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RÉSUMÉ / ABSTRACT

Résumé

Dans cette thèse, nous nous intéressons aux propriétés spectrales des opérateurs non-auto-ad-
joints aléatoires. Nous allons considérer principalement les cas des petites perturbations aléa-
toires de deux types des opérateurs non-auto-adjoints suivants:

1. une classe d’opérateurs non-auto-adjoints h-différentiels Ph , introduite par M. Hager [32],
dans la limite semiclassique (h → 0);

2. des grandes matrices de Jordan quand la dimension devient grande (N →∞).

Dans le premier cas nous considérons l’opérateur Ph soumis à de petites perturbations aléa-
toires. De plus, nous imposons que la constante de couplage δ vérifie e−1/C h ≤ δ ¿ hκ, pour
certaines constantes C ,κ > 0 choisies assez grandes. Soit Σ l’adhérence de l’image du symbole
principal de Ph . De précédents résultats par M. Hager [32], W. Bordeaux-Montrieux [4] et J. Sjös-
trand [67] montrent que, pour le même opérateur, si l’on choisit δÀ e−1/C h , alors la distribution
des valeurs propres est donnée par une loi de Weyl jusqu’à une distance À (−h lnδh)

2
3 du bord de

Σ.
Nous étudions la mesure d’intensité à un et à deux points de la mesure de comptage aléa-

toire des valeurs propres de l’opérateur perturbé. En outre, nous démontrons des formules h-
asymptotiques pour les densités par rapport à la mesure de Lebesgue de ces mesures qui décrivent
le comportement d’un seul et de deux points du spectre dans Σ. En étudiant la densité de la
mesure d’intensité à un point, nous prouvons qu’il y a une loi de Weyl à l’intérieur du pseudo-
spectre, une zone d’accumulation des valeurs propres dûe à un effet tunnel près du bord du
pseudospectre suivi par une zone où la densité décroît rapidement.

En étudiant la densité de la mesure d’intensité à deux points, nous prouvons que deux valeurs
propres sont répulsives à distance courte et indépendantes à grande distance à l’intérieur de Σ.

Dans le deuxième cas, nous considérons des grands blocs de Jordan soumis à des petites per-
turbations aléatoires gaussiennes. Un résultat de E.B. Davies et M. Hager [16] montre que lorsque
la dimension de la matrice devient grande, alors avec probabilité proche de 1, la plupart des
valeurs propres sont proches d’un cercle. De plus, ils donnent une majoration logarithmique du
nombre de valeurs propres à l’intérieur de ce cercle.

Nous étudions la répartition moyenne des valeurs propres à l’intérieur de ce cercle et nous en
donnons une description asymptotique précise. En outre, nous démontrons que le terme princi-
pal de la densité est donné par la densité par rapport à la mesure de Lebesgue de la forme volume
induite par la métrique de Poincaré sur la disque D(0,1).

Mots-clefs Théorie spectrale; Opérateurs non-auto-adjoints; Opérateurs différentiels semiclas-
sique; Perturbations aléatoires.
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SPECTRAL PROPERTIES OF RANDOM NON-SELF-ADJOINT
OPERATORS

Abstract

In this thesis we are interested in the spectral properties of random non-self-adjoint operators. We
are going to consider primarily the case of small random perturbations of the following two types
of operators:

1. a class of non-self-adjoint h-differential operators Ph , introduced by M. Hager [32], in the
semiclassical limit (h → 0);

2. large Jordan block matrices as the dimension of the matrix gets large (N →∞).

In case 1 we are going to consider the operator Ph subject to small Gaussian random perturba-
tions. We let the perturbation coupling constant δ be e−1/C h ≤ δ¿ hκ, for constants C ,κ> 0 suit-
ably large. Let Σ be the closure of the range of the principal symbol. Previous results on the same
model by M. Hager [32], W. Bordeaux-Montrieux [4] and J. Sjöstrand [67] show that if δÀ e−1/C h

there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudo-

spectrum up to a distance À (−h lnδh)
2
3 to the boundary of Σ.

We will study the one- and two-point intensity measure of the random point process of eigen-
values of the randomly perturbed operator and prove h-asymptotic formulae for the respective
Lebesgue densities describing the one- and two-point behavior of the eigenvalues in Σ. Using
the density of the one-point intensity measure, we will give a complete description of the average
eigenvalue density in Σ describing as well the behavior of the eigenvalues at the pseudospectral
boundary. We will show that there are three distinct regions of different spectral behavior in Σ:

The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its bound-
ary there is a strong spectral accumulation given by a tunneling effect followed by a region where
the density decays rapidly.

Using the h-asymptotic formula for density of the two-point intensity measure we will show
that two eigenvalues of randomly perturbed operator in the interior ofΣ exhibit close range repul-
sion and long range decoupling.

In case 2 we will consider large Jordan block matrices subject to small Gaussian random per-
turbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix
gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however,
only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle.

We study the expected eigenvalue density of the perturbed Jordan block in the interior of that
circle and give a precise asymptotic description. Furthermore, we show that the leading contribu-
tion of the density is given by the Lebesgue density of the volume form induced by the Poincaré
metric on the disc D(0,1).

Keywords Spectral theory; Non-self-adjoint operators; Semiclassical differential operators; Ran-
dom perturbations.
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INTRODUCTION

The main focus of this thesis lies on the spectral theory of random non-self-adjoint operators. In
the case of self-adjoint or more generally normal operators on a complex Hilbert space we have a
very good spectral theory due to the spectral theorem. However, for non-normal operators there is
no such general result. This produces new challenges and makes the approach to this theory quite
varied and exciting. Studying non-self-adjoint problems is an important area of mathematical
research as they appear naturally in many different problems, such as

• in the theory of linear partial differential equations given by non-normal operators, e.g.:

– the solvability theory

– evolution equations given by a non-normal operator

– the Kramers-Fokker-Planck type operators

– the damped wave equation

– linearized operators from models in fluid dynamics

• in mathematical physics, for example when studying scattering poles, also known as quan-
tum resonances.

We begin by recalling some basic facts from operator theory. Let H be a separable complex Hilbert
space and let P : D(P ) →H be a closed linear operator with domain D(P ), dense in H . We denote
the resolvent set of P by

ρ(P ) := {
z ∈C; (P − z) : D(P ) →H is bijective with bounded inverse

}
.

For z ∈ ρ(P ) we call (P − z)−1 the resolvent of P at z. The spectrum of P is defined as

σ(P ) :=C\ρ(P ).

To define the adjoint of P , set

D(P∗) := {u ∈H ; ∃v ∈H : (P w |u) = (w |v) for all w ∈ D(P )} .

For each such u ∈ D(P∗), we define P∗u = v where P∗ is called the adjoint of P . If P∗ = P , we say
that P is self-adjoint. In this case (and even more generally in the case of normal operators, that is
when P∗P = PP∗) the spectral theorem (cf for example [56]) yields the following resolvent bound:

‖(P − z)−1‖ = 1

dist(z,σ(P ))
.

A striking difference to the case of normal operators is that when dealing with a non-normal op-
erators P : D(P ) → H the norm of the resolvent of P can be very large even far away from the
spectrum σ(P ), as generally we only have the lower bound

‖(P − z)−1‖ ≥ 1

dist(z,σ(P ))
.
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Consequently, the spectrum can be highly unstable even under very small perturbations. This
can be profoundly troublesome, for example, in numerical mathematics when we are interested
in calculating the eigenvalues of a large non-normal matrix. It can, however, be also the source of
many interesting effects.

Spectral instability and pseudospectrum Interest in the phenomenon spectral instability has
sparked renewed activity in the study of non-self-adjoint operators originating in numerical anal-
ysis. It has been studied, amongst others, by L.N. Trefethen in [80] where he was interested in
computing numerically the eigenvalues of large non-normal matrices. Such matrices can come
for example from discretizations of differential operators. Understanding spectral instability is in
this case of vital importance for the precision of the numerical result. Emphasized by the works of
L.N. Trefethen, M. Embree, E.B. Davies, M. Zworski, J. Sjöstrand, cf. [20, 80, 13, 12, 14, 17, 67, 51,
53, 9], and many others, spectral instability of non-self-adjoint operators, in particular the case of
(pseudo-)differential operators has been become an active area of research.

A crucial tool for quantifying the spectral instability is the ε-pseudospectrum which, in addi-
tion to the spectrum, consists of the superlevel sets of the resolvent, i.e. the points in the resolvent
set where the norm of the resolvent is larger than 1/ε. Following L.N. Trefethen and M. Embree
[20], it can be defined as follows.

