0zF) (2, w) = - [20059) (2, w; h) — Bg)®(w; b)] e #PEN 5PN ¥ (zw)
+ @%oo (hoo) ,
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and that
2
0,7 (z,w)

1
= 17| [202¥)(z, w; h) ~ (0:P) (2 1) [2(0%Y) (2, w; h) — (07P) (w; h) | +
2h(0§w‘1’) (z, w; h)] e H PN = @2l o P (21,22) + 04 (h™).

Using that det Ay = det A + @(h™) and that det A = h>N=1/@ (1) for |z— w| = hN /G (1) (cf. Proposi-
tion 3.3.2), we see that

['=Co— By Ay Bo+0(h™).
Defining,

1 .
aze_ﬁq)(zyh) 0

I
M= g e houm

we see that

Ap = AAA,
By = A(B)A+ AA(M) + B (h™),
Co=AO)A+ABN)+ AN BA+NAN) + O (h™).

A direct computation then yields that
I'=A(C-B*A'B)A+Gg((det A h™). O
Proof of Proposition 3.3.4. In view of Lemma 3.3.7, it remains to consider the matrix
[:=C-B*A™'B.
In the sequel we will suppress the h-dependency of the function ¥ to abbreviate our notation.
Recall the definition of A from Lemma 3.3.7 and note that
det A = en¥(@2 o7 Y(ww) _ oRe¥(z,w)
= ei VEDei V) (1 _ =i Kzw) (3.3.2)

For %hN < |z— w|, Proposition 3.2.1 implies that det A is positive. Hence, the inverse of A exists
and is given by

fam 1 [ert¥ww _oi¥Ew
T detA |—eitwd  ei¥(2)

To calculate B*, we use Lemma 3.3.7 and the symmetries of the function ¥(z, w) given in Propo-
sition 3.2.1. Indeed, one gets that

B*:=2n7!

2 2
E‘I’(w,z) E\P(w,w)

2 2
¥ (z,20e1 Y@ W (7, w)en¥@w) )

¥ (w,2)e ¥ (w, w)e

and one computes that M := hB* A"'hB is given by

_ 4 (Mn M12)
det A \M>1 My

with
My =¥,(2,2) VL (z, z)en WY@ ww) | (W, (z, w) VL (w,2)

1
— W (2, w)Vi(2,2) — P (2, 2) Wi (w, 2) | en GH BATART (@)
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1
Mip ==V, (z, w) V. (z, w)en WY EW2XWD 4 (@) (7, 2)W!_(z, w)

+ \P/z(z' w)‘I"w(w, w) — \P'Z(z’ z)‘I"W(w, w)]e%(‘I’(Z,Z)+‘I’(Z,w)+‘l’(w,w)),
and

1
Mpy =¥, (w, w) VL (w, w)en ¥ EAHFWW) 1 [ (1, 2)WL_(z, w)

1
_ \I”z(w, LU)\P’W(Z, w) — \Iﬂz(w’ z)‘I"w(w, w)]eg(Z\I’(w,w)+4Re‘I’(z,w)).

Since the matrix M is clearly self-adjoint, one has that M»; = M. Comparing the coefficients of M
with with those of #%(det A/4)C (cf. Lemma 3.3.7) and using the symmetries of ¥ (cf. Proposition
3.2.1), we see that

. —4 1(2¥(2,2)+4Re ¥ (z,w))

h2F _ _ ayaze
detA

alﬁle
e%(‘P(z,z)+‘I’(w,z)+‘P(w,w))

2(¥(2,2)+¥ (z,w)+¥ (w,w))
eh @Y (w,w)+4Re ¥ (z,w))

aa, a)ay

2 2
Y _(z,z;)ern'@D W' (7, w;h)ent@W )
zw zw

+2h Y (w,z; e YWD Wy w; hen V0w
zw zw

(3.3.3)

with a; as in the hypothesis of Proposition 3.3.4. Recall from (3.2.2) that the function K(z, w) is
defined by

—K(z,w) =2ReV¥Y(z,w) —P(2) —D(w)
where ®(z) = ¥(z, z). Using (3.3.2), we find that the first matrix in (3.3.3) is equal to

— 1 _ _ 2
—4 (alaleh(Z‘I’(z,Z) 2K (z,w)) araren?@w )

— 2 — 1 _
l_e_%K(z,w) agaleh\y(w’m dgdzeh(z‘{’(w'w) 2K (z,w))

It follows by Lemma 3.3.7 that
I = ATA* + O (h™).
In the last equality we used that det A is bounded from below by a power of &; see Lemma 3.3.7.

Carrying out the matrix multiplication AT A* implies the statement of the proposition. O

Proof of Proposition 3.3.1. The Shur complement formula yields that the determinant of the Gra-
mian matrix G is given by detG = det AdetI'. Hence, using Proposition 3.3.2 and Corollary 3.3.5,
we see that

16 (1 +G(h*™)) ol

2 h
detG = — - hK(Z'w)[|a1a2|2+E(|a1|2(6§w‘{’)(w, w; h)

~2Re {02,V (w, 3 W ar o} + |aa P (0% %) (2,2 )
+%ﬁ@fﬂ@zmmgwmuwm—wgyxammwgyxsz€ﬂ“”)
(1= 3K 1L 6(h™) + 0 (). (3.3.4)

Next, we consider the Taylor expansion of the terms a; and a, up to first order. Similarly as in

Proposition 3.2.1, we develop around the point (£5%, £5%) and get that
a = (0;¥)(z,2) - (0,¥)(z, w)

2 z+w z+w
=@, (5

)(z—w)+@’(|z— w)? + h™) (3.3.5)
and

ap =(0,¥)(w,z) - (0,9)(w, w)
Z+w z+w
2 7 2

= @2, | (z—w)+0(1z— w+ h), (3.3.6)
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Moreover, one has that for {,w € {z, w}
z+w z+w

@%5%) ¢ 0) = 02,9) (= | +60z-wl+h). (3.3.7)

Since we suppose that [z — w| > K35 the above error term is equal to O(]z— wl). Since diw\lf is
evaluated at a point on the diagonal, it follows from Proposition 3.2.1, that

(62 \P)(z+w z+ LU) (62 q))(z+w Z-;LU)
=ig(z+”") 6(h) = lgh(z w). (3.3.8)

Plugging the above Taylor expansion into (3.3.4), one gets that det G is equal to

‘”f—’w{[1+@(|z wl) — (1 +6(|z - w))e K@ (1 e iK(@w) +6’(h°°))
A 2K(zw) Uh(z,w)lz—wlz) B on(z,w)|z— w? B
4e" n (( m Q1+0(z—w)) + m O(lz—w))
+ 0 (h™)
op(z, w)? —2g(zw))? ~2K(z,w) 0
:T{(l—e K@ ) +@(|z—w|)(1—e WK )+@’(h )
2 5 3
g 2Kzw0) ah(z,w)|z—w|2) (|z—w|) (|z—w|)
4e 7 ( m +0 % +0 . .

Recall from (3.2.2) that K(z, w) = |z — w|%, wherefore we see that detG is positive for |z — w| > Vh.
Next, we suppose that |z — w| = v/h. Hence, one gets that

onlz,w)e iKEW Kz, w) 2 ko) o
detG = - { sinh T+@’(|z—w|)(eh —1)+@’(h )
ah(z,w)|z—w|2)2 (|z—w|5) (|z—w|3)
( o +O| T |+ 0| —; : (3.3.9)

Using the Taylor expansion of the sinh x and (3.2.2), one gets that

-, K(zw) (ah(z, w)lz - w|2)2
sinh -
h 4h
loy(z w)lz—wl2 4 oplz w)lz—wl5
>|= - 1+0(z- +0 -
( 3 ah ) ( (Iz—w) ( 12 )
Note that the principal term on the right hand side of the inequality dominates the error terms.
The same holds true for the other error terms in (3.3.9).
Next, let us suppose that #%/° « |z — w| < V. Since

(3.3.10)

: — w3
@(|z—w|)(ehf<<z,w)_1)Z@(m w )

h
it follows by (3.3.9) and (3.3.10) that det G is positive for |z — w| > h%/5. O

Proof of Proposition 3.3.6. Using (3.3.5), (3.3.6) and (3.3.7), one gets that

tr = — B (of K 1) (14012 - wl)
2h (eﬁK(z,w) _ 1)
_ 2
_ oWz WG - wp]. (3.3.11)
2h
Since
2 4
2 K (z,w) oz, w)lz—w| on(z,w)lz—wl
R = oh 1+0(lz—wl) + oI 1+0(lz—wl),
it follows that for |z — w| > h the trace of T is positive. Furthermore, the above inequality applied
to (3.3.11), implies the upper bound stated in the Proposition. O
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3.3.3 — The permanent of I'

The permanent of the matrix I'" (cf. (3.3.1)) is vital to the 2-point density of eigenvalues and there-
fore, we shall give a more detailed description of it than the one given in Corollary 3.3.5.

Proposition 3.3.8. Let 0, (z, w) be as in Theorem 1.3.4 and let K(z, w) be as in (3.2.2). Under the
assumptions of Proposition 3.3.4, we have that for N > 1 and %hN <lz—-wl,

permI'(z, w; h)

1

=z | oW w + oz, w2(1+6(z—whle i +6(h®)

o1z W) (1 + 6 (12— w)) (‘”‘(z’wnz_wlz oo K)ot wlz -l ]
e sinh K(—Zh’w) 4h h h |

Proof. Applying (3.3.5), (3.3.6) and (3.3.7) to the formula for permI given in Proposition 3.3.6 and
using the notation introduced in (3.3.8), one gets that

8coth £
permr :—4 - };(e_%K(Z'W)Vl_ZUh(Z, W)Z(Z_W)2(1+@(|Z—w|)|2

h smhﬁ

e~ 1Kz w) , ,
_—4h3 ; hKUh(Z,LU) lz—wl*1+0C(z—w|)

sinh &

4h2 (oh(z Z)op(w,w) +op(z, w; W21 +6(z-w)e” 2K(z, w))

+ O (h*™).

Thus, one computes that

perm = Z1& W1+ 0z —w) (ah(z, wle-wP\ K onlew)lz-wp
4h2eﬁK(z'“’) sinhK 4h h h
4h2 (Uh(Z,Z)Uh(w, w) + 0oz, w; )1 +0(z— wl)e‘hK(z w )
+0(h™)
and we conclude the statement of the proposition. O

3.4 | Proof of the results on the eigenvalue interaction

We begin by proving the results of Theorem 1.3.4, Proposition 1.3.5 and of Proposition 1.3.6.

Proof of Theorem 1.3.4. The result follows directly from Proposition 3.1.7 with the density D given
by Proposition 3.3.8 and by Proposition 3.3.2. O

Proof of Proposition 1.3.5. First, let us treat the case of the long range interaction: we suppose that
1
|z— w| > (hlnh~1)z. Here, we have that for any power N > 1 the term

N
ah(z,w)|z—w|2) _Kiz.w)
oKz,
4h

remains bounded. Using that sinh K(z, w) = ©(h~¢) > 0 with C > 1 and using that oj(z,z2) =
o(z) + O (h), it follows that

Dotz wit = ZET T (1 6(5m7%)).
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Next, we consider the case where hi < |z — w| < hz. Recall from Theorem 1.3.4 that

Az, w)

5 1y —
D°(z,w; h) = (@rh)? (1 - e 2KE@w)

(1+@(6h‘§))+@(e‘h%) 3.4.1)

D°(z,w;h) = Az, w) (1+0 (1 + 677 )| +@(e—h%),
with A(z, w; h) equal to

012,20, (w, W) + 0, (2, w)2(1 + 6|z — w]))e 2KEW) +@’(h°° +5h‘%]

2
) 2cothK(z, w) —

eK@w) sinh K(z, w) 4h

on(z,w)*(1+0(1z— w)) ((Uh(z, w)lz - wl?
h

oz, w)lz— WIZ)

Similarly to (3.3.7), we have that 0, (z, z) = oy, (2, w)(1+ O (|z— w|). We start by considering the first

term in (3.4.1):
Az, w)

2mh)?(1-e2K@w)’

(3.4.2)

Set o, = 0),(z, w). Using the Taylor expansions of the functions sinh x, coth x and e™*, one com-
putes, that (3.4.2) is equal to
) 0'?1|Z— wl?

—~ |05, (1+0(z—wl) ——h(l +0(lz—wl))
hn2oy)|z— w|? (1 +@(%)) 4

1z — wl? oflz—wl|* |z — wl*
I ))+{ 34012 Hﬁ( 2 ))_1.

_ 2 o?lz—wl* _wl?
o2 (1- 2t (14012 wi) + - (1+0( 540

1

a‘}llz— w*
_ 7}
42p2 (

) +0(h™+6n71)

1+0(z- w) + T4 (14 0( 1))

which simplifies to

o3lz— w|? —wl?
Az, w; h) = L (1+@’(|Z wl ))

(47 h)? h
Hence, . )
oplz—wl |z — w|* 5
D%(z,w;h :”—(1 6( 6h‘))
(z, w; h) Anh)E + 7 + 5
which concludes the proof. O

Proof of Proposition 1.3.6. Using that o,(z, wy) = 0p,(2,2)(1 + G (lz — wyl) (cf. (3.3.7) and (3.3.8)),
the result of Proposition 1.3.6 follows from Proposition 1.3.5. O

It remains to prove Proposition 3.1.7. However, first, we state a global version of the implicit
function theorem.

Lemma3.4.1. Let0 < Ry <R, letn,m e IN, withn > m, and let B(0,R) c C" = C}~" xC!" denote the
complex open ball of radius R > 0 centered at0. For z € Bgn-n (0, Ry), define R(z) := (R~ z/12,_) /2.
We consider a holomorphic function

F:B(O,R)— C™

such that
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e forall (z,w) € B(0, R) the Jacobian of F with respect to w is given by

0F(z, w)
ow

where G : B(0,R) — C™*™ is a matrix-valued holomorphic function and

=A+G(z,w),

o AeGL,,(C) such that
IATY-1G(z, w) <0 <1

forall (z,w) € B(O,R).
Then, for all z € Bgn-m (0, Rg) and for all y € Bem(F(z,0), ﬁ r), with0 < r < R(z), the equation
Flz,w)=y (3.4.3)

has exactly one solution w(z,y) € Bgn (0, R(2)), it satisfies w(z,y) € Bem(0,1) and it depends holo-
morphically on z and on y.

Remark 3.4.2. Observe that the choice of Ry < R yields a uniform lower bound on R(z) and so we

can choose the radius of the ball Bgn (F(z,0), =2~ r) uniformly in z. This will become important

[
in the proof of Proposition 3.1.7.
Proof. Let z€ Bgn-m (0, Rp) and set
Ben(0,R(2) 3 w— F(w) := F(z, w).

We begin by observing that dF (w) is invertible for all w € B (0, R(2)) and the norm of the inverse
is bounded (uniformly in z). Indeed, for one has that

1A~
1-60°

(dF) | < 1A 10+ A7 Gz, w) M <
N H

Claim #1: F is injective.
Let wy, w; € Bgn (0, R(z)) and define y; := F(w;). Hence, with w; := (1 — f)wg + tw;, we have
that

d ~ ~
aF(wt) =dF(wy) - (w1 — wo) = (A+ G(z, wy)) - (w1 — wy).

Thus,
1
Y1—Yo=(A+ H(z, wy, wp)) - (w1 — wy), H(Z;wl;wo)):/ G(z,wydt,
0

where || H(z, w1, wo)ll < supgg g |G(z, w)ll. Therefore, A=Y - 1 H(z, wy, wp)|l <0 < 1, and we see

-1
that (A+ H(z, wy, wp)) is invertible and the norm of its inverse is < % (uniformly in z). Hence,

[l
1-6

lwi — woll = ly1 = yoll, (3.4.4)
and we conclude that F is injective. In particular, we have proven the uniqueness of the solution
to the equation (3.4.3).

Claim #2: Let 0 < r < R(z). Then, forall y € B@m(ﬁ(O), ”1A;,‘?”r) there exists a w € Bgm (0, ) such
that
Fw)=1y.

For y = F(0), we take w = 0. Using the fact that dF is invertible everywhere, the implicit func-
tion theorem implies that for all y € B(F(0), p) there exists a solution w € Bgn (0, 1), if p > 0 is small
enough (cf. (3.4.4)). Let y € Ben (F(0), ﬁr), and define y; := (1— t)F(0) + ty. Let tp € [0,1] be the
supremum of 7 € [0, 1] such that there exists a solution to F(w,) = y:forall0<r<7.
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We have already proven that tp > 0. As ¢t / fy we have that w; € B¢=(0,7). Since Bgn (0, 1) is
relatively compact in Bgn (0, R(z)), there exists a sequence ; / fp such that w;, — w with w €
Bcn(0,7). Thus,

F(@) = ys,

and we see by (3.4.4) that i € Bgn (0, 7).

If tp < 1, we get by the implicit function theorem, that for all y € B(yy,,6), with 6 > 0 small
enough, there exists a solution w € Bg=(0,r). Therefore, we can solve F (wy) =y forall0< ¢t <
fop + 6, which is a contradiction. Hence, #;, = 1, which concludes the proof of the existence of a
solution.

Finally, note that for all (z, w) € B(0, R) the Jacobian dF(z, w)/0w is invertible and the norm of
its inverse is uniformly bounded, indeed

==k
ow

In particular, we have that the determinant of the Jacobian is never equal to 0, and we conclude
by the holomorphic implicit function theorem that the solution w(z, y) to the equation (3.4.4)
depends holomorphically on z and y. O

[

<A 10+ A Gz, w) 7 < )
=| h-1a+ Glz,w)) I = —0

Proof of Proposition 3.1.7. In view of (3.1.4), it remains to study the integral

1(z1,2,h) = lim n_N/ Hf(zl,ZZ,a;h)e_“aL(da). (3.4.5)
B(O,R)

e—0*

2 E%, (2, )
Hl(z1,22,0;1h) := [ 6_27((% 10, E°, (21, a)|?
k=1

for 1/C = |z1 — 23| > h3/%. We begin by performing a change of variables in the a-space.
Change of variables: For X (z) € C" as in Definition 3.1.2, define the matrix
'Vi= (X(21), X (22), 02 X (21),05, X (z2)) €

and note that the Gramian matrix G (cf. (3.1.6)) satisfies

A B i
o=(p PJ=vev

Moreover, G is invertible by virtue of Proposition 3.3.1, since |z} — zp| > K35, Next, we define the
matrix U € C*** by

1 0
U'_(B*A‘l 1)‘

U is invertible and thus satisfies that (U™1)* = (U*)~!. Define the matrix

~._ A 0 4x4
G.—(O r)e(D ,

and notice that

A 0), . 1 0\~(1 A'B
U(o r)U _(B*A—1 1)G(0 1 )_G‘
We see that G = U~'G(U*) L. Next, we define the matrix
V= UV G s e OV, (3.4.6)
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V* is an isometry since VV* = 1¢s. Thus, its columns form an orthonormal family in CN. It
follows from (3.4.6) that the kernel of V and of V are equal, i.e. A/ (V)=N (V). The same holds
true for the range of V and of V, i.e. Z(V) = (V).

Next, we choose an orthonormal basis, ey, ..., exy € CV, of the space of random variables a such
that \71*, s \74*, the column vectors of the matrix V*, are among them. In particular, let e; = ‘71* for
i=1,...,4, and let es, ..., ey be in the orthogonal complement of the space spanned by e, ..., e4.
Hence, we write for a € CN

N
a = Z aie,-,
i=1
where @ = (&@,,...,ay) € CV. Moreover, note that
atra=a’-a. (3.4.7)

Remark 3.4.3. The fact that we can only guarantee the invertibility of G for hs < |z—w| < 1 makes
(1.3.4) necessary. This might be avoided by choosing another set of basis vectors.

Next, we apply this change of variables to the vector F given in (3.1.5) and we get

F(z,a(@);6,h)

E_i(z1) "X (z1) T(z1, (@)
_ E_,(zp) P "X (zp) (@) + T (2o, a(@))
(0:E_4)(z1) 10.X)(z1) (0, T)(z1,a(a))
(02E_4)(22) 102X)(z2) (0, T) (22, (@)
E_+(Z]) &'1 T(Z],a(a))
E_+(Z2) nd T(ZZ)a(aE))
- -5V -V)- . - .
(0.E-+)(z1) V-9 N " 0.7)(z1, a(a))
(0:E_4)(22) @4 (0, T) (22, a(@))

Furthermore, one computes that

vi=ugi=| A, 01), (3.4.8)
B*A™2 T2
and we get that
E_.(z1) o T(z1,a(a))
_ E_i(22) ~1 T(z2, a(a))
F , ;0, = — 2. . . .
@a@:0.M=\ 65 5 )@ |2V | M 0D a@)
(0:E-+)(22) a4 0.7 (22, a(@))

Next, to simplify our notation, we call the @ variables again a. Also, to abbreviate our notation,
define
E_i(z1)

T(Zl,(l))
E_.(2) '

w(z, w; h) = ( T(zp, )

) and 7(z,a; h,0) := (
and
(0,E-1+)(21)

0:7)(z1, a))
(0zE-+)(z2) '

01z, w; h) := ( 0,T)(22,)

) and 0,7(z,a; h,0) := (
Remark 3.4.4. Recall that T (cf. (3.1.3)) depends on & and on §, though not explicit in the above
notation.

When we write 0, and 0,7 the derivatives are to be understood component wise, each of
which only depends either on z; or z,.
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Hence,

a
u(z, h,6)

0.u(z, h,d) (3.4.9)

F5(z, a):=F(z,a;0,h) = (

)—SU('?; ( 17(z,a, h,0) )

0,7(z,a,h,0)
ay

Asnoted in Remark 3.1.4, p and 7 are smooth in z, and 7 is holomorphic in @. Moreover, 7 satisfies
the estimates
1,=0(h?6%), i=1,2and 8,7, =0(h™"'?6%), i=1,2; (3.4.10)

and p satisfies the estimates

i = @(h”ze‘%), Oz i = @’(h‘”ze‘%) L i=1,2 3.4.11)
with S as in Definition 1.2.2. Finally, we perform the above described change of variables in the
integral (3.4.5), and, using the fact that we chose an orthonormal basis of the a-space, we get that

2 F(zy, )
HS (21,20, a5) = [] e 2y | ——
k=1

o 2
|Fle o (2, @)

Next, let a = (a1, @2, @') = (@, a’) and split the ball B(0,R), R = Ch™1, into two pieces: pick Cy > 0
such that 0 < C; < Gy < C < 2Cy, and define Ry = Coh~". Then, we perform the splitting: I(z, h) =
I1(z, h) + Ix(z, h) with

Li(z,h):= 11151 o N Hg(zl,ZZ,a;h)e_“*“L(da).
£—0*
B(O,R)

la'llgv-2<Ro

and

Ip(z, h) = lim a N / HY (21,2, a; h)e”* “L(da). (3.4.12)
£— +
B(O,R)
Ro<la'llcn-2<R
The integral I; First, we perform a new change of variables in the a-space. Let §1,..., By € C such
that
B1= Ff(zl,a), Bo = Ff(zz,a) and 8; =a;, fori =3,...,N.