Definition 0.0.1. Let P be a closed linear operator on a Hilbert space H and let ε> 0 be arbitrary.
We denote the set of bounded operators on H by B(H ). Then, σε(P ), the ε-pseudospectrum of P
is defined by

σε(P ) := {
z ∈ ρ(P ); ‖(P − z)−1‖ > ε−1}∪σ(P ), (0.0.1)

or equivalently

σε(P ) = ⋃
B∈B(H )
‖B‖<ε

σ(P +B), (0.0.2)

or equivalently

z ∈σε(P ) ⇐⇒ z ∈σ(P ) or ∃u ∈ D(P ), ‖u‖ = 1 s.t.: ‖(P − z)u‖ < ε. (0.0.3)

The last condition also implicitly defines the so-called quasimodes or ε-pseudoeigenvectors.

Example: Large Jordan block Let us consider the example of a large Jordan block A0 :

A0 =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . 0


:CN →CN .

A0 is clearly non-normal and has the spectrum σ(A0) = {0}. Perturbations of a large Jordan block
have already been studied, cf. [74, 86, 16, 30]. We will discuss the contributions of these authors
in more detail further on in this text. M. Zworski [86] noticed that for every z ∈ D(0,1), there are
associated exponentially accurate quasimodes when N →∞. Hence the open unit disc is a region
of spectral instability.

A simple way to see this is to notice that the Jordan block A0 is nil-potent, i.e. AN
0 = 0. There-

fore, for 0 < |z| < 1 using a Neumann series, one computes that

(A0 − z)−1 =−1

z

N−1∑
n=0

(−z−1 A0)n .
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CHAPTER 0. INTRODUCTION
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Figure 1: The red star (in the center) depicts the spectrum of A0 and the blue circles show the eigenvalues
of Aδ, a perturbation of A0 (N = 500) with a Gaussian random matrix and coupling constant δ= 10−4.

Setting eN = (0, . . . ,0,1)t ∈CN , it follows that

‖(A0 − z)−1‖ ≥ ‖(A0 − z)−1eN‖ ≥ 1

|z|N ,

where we use the matrix norm corresponding to the 2-norm on CN . For 0 < |z| < 1 the norm
of the resolvent of A0 is much larger than the inverse of the distance of z to the spectrum of A0

(drastically opposed to what we would expect in the self-adjoint case), since here

‖(A0 − z)−1‖À 1

dist(z,σ(A0))
= 1

|z| .

In other words, the disc |z| < η< 1 is contained in the ηN -pseudospectrum of A0.
In C \ D(0,1) we have spectral stability (a good resolvent estimate), since ‖A0‖ = 1 which im-

plies that for |z| > 1

‖(A0 − z)−1‖ ≤ 1

|z|−1
.

Thus, if Aδ = A0 +δQ is a small perturbation of A0 we expect the eigenvalues to move inside a
small neighborhood of D(0,1) (cf Figure 1). In the special case when Qu = (u|e1)eN , where (e j )N

1
is the canonical basis inCN , the eigenvalues of Aδ are of the form

δ1/N e2πi k/N , k ∈Z/NZ,

so if we fix 0 < δ¿ 1 and let N →∞, the spectrum “will converge to a uniform distribution on S1”.

Example: Evolution equations Consider the case of evolution equations given by non-normal
operator: Let {

∂t u(t , x) = Pu(t , x),

u(x,0) = u0(x),
(0.0.4)

where we suppose that P is a closed, non-normal, densely defined operator on some complex
Hilbert space H . A solution to (0.0.4) is formally given by etP u0(x). However, for this expression to
make sense, we need to know when P is the generator of a semi-group. The Hille-Yosida theorem
(cf [21, 84]) states that P is the generator of etP (t ≥ 0), a contraction semi-group (i.e. ‖etP‖ ≤ 1) if
and only if

]0,∞[⊂ ρ(P ) and ‖(P −λ)−1‖ ≤λ−1 for λ> 0.

xiii



On the other hand we have the following lower bound on the semi-group∥∥etP
∥∥≥ eγt , ∀t ≥ 0, where γ= sup

z∈σ(P )
Re z.

The precision of this bound depends strongly on the spectrum of P and is therefore strongly in-
fluenced by the effects of spectral instability. This can become of particular relevance when we
are interested in solutions with respect to small perturbations of P or for the stability of numerical
algorithms.

In the case of a certain class of non-linear evolution equation B. Sandstede and A. Scheel [58]
showed that in spite of the problem being spectrally stable (meaning that the relevant linearized
operator has its spectrum in Re z < γ< 0) the solutions blow up with arbitrarily small initial data.
This was generalized by J. Galkowski [24, 25] to a large class of non-linear evolution problems.
He linked the blow up of the solutions to the fact that although the spectrum of the linearized
problem is uniformly bounded away from Re z ≥ 0, the pseudospectrum of this operator has non-
empty intersection with Re z ≥ 0. He emphasized therefore the importance of the pseudospectrum
for the study of stability of solutions to non-linear evolution equations.

For a similar and simpler example illustrating with a Jordan block matrix this pseudospectral
instability for non-linear systems, we refer the reader to the work of A. Raphael and M. Zworski
[54, Sec. 3].

Example: Resonances Questions regarding the spectral theory of non-self-adjoint operators can
appear very naturally even when studying a self-adjoint problem to begin with. A prominent ex-
ample for this is the study of scattering poles or resonances for the Schrödinger equation in math-
ematical physics.

Recall that a particle such as an electron immersed in an electrostatic potential (as in the case
of a hydrogen atom where the electron is immersed in the electrostatic potential emitted by a
proton) moving through d-dimensional space is described via a square integrable function ψ0 ∈
L2(Rd ) called a state. According to the Copenhagen interpretation of quantum mechanics the
quantity (ˆ

A
|ψ0|2d x

) 1
2

, A ⊂Rd measurable,

corresponds to the probability to find the particle in A. The time evolution (t ≥ 0) of the state ψ0

is determined by the Schrödinger equation{
i∂tψ(t , x) = Hψ(t , x),

ψ(0, x) =ψ0(x).
(0.0.5)

Here H =−∆+V is called the Schrödinger operator where ∆ denotes the Laplace operator and V
a multiplication operator describing an electrostatic potential. We assume here V ∈ L∞

comp (Rn ;R)

for simplicity. H is an unbounded self-adjoint operator in L2(Rn) with domain given by the Sobo-
lev space H 2(Rn). The essential spectrum of H is given by [0,+∞[ (i.e. the essential spectrum
of −∆) and in ]−∞,0[ there can be only discrete eigenvalues −µ2

j which correspond to bounded
states of the system determined by H .

The equations (0.0.5) have a unique solution given by e−i t Hψ0. For the large time evolution,
we need to take into account not only the effects of the discrete spectrum but also of the essential
spectrum. A way to do this is by considering resonances which are given by showing that the
resolvent (H −λ2)−1 has a meromorphic continuation (cf [65]) from the upper half planeC+ to

• C, in case the dimension n is odd,

• the logarithmic covering space ofC∗, in case the dimension n is even,

xiv



CHAPTER 0. INTRODUCTION

with values in the bounded operators from H 0
comp (Rn) to H 2

loc (Rn). The poles of this meromor-
phic continuation are called resonances, with exception of the iµ j , and they can be used to study
the large time behavior of e−i H t , in particular to expand solutions to the Schrödinger equation
in exponentially decaying resonant modes. It is the resonances closest to real axis that give the
principal contribution to this, wherefore there has been a large interest in the studying those for
various operators (see for example [72, 73, 6, 7, 43, 77, 78, 45, 70]).

However, finding the poles of the meromorphic continuation is not a self-adjoint problem
anymore. Therefore, effects from spectral instability become relevant and interesting, as for ex-
ample in the case of resonances of Random Schrödinger equations where we consider equations
of the same type as (0.0.5) with the potential V being random. This describes physical systems
of particles being immersed in a random environment which can be used to model for example
disordered system such as “dirty” (super-)conductors, see for example [8, 42].

Objective - Random perturbations

In view of (0.0.2) it is very natural to investigate the effects of small random perturbations upon
the spectrum of non-self-adjoint operators. The principal aim of this thesis is to study this in the
following two cases:

Semiclassical differential operators We will study the effects of small random perturbations on
the spectrum of non-normal semiclassical differential operators. Our principal interest is to
study the average density of eigenvalues and their two-point interaction. We will discuss the
framework, previous results and new results obtained in this thesis in Sections 1.1, 1.2 and
1.3.

Jordan block matrices We will consider Jordan block matrices subject to small random pertur-
bations and study the average density of eigenvalues in the interior of the zone of spectral
instability (as described above). We will discuss the previous results and obtained results in
Section 1.4.

Organization of this thesis

Before continuing we give a short overview on the structure of this thesis.

Chapter 1 In the first chapter we present an introduction to some problems and questions con-
cerning the spectral instability of non-self-adjoint operators. We will also discuss the spe-
cific framework of the two principal problems under consideration in this thesis, that is
small random perturbations of a class of non-self-adjoint semiclassical differential opera-
tors and of large Jordan matrices. As mentioned above the results obtained in this work
concerning both cases will be discussed in Sections 1.2, 1.3 and 1.4.

Chapter 2 In this chapter we will prove the results discussed in Section 1.2. We will present con-
structions of quasimodes, Grushin problems and techniques developed in this thesis to ob-
tain results on the average density of eigenvalues of a certain class of non-self-adjoint semi-
classical differential operators.

Chapter 3 In this chapter we will continue to treat the class of operators under consideration in
Chapter 2 and present the proofs of the results discussed in Section 1.3. We will build on the
methods displayed in Chapter 2.

Chapter 4 This chapter deals with the case of random perturbations of large Jordan matrices. We
discuss the proofs of the results presented in Section 1.4. The techniques used in this chap-
ter are similar to those of Chapter 2.

xv



Appendix A In the appendix will display the MATLAB code used to obtain the numerical simula-
tions presented throughout this thesis.

Notation
In this work we are going to use the following notations:

1. We will denote the Lebesgue measure onCd by L(d z).

2. For α ∈Nd , we define |α| := |α1|+ · · ·+ |αd | and in particular, for d = 3, we set

∂αzzx := ∂α1
z ∂

α2

z
∂
α3
x .

3. We denote by f (x) ³ g (x) that there exists a constant C > 0 such that

C−1g (x) ≤ f (x) ≤C g (x).

Moreover, when we write ³ η, we mean some function f such that f ³ η.

4. We work with the convention that when we write f = O (1)−1 then we mean implicitly that
0 < f =O (1).

5. We denote by f (x) ¿ g (x) that there exists some large constant C > 1 such that

f (x) ≤C−1g (x).

6. We write χ1(x) Âχ2(x), with χi ∈C ∞
0 , if suppχ2 ⊂ Ùsupp(1−χ1).

xvi



CHAPTER 1

SPECTRA OF NON-SELF-ADJOINT
RANDOM OPERATORS

1.1 | Random perturbations of non-self-adjoint semiclassical di�er-
ential operators

Semiclassical differential operators and the Weyl law We begin by recalling some standard no-
tions of the framework of semiclassical differential operators which can be found for example in
[87, 18].

For h ∈]0,1] consider

P (x,hDx ) = ∑
|α|≤N

aα(x)(hDx )α, Dx = 1

i

∂

∂x
, (1.1.1)

where α= (α1, . . . ,αn) ∈Nn , |α| =α1 +·· ·+αn and

aα(x) ∈C ∞
b (Rn) := {

u ∈C ∞(Rn); ∀α ∈Nn ∂αu ∈ L∞(Rn).
}

The natural domain of P (x,hDx ) is the semiclassical Sobolev space H N
sc (Rn) defined by

H N
sc (Rn) :=

{
u ∈ L2(Rn);

∑
|α|≤N

‖(hDx )αu‖2 <∞
}

.

The formal adjoint of P is given by

P∗(x,hDx ) = ∑
|α|≤N

(hDx )αaα(x).

On the phase space T ∗Rn , we denote by

p(x,ξ) = ∑
|α|≤N

aα(x)ξα, (x,ξ) ∈ T ∗Rn , (1.1.2)

the semiclassical principal symbol of P (x,hDx ), and we recall that the Poisson bracket of p and p
is given by

{p, p} = ∂ξp ·∂x p −∂x p ·∂ξp.

We are interested in the spectral properties of P (x,hDx ) in the limit h → 0, which is called the
semiclassical limit. The fundamental motivation behind studying such limits is to understand

1



1.1. RANDOM PERTURBATIONS OF NON-SELF-ADJOINT SEMICLASSICAL DIFFERENTIAL
OPERATORS

the relation between classical dynamics in phase space and quantum mechanics, when h → 0. A
famous example is the Weyl law for the eigenvalues of the Schrödinger operator

P (x,hDx ) =−h2∆+V (x).

with a smooth potential V ∈C ∞(Rn ;R) satisfying suitable growth conditions{
|∂αV (x)| ≤Cα〈x〉k , ∀α ∈Nn ,

V (x) ≥ c〈x〉k , for |x| ≥ R,

where R,k,Cα,c > 0 are some constants. Then we have the following celebrated result linking the
asymptotic behavior (as h → 0) of the number of eigenvalues of P (x,hDx ) in an interval I ⊂R to
the symplectic volume in phase space of p−1(I ) (which is a classical quantity) where p = |ξ|2+V (x)
is the semiclassical principal symbol of P (x,hDx ):

Theorem 1.1.1 (Weyl’s law, see e.g. [87]). Let P = P (x,hDx ) be as above and let I ⊂R be an interval.
Then

#(σ(P )∩ I ) = 1

(2πh)n

(Ï
p−1(I )

d xdξ+o(1)

)
.

Such a Weyl law is known to hold for a large class of semiclassical self-adjoint pseudo-diff-
erential elliptic operators, see for example [18, 39, 34].

Spectral instability for non-self-adjoint semiclassical differential operators Next, we are going
to put the concept of spectral instability into context with the framework of semiclassical differ-
ential operators.

Since the principal symbol of the commutator

1

h
[P,P∗] = 1

h
(PP∗−P∗P )

is given by i−1{p, p}, we see that the Poisson bracket of p and p being different than zero implies
that the operator P is non-normal.

In [15] E.B. Davies considers the one dimensional Schrödinger operator with complex poten-
tial

P (x,hDx ) = (hDx )2 +V (x), V ∈C ∞(R) (1.1.3)

and gives a construction of quasimodes. He proves that for all (x,ξ) ∈ T ∗R satisfying ξ 6= 0 and
ImV ′(x) 6= 0, and all N ∈N

∃uh ∈ L2(R), ‖(P (x,hDx )− z)uh‖ ≤CN hN‖uh‖L2 , z = ξ2 +V (x).

K. Pravda-Starov generalized this in [51] by observing that there also exist quasimodes correspond-
ing to points (x,ξ) ∈ T ∗R satisfying

ξ 6= 0, ImV ( j )(x) = 0, for j = 1, . . . ,2p, and ImV (2p+1)(x) 6= 0.

M. Zworski then observed in [85] a relation between Davies’ quasimode construction and L. Hör-
mander’s Poisson bracket condition (cf. [36]) in the context of local non-solvability of linear partial
differential equations stating that a (classical) differential operator P (x,Dx ) with smooth coeffi-
cients and principal symbol p is non-solvable in an open setΩ⊂Rn if

∃ρ ∈ T ∗Ω\{0} s.t.: p(ρ) = 0 and
1

2i

{
p, p

}
(ρ) 6= 0.

M. Zworski concluded in [85] from the results of L. Hörmander [37, Sect. 26] and of J.J. Duister-
maat and J. Sjöstrand [19] that for P as in (1.1.1) (in fact for the more general case of semiclassical

2



CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

pseudo-differential operators) with semiclassical principal symbol p (see (1.1.2)) we have that for
all

z ∈Λ−(p) = {
p(ρ) :

{
Re p, Im p

}
(ρ) < 0

}⊂Σ(p) := p(T ∗Rn) (1.1.4)

there exists a uh ∈ L2(Rn) with the property

‖(P (x,hDx )− z)uh‖ =O
(
h∞)‖uh‖L2 , (1.1.5)

where uh is localized to a point in phase space ρ with p(ρ) = z, i.e. WFh(uh) = {ρ}. We recall that
for v = v(h), ‖v‖L2 = O (h−N ), for some fixed N , the semiclassical wavefront set of v , WFh(v), is
defined by

Ù{
(x,ξ) ∈ T ∗Rn : ∃a ∈S (T ∗Rn), a(x,ξ) = 1, ‖aw v‖L2 =O (h∞)

}
where aw denotes the Weyl quantization of a, i.e.

aw (x,hDx )v(x) := 1

(2πh)n

Ï
e

i
h (x−y)·ηa

( x + y

2
,η

)
v(y)d ydη.