We use the following notation: § = (81, 82, 8') = (E, a'). It is sufficient to check that we can express
@ = (a1, az) as a function of (B, a’). Therefore, we apply Lemma 3.4.1 to the function

F® (zl,a))

) _
Flna) = (Fg (22, Q)

where a plays the role of (z, w) in the Lemma. In particular, & plays the role of w. Let us check that
the assumptions of Lemma 3.4.1 are satisfied: %°(z, ) is by definition holomorphic in a. Using
(3.4.9) and (3.4.8), we see that its Jacobian, with respect to the variables &, is given by

0% (z,a) Ot 1
————=—=-0Az (3.4.13)
oa oa
The Cauchy inequalities and (3.4.10) imply that
ot i

%, :@(6%—%), i,j=1,2.

This estimate is uniform in a € B(0, R) and (z;, 22) € supp ¢. Expansion of the determinant yields
that 3
det(a—f—aAi) =52(¢detA+@(5h—%)). (3.4.14)
a
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Using that A is self-adjoint, we see by Corollary 3.3.3 that for (z;, z2) € supp ¢

IA™Z]| < <o(n=). (3.4.15)

min VA
Aeo(A)

By the hypothesis (1.3.2), we have that § < h”/2. Hence, one gets that for all @ € B(0, R)
§AT 10g7I = 0(6hFH ) < 1.

Hence %°(z, a) satisfies the assumptions of Lemma 3.4.1. In the integral I; we restricted a’ to the
open ball |&@'||gn-2 < Ry. It follows by Lemma 3.4.1 that for all

BeBe (95 (2,0,a), r) (3.4.16)
with

- -3-! Ly A3 (15~ /R2 _ R2
r.—(éllA 2|77(1- max 6 |A 2||~||6arll)) R% - R§
aeB(0,R)

Sha !
>
o)

the equation B =% 5(z, @, a') has exactly one solution & (B, a'; z) in the ball
B(0,\/R2 = /12,0, ).

Moreover, the solution satisfies @(B, a’; z) € B(0, \/ R? - Rg), and it depends holomorphically on
and @' and is smooth in z. Using (3.4.9), we see that the solution is implicitly given by

@B, a)=-6""A"2 (B-v(z &P, a),a, h,5)). (3.4.17)

with N
vi= (v, v2)' = ulz, h) +1(z,a(B,a)),a’, h,6)

where 7 satisfies the estimate (3.4.10). Since the support of y is compact (cf. Section 3.1.1), we can
restrict our attention to 5 and &% (z;0,a’) in a small poly-disc of radius Ke > 0 centered at 0, with
K > 0 large enough such that supp y < D(0, K). By choosing € < 6h/C, C > 0 large enough, we see
that 5, F%(z;0,a') € D(0,Ke) x D(0, Ke) implies (3.4.16).

From (3.4.8), (3.4.9) and (3.4.17), it follows that

(Fg(z, ap a)a)

— L -0 _ % as
Ff(z’a(g’a/)’a/))—an+B A (B-v)-oT (a), (3.4.18)

4

with N
aZV = (aZV17aZV2)t = (azﬂ) (Z) h) + (aZT) (Z; &(ﬁ, a,)r a/; h; 5)

where 9,7 satisfies the estimate given in (3.4.10). Furthermore, (3.4.13) and (3.4.14) imply that
-2 ~ ~
Ld@) =674 (\/detA +0 (6h‘%)) LdP) =: J(B, ") L(dP) (3.4.19)

By performing this change of variables in the integral I; and by picking £ > 0 small enough as
above, we get that I is equal to

li{%n"v f HY(z1,2,@(B, &), a; e~ ® %) j(B, o) L(da') L(d ),
€
BeD(0,Ke)xD(0,Ke)
(@(B,a’),a)eBO,R)
la'lln-2<Ro
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where N _ N
®(B,a):=ap,a) -ap,a)+ @) -a.

The integrand of I; depends continuously on . Hence, by performing the limit € — 0%, we get

Lz, h)=a"N / H (21, 2,@0,a'),a; e ® @) J(0,a") L(d ') (3.4.20)

(@(0,a",a")eB(0,R)
”a’”CN—Z =Ry

with
Hl(z1,22,@(0,a"),a’; h) = |F3(2,0,a")Fy4(2,0,a")|%.

Using (3.4.17), one computes that
(D(O ’)_iV*A_IV-i—( I)*_ /
@)= a) -«
and, using (3.4.18), we get

Fo(z,&@(0,a"),a’)

_ _p* -l 1(ds3
Ff(z,&(O,a’),a'))‘an B*A v 6F2( ) (3.4.21)

gy

where v =v(z,@(0,a’),a’, h,6). Using (3.4.10), (3.4.11) and (3.4.15) one computes that

1 C 28
~ N2 — % a1 _ -2 _—= 21,—5
10, a1 = v AT vs o(672e7%) +0(8%17), (3.4.22)
where the constant C > 0 comes from the upper bound of ||A~?||~! given in (3.4.15). By the
Hypothesis (1.3.2), we conclude that

" 1
1@, a)I> < —.
hio

which implies that (@(0,0,a’),a’) € B(0, R) for all &’ with ||@’||¢~x-2 < Ry. Hence,

Lz h=nN / |F3(2,0,a")Fy(z,0,a) e 0% j0, ') L(da'). (3.4.23)

la'lgn-2=Ro

Next, we want to apply a multi-dimensional version of the mean value theorem for integrals to
(3.4.23). Indeed, let U < R” be open, relatively compact and path-connected, it then holds true
that for a continuous function f: U — R and a positive integrable function g : U — R, there exists
a y € U such that

f(y)/g(x)dx:/f(x)g(x)dx.
U U

Hence, the mean value theorem applied to (3.4.23) yields that

A ly
52

Lz =n"NJe |F5(2,0,a")F4(2,0, ') e~ 7 L(da).

la'lgn-2<Ro

Here, J denotes the evaluation of the Jacobian J (0, a’) (cf. (3.4.19)) at the intermediate point for a’
given by mean value theorem. Note that J depends smoothly on z; and z, because T and A do.

Similarly, v above denotes the evaluation of the function v(z, @(0, a’), &, h, §) at the intermedi-
ate point for a’ given by mean value theorem. It depends smoothly on z; and z; because u and t
do. Moreover, using (3.4.10), we see that it satisfies

~ E_.(z1) 2 _%
v_(E_+(Zz))+6’(6 h )
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In remains to study the integral

Lz, h):=a"N / |F5(2,0, &) Fy(2,0,a")2e™ Y L(da).

la'lgn-2=Ro
Define the linear forms
Lah = [F%]11063 + [F%]12a4, L(a" = [1"%]21053 + [F%]ZZCM-
Using (3.4.21), we get that
/ % 4—1 ' _3 _S 9, _36 ,
F3(2,0,a') = (0,v— B* A v)1—6ll(a)=@’(h Se i +62h 10)—611(a).
/ % 4—1 / -3 _S 2,36 /
Fi(2,0,a) = 0,v—B*A v)g—(Slg(a):@’(h le i +62n 10)—6lg(a).

In the last equation we used (3.4.10), (3.4.11), (3.4.15) and the fact that the Hilbert-Schmidt norm

of B* is =< #(1) which follows from the fact that elements of the matrix B* are bounded by a term

of order h™!.
By Proposition 3.3.6, one gets that the Hilbert-Schmidt norm of I' is bounded, indeed one has
that
IT% s = VAT <G (h™2).

Since ||a’|¢v-2 < Ry, one gets
IF3(2,0,)Fy(2,0,)[* = * (I (@) o (@) + 0 (e~ + 51710 ),

where the error estimate is uniform in a’. Here we used as well that by the hypothesis (1.3.2), we
have that 6’(6’1e_%) = ﬁ(e_ﬁ). Hence,
Tiz, h) =&8*a N / 11 (@) b (a))2e Y Lida') + @’(5%‘5 + 5511‘%) .

la'llgn-2<Ro
Extend the function |5 (a') I, (a')|? to the whole of CV~2 by a function that satisfies the same bounds,
i.e. bounded by a term of order h~°, and note that

n2~N / 11 (@) (@) 2e Y Lida') < @’(e_ 2 ) .

la'lgn-2=Ro

Integration by parts yields that

n* N / 1l (@) lp(a") Ize_“@L(da')
CN*Z

=2 / e [ lk(0a) ( I1 ln(&)) Lda).
CN-2 n=1

k=1

Note that for any permutation o € S,, where S, is the symmetric group, we have that (/;|l,;)) =
Tig@)- Thus, in view of (3.1.8), we have that

2 (2 _ _
I1 lk(ag)(H ln(&“)) = ) (hlls) (2llyz) = permT
k=1 n=1

o€S;

We conclude that
permI’ +@’(e_ﬁ +5h‘%)
72 (\/Mm(ah—%))z

Li(z,h) =
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1
where we used the fact that det A = % for 1/C = |z— w| > h%'5, see Proposition 3.3.4, to obtain
the last equality.

The integral I, In this step we will estimate the second integral of equation (3.4.12). Therefore,
we will increase the space of integration

2 F,
- - k(z,a)
k=1 €
B(0,R)
Ro<la'llgn-2<R

2
<a N / [Te%x (
k=1
B(0,2R)
Ro<lla'llgn-2<2Ryg

) 0., Fr(z, @) Pe” " L(d )

Fi(z,a)

) 0., Fi(z, @) e % Lida) =: W.

It is easy to see that Lemma 3.4.1 holds true for the set B(0,2R) N {Ry < || &@'l|gnv-2 < 2Rp}. Therefore,
we can proceed as for the integral I;: perform the same change of variables and perform the limit
of € — 0. As for I, the integrand remains bounded by at most a finite power of 4#~! which then
yields that

I ole7?
lim we =0 (e"7).
where the exponential decay comes from the fact that Ry < || @’ || ¢n-2. Therefore,
/2 P1(z21)92(22)dv(z1, 20) = /2 @1(21)p2(22)D(z, h) L(dz1d z)
C C

with 1 )
permI’ +@’(e‘ﬁ +6h‘%)

D(z,h,6) = —
n2(¢detA:+@(5h—%n

+@’(e_h%). O
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CHAPTER 4

INTERIOR EIGENVALUE DENSITY OF
JORDAN MATRICES WITH RANDOM
PERTURBATIONS

The aim of this chapter is to study the eigenvalue distribution of a large Jordan block subject to a
small random Gaussian perturbation, as was discussed in Section 1.4, and give a precise asymp-
totic description of the expected eigenvalue density in the interior of a circle thereby extending an
existing result of E.B. Davies and M. Hager [16]. In particular, we prove the results described in
Section 1.4. The results presented here are due to J. Sjostrand and M. Vogel [71].

4.1 | A general formula

To start with, we shall obtain a general formula (due to [83] in a similar context). Our treatment is
slightly different in that we avoid the use of approximations of the delta function and also that we
have more holomorphy available.

Let g(z, Q) be a holomorphic function on Q x W < C x CNZ, where Qc C, W c CN’ are open
bounded and connected. Assume that

forevery Qe W, g(-,Q) #0. (4.1.1)
To start with, we also assume that
for almost all Q € W, g(-, Q) has only simple zeros. (4.1.2)
Let¢pe C(‘;O(Q) and let m € Cy(W). We are interested in

K¢=/( > ¢(Z))m(Q)L(dQ), 4.1.3)

z;8(2,Q)=0

where we frequently identify the Lebesgue measure with a differential form,
LdQ) = 2i) ™M dQ, AdQi A... AdQpe AdQpe =: (2) N dQ A dQ.

In (4.1.3) we count the zeros of g(-, Q) with their multiplicity and notice that the integral is finite:
For every compact set K < W the number of zeros of g(-, Q) in supp ¢, counted with their multi-
plicity, is uniformly bounded, for Q € K. This follows from Jensen’s formula.
Now assume,
8(z,Q)=0=>dpg #0. (4.1.4)
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Then
:={(z,Q) e Qx W; g(z,Q) =0}

is a smooth complex hypersurface in Q x W and from (4.1.2) we see that
Kp= / d2mQ @)™V dQ A dQ, (4.1.5)
b

where we view (2i) N ’ d@/\ dQ as a complex (N?, N?)-form on Q x W, restricted to X, which yields
a non-negative differential form of maximal degree on X.