In the case where P (x,hDx ) has analytic coefficients, we may replace O (h∞) with O (e−1/C h) in
(1.1.5). We also refer the reader to the thesis of K. Pravda-Starov [52] where he relates the non-
negativity of odd iterations of the above bracket condition to the construction of quasimodes sim-
ilar to the above.

In case of the one dimensional semiclassical Schrödinger operator with complex potential
(1.1.3) considered by E.B. Davies, the condition

{
Re p, Im p

}
(x,ξ) < 0 from (1.1.4) simplifies to

ImV ′(x) 6= 0 and ξ 6= 0, as shown by Davies.
In the case of multi-dimensional semiclassical Schrödinger operator with smooth complex po-

tential the bracket condition from (1.1.4) becomes Im (ξ|∂xV (x)) 6= 0.

Finally, let us remark that N. Dencker, J. Sjöstrand and M. Zworski give in [17] a direct proof of
(1.1.5) (also in the context of semiclassical pseudo-differential operators).

1.1.1 – Hager’s model
To study the effects of spectral instability in the framework of semiclassical (pseudo-)differential
operators, M. Hager introduced in [32] the following model operator:

Hypothesis 1.1.2 (Hager’s model). Let 0 < h ¿ 1, we consider on S1 =R/2πZ the semiclassical
differential operator Ph : L2(S1) → L2(S1) given by

Ph := hDx + g (x), Dx := 1

i

d

d x
, g ∈C ∞(S1), (1.1.6)

where g ∈ C ∞(S1) is such that Im g has exactly two critical points and they are non-degenerate,
one minimum and one maximum, say in a and b, with a < b < a + 2π and Im g (a) < Im g (b).
Without loss of generality we may assume that Im g (a) = 0.

The natural domain of Ph is the semiclassical Sobolev space

H 1
sc (S1) :=

{
u ∈ L2(S1) :

(‖u‖2 +‖hDx u‖2) 1
2 <∞

}
,

where ‖·‖ denotes the L2-norm on S1 if nothing else is specified. We will use the standard scalar
products on L2(S1) andCN defined by

( f |g ) :=
ˆ

S1
f (x)g (x)d x, f , g ∈ L2(S1),

and

(X |Y ) :=
N∑

i=1
Xi Y i , X ,Y ∈CN .

3
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We denote the semiclassical principal symbol of Ph by

p(x,ξ) = ξ+ g (x), (x,ξ) ∈ T ∗S1. (1.1.7)

The spectrum of Ph is discrete with simple eigenvalues, given by

σ(Ph) = {
z ∈C : z = 〈g 〉+kh, k ∈Z}

, (1.1.8)

where 〈g 〉 := (2π)−1
´

S1 g (y)d y .

1.1.2 – Adding a random perturbation
We are interested in the following random perturbation of Ph :

Hypothesis 1.1.3 (Random Perturbation of Hager’s model). Let Ph be as in in Hypothesis 1.1.2.
Define

Pδ
h := Ph +δQω = hDx + g (x)+δQω, (1.1.9)

where 0 < δ¿ 1 and Qω is an integral operator L2(S1) → L2(S1) of the form

Qωu(x) := ∑
| j |,|k|≤

⌊
C1
h

⌋α j ,k (u|ek )e j (x). (1.1.10)

Here bxc := max{n ∈N : x ≥ n} for x ∈R, C1 > 0 is big enough, ek (x) := (2π)−1/2ei kx , k ∈ Z, and
α j ,k are complex valued independent and identically distributed random variables with complex
Gaussian distribution law NC(0,1).

Recall that a random variable α has complex Gaussian distribution law NC(0,1) if

α∗(P(dω)) = 1

π
e−ααL(dα)

where L(dα) denotes the Lebesgue measure on C and ω is the random parameter living in the
sample space M of a probability space (M ,A ,P) with σ-algebra A and probability measure P.
α∼NC(0,1) implies that

E[α] = 0, and E
[|α|2]= 1,

or in other words α ∼ NC(0,1) has expectation 0 and variance 1. In the above, E[·] denotes the
expectation with respect to the random variables.

The following results were obtained by W. Bordeaux-Montrieux [4].

Proposition 1.1.4 (W. Bordeaux-Montrieux [4]). There exists a C0 > 0 such that the following holds:
Let X j ∼ NC(0,σ2

j ), 1 ≤ j ≤ N <∞ be independent complex Gaussian random variables. Put s1 =
maxσ2

j . Then, for every x > 0, we have

P

[
N∑

j=1
|X j |2 ≥ x

]
≤ exp

(
C0

2s1

N∑
j=1

σ2
j −

x

2s1

)
.

Corollary 1.1.5 (W. Bordeaux-Montrieux [4]). Let h > 0 and let ‖Qω‖HS denote the Hilbert-Schmidt
norm of Qω. If C > 0 is large enough, then

‖Qω‖HS ≤ C

h
with probability ≥ 1−e−

1
C h2 .

Here, the constant C > 0 in the probability estimate is not necessarily the same as before.

Since ‖Qω‖2
HS = ∑ |α j ,k (ω)|2, we can also view the above bound as restricting the support of

the joint probability distribution of the random vector α= (α j k ) j ,k to a ball of radius C /h. Hence,
to obtain a bounded perturbation we will work from now on in the restricted probability space:

4



CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

Hypothesis 1.1.6 (Restriction of random variables). Define N := (2bC1/hc+1)2 where C1 > 0 is as
in (1.1.10). We assume that for some constant C > 0

α ∈ B(0,R) ⊂CN , R = C

h
. (1.1.11)

Furthermore, we assume that the coupling constant δ> 0 satisfies

δ¿ h5/2, (1.1.12)

which implies, for α ∈ B(0,R), that δ‖Qω‖HS ≤ C h3/2. Hence, for α ∈ B(0,R), the operator Qω is
compact and the spectrum of Pδ

h is discrete.

Zone of spectral instability Since in the present work we are in the semiclassical setting, we
define similarly to (1.1.4)

Σ := p(T ∗S1) ⊂C, (1.1.13)

where p is given in (1.1.7). In the case of (1.1.6) and (1.1.7) p(T ∗S1) is already closed due to the
ellipticity of Ph .

Next, consider for z ∈ Ωb Σ̊ the equation z = p(x,ξ). It has precisely two solutions ρ±(z) :=
(x±(z),ξ±(z)) where x±(z) are given by

Im g (x±(z)) = Im z, ±Im g ′(x±(z)) < 0 and ξ±(z) = Re z −Re g (x±(z)). (1.1.14)

By the natural projectionΠ :R→ S1 =R/2πZ and a slight abuse of notation we identify the points
x± ∈ S1 with points x± ∈R such that x−−2π< x+ < x−. Furthermore, we will identify S1 with the
interval [x−−2π, x−[.

Therefore, we see that in the case of (1.1.7), the bracket condition given in (1.1.4) is satisfied
for any z ∈Ωb Σ̊ since by (1.1.14){

Re p, Im p
}

(x+(z),ξ+(z)) = Im g ′(x+(z)) < 0.

We will give more details on the construction of quasimodes for Ph in Section 2.1.
For z close to the boundary of Σ the situation is different as we have a good resolvent estimate

on ∂Σ. Since {p, {p, p}}(ρ) 6= 0 for all z0 ∈ ∂Σ and all ρ ∈ p−1(z0), Theorem 1.1 in [69] implies that
there exists a constant C0 > 0 such that for every constant C1 > 0 there is a constant C2 > 0 such
that for |z − z0| <C1(h ln 1

h )2/3, h < 1
C2

, the resolvent (Ph − z)−1 is well defined and satisfies

‖(Ph − z)−1‖ <C0h− 2
3 exp

(
C0

h
|z − z0|

3
2

)
. (1.1.15)

This implies for α as in (1.1.11) and δ=O (hM ), M = M(C1,C ) > 0 large enough, that

σ(Ph +δQω)∩D

(
z0,C1

(
h ln

1

h

)2/3
)
=;. (1.1.16)

Thus, there exists a tube of radius C1
(
h ln 1

h

)2/3
around ∂Σ void of the spectrum of the perturbed

operator Pδ
h . Therefore, since we are interested in the eigenvalue distribution of Pδ

h , we assume
from now on implicitly that

Hypothesis 1.1.7 (Restriction of Σ). Let Σ⊂C be as in (1.1.13). Then, we let

ΩbΣ be open, relatively compact with dist(Ω,∂Σ) >C
(
h lnh−1)2/3

for some constant C > 0.
(1.1.17)
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1.1.3 – Review of previous and related results
In [32] M. Hager showed the striking result that, although the eigenvalues of Ph (cf (1.1.8)) do
not follow a Weyl law, after adding a tiny random perturbation the eigenvalues of the perturbed
operator Pδ

h follow in the interior of Σ a Weyl law with probability very close to one:

Theorem 1.1.8 (M. Hager [32]). Let Ωb Σ̊ be open and relatively compact such that dist(Ω,∂Σ) >
1/C , for a C À 1. Let ΓbΩ be with C ∞ boundary. Letκ> 5/2 and let ε0 > 0 be sufficiently small. Let

δ= δ(h) satisfy e−ε0/h ¿ δ¿ hκ and put ε= ε(h) = h ln(1/δ). Then with probability ≥ 1−O
(

δ2p
εh5

)
,

#
(
σ(Pδ

h )∩Γ
)
= 1

2πh

Ï
p−1(Γ)

d xdξ+O

(p
ε

h

)
.

M. Hager’s result is particularly interesting when

δ2

p
εh5

¿ 1 and
p
ε¿ 1,

as it would be for example the case when

ln
1

δ
¿ 1

h
, δ¿ h

11
4 .

Hager’s result has been extended by W. Bordeaux-Montrieux in [4] to strips at a distanceÀ (−h lnδh)
2
3

to the boundary of Σ:

Γτ := {z ∈Σ; C1 ≤ Re z ≤C2, Im z ³ τ} , with (−h ln(δh))2/3 ¿ τ¿ 1 (1.1.18)

where C1,C2 are constants independent of τ. W. Bordeaux-Montrieux showed in [4] that the eigen-
values of the perturbed operator Pδ

h follow also in Γτ a Weyl law:

Theorem 1.1.9 (W. Bordeaux-Montrieux [4]). Let κ,γ> 0 and let Γτ be as above. Let δ= δ(h) satisfy

C hκ ≤ δ¿
p

hτ1/4h2γ

(lnh−1)3 ,

and put ε= ε(h) =Cγh ln(hδ)−1. Then with probability ≥ 1−O
(

h2γp
ετ1/4

)
,

#
(
σ(Pδ

h )∩Γτ
)
= 1

2πh

Ï
p−1(Γτ)

d xdξ+O

( p
ε

τ1/4h

)
.

Furthermore, Hager and Bordeaux-Montrieux generalized their respective results to the case
of one-dimensional semiclassical pseudo-differential operators, see [31, 4]. In [33], M. Hager
and J. Sjöstrand generalized Hager’s result to the case of multi-dimensional semiclassical pseudo-
differential operators.

There are many more interesting results about Weyl asymptotics of the eigenvalues of non-
self-adjoint operators: in [9] M. Zworski and T.J. Christiansen proved a probabilistic Weyl law for
the eigenvalues in the setting of small random perturbations of Toeplitz quantizations of complex-
valued functions on an even dimensional torus. In [68, 66] J. Sjöstrand proved a Weyl law for the
eigenvalues the case small multiplicative random perturbations of multi-dimensional semiclassi-
cal pseudo-differential operators similar to the class under consideration in [33].

1.1.4 – �estions treated
The above mentioned results concern only the eigenvalues in the interior of the pseudospec-
trum and numerical simulations suggest that Weyl asymptotics break down when we approach
the boundary of the pseudospectrum (cf Figures 1.1, 1.2 and 1.3). Furthermore, there have not
been any results concerning the statistical interaction between eigenvalues.

Therefore, in the first part of this thesis we go back to the model operator Ph introduced by
Hager (cf Hypothesis 1.1.2) and we are interested in the following questions:
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Figure 1.1: Sections of the spectrum of the discretization of hD+exp(−i x) (approximated by a 6000×6000-
matrix) perturbed with a random Gaussian matrix δR with h = 2 ·10−4 and δ= 2 ·10−14. The right hand side
is a magnification of the upper boundary region of the picture on the left hand side.
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Figure 1.2: On the left hand side we present the spectrum of the discretization of hD + exp(−i x) (ap-
proximated by a 3999× 3999-matrix) perturbed with a random Gaussian matrix δR with h = 2 · 10−3 and
δ = 2 ·10−12. The black box indicates the region where we count the number of eigenvalues to obtain the
image on the right hand side. There we show the integrated experimental density of eigenvalues, averaged
over 400 realizations of random Gaussian matrices, and the integrated Weyl law. We can see clearly a region
close to the boundary of the pseudospectrum where Weyl asymptotics of the eigenvalues breaks down.

1) Density of eigenvalues What is the precises description of the density of eigenvalues of the ran-
domly perturbed operator Pδ

h (cf (1.1.9)) in all of Σ (cf (1.1.13))?

2) 2-point interaction of eigenvalues How is the two-point interaction of eigenvalues of Pδ
h in the

interior of Σ? Is it repulsive, attractive or neither?

1.2 | Average density of eigenvalues of Hager’s model

We begin by establishing how to choose the strength of the perturbation. For this purpose we
discuss some estimates on the norm of the resolvent of Ph .

1.2.1 – The coupling δ

We give a description of the imaginary part of the action between ρ+(z) and ρ−(z).
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Figure 1.3: On the left hand side we present the spectrum of the discretization of hD + exp(−i x) (ap-
proximated by a 1999× 1999-matrix) perturbed with a random Gaussian matrix δR with h = 5 · 10−2 and
δ= exp(−1/h). The black box indicates the region where we count the number of eigenvalues to obtain the
image on the right hand side. There we show the integrated experimental density of eigenvalues, averaged
over 400 realizations of random Gaussian matrices, and the integrated Weyl law. Here, the Weyl law breaks
down even more dramatically than in Figure 1.2.

Remark 1.2.1. Much of the following is valid for z ∈ΩbΣwith

ΩbΣ open, relatively compact with dist(Ω,∂Σ) À h2/3, (1.2.1)

instead of for z ∈Ω as in Hypothesis 1.1.7.

Definition 1.2.2. Let Ωb Σ as in (1.2.1), let p denote the semiclassical principal symbol of Ph in
(1.1.7) and let ρ±(z) = (x±(z),ξ±(z)) be as above. Define

S(z) := min

(
Im

ˆ x−

x+
(z − g (y))d y, Im

ˆ x−−2π

x+
(z − g (y))d y

)
.

Proposition 1.2.3. LetΩbΣ be as in (1.2.1) and let S(z) be as in Definition 1.2.2, then S(z) has the
following properties for all z ∈Ω:

• S(z) depends only on Im z, is continuous and has the zeros S(Im g (a)) = S(Im g (b)) = 0;

• S(z) ≥ 0;

• for Im z = 〈Im g 〉 the two integrals defining S are equal; S has its maximum at 〈Im g 〉 and is
strictly monotonously decreasing on the interval [〈Im g 〉, Im g (b)] and strictly monotonously
increasing on [Im g (a),〈Im g 〉];

• its derivative is piecewise of class C ∞ with the only discontinuity at Im z = 〈Im g 〉. Moreover,

S(z) =
ˆ Im z

〈Im g 〉
(∂Im z S)(t )d t +S(〈Im g 〉),

(∂Im z S)(t ) :=
{

x−(t )−x+(t ), if t ≤ 〈Im g 〉,
x−(t )−2π−x+(t ), if t > 〈Im g 〉. (1.2.2)

• S has the following asymptotic behavior for z ∈Ω

S(z) ³ d(z)
3
2 , and |∂Im z S(z)| ³ d(z)

1
2 ,

where d(z) := dist(z,∂Σ).
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Figure 1.4: To illustrate Proposition 1.2.3 we show on the left hand side S(Im z), for g (x) = e−i x , compared
to 2 ·d(z)3/2 for 0 ≤ Im z ≤ 1. Due to the above choice of g we have that here d(z) = (1− Im z) for z ∈Σ∩ {z ∈
C; Im z ≥ 0} (cf. (1.1.13)). Similarly, we show on the right hand side |∂Im z S(Im z)| compared to 3 ·d(z)1/2.

Remark 1.2.4. Note that in (1.2.2) we chose to define ∂Im z S(z) := x−(z)− x+(z) for Im z = 〈Im g 〉.
We will keep this definition throughout this text. Furthermore, we will keep the definition d(z) :=
dist(z,∂Σ) throughout this entire work.