Before continuing, let us eliminate the assumption (4.1.2). Without that assumption, the inte-
gralin (4.1.3) is still well-defined. It suffices to show (4.1.5) for all ¢ € €5°(Q x Wp) when Qo x Wy is
a sufficiently small open neighborhood of any given point (zy, Qp) € Q x W. When g(zy, Qo) # 0 or
0,8 (z9,Qp) # 0 we already know that this holds, so we assume that for some m = 2, 6’; g(20,Q0) =0
for0<k<=m-1, 07 g(z0,Qo) #0.

Put g.(z,Q) = g(z,Q) + ¢, € € neigh(0, C). By Weierstrass’ preparation theorem, if Qy, Wy and
r > 0 are small enough,

ge(Z,Q):k(ZyQ»E)P(Z,Q»f) inQOXWOXD(O’r)’

where k is holomorphic and non-vanishing, and

p(z,Q,6) = 2"+ p1(Q,&)z™  +---+ p(Q,8).

Here, p;(Q,¢) are holomorphic, and p;(0,0) = 0. The discriminant D(Q,¢) of the polynomial
p(-,Q,¢) is holomorphic on Wy x D(0,r). It vanishes precisely when p(:,Q,¢) - or equivalently
g:(-, Q) - has a multiple root in Q.

Now for 0 < |e] « 1, the m roots of g.(:,Qp) are simple, so D(Qp,€) # 0. Thus, D(;,¢) is not
identically zero, so the zero set of D(:,¢) in W, is of measure 0 (assuming that we have chosen W,
connected). This means that for 0 < |¢| « 1, the function g (:, Q) has only simple roots in Q for
almost all Q € W

Let X be the zero set of g¢, so that X, — Zo = Z N (Qp x W) uniformly. We have

/ ( Y (P(z)) m@Q @) ™N'dQardQ= | ¢p2m@Q@) N dQrdQ
z;8:(2,Q)=0 Ze

forgpe <€5’° (Qp x Wp), when € > 0 is small enough, depending on ¢, m. Passing to the limit € = 0 we
get (4.1.5) under the assumptions (4.1.1), (4.1.4), first for ¢ € 6;°(Qo x Wp), and then by partition of
unity for all ¢ € 65°(Q2 x W). Notice that the result remains valid if we replace m(Q) by m(Q)15(Q)
where Bisaballin W.

Now we strengthen the assumption (4.1.4) by assuming that we have a non-zero Z(z) € cNv
depending smoothly on z € Q (the dependence will actually be holomorphic in the application
below) such that

8(z,Q) =0=(Z(2)-00) gz, Q) #0. (4.1.6)

We have the corresponding orthogonal decomposition
Q=Q=mZ@)+a', ad'€Zi)?* aeC,
and if we identify unitarily Z(z)* with C"¥°~! by means of an orthonormal basis
e2(z2),...,en2(2),

sothata’ = Zévz ajej(z) we get global coordinates a1, @z, ..., @ y2 on Q-space (i.e. W).

By the implicit function theorem, at least locally near any given point in X, we can represent X
by a1 = f(z,a'), @ € Z(z)* =~ CN’'~!, where f is smooth. (In the specific situation below, this will
be valid globally.) Clearly, since z, @y, ..., a 2 are complex coordinates on X, we have on X that

1

dznd ,
— ERAZ iV N q@y Aday Ao A dTge A dae,
i)V

dQadQ=J(f) >
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where we view (2i) N’ dQ A dQ as a complex (N2, N?)-form on Q x W, restricted to < (as in (4.1.5)),
and we use the convention that

dzndz _ _
5 =0, @D N da, Adas A ... Ad@xz Aday: > 0.
l

J(H

Thus

Kp= /gb(z)m(f(z, aVZ(2) + a’) J(P) (2, @2y ooy @ p2) %
4.1.7)

@iy Ndzadzandas ndas A ... Adaye Adaye.

The Jacobian J(f) is invariant under any z-dependent unitary change of variables, as,...,apz —
@, ...,ap2, so for the calculation of J(f) at a given point (zg, a(’)), we are free to choose the most
appropriate orthonormal basis e;(z), ..., en2(2) in Z(z)* depending smoothly on z. We write (4.1.7)

as
~ . dzndz
Ky = [ ¢(2)E(2) 5 (4.1.8)
where the density Z(z) is given by
E(2) = / , m(f(z,a)Z(2) + a) ] (f) (2, @z, ..., ap2) ¥
a'=Y;" aje;(2) (4.1.9)
@D VN da, Adas A ... Adanz Adaye.
4.2 | Grushin problem for the perturbed Jordan block
4.2.1 — Setting up an auxiliary problem
Following [74], we introduce an auxiliary Grushin problem. Define R, : CY — C by
Riu=uy, u=(uy ... uy) e CN. 4.2.1)
Let R_: C — C" be defined by
Ru_=(00..u)eCV. (4.2.2)
Here, we identify vectors in CN with column matrices. Then for |z| < 1, the operator
oy = (AO —7 R‘) Nt N+ (4.2.3)
R, 0

is bijective. In fact, identifying
CN*l =~ ¢?(1,2,..., N+1])) = ¢*(Z/(N +1)Z),

we have o/ = 77! - zITy, where Tu(j) = u(j — 1) (translation by 1 step to the right, keeping in mind
that j € Z/(N+1)Z) and Tlyu = 13, xyu. Then oy = 771 (1 — ztTly), TNV =0,

Ayt = 1+ 2ty + (zTTIN)? + ... + (27T V) 0 7.

Write
E° E°
e -1 _.
8= "(59 E9++).
Then
E° =T n(1 + ztlpy +...(z7IN) Y D1y, (4.2.4)
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EY = , E0=(2NTt 2N L), (4.2.5)

E°, =2ZN. (4.2.6)

A quick way to check (4.2.5), (4.2.6) is to write &« as an (N + 1) x (N + 1)-matrix where we moved
the last line to the top, with the lines labeled from 0 (= N+1 mod (N+1)Z) to N and the columns
from1to N+1.

Continuing, we see that

IE°N < G(zD, 1ES) < G(zhz, IE, I <1, 4.2.7)

where | - || denote the natural operator norms and

G(|z|) := min (N, ) =1+z|l+|z>+...+|zV L. (4.2.8)

1-|z|

Next, consider the natural Grushin problem for As. If §||QlG(|z]) < 1, we see that

. A5—Z R_
o5 = ( R, 0 ) (4.2.9)
is bijective with inverse
E° E°
%= (E5 Eé)
where
E® =% - E°%QE’ + E°(6QE®%)? —...= E°(1 +6QE") 7,
ES =F% —E°%QE’ + (E°6Q)*EY —...= 1+ E°%5Q)'E?,
E® =F° —E°SQE°+ E°6QE%? - ..=E°(1+6QE") !, (4.2.10)
E®, =E°, —~E°6QE% + E°6QE°6QE) - ..
=E%, —E°6Q0 +E% Q)1 E°.
We get
G(z)) G(lzl)?
1B s ————— B0l s —————,
1-51QIG(zD 1-61QIG(zD 4.211)
ol1QIG(z))
B, -F, | s — "
1B +! 1-61QIG(z])

Indicating derivatives with respect to 6 with dots and omitting sometimes the super- or sub-script
0, we have

o wio_ [EQE EQE,
E=—-EAE = E_QE E_QE,. (4.2.12)
Integrating this from 0 to 6 yields
G(lz))?511Q] G(IZI)%5IIQII
E—E% < , I1ES-E%< . (4.2.13)
" 1= a=siaicaznz P = G s 10160202
We now sharpen the assumption that 6| Q[|G(|z]) < 1 to
SlQIG(zl) <1/2. (4.2.14)
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Then

IE? | <2G(zD), 1E2] <2G(z])z,

5 o0 (4.2.15)
|EZ, — EZ, 1 =261IQIG(z]).

Combining this with the identity E_, = —E_QE, (recall that here the dot indicates a derivative
with respect to 6) that follows from (4.2.12), we get
IE_ + E°QE | < 16G(1z))*511Ql1, (4.2.16)
and after integration from 0 to 6,
E =E°, —6E°QE% +6(1)G(z)%(S1QI)%. 4.2.17)

Using (4.2.5), (4.2.6) we get with Q = (g5

N .
E,=2"-5 Y g2Vt 00)G(2)*61QI?, (4.2.18)
jk=1

still under the assumption (4.2.14).

4.2.2 — Estimates for the effective Hamiltonian

We now consider the situation of (1.4.2):
As=Ap+8Q, Q=(q j,k(w))jf =1 4j,k(@) ~ A¢(0,1) independent.
W. Bordeaux-Montrieux [4] obtained the following result.

Proposition 4.2.1. There exists a Cy > 0 such that the following holds: Let
Xj~ANg(0,09), 1<j<N<oo
be independent complex Gaussian random variables. Put s, = maxa?. Then, for every x > 0, we

have
Co & X
<exp il s i |
251 i I 28

J

N

Y IXiP=x
j=1

P

According to this result we have

G X
P(IQIZs = 1) < exp(?ONz _ E)

and hence if C; > 0 is large enough,
1QI% < C2N?, with probability =1-e™". (4.2.19)

In particular (4.2.19) holds for the ordinary operator norm of Q. In the following, we often write |- |
for the Hilbert-Schmidt norm ||-||gs and we shall work under the assumption that |Q| = C; N. We
let |z] < 1 and assume:

ONG(|z|) < 1. (4.2.20)

Then with probability = 1 - e‘Nz, we have (4.2.14), (4.2.18) which give for g(z,Q) := E§+,

g(z,Q) =z - 5(QIZ(2)) + 6(1)(G(1z)dN)?. 4.2.21)
Here, Z is given by
(. N-jr-1}N
7= (z )jlk:l. (4.2.22)
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Remark 4.2.2. The above Z will play in the following the role of the Z in (4.1.6).

A straight forward calculation shows that

N-1 2N N N
1-|z| 1-1z]" 1+]z]
Z| = z|? = = , 4.2.23
2] ;' | 1-]z2 1-]z] 14|z ( )
and in particular,
G(lzl)
— < |Z| = G(z]). (4.2.24)

The middle term in (4.2.21) is bounded in modulus by 6|Q||Z| < §C; NG(|z]) and we assume
that |z| is much smaller than this bound:

1z|N < §CING(|z]). (4.2.25)
More precisely, we work in a disc D(0, rp), where
iV <C'6CING(r))<C ™%, rp<1-N"! (4.2.26)

and C > 1. In fact, the first inequality in (4.2.26) can be written m(ry) < C~'8C)N and m(r) =
rN(1-r)isincreasing on [0,1— N~!] so the inequality is preserved if we replace ry by | z| for | z| < rq.
Similarly, the second inequality holds after the same replacement since G is increasing.

In view of (4.2.20), we see that

(G(IzD6N)* < 6G(|zl)N

is also much smaller than the upper bound on the middle term.
By the Cauchy inequalities,

dog =-87-dQ+0(1)G(|z))*6>N. (4.2.27)

The norm of the first term is = §G > G252 N, since GGN < 1. (When applying the Cauchy inequal-
ities, we should shrink the radius R = C; N by a factor 6 < 1, but we have room for that, if we let C;
be alittle larger than necessary to start with.)
Writing
Q=a1Z(2)+d, ad' e Z(z)t =CN,

we identify g(z, Q) with a function g(z, &) which is holomorphic in a for every fixed z and satisfies
gz, a) = 2N - 61 Z(2)>a1 + (1) G(|z])2 6> N?, (4.2.28)

while (4.2.27) gives
04,8(z,a) = —081Z(2)|> +O(1)G(z)>6%N, (4.2.29)

and in particular,
|04, 8] = 6G(12)*.