With the convention ‖(Ph − z)−1‖ = ∞ for z ∈ σ(Ph) we have the following estimate on the
resolvent growth of Ph :

Proposition 1.2.5. Let g (x) be as above. For z ∈C and h > 0 define,

Φ(z,h) :=
{
−2πi

h (z −〈g 〉), if Im z < 〈Im g 〉,
2πi

h (z −〈g 〉), if Im z > 〈Im g 〉,
where ReΦ(z,h) ≤ 0. Then, under the assumptions of Definition 1.2.2 we have for z ∈Ωb Σ as in
(1.2.1) that

‖(Ph − z)−1‖ =
p
π

∣∣1−eΦ(z,h)
∣∣−1

e
S(z)

h

p
h

( i
2 {p, p}(ρ+) i

2 {p, p}(ρ−)
) 1

4

(1+O (h)) (1.2.3)

³ e
S(z)

hp
h d(z)1/4

, for |Im z −〈Im g 〉| > 1/C , C À 1,

where
∣∣1−eΦ(z,h)

∣∣= 0 if and only if z ∈σ(Ph). Moreover,∣∣∣1−eΦ(z,h)
∣∣∣= 1+O

(
e−

2π
h |Im z−〈Im g 〉|

)
.

This proposition will be proven in Section 2.8.1. The growth of the norm of the resolvent away
from the line Im z = 〈Im g 〉 is exponential and determined by the function S(z). A similar result
valid for z ∈ Γτ with h2/3 ¿ τ¿ 1 (cf (1.1.18)) has been obtained by W. Bordeaux-Montrieux [4, 5].

It will be very useful to write the coupling constant δ as follows:

Hypothesis 1.2.6. For h > 0, define

δ := δ(h) :=
p

he−
ε0(h)

h

with
(
κ− 1

2

)
h ln(h−1)+C h ≤ ε0(h) < S(〈Im g 〉) for some κ > 0 and C > 0 large and where the last

inequality is uniform in h > 0. This is equivalent to the bounds
p

he−
S(〈Im g 〉)

h < δ¿ hκ.

Remark 1.2.7. The upper bound on ε0(h) has been chosen in order to produce eigenvalues suf-
ficiently far away from the line Im z = 〈Im g 〉 where we find σ(Ph). The lower bound on ε0(h) is
needed because we want to consider small random perturbations with respect to Ph (cf. (1.1.12)
and (1.1.16)).
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1.2. AVERAGE DENSITY OF EIGENVALUES OF HAGER’S MODEL

1.2.2 – Auxiliary operator.

To describe the elements of the average density of eigenvalues, it will be very useful to introduce
the following operators which have already been used in the study of the spectrum of Pδ

h by Sjös-
trand [67]. For the readers convenience, we will give a short overview:

Let z ∈C and we define the following z-dependent elliptic self-adjoint operators

Q(z),Q̃(z) : L2(S1) → L2(S1) where

Q(z) := (Ph − z)∗(Ph − z), Q̃(z) := (Ph − z)(Ph − z)∗ (1.2.4)

with domains D(Q(z)),D(Q̃(z)) = H 2(S1). Since S1 is compact and these are elliptic, non-negative,
self-adjoint operators their spectra are discrete and contained in the interval [0,∞[. Since

Q(z)u = 0 ⇒ (Ph − z)u = 0

it follows that N (Q(z)) = N (Ph − z) and N (Q̃(z)) = N ((Ph − z)∗). Furthermore, if λ 6= 0 is an
eigenvalue of Q(z) with corresponding eigenvector eλ we see that fλ := (Ph−z)eλ is an eigenvector
of Q̃(z) with the eigenvalue λ. Similarly, every non-vanishing eigenvalue of Q̃(z) is an eigenvalue
of Q(z) and moreover, since Ph − z, (Ph − z)∗ are Fredholm operators of index 0 we see that

dimN (Ph − z) = dimN ((Ph − z)∗).

Hence the spectra of Q(z) and Q̃(z) are equal

σ(Q(z)) =σ(Q̃(z)) = {t 2
0 , t 2

1 , . . . }, 0 ≤ t j ↗∞. (1.2.5)

We will show in Proposition 2.1.7 that for z ∈ΩbΣ (cf (1.2.1))

t 2
0 (z) ≤O

(
d(z)

1
2 he−

2S
h

)
, t 2

1 (z) ≥ d(z)
1
2 h

O (1)
. (1.2.6)

Now consider the orthonormal basis of L2(S1)

{e0,e1, . . . } (1.2.7)

consisting of the eigenfunctions of Q(z). By the previous observations we have

(Ph − z)(Ph − z)∗(Ph − z)e j = t 2
j (Ph − z)e j .

Thus defining f0 to be the normalized eigenvector of Q̃ corresponding to the eigenvalue t 2
0 and the

vectors f j ∈ L2(S1), for j ∈N, as the normalization of (Ph − z)e j such that

(Ph − z)e j =α j f j , (Ph − z)∗ f j =β j e j with α jβ j = t 2
j , (1.2.8)

yields an orthonormal basis of L2(S1)
{ f0, f1, . . . } (1.2.9)

consisting of the eigenfunctions of Q̃(z). Since

α j = ((Ph − z)e j | f j ) = (e j |(Ph − z)∗ f j ) =β j

we can conclude that α jα j = t 2
j .

It is clear from (1.2.6), (1.2.8) that e0(z) (resp. f0(z)) is an exponentially accurate quasimode
for Ph − z (resp. (Ph − z)∗). We will see in Section 2.1 that it is localized to ρ+(z) (resp. ρ−(z)). We
will prove in the Sections 2.2.2 and 2.2.4 the following two formulas for the tunneling effect:

10
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Proposition 1.2.8. Let z ∈ Ω b Σ be as in (1.2.1) and let e0 and f0 be as in (1.2.7) and in (1.2.9).
Furthermore, let S be as in Definition 1.2.2, let p be as in (1.1.7) and ρ± be as in (1.1.14). Let h

2
3 ¿

d(z), then for all z ∈Ωwith |Im z −〈Im g 〉| > 1/C , C À 1,

|(e0| f0)| =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
4

p
πh

|∂Im z S(z)| (1+K (z;h))e−
S(z)

h ,

where K (z;h) depends smoothly on z and satisfies for all β ∈N2 that

∂
β

zz
K (z;h) =O

(
d(z)

|β|
2 − 3

4 h−|β|+ 1
2

)
.

Proposition 1.2.9. Under the same assumptions as in Proposition 1.2.8, let χ ∈C ∞
0 (S1) with χ≡ 1

in a small open neighborhood of {x−(z) : z ∈Ω}. Then, for h
2
3 ¿ d(z),

|([Ph ,χ]e0| f0)| =
p

h

(
i
2 {p, p}(ρ+) i

2 {p, p}(ρ−)

π2

) 1
4

(1+K (z;h))e−
S(z)

h ,

where K (z;h) depends smoothly on z and satisfies for all β ∈N2 that

∂
β

zz
K (z;h) =O

(
d(z)

|β|−3
2 h1−(|β|)

)
.

1.2.3 – Average density of eigenvalues.

We begin by defining the point process of eigenvalues of the perturbed operator Pδ
h (cf Hypothesis

1.1.3).

Definition 1.2.10. Let Pδ
h be as in Hypothesis 1.1.3, then we define the point process

Ξ := ∑
z∈σ(Pδ

h )

δz , (1.2.10)

where the eigenvalues are counted according to their multiplicities and δz denotes the Dirac-
measure at z.

Ξ is a well-defined random measure (cf. for example [11]) since, for h > 0 small enough, Pδ
h

is a random operator with discrete spectrum. To obtain an h-asymptotic formula for the average
density of eigenvalues, we are interested in intensity measure of Ξ (with respect to the restriction
in the random variables, see Hypothesis 1.1.6), i.e. the measure µ1 defined by

T1(ϕ) :=E[
Ξ(ϕ)1B(0,R)

]= ˆ
C

ϕ(z)dµ1(z)

for all ϕ ∈ C0(Ω) with Ωb Σ as in Hypothesis 1.1.7. The measure µ1 is well defined since T1 is a
positive linear functional on C0(Ω).

Remark 1.2.11. Such an approach is employed with great success in the study of zeros of random
polynomials and Gaussian analytic functions; we refer the reader to the works of B. Shiffman and
S. Zelditch [61, 62, 60, 59], M. Sodin [75] an the book [38] by J. Hough, M. Krishnapur, Y. Peres and
B. Virág.

Our main result giving the average density of eigenvalues of Pδ
h is the following:

Theorem 1.2.12. LetΩbΣ be as in Hypothesis 1.1.7. Let C > 0 be as in (1.1.11) and let C1 > 0 be as
in (1.1.10) such that C −C1 > 0 is large enough. Let δ> 0 be as in Hypothesis 1.2.6 with κ> 4 large
enough. Define N := (2bC1/hc+1)2 and let B(0,R) ⊂CN be the ball of radius R :=C h−1 centered at
zero. Then, there exists a C2 > 0 such that for h > 0 small enough and for all ϕ ∈C0(Ω)

E
[
Ξ(ϕ)1B(0,R)

]= ˆ ϕ(z)D(z,h,δ)L(d z)+O
(
e−

C2
h2

)
, (1.2.11)

11
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with the density

D(z,h,δ) =
1+O

(
δh− 3

2 d(z)−1/4
)

π
Ψ(z;h,δ)exp{−Θ(z;h,δ)}, (1.2.12)

which depends smoothly on z and is independent of ϕ. Moreover, Ψ(z;h,δ) =Ψ1(z;h)+Ψ2(z;h,δ)
and for z ∈Ωwith d(z) À (h lnh−1)2/3

Ψ1(z;h) = 1

h

{
i

{p, p}(ρ+(z))
+ i

{p, p}(ρ−(z))

}
+O

(
d(z)−2) ,

Ψ2(z;h,δ) =
∣∣(e0| f0)

∣∣2

δ2

(
1+O

(
d(z)−3/4h1/2)) ,

Θ(z;h,δ) =
∣∣([Ph ,χ]e0| f0)+O

(
d(z)−1/4h−5/2δ2

)∣∣2

δ2(1+O (h∞))

(
1+O

(
e−

³d(z)3/2

h

))
. (1.2.13)

Furthermore, in (1.2.11), O
(
e−

C2
h2

)
means 〈Th ,ϕ〉, where Th ∈D′(C) such that

|〈Th ,ϕ〉| ≤C‖ϕ‖∞e−
C2
h2

for all ϕ ∈C0(Ω) where C > 0 is independent of h, δ and ϕ.

Let us give some comments on this result. The dominant part of the density of eigenvalues
D consists of three parts: the first, Ψ1, is up to a small error the Lebesgue density of p∗(dξ∧d x),
where dξ∧d x is the symplectic form on T ∗S1 and p is as in (1.1.7). We prove in Proposition 2.4.2
that

p∗(dξ∧d x) =σ(z)L(d z), with σ(z) :=
(

2i

{p, p}(ρ+(z))
+ 2i

{p, p}(ρ−(z))

)
. (1.2.14)

The second part, Ψ2, is given by a tunneling effect. Inside the (
p

hδ)-pseudospectrum its contri-
bution can be absorbed in the error term ofΨ1. However, close to the boundary of the δ-pseudo-
spectrum Ψ2 becomes of order h−2 and thus yields a higher density of eigenvalues. This can be
seen by comparing the more explicit formula for Ψ2 given in Proposition 1.2.13 with the expres-
sion for the norm of the resolvent of Ph given in Proposition 1.2.5. More details on the form ofΨ2

in this zone will be given in Proposition 1.2.17.
The third part, exp{−Θ}, is also given by a tunneling effect and it plays the role of a cut-off

function which exhibits double exponential decay outside the δ-pseudospectrum and is close to
1 inside. This will be made more precise in Section 1.2.4.

We have the following explicit formulas for these functions and their growth properties:

Proposition 1.2.13. Under the assumptions of Definition 1.2.2 and Theorem 1.2.12, define for h > 0
and δ> 0 the functions

Θ0(z;h,δ) := h
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

π

e−
2S
h

δ2 .

Then, for |Im z −〈Im g 〉| > 1/C , C À 1,

Ψ2(z;h,δ) =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πhδ2 exp{ 2S
h }

|∂Im z S(z)|2
(

1+O

(
h1/2

d(z)
3
4

))

Θ(z;h,δ) =Θ0(z;h,δ)

(
1+O

(
h

3
2

d(z)
1
4

))
+O

(
d(z)

1
4δ

h2 + δ2

d(z)
1
2 h5

)
. (1.2.15)

The estimates in (1.2.15) are stable under application of d(z)−
|β|
2 h|β|∂β

zz
, for β ∈N2.

12
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Proposition 1.2.14. Under the assumptions of Definition 1.2.2 and Theorem 1.2.12 we have that

i

2
{p, p}(ρ+)

i

2
{p, p}(ρ−) ³ d(z),

i

{p, p}(ρ+(z))
+ i

{p, p}(ρ−(z))
³ 1p

d(z)

and

Ψ2(z;h,δ) ³ (d(z))3/2e−
2S
h

hδ2 , Θ0(z;h,δ) ³ h
√

d(z)
∣∣∣1−eΦ(z,h)

∣∣∣ e−
2S
h

δ2 .

In the next Subsection we will explain the asymptotic properties of the density appearing in (1.2.11).

1.2.4 – Properties of the average density of eigenvalues and its integral with
respect to Im z

It will be sufficient for our purposes to consider rectangular subsets of Σ: for c < d define

Σc,d :=
{

z ∈Σ
∣∣∣ min

x∈S1
Im g (x) ≤ Im z ≤ max

x∈S1
Im g (x), c < Re z < d

}
. (1.2.16)

Roughly speaking, there exist three regions in Σ:

(1) z ∈ΣW ⊂Σ ⇐⇒ ‖(Ph − z)−1‖À (
p

hδ)−1,

(2) z ∈ΣR ⊂Σ ⇐⇒ ‖(Ph − z)−1‖ ³ δ−1,

(3) z ∈ΣV ⊂Σ ⇐⇒ ‖(Ph − z)−1‖¿ δ−1,

which depend on the strength of the coupling constant δ > 0. In ΣW , the average density is of
order h−1 and is governed by the symplectic volume yielding a Weyl law. InΣR , the average density
spikes and Ψ2 becomes the leading term and is of order h−2 and it yields in total a Poisson-type
distribution, cf. Proposition 1.2.17. In ΣV , the average density is rapidly decaying, since

Θ³ ‖(Ph − z)−1‖−2δ−2,

which follows from Proposition 1.2.9 and Proposition 1.2.5.

Σ

ΣV

ΣV

ΣW

ΣR

ΣR

σ(Ph)
γh+

γh−

Figure 1.5: The three zones inΣwith a schematic representation of γh
±. The two boxes indicate zones where

the integrated densities are equal up to a small error.

We will prove that there exist two smooth curves, Γh
±, close to the boundary of the δ-pseudo-

spectrum of Pδ
h , along which the average density of eigenvalues obtains its local maxima. Note that

this is still inside the (C h−1δ)-pseudospectrum of Pδ
h (cf Hypothesis 1.1.6) since pseudospectra are

nested (meaning that σε1 (Pδ
h ) ⊂σε2 (Pδ

h ) for ε1 < ε2).
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Proposition 1.2.15. Let z ∈Ωb Σc,d with Σc,d as in (1.2.16), let S(z) be as in Definition 1.2.2 and
let t 2

0 (z) be as in (1.2.5). Let δ > 0 and ε0(h) be as in Hypothesis 1.2.6 with κ > 4 large enough.
Moreover, let D(z,h,δ) be the average density of eigenvalues of the operator of Pδ

h given in Theorem
1.2.12. Then,

1. for 0 < h ¿ 1, there exist numbers y±(h) such that ε0(h) = S(y±(h)) with

1

C

(
h lnh−1) 2

3 ¿ y−(h) < 〈Im g 〉− ch lnh−1

< 〈Im g 〉+ ch lnh−1 < y+(h) ¿ Im g (b)− 1

C

(
h lnh−1) 2

3 ,

for some constants C ,c > 1. Furthermore,

y−(h), (Im g (b)− y+(h)) ³ (ε0(h))2/3;

2. there exists h0 > 0 and a family of smooth curves, indexed by h ∈]h0,0[,

γh
± : ]c,d [−→Cwith Reγh

±(t ) = t

such that

|t0(γh
±(t ))| = δ.

Moreover,

‖(Ph −γh
±(t ))−1‖ = δ−1,

and

Imγh
±(Re z) = y±(ε0(h))

(
1+O

(
h

ε0(h)

))
.