This derivative does not depend on the choice of unitary identification Z" = V-1, Notice that
the remainder in (4.2.28) is the same as in (4.2.21) and hence a holomorphic function of (z, Q). In
particular it is a holomorphic function of ay, ..., a y2 for every fixed z and we can also get (4.2.29)
from this and the Cauchy inequalities. In the same way, we get from (4.2.28) that

0a,8(z,a) =0(1)G(2))*6°N, j=2,..,N*. (4.2.30)
The Cauchy inequalities applied to (4.2.21) give,

2
0.8(z,Q) =Nz""1-60Q-0,Z(2) +@(1)%. (4.2.31)
-
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Lemma 4.2.3. Forg(z,a;,a") =g(z,a1Z(2) +a'), a' = Zévz aje;j we have that

GON)? N
0.§=Nz""-8a10,(12*) +0(1) (r ; +O()G*6°N|) a;d.e;], (4.2.32)
0~ 2
0:8=-0m0;(121*) +O(1)G*6°N |10, Z +Y_ajozej|. (4.2.33)
2

Proof. The leading terms in (4.2.32), (4.2.33) can be obtained formally from (4.2.28) by applying
0., 0z and we also notice that

0,12°=2-0,7, 05121>=2-0,Z.

However it is not clear how to handle the remainder in (4.2.28), so we verify (4.2.32), (4.2.33), using
(4.2.27), (4.2.31):
N2
0,8=0,8+ ng-;ajazej

2 N
(G5m| +(=6Z-dQ+6(1)G*6°N)-Y. a;dze
2

=NzN"1-6Q-0,Z2+0(1)

NZ
=NzV'-6a10,(1217) - 6204]9] 0,Z-62- Z(xja ej

GO6N
ro© ’ +O()G*6°N (Y a;0.e;|.
1o — 12|
The 3d and the 4th terms on the right hand side of the last expression add up to
NZ
60 (Zaje,-~z =60,(0)=0,
2
and we get (4.2.32).
Similarly,
0z8§=dog-|a10,Z+ Zajazej)
2
N
=(-62-dQ+0G(1)G*6°N)- alazz+2ajaze,~).
2
Up to remainders as in (4.2.33), this is equal to
N2
~8a1Z-0,Z 6Zajz 0zej = —6a10z (121%) 6Za, (Z-ej)
= —604105(IZ| ).
O
Continuing, we know that
N-1
1Z(2)| = ) (22)" =: K(z2), (4.2.34)
0
0. (1Z(2)1*) = 2KK'Z,
(4.2.35)

0 (1Z(2)1?) = 2KK z.

Observe also that K(¢) = G(¢) and that G(|z|) = G(|z|?).
The following result implies that K’(¢) and K ()? are of the same order of magnitude.
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Proposition 4.2.4. LetK beasin (4.2.34). Forke IN,2< Ne Nu{+o0},0< < 1, we put
N-1
My =Y vFe, (4.2.36)
v=1

so that
K(t) = Kn(t) = Mno(0) +1, K'(1) = Mpy_1,1(8) +1.

For each fixed k € IN, we have uniformly with respect to N, t:

t
Moo, (1) = e (4.2.37)
N 1 \F
M, )—M, HN=—|N+—| . 4.2.38
00,k (1) N,k (1) l—t( l—t) ( )
For all fixed C > 0 and k € IN, we have uniformly,
1
My i (£) = Moo i (), for 0< tsl-—, N=z2. (4.2.39)
Notice that under the assumption on ¢ in (4.2.39), the estimate (4.2.38) becomes
NN]C
Moo, k(1) = My () = .
1-1¢
We also see that in any region 1 - @' (1)/N < t < 1, we have
MN,k(t) - Nk+1,
so together with (4.2.39), (4.2.37), this shows that
1 k+1
My ¢ (t) = tmin (1— N) ) (4.2.40)

Proof. The statements are easy to verify when 0 < t <1—-1/0(1) and the N-dependent statements
(4.2.38), (4.2.39) are clearly true when N < @ (1). Thus we can assume that 1/2< t<1and N > 1.
Write t = e~¥ so that 0 < s < 1/@0(1) and notice that s = 1 — ¢. For N € IN, we put

o0
Pyr(s)= Y vke™s, (4.2.41)
v=N

so that
My i (t) when N =1,

(4.2.42)
Moo 1 (£) — My (1) when N = 2.

Py i(s) = {
We regroup the terms in (4.2.41) into sums with = 1/s terms where e~"* has constant order of

magnitude:
(&)

Pye(9=Y =, Tw= Y  vkes
=1

H N+“T’_15v<N+%

Here, since the sum X (u) consists of = 1/s terms of the order vke~(Ns*+#),

Ns+ )k
() = e~ N y v = e—(Ns+,u)( k+1m
N+”—;lsv<N+§ $
Hence,
—Ns oo
Py (8) = 3 Y e H(Ns+w*

N =1

_e” (Ns+1)k = e (N+ l)k

- sk+1 - s S :
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Recalling (4.2.42) and the fact that s =1-1¢, 1/2 < t < 1, we get (4.2.37) when N =1 and (4.2.38)
when N = 2.

It remains to show (4.2.39) and it sufficestodosofor1/2<¢t<1-C/N, N> landforC=1
sufficiently large but independent of N. Indeed, for 1 -C/N <t <1-1/0(N), both My ;(t) and
Moo (1) are = N 1+k We can also exclude the case k = 0 where we have explicit formulae.

To get the equivalence (4.2.39) for 1/2 < t <1-C/N, k = 1, it suffices, in view of (4.2.37),
(4.2.38), to show that for such ¢ and for N > 1, we have

thN< 1 1
1-t ~ D(1-pk+’

for any given D = 1, provided that C is large enough. In other terms, we need

1 1 C
Na-pF<=N* for-<r<1-=,
D 2 N

when C = C(D) is large enough and N = N(C) > 1. The left hand side in this inequality is an
increasing function of ¢ on the interval [0,1/(1+k/N)]. If t <1-C/N < 1/(1 + k/N) (which is
fulfilled when C =2k and N > N(C)) itis

iS5l

Thisis < N~*/Dif C = C(D), N = N(C). O
For simplicity we will restrict the attention to the region
|zl <r9g—1/N<1-2/N, (4.2.43)

where G=(1-1z))7!, G = (1-|z])~2.
It follows from the calculation (4.3.6) below, that

2
10.Z1* = | = (K(t0)*K + (t0,K)?)
t t:|Z|2
This is = 1 for |z| < 1/2 and for 1/2 < |z| < 1 —1/N itis in view of Proposition 4.2.4 and the subse-
quent observation

2 2
:MN,OMN,Z"'MNJ: t=|z|".

1
1-n*
In the region (4.2.43) we get:

1Z'(2)] = G(lz])>. (4.2.44)

(4.2.35), (4.2.43), (4.2.44) will be used in (4.2.32), (4.2.33).
Combining the implicit function theorem and Rouché’s theorem to (4.2.28),we see that for
la'| < CiN, a’' = Zév ajej€ Z(z)*, the equation

g(z,a,a’)=0 (4.2.45)
has a unique solution
a1 = f(z,a") € D(0,CIN/G(|z])). (4.2.46)
Here, we also use (4.2.20), (4.2.25). Moreover, f satisfies

ZN

VAL

2|V .\
6G?

f(z,a) = +O()SN* =0 (1) ( 6N2) . (4.2.47)

Differentiating the equation (4.2.45) (where a; = f) we get
0,8+0,80,f=0,0z8+0,80zf =0.
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Hence,
-1

{6zf =—(00,8) 0.8, (4.2.48)

~\—1 ~
0zf =—(0a,8) 028
Since g is holomorphic in a1,a’ and in a1, ay, ..., a2, we see that f is holomorphic in a’ and in
@2, ..., ¥ N2 Applying Og,, ..., 0, t0 (4.2.45), we get
0o, f == (0,8) ' 04,8 2= j < N° (4.2.49)
Combining (4.2.29) in the form,
00,8(z,@) = —(1+O(G(1zDON)S| Z(2) %,
(4.2.30), (4.2.32), (4.2.33) with (4.2.48) and (4.2.49), we get

_(1+0GsN)

0=/ = 51Z(2)I?
(4.2.50)

+0(1)

2
(NZN—I _5£0,(1212)+ 0 (G26°N) (GoN) )

NZ
aile;
2.a10:¢, ro =zl

_(1+0G(G5N))
0= =5z
N2

(4.2.51)
deZ+Zajagej ),
2

(—5faz(|2|2) +0 (G*6°N)

G*6°N
6G2
From (4.2.35) and the observation prior to Proposition 4.2.4 we know that

da, [ =0(1) =0(6N), 2< j< N> (4.2.52)

0:(121%), 0z(121) = G2’ |2l
Recall also that | Z| = G(|z|). Using this in (4.2.50), (4.2.51), we get

o)
01 =5c2

N2

Y ajozej|+0(1)
2

N1zIN™! +61f1G% |zl + G (G*6°N)

252 N2 (4.2.53)
)
ro— 1zl )

4.3 | Choosing appropriate coordinates

The next task will be to choose an orthonormal basis e; (z), e, ..., en2(2) in CN* with
e1(2)=1Z(2)"' Z(2)
such that we get a good control over Zé\ﬂ @;oej, Zévz @ j0ze; and such that
dQi A... A dQszl:f(zya,)

can be expressed easily up to small errors. Consider a point zg € D(0, ro— N~1). We shall see below
that the vectors Z(z), 0,Z(z) are linearly independent for every z € D(0,1)

Proposition 4.3.1. There exists an orthonormal basis e1(z), €(2), ..., en2(2) in CY g depending smooth-
ly on z € neigh (zy) such that

e1(2) =122 Z(2), 4.3.1)
Ce (z0) ® Cea(z9) = CZ(20) ® 0, Z(20), 4.3.2)
ej(2) —ej(z0) =0 ((z— 20)?), j=3. (4.3.3)
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Proof. We choose e;(z) asin (4.3.1). Let e3(zg), ..., en2 (29) be an orthonormal basis in
_ N 1
(@Z(zo) ® C@ZZ(ZO)) .

Then, we get an orthonormal family e3(z), ..., en2(2) in e; ()L in the following way:

Let V; be the isometry CN' 2 — CN°, defined by Vov(]). = ej(2), j =3,..., N*, where v3,..., v, is
the canonical basis in CV *~2 with a non-canonical labeling. Let m(z)u = (ule;(z))e; () be the or-
thogonal projection onto Ce; (z). For z € neigh (z, ), let V(z) = (1-7(2)) Vp. Then fj(z) = V(z)v?,
j =3,...,N? form a linearly independent system in e; (z)*~ and we get an orthonormal system of
vectors that span the same hyperplane in e; (z)* by Gram orthonormalization,

ej(z) = V(z)(V*(z)V(z))‘%v‘}, 3<j<N°.

We have
V(Z)V? =(1-n(2))ej(zo) = ej(z0) — (ej(zo)le1(2))e1(2),

(ej(20)1Z(2))

_ _ 2
7@ =0 ((z— 29)°),

(ej(zo)le1(2)) =
since (e;(zo) |Z(2)) = ej(zo) - Z(z) =: k(z) is a holomorphic function of z with
k(z0) = (e} (20)|Z(20)) =0, k' (20) = (€}(20)102Z(20)) = 0.
Thus, V(z) = V(zp) + O(z — 29)%) and we conclude that (4.3.3) holds. Let e,(z) be a normalized
vector in (e (z), e3(z), e4(z2), ..., en2 (2)+ depending smoothly on z. Then_e1 (2),e2(2),...,en2(2) is an
orthonormal basis and since e3(zp), ..., en2(2p) are orthogonal to Z(zy),0Z(zp) by construction, we

get (4.3.2). O

We can make the following explicit choice:

(2 =1Ll fo, £=0,Z(2)- Y. (0.Z(2)lej(2))e;j(2), (4.3.4)
j#2
so that for z = z,
e2(20) = | 2(20)1 " f2(20), fo(z0) = 0, Z(20) — (0, Z(20)le1(z0)) €1 (20).- (4.3.5)

We next compute some scalar products and norms with Z and 8, Z. Recall that

Z(2) = (ZN—j+k—1)j:’k:1

and that | Z(z)| = K(|z]?), K(¢) = Zév Ly, Repeating basically the same computation, we get

. N
20,7 = ((N—j+ k- 1)zN‘f+’H)j .

and

N ) N-1
120,217 = Y, (N=j+k-DzPN D= 5 (v 4 2220

k=1 V=0
N-1 - N-1 ) N-1 ) N-1 ) N-1 ) N-1 9 o (436)
= VY Y (zlPF 2 ) vizl® Y plalPt 4 Y 12 Y et
0 0 0 0 0 0
=2(K(t0)*K + (10,K)%) ,_ o -
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Similarly,

N

(20,212)= ) (N—j+k—1)|z2N-7+k-D
jk=1
N-1N-1
=y ) (v + )22 A
v=0 u=0

ZZ(KtatK)[:|Z|2.

Then, by a straight forward calculation,

0:212)1> (2

2 2 2
10, Z| “TzE - ;(K(ra,) K - (t0,K) ))

(4.3.7)
t=|z|?
Here,

N-1 N-1

v 21/‘2N_1 vz
Yooy v —=> vt
0 I\

0
1

% (K(t0)*K - (t0:K)%) =

—
> ~ | DN

— Z_ (V2 +H2 —ZV/.L) tv+y—1 — Z (V_H)Ztv+,u—1
v,1u=0 v,u=0
2N-3
= Z ai,N tk,
k=0
where

2
agn= Y. Ww-w-
v+u—l=k
0=sv,usN-1
We observe that

ar,N=<01)(1+ k)3 uniformly with respect to N,
ai N = ko is independent of N for k < N -2,
Aroo = (1+K)3/0(1).
We conclude that

1
E (1 + MN_Lg) =

~ | DN

(K(t0)*K - (t0,K)*) < C(1 + Man-23)

and (4.2.40) shows that the first and third members are of the same order of magnitude,

1 4
=1 +MN’3(t) = mln(l—t,N)

whichis =1+ My 3(2), for 0 <t <1-1/N. From this and Proposition 4.2.4 we get:
Proposition 4.3.2. We have

2
;(K(tdt)zK— (t0;K)>) =K* 0<r<1-1/N, (4.3.8)
where we recall that K = Ky depends on N (cf. (4.2.34)) and that

l’N

Ky=Koo— —.
N 00 1—1¢

tdtKNztatKoo+@(1;’Tt1:), r<1-1 o)
(t@t)zKNz(tat)ZKoo+6’(]\{2_t;V), f<1-1 3.

We have
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and it follows that
2 2 2y 2 2 2
;(KN(tat) Ky — (t0,Ky) )—;(Koo(tat) Koo — (10 Ke0)?)
NZN
fort<=1-1/N.

Proposition 4.3.2 and (4.3.7) give

10:Z12)?

Vi K(z|»)*. (4.3.11)

10217~
This implies that 0,7, Z are linearly independent.
Assume that
IVze1(2)l =0 (m)

for some weight m = 1. We shall see below that this holds when m = K(|z|%). Then ||V, I1|| = G(m)
and hence ||V, V| = G(m). It follows that |V,(V*(2)V(2))| = C(m). By standard (Cauchy-Riesz)
functional calculus, using also that ||V (z)~ L =6), we get |V, (V* (z)V(z))_E || = @(m). Hence
IV,U(2)|| = @ (m), where

U2)=V@(V*(a)V(2) 2

is the isometry appearing in the proof of Proposition 4.3.1. Since Ve; = (V.U (z))v?, we conclude
that |V, U(2)|| = G (m), so
NZ

Y ajVeej| <Omllalgre-.. (4.3.12)
3

We next show that we can take m = K(|z|%). We have

V,7Z V,Z|l—= V,Z K'V,(22)—
Vzel= zL zl |Z= z4& z( )Z. (4.3'13)
1zl 1Z)? K K?

By (4.3.6),

l

10,7| = 2 (K(t(’)t) K +(t0:K)?%) =0 (K?).

t=|z|?

Since Z is holomorphic, this leads to the same estimates for |V, Z| and |V Z?I, and |a§z | =0 (K3,
for |z| < 1- N~!, by the Cauchy inequalities. Using this in (4.3.13), we get

[V.eil=0(K). (4.3.14)

Thus we can take m = K(|z|?) in (4.3.12). Let f> be the vector in (4.3.4) so that ex(z) = Ifgl’lfg.
Recall that e; = U(z)vg’., where we now know that ||V, U(z)| = @(K). Write,
Vofo=V:0.7- Y ((V20:Zlej)e; + @:ZIV.ee;+ 0. Zle))Vze; ).
j#2
Here, |V,0,Z| = G(K?), as we have just seen. It is also clear that the term for j =1 in the sum

above is @ (K?). It remains to study |T+ 1T +1III| < [T| + |II| + |III|, where

Nt
1=) (V.0.Zlej)e;j,
3

NZ
=) (0.ZIV.eje;j,
3

NZ
=) (0:Zlej)Ve;.
3
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Here, |I| < |V,0,Z| = 6(K®) and by (4.3.12) we have |III| < G(K)|3,Z| = ©(K?). Further,
N2
= ;(azzusz(z))v‘]’.)ej

N? -
= ;((VZU<z))*azZ|v‘})e,-,

SO
1| = [(V,U(2)*0,Z] = O(K)K* = 6(K°).

Thus,
IV.fol =G (K. (4.3.15)

Recall from (4.3.5) that for z = zg, L
fo=0,Z—-(0,Zler)es,
2 , 10:212)1
=10,2|° - ——,
|f2| | z | |Z|
so by (4.3.11),
| f2(20)| = K(lz0l*)?,
Hence,
|>(2)| = K?, z € neigh (z).

From this, (4.3.4) and (4.3.11), we conclude first that V| f>| = 0 (K?3) and then that
[V;ex| = O(K). (4.3.16)

This completes the proof of the fact that we can take m = K above. In particular (4.3.12) holds with

m=K(|z?) = G(|z]), so
N2

2 ajoze;
2

where we used the assumption that |Q| < C; N in the last step.
Combining this with (4.2.53), (4.2.52), (4.2.47), (4.2.35) and the observation prior to Proposi-
tion 4.2.4, we get

<=0)Glal =0 (1)GN, (4.3.17)

@(1) N- 1 (' | 2) 3 282 G252N2
0.f = N ON*|G* + G*6*NGN +
of = 6G? ( 12l 5G2 " ro— 1zl
B NizIN=1  |z|V , ON?
_@(1)(—6G2 *5C +GON? + r0_|z|).

In the last parenthesis the second term is dominated by the first one and the third term is domi-
nated by the fourth. If we recall that ry — |z| = 1/ N, we get

|Z|N—1

6G?

azf:@(l)(N +5N~°’). (4.3.18)

Similarly, from (4.2.51), (4.2.44) we get

@(1) |Z|N 2 3 2 o2 | | 2
o = T [ o)t a2 o)
|2V

+GN))
=0(1) ( +6N°G+ N|z|N + G?6° N3 + G6N2)

Using (4.2.20), we get
N
0zf = @’(1)(|| +6N2G) (4.3.19)

see (4.2.47). This will be used together with the estimates aaj f=0(N)in (4.2.52).
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Proposition 4.3.3. We express Q in the canonical basis in CV *orin any other fixed orthonormal
basis. Lete1(z), ..., en2(2) be an orthonormal basis in cN : depending smoothly on z and with e, (z) =
|Z(2)|" Z(2), Cey(z) ® Ces(z) = CZ(2) EBOZ_Z(Z). Write Q = a1 Z(2) + ZQ’Z ajej(z), and recall that
the hypersurface

{(2,Q) € D(0, 19— 1/N) x B(0,C; N); E®  (2,Q) = 0}
is given by (4.2.46) with f as in (4.2.47). Then the restriction of dQ AdQ to this hypersurface, is given
by

dQadQ=J(fldzndzAda' rnda,

ol | =2 Nlz|N-! ?
](f):—#|(e2|622)‘ +@(1)( +G5N3+|(X2|(5NG2) (4.3.20)
N|z|N! 3 2
+0()|az|G 5C +GON® +|as|G°ON|.

Herea' = (ay,..,an2), da’ Add =das Adas A...Adaye Ada .

Proof. The differential form dQ; AdQz A...Ad Q2 will change only by a factor of modulus one if we
express Q in another fixed orthonormal basis and we will choose for that the basis e; (zy), ..., en2 (20):

N2

Q=Y Qrer(z0), Qx=(Qlex(z0)).
1

Write
NZ
=a; Z(z) +) arer(z
Q=a1 Z(@ +) arer(a

|Z(2)|e1(2)
and restrict to a; = f(z, @z, ..., aN2), where we sometimes identify a’ € Z(z)* with (a2, ...,axpn2):

—_ N?
Qay=fzan = (& a)Z(2) +)_ ager(2).
2

Then,
_ N?
Qj=f(Z(2)lej(z0) + Y akler(2)lej(z0)),
k=2

dQ;j =(d.f +dw [)(Z(2)lej(20)) + f(d, Z(2)|e}(20))
NZ NZ
+ Y arldzer(2)lej(z0) + Y dag(er(2)lej(z0)).
k=2 k=2

Taking z = zo until further notice, we get with a’ = (ay, ..., ap2):

daj, j22,

dQj = (d:f +du f)(Zlej) + f(0: Zlej)dZ+ a(dzesle)) + {0 j=1

Here, we used (4.3.3). The first term to the right is equal to (d,f + de f)|Z] when j = 1 and it
vanishes when j = 2. The second term vanishes for j = 3, by (4.3.2). The third term is equal to
—az(e2ld;ej) (by differentiation of the identity (e2|e;) = 62, ;) and it vanishes for j > 3 (remember
that we take z = zj). Thus, for z = zj:

dQi =|Z|(d.f + dw [) + f(0:Ze1)dZ — az(ez]d er),

dQz = day + f(0:Z|e))dz — az(ez]d;es),

dQj=daj, j=3.

When forming dQ, AdQ; A...AdQpz AdQ n2 We see that the terms in daj for j = 3 in the expression
for dQ; will not contribute, so in that expression we can replace dy' f by 04, fda,. Using (4.3.18),
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(4.3.19), (4.2.52), (4.2.47), (4.2.44) this gives, where “=” means equivalence up to terms that do not
influence the 2N? form above:

N-1
|z|

6G

N
dQ, 5—062(€2|dz€1)+@’(1)( +G6N3) dz

N
+@(1)(' (; +G26N2)dz+@(6NG)dag

Similarly, using also (4.3.16),

dQ, =das+0 T +61\sz2 +|as|G

dz+0 (|a2|G)dz.

When computing dQ; A dQ, we notice that the terms in dz A dz will not contribute to the
2N?-form dQ; A d61 A ANdQpz A daNz. We get

dQ1ANdQr =—az(exldzer) Nday
N N-1
+@(1)( 12l

3 2
+ GOSN’ +|az|6 NG )dZ/\ day (4.3.21)

+0() ( +G*5N? +|as|6NG ) dzAdas.

Here,
(esldzen) = (e2ld: (1217) Z) = (211 217 d:Z) + e21d: (12171) Z)
=121 (0210, 2dZ) + 0 =12 (€210, 2)dz,
so the first term in (4.3.21) is equal to

—E(egla Z)dzNday=01)a,GdzAdas.

Notice that dQ; A dal ANdQs A daz =—dQiAdQy A d@l A daz. From (4.3.21) and its complex
conjugate we get
dQuAdQ AdQ2 A dQ,

|062|
1z

2

N N-1
LIPS\ I |a2|6NG2)

(e2|a Z)‘ +@(1)(
| |N—1

0G

+@(1)|a2|G( +G5N~°’+|a2|G26N))dzx\dz/\da2/\dag.

4.4 | Proof of Theorem 1.4.3

Let Q€ cN * be an N x N matrix whose entries are independent random variables ~ A¢(0,1), so
that the corresponding probability measure is

_ __ 1 _
N e @) N dQ, AdQL A ... AdQpz AdQpe = ——— e dQ A dQ.
@riN

We are interested in

Ky=E|1g_,(0,1) Y ¢, ¢peCo(DO,1o—1/N), (4.4.1)
Aea(Ap+6Q)
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which is of the form (4.1.3) with

mQ =1z , (Qn Ve, (4.4.2)
so we have (4.1.8), (4.1.9) with J(f) as in (4.3.20) and f as in (4.2.46). More explicitly,
E(e) = / n N e W @OFIZQICE 1) (2, o) L(da).
IfI21Z(2)+|a'2<C2N?
By (4.2.47), (4.2.20), (4.2.25) :
N ( |z|N ) N
=0(1)— +ONG —.
/1 ()G(aNG e
We now strengthen (4.2.20), (4.2.25) to the assumption
2 NG« L foral € D(O, 1) (4.4.3)
—, forall z ,70), 4.
SNG N 0

implying that | f|G <« 1, for all z € D(0, ry). Equivalently, by the same reasoning as after (4.2.26), rg

should satisfy
N

o 1
——— +6N —. 4.4.4
SNG(ro) +0NG(rp) < N ( )

Then
2

N
eI f@aPIZ@IP _ +O(1)N? (i +5NG) ,
ONG

and using (4.3.20), we get

2
X

|2V )
ONG

E(z) = (1 +0(1)N? (— +6NG

(€210, 2)1?

112 _ N2
- las e ' 7N L(da")
1Z] I(f1Z1,a)|<C N

n2 [ IN N-1 2 2
+@>(1)/e—'“' (%+G6N3+Ia2|6NG2) N Lda")

, N N-1
+@’(1)/e"“'2|a2|G( ';'G +G5N3+|a2|6NG2)n1‘N2L(da’).

Since | f||Z] «< N, the first integral is equal to
1
[ S L o (e 100) 14 0 (o).
cn
The sum of the other two integrals is equal to

N|Z|N—l

N|z|N! 3 2 ? 3 2
o) 5C +GON°>+O0NG"| +G +GON°+O6NG

N N-1 2 N N-1
:@(1)(( 12l +G6N3) +G( 12l +G5N3)

oG oG
Noticing that L
(e210:2)1*
e =0(G),
we deduce that
= el 2)
E@)=—"F5—
|Z]

(4.4.5)
+0(1)

|Z|N—1 2 |Z|N 1
GZNZ(WHSNZ) +G2N( +6N2)).
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We next study the leading term in (4.4.5), given by

10.Ze)|?
_ 4.4.6
P ( )
Since 6z_Z belongs to the span of e; = GZ_Z/ |Z| and e, we have
02Z1e2)|* =10, Z1* — (02 Zlen) I,
so the leading term (4.4.6) is L
L (5ze- 0221 2)1?
mz2 " 1z |
which by (4.3.7) is equal to
2 ((t0)?K  (t0:K)?
_(( t) _( t )) . 4.4.7)
Tt K K2 t=|z[2

Here, K = Kn(£) =X ~14V is the function appearing in Proposition 4.3.2. Let us first compute the
limiting quantity obtained by replacing K = Kjy in (4.4.7) by K, = 1/(1 — £). Since 0K = Kgo, we
get
10, Koo = tK2, (t0,)* Koo = tK2 +212K3,
and
2 ((101)°Kes  (10;Ko0)* _ 2 K2 - 2 1
ar\ Ko K2 ) n® m-n?

(4.4.8)

We next approximate the expression (4.4.7) with (4.4.8), using (4.3.10) and the fact that K =
(1+0 (")) Ky (uniformly with respect to N). The expression (4.4.7) is equal to

(K(t0,)°K — (t0,K)%)

TtK?
_20+0(N)

> (Koo (10,)* Koo — (10, Ko0)? + O (N* 1N KZ)) .
mEKS,

Here,
(10,Ks)* = O(£*K2), Koo(t0)) Koo = O (K2 + t*K2),
so the last expression becomes,

2 ((10)%°Keo  (10,K)?
mt\ Ky K2,

+O(tN Koo + tNTIKZ + tNTIN?),

where the first two terms in the remainder are dominated by the last one. We conclude that the
difference between the expressions (4.4.7) and (4.4.8) is o (tN-1N?), and using also (4.4.5), we get,

=~ 2 2(N-1) n72
= - - N
E(2) 11202 +0(|z| )
4.4.9)
+0(1)

|Z|N—l 2 IZIN—l
GZNZ(WHSNZ) +G2N( 5 G2 +6N2)).

The remainder term can be written

|Z|2(N—1)N2 . |Z|2(N—1)N2 +52N6 .\ |Z|N—1N
G2 62G* 6G?

0(G?) ( +5N3).

By (4.4.3), 55 > N2, so the second term is

|Z|2(N—1)N2
GZ
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which is much larger than the first term. We now strengthen (4.4.3) to

|Z|N—1 ) 1
+0N° <« —,
6G? N

or equivalently to
|Z|N—1N 5
—  tON" <L (4.4.10)

0G

Then remainder in (4.4.9) becomes

N—IN
@’(Gz) (LZLST +5N3) ,

and (4.4.9) becomes

N-1
2 ( +@'(|Z| N+6N3)). 4.4.11)

=@ = m(1—]z]2)2 6G2

Setting = = %E concludes the proof of Theorem 1.4.3.
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APPENDIX A

CODE FOR NUMERICAL SIMULATIONS

A.1 | Simulations for Hager’s model

&)}

~

17

19

21

23

A.1.1 - Plotting eigenvalues

To produce Figure 1.1, the left hand side of Figure 1.6 (resp. 1.2) and the left hand side of Figure
1.8 (resp. 1.3) we used the following MATLAB code with the values of N, h and J specified in the
caption of the Figures.

7Discretization of hD+exp(-ix) on the Fourier side
clear global;
clear;

%Initialize Variables

N=0; % number of non zero eigenvalues of D
h=0; % Semiclassical parameter

delta=0; % Perturbation coupling constant
choice=0;

D=0; %Matrix dimension

%Input Parameters
N=input(’value of N? ’)
h=input(’value of h? ’)

%Choice in terms of Delta
choice = input(’Do you want to set a value for delta?\nIf yes, insert the
value for delta, if you want delta=exp(-1/h) insert 0’)

%Set delta according to choice
if (choice == 0 )

delta=exp(-1/h); %h not too small, e.g. h=0.05
elseif (choice ~= 0)

delta = choice;
else

’error’

break
end
%Calculate Dimension
D=2*N+1;

%Define Matrices
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A.1. SIMULATIONS FOR HAGER’S MODEL

HD=sparse(1: (D),1: (D), (1:(D))-N-1);
HC=sparse(1:2*N,2:D,1,D,D);
H=h*HD+HC;

%Random Gaussian matrix, complex Gaussian, Expectation 0, Variance 1
H=H+delta* (1/sqrt(2))* (randn(D)+1i*randn(D));

%Calculate eigenvalues
E=eigs(H);

%Plot
fig=figure;

5|plot(E,’.”)

filename="EigSim’;
axis equal;
print(fig, ’-dpdf’,filename);

A.1.2 — Numerical density

Figure 1.7 and the right hand side of Figure 1.2 give a comparison between the theoretical (ob-
tained in Theorem 1.2.12) and experimental average density and average integrated density of
eigenvalues of a random perturbation of the discretization of hD + e~ ** with the coupling con-
stant 6 being polynomially small in /. These figures were obtained using the following MATLAB
code:

7Discretization of hD+exp(-ix) on the Fourier side

%This program will plot the experimental average density and the
%average integrated density

clear global;

clear;

tic %Time

% Calculate Dimension
N=1999;

D=2*N+1;

h=2*10~(-3); % Semiclassical parameter

delta=2*10~(-12); % Perturbation coupling constant
nsamp=400; % Number of Runs

k=1; % counter

E=[];

E1=[];

TempEigvals=[];
boxlength = h/3;

BoxVec = [0:boxlength:1];
nBox = length(BoxVec);
Lengthvec =[0];
NumRealEigvals = [0];
IntEigvals = [0];

L=[0];

HR=[]; %Pertrubed Matrix

%Define unperturbed semiclassical Matrix
H=h*sparse(1:(D),1: (D), (1:(D))-N-1) + sparse(1:2*N,2:D,1,D,D);

% Experiments
for k = 1:(nsamp)
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34 HR=H+delta* (1/sqrt(2))* (randn(D)+1i*randn(D)); %Random Gaussian
matrix, Exp 0, Var 1

E=eig(HR); %find eigenvalues

36 HR=[];

El = [real(E) imag(E)]; % Store temporary

%Restriction of real part and imaginary part

40| for j = 1:length(E1)

if (abs(E1(j,1))<= 2)

42 if (E1(j,2)>= 0)

TempEigVals=[TempEigvals; [E1(j,1),E1(j,2)]];
44 end

end

46| end% END LOOP

48|E1 = TempEigVals;
TempEigVvVals =[];

%Sorting

521 [B,I] = sort(E1(:,2));
%R=real (Eigvals);
54|%Eigvals = [R(I) B];

56/E1=[];

58|% HistogramData

m=1;

60| for 1 = 1:nBox

if ( m < length(B) )

62 while ( B(m)<=BoxVec(l) )
if (m < length(B) )
64 m=m+1;
else
66 break
end
68 end
Lengthvec(l) = m;
70 else
Lengthvec(l) = m;
72 end
end
74

for j = 1:(nBox-1)
76 if (Lengthvec(j+1) ~= 0)
L(j) = (4"boxlength)~(-1)* (LengthvVec(j+1)-Lengthvec(j));

78 else
L(J) = 0;
80 end
end
82

%Add number of Eigvals to old, normalized by total Mass in Strip
84| IntEigvals = IntEigvals + (1/length(B))*LengthVec;
NumRealEigVals = NumRealEigvVals + (1/length(B))*L;

86
LengthVec=[0];
88|L=[0];

clear B;

90| clear I;

92|k %print the number of the run

141




94

96

98

100

102

104

106

108

110

112

10

12

14

16

18

2(

(=)

22

24

26

28

30

32

34

36

A.1. SIMULATIONS FOR HAGER’S MODEL

toc
end

IntEigvals=(1/nsamp) *IntEigvals; %Normalization by # of runs
NumRealEigVals= (1/nsamp)*NumRealEigVals;

% Theoretical density
[1I,D,ID]=POD(1000,h,delta);
[J,W]=Weyl(1000,h);

figure

subplot(1,2,1)

scatter(BoxVec, [0,NumRealEigVals])
hold on

plot(I,D,’r’)

subplot(1,2,2)

scatter(BoxVec, [IntEigvals])

hold on

plot(J,w,’r’)

plot(I,ID,’g’)

The functions POD and Wey! are given by the following programs:

% Weyl law for Hager’s model

% the argument x denotes the number of points used
% to discretize the interval [0,1]

%

function [I,w]=Weyl(x,h)

%

D=[]; %Weyl density

w=[]; %Integrated Weyl density

%specifies points

invN=1/x;

I=[invN:invN: (1-invN)]; % discrete points, the imaginary part of "Eig"
xm=[0]; %x_+

xp=[0]; %x_-

ImDergXp=[0]; %Img’ (x_+)
ImDergXm=[0]; %Img’ (x_-)

k=1; %counter
7%h=2*10"(-3); %Semiclassical parameter
%SQ=4/length(I);

while (k<=(x-1))
xp(k)=asin(-I(k));
xm(k)=pi-xp(k);
ImDergXp(k)= -cos(xp(k));
ImDergXm(k)= -cos(xm(k));

D(k)=(1/(2*h*pi))* ((1/ImDergXm(k))-(1/ImDergXp(k)));

if (k==1)
W(k)=D(k);
else
W(k)=w(k-1)+(1/2)*(D(k)+D(k-1));
end
k=k+1;
end
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38
W=(1/W(x-1))*W;
40
end

1|% Function to plot the theoretical first density of eigenvalues
% of Hager type operators

function [I,D,ID]=POD(x,h,delta)

7%Declare Variables

7/invN=0;

xm=[0]; %X_+

9|xp=[0]; %x_-

Emp_quadratic=[0]; %E_{-+}

11| ImDergXp=[0]; %Img’ (x_+)

ImDergXm=[0]; %Img’ (x_-)
13|FirstDensTerm=[0]; % Weyl law
SecDensTerm=[0]; %Second Density term
15|Density=[0]; %Density

ID=[0]; %Integrated Density
17|%semiclassical parameter

k=1; %counter

19| %h=2"10A(-3); % Semiclassical parameter
%delta=2*10~(-12); %coupling constant
21
% creating points

23|invN=1/x;

I=[invN:invN: (1-invN)]; %discrete points
25/SQ=4/length(1);

27|while (k<=(length(I)))
xp(k)=asin(-I(k));

29 xm(k)=pi-xp (k) ;
ImDergXp (k)= -cos(xp(k));
31 ImDergXm(k)= -cos(xm(k));

f(k)= (-ImDergXp(k)*ImDergxm(k))A(1/2);
33
Emp_quadratic(k)=(£f(k)/pi)*exp((-2/h)* (-I(k)* (2*xp(k)+pi)-ImDergXp (k)
+ImDergXm(k)));

FirstDensTerm(k)=(1/(2*h))* ((1/ImDergXm(k))-(1/ImDergXp(k)));
SecDensTerm(k)=(Emp_quadratic(k)/(h*deltar2))* (abs(2*xp(k)+pi))r2;

37 Density(k)=(1/pi)* (FirstDensTerm(k)+SecDensTerm(k)) *exp(-(h*
Emp_quadratic(k)/deltanr2));

w
[$)]

39 if (k==1)
ID(k)=SQ*Density(k);
41 else
ID(k)=ID(k-1)+(SQ/2)* (Density(k)+Density(k-1));
43 end
k=k+1;
45| end

47/M=ID(length(I));
7Normalize the density
49|D=(M*(-1)) *Density;
ID=(MA(-1))*ID;

51| %D=Density;
%plot(I,D);

53| end

143




17

19

21

23

27

29

31

33

A.1. SIMULATIONS FOR HAGER’S MODEL

Figure 1.9 and the right hand side of Figure 1.3 present a comparison between the theoretical
(obtained in Theorem 1.2.12) and experimental average density and average integrated density of
eigenvalues of a random perturbation of the discretization of 2D +e~** with the coupling constant
6 being exponentially small in /. These figures were obtained using the following MATLAB code:

7%Discretization of hD+exp(-ix) on the Fourier side

%This program will plot the experimental average density and the
%average integrated density

clear global;

clear;

tic %Time

% Calculate Dimension
N=1000;

D=2"N+1;

h=0.05; % Semiclassical parameter for exp small delta
delta=exp(-1/h); % Perturbation coupling constant
nsamp=400; % Number of Runs

k=1; % counter

E=[];

El=[];

TempEigVals=[];
boxlength = 10/ (-3);
BoxVec = [0:boxlength:1];
nBox = length(BoxVec) ;
Lengthvec =[0];
NumRealEigvals = [0];
IntEigvals = [0];

L=[0];

HR=[]; %Perturbed Matrix

7%Define unperturbed semiclassical Matrix
H=h*sparse(1:(D),1: (D), (1:(D))-N-1) + sparse(1:2*N,2:D,1,D,D);

% Experiments
for k = 1:(nsamp)
HR=H+delta* (1/sqrt(2))* (randn(D)+1i*randn(D)); %Random Gaussian
matrix, Exp 0, Var 1
E=eig(HR); %find eigenvalues
HR=[];
El = [real(E) imag(E)]; % Store temporary

%ZRestriction of real part and imaginary part
for j = 1:1length(E1)
if (abs(E1(j,1))<= 45)
if (E1(j,2)>= 0)
TempEigVals=[TempEigVals; [E1(j,1),E1(j,2)]];
end
end
end% END LOOP

E1l = TempEigVvals;

9| TempEigvals =[];

%Sorting
[B,I] = sort(E1(:,2));
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53|E1=[1];

55|% Histogram Data

m=1;

57/{for 1 = 1:nBox

if ( m < length(B) )

59 while ( B(m)<=BoxVec(l) )
if (m < length(B) )
61 m=m+1;
else
63 break
end
65 end
Lengthvec(l) = m;
67 else
Lengthvec(l) = m;
69 end
end
71

for j = 1:(nBox-1)
73 if (Lengthvec(j+1) ~= 0)
L(j) = (4"boxlength)~(-1)* (LengthvVec(j+1)-Lengthvec(j));

75 else
L(j) = 0;
77 end
end
79

%Add number of Eigvals to old, normalized by total Mass in Strip
81| IntEigvals = IntEigvals + (1/length(B))*LengthvVec;
NumRealEigVals = NumRealEigvals + (1/length(B))*L;

83
LengthVec=[0];
85/L=[0];

clear B;
87|clear I;

89|k %print the number of the run
toc
91|end

93| IntEigvVals=(1/nsamp) “*IntEigvals; %Normalization by # of runs
NumRealEigVals= (1/nsamp) *NumRealEigVals;

% Theoretical density

97| [1,D,ID]=POD(1000,h,delta);
[J,W]=Weyl(1000,h);

99
figure

101|subplot(1,2,1)

scatter(BoxVec, [0,NumRealEigVals])
103|hold on

plot(I,D,’r’)

105/ subplot(1,2,2)

scatter(BoxVec, [IntEigvVals])
107|hold on

plot(J,w,’r’)

109|plot(1I,ID,’g’)
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A.2 | Simulations for Jordan Block matrices
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Figures 1.11 and 1.12 were obtained using the following MATLAB code:

%Jordan Block perturbed with random Gaussian Matrix
clear global;
clear;

%Initialize Variables

%N=0; % number of non zero eigenvalues of D
delta=0; % Perturbation coupling constant
D=0; #Matrix dimension

%Input Parameters
7%N=input (’value of N? ’)
delta=input(’value of delta? ’)

%Calculate Dimension
%D=2*N+1;
D=500;

7%Define Matrices

%HD=sparse(1: (D),1: (D), (1:(D))-N-1);

HC=sparse(1:(D-1),2:D,1,D,D);

R=(1/sqrt(2))* (randn(D) +1i*randn(D));

%Random Gaussian matrix, complex Gaussian, Expectation 0, Variance 1
H=HC+delta*R;

% Clear Unused Variables
clear HC;
clear R;

%Calculate eigenvalues
%El=eig(full(HC)) ;
E=eig(H);

%Plot

figure

plot(E,’0’)

axis equal;

hold on % These 3 lines to plot
plot(0,0,’r*’) % also the spectrum of the
hold off % unperturbed Jordan block
filename=’JordanBlock’;

print(fig, ’-dpdf’,filename);

Figures 1.13 and 1.14 were obtained using the following MATLAB code:

% This program compares the experimental average density and average
integrated

% density of eigenvalues of a randomly perturbed Jordan block matrix

%

clear global;

clear;

tic %Time

N=500;
D=2*N+1; % Matrix Dimension
delta=2*10~(-10); % Perturbation coupling constant

nsamp=500; % Number of Runs
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12| k=1; % counter
r=1-1/D; % Cut-off radius
14
E=[];

16| TempEigvals=[];
boxlength = 1/(2*D);
18|BoxVec = [0:boxlength:1];
nBox = length(BoxVec);
20| Lengthvec =[0];
NumRealEigvals = [0];

22| IntEigvals = [0];

L=[0];

24|HR=[];

26|%Define unperturbed Jordan block matrix
H=sparse(1:(D-1),2:D,1,D,D);

28
% Experiment

30| for k = 1:(nsamp)

HR=H+delta* (1/sqrt(2))* (randn(D)+1i*randn(D)); %Random Gaussian
matrix, Exp 0, Var 1

32 E=eig(HR); %find eigenvalues
HR=[];
34
% Restriction to smaller disk
36 for j = 1:1length(E)
if (abs(E(j))< r)
38 TempEigVals=[TempEigVals; [abs(E(j))]];
end
40 end% END LOOP

42|E = TempEigVals;
TempEigVvVals =[];
44
%Sorting
46
[B,I] = sort(E);

48| %R=real (Eigvals);

%Eigvals = [R(I) B];

E=[];
52
% HistogramData
54|m=1;
for 1 = 1:nBox
56 if ( m < length(B) )
while ( B(m)<=BoxVec(l) )
58 if (m < length(B) )
m=m+1;
60 else
break
62 end
end
64 Lengthvec(l) = m;
else
66 Lengthvec(l) = m;
end
68| end

70/ for j = 1:(nBox-1)
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if (Lengthvec(j+1) ~= 0)
L(j) = ((2*pi*boxlength)~(-1))* (LengthvVec(j+1)-Lengthvec(j)); %
Radial density
else
L(j) = 0;
end
end

7Normalization by total Mass in Strip
IntEigvVals = IntEigvVals + (1/length(B))*Lengthvec;
NumRealEigvVals = NumRealEigvals + (1/length(B))*L;

Lengthvec=[0];
L=[0];

clear B;
clear I;

k %print the number of the run
toc
end

IntEigvals=(1/nsamp )*IntEigvals; %Normalization by # of runs
NumRealEigvVals= (1/nsamp )*NumRealEigvals;

% Theoretical density
%k=min(r,0.9);
[I,J,H,ID]=PHV(1000,1);

figure

subplot(1,2,1)

scatter(BoxVec, [0,NumRealEigvals])
hold on

plot(J,H,’r’)

subplot(1,2,2)

scatter(BoxVec, [IntEigVals])

hold on

plot(I,ID,’r’)

The function PHV in the above code is given by the following program:

% This functions plots the hyperbolic volume as a function of

% the radius of the unit disk

% The argument x of the functions is the number discret points in the
% interval [0,r] for the evaluation of the density

function [I,J,H,ID]=PHV(X,T)

%

H=[]; %Hyperbolic volume density

ID=[]; % Integrated density

invN=1/x; %specifies points

K=min(r, (1-invN));

J=[1;

I=[0:invN:K]; % discrete points, the imaginary part of "Eig"
k=1; %counter

CutOoff=160;
norm=2*I(length(I))"2/(1-I(length(I))"2);

while (k<=length(I))
H(k)=(normA (-1))* ((2*pi)A(-1))*I(k)*(2/(1-I(k)A2))A2; %density
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end

ID(k) = (normr(-1))*2*1(k)~2/(1-1(k)~2); %integrated density
if (H(k)<=CutOff)
J(k)=I(k);
else
H(k)=0; % ELse cut off
end
k=k+1;

H=H(1:length(J));

end
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