Furthermore, there exists a constant C > 0 such that

dImγh
±

d t
(t ) =O

(
exp

[
−ε0(h)

C h

])
.

3. there exists h0 > 0 and a family of smooth curves, indexed by h ∈]h0,0[,

Γh
± : ]c,d [−→C, ReΓh

±(t ) = t ,

with Γ− ⊂ {Im z < 〈Im g 〉} and Γ+ ⊂ {Im z > 〈Im g 〉}, along which Im z 7→ D(z,h) takes its local
maxima on the vertical line Re z = const. and

d

d t
ImΓh

±(t ) =O

(
h4

ε0(h)4

)
.

Moreover, for all c < t < d

|Γh
±(t )−γh

±(t )| ≤O

(
h5

ε0(h)13/3

)
.

With respect to the above described curves we prove the following properties of the average
density of eigenvalues:

Proposition 1.2.16. Let dξ∧d x be the symplectic form on T ∗S1 and p as in (1.1.7). Let ε0 = ε0(h)
be as in Hypothesis 1.2.6. Then, under the assumptions of Theorem 1.2.12 there exist α,β > 0 such
that

14



CHAPTER 1. SPECTRA OF NON-SELF-ADJOINT RANDOM OPERATORS

1. for z ∈Σc,d with

Imγ−(Re z)+α h

ε1/3
0

ln
ε1/3

0

h
≤ Im z ≤ Imγ+(Re z)−α h

ε1/3
0

ln
ε1/3

0

h

we have that

D(z;h,δ)L(d z) = 1

2πh
p∗(dξ∧d x)+O

(
d(z)−2)L(d z),

where D(z;h,δ) is the average density of eigenvalues of the operator of Pδ
h given in Theorem

1.2.12.

2. for

Ω1(β) :=
{

z ∈Σc,d

∣∣∣ Imγ−(Re z)− h

ε1/3
0

ln

(
β ln

ε1/3
0

h

)

≤ Im z ≤ Imγ+(Re z)+ h

ε1/3
0

ln

(
β ln

ε1/3
0

h

)}
,

we have that ˆ

z∈Ω1(β)

D(z;h,δ)L(d z) =
ˆ

Σc,d

p∗(dξ∧d x)

2πh
+O

(
ε
− 2

3
0

)
.

3. for all ε> 0 and allΩ(ε) ⊂Σc,d \Ω2(β,ε) satisfying Hypothesis 1.1.7, where

Ω2(β,ε) :=
{

z ∈Σc,d

∣∣∣ Imγ−(Re z)− h

ε1/3
0

ln

(
β ln

ε1/3
0

h

)
−ε

≤ Im z ≤ Imγ+(Re z)+ h

ε1/3
0

ln

(
β ln

ε1/3
0

h

)
+ε

}
,

we have that ˆ
Ω(ε)

D(z;h,δ)L(d z) =O
(
exp

{
−e

ε
C h

})
.

Proposition 1.2.16 makes more precise the rough description of the behavior of the average
density of eigenvalues, given at the beginning of this section: Point 1. tells us that in the interior of
the δ-pseudospectrum, up to a distance of order h ln 1

h to the curves γh
± (see Figure 1.5), the density

is given by a Weyl law. Assertion 2. tells us that the eigenvalues accumulate strongly in the close
vicinity of these curves such that when integrating the density in the box Ω1 b Σc,d the number
of eigenvalues is given (up to small error) by the integrated Weyl density in all of Σc,d (cf Figure
1.5). This augmented density can be seen as the accumulated eigenvalues which would have been
given by a Weyl law in the region from γh

± up to the boundary ∂Σ (see also Figures 1.6 and 1.7 for
an example).

The last point of the proposition tells us that outside of a strip of the form of Ω1 the density
decays double-exponentially.

The density in the zone of spectral accumulation We give a finer description of the density of
eigenvalues close to its local maxima at Γh

±:

Proposition 1.2.17. Assume the hypotheses of Theorem 1.2.12. Let S(z) be as in Definition 1.2.2 and
letΨ2(z;h,δ) andΘ(z;h,δ) be as in Theorem 1.2.12. Then for |Im z−〈Im g 〉| > 1/C with C À 1 large
enough,

Ψ2(z;h,δ)e−Θ(z;h,δ) =
[ |∂Im z S(z)|2

h2 Θ(z;h,δ)
(
1+O

(
d(z)−3/4h1/2))+O

(
d(z)5/4)]e−Θ(z;h,δ).
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Let us give some remarks on this result. First, we see that we can approximate the second part
of the density of eigenvalues by a Poisson type distribution. Second, since Θ³ ‖(Ph − z)−2‖−1δ−2,
we see that the effects of the second part of the density vanish in the error term of Ψ1 as long as
‖(Ph − z)−1‖À (

p
hδ)−1. However, for ‖(Ph − z)−1‖ ³ δ−1 it is of order O (d(z)h−2) and dominates

the Weyl term.

1.2.5 – Example: Numerical simulations

To illustrate our results we look at the discretization of Ph = hD + e−i x in Fourier space which is
approximated by the (2N +1)× (2N +1)-matrix H = hD +E , N ∈N, where D and E are defined by

D j ,k :=
{

j if j = k,

0 else
and E j ,k :=

{
1 if k = j +1,

0 else,

where j ,k ∈ {−N ,−N+1, . . . , N }. Let R be a (2N+1)×(2N+1) random matrix, where the entries R j ,k

are independent and identically distributed complex Gaussian random variables, R j ,k ∼NC(0,1).
For h > 0 and δ> 0 as in Theorem 1.2.12, we let MATLAB calculate the spectrum σ(H +δR). Since
here g (x) = e−i x (cf. (1.1.6)), it follows that in this case Σ is given by {z ∈C; |Im z| ≤ 1} (cf. (1.1.13)).

Remark 1.2.18. Details regarding the MATLAB code used to obtain these simulations can be found
in Appendix A.

We are going to perform our numerical experiments for the following two cases:

Polynomially small (in h) coupling δ We set the above parameters to be h = 2 · 10−3, δ = 2 ·
10−12 ≈ 0.1 ·h4 and N = 1999. Figure 1.6 shows the spectrum of H +δR computed by MATLAB.
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Figure 1.6: On the left hand side we present the spectrum of the discretization of hD + exp(−i x) (ap-
proximated by a 3999× 3999-matrix) perturbed with a random Gaussian matrix δR with h = 2 · 10−3 and
δ = 2 ·10−12. The black box indicates the region where we count the number of eigenvalues to obtain Fig-
ure1.7. The right hand side is a magnification of the central part of the spectrum depicted on the left hand
side.

The black box indicates the region where we count the number of eigenvalues to obtain the density
of eigenvalues presented in Figure 1.7. Outside this box the influence from the boundary effects
from our N -dimensional matrix are too strong. Figure 1.7 compares the experimental (given by
counting the number of eigenvalues in the black box restricted to Im z ≥ 0 and averaging over 400
realizations of random Gaussian matrices) and the theoretical (cf Theorem 1.2.12) density and
integrated density of eigenvalues.
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Figure 1.7: On the left hand side we compare the experimental and the theoretical (cf. Theorem 1.2.12)
density of eigenvalues. On the right hand side we compare the experimental and the theoretical integrated
density of eigenvalues with the integrated Weyl law. Here h = 2 ·10−3 and δ= 2 ·10−12.

Exponentially small (in h) couplingδ We set the above parameters to be h = 5·10−2, δ= exp(−1/h)
and N = 1000. Figure 1.8 shows the spectrum of H +δR computed by MATLAB. Similar to the
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Figure 1.8: On the left hand side we present the spectrum of the discretization of hD + exp(−i x) (ap-
proximated by a 1999× 1999-matrix) perturbed with a random Gaussian matrix δR with h = 5 · 10−2 and
δ = exp(−1/h). The black box indicates the region where we count the number of eigenvalues to obtain
Figure 1.9. The right hand side is a magnification of the central part of the spectrum depicted on the left
hand side.

above, the black box indicates the region where we count the number of eigenvalues to obtain the
density of eigenvalues presented in Figure 1.9. This figure compares the experimental (given by
counting the number of eigenvalues in the black box restricted to Im z ≥ 0 and averaging over 400
realizations of random Gaussian matrices) and the theoretical (cf Theorem 1.2.12) density and in-
tegrated density of eigenvalues.

The Figures 1.6, 1.7, 1.8 and 1.9 confirm the theoretical result presented in Theorem 1.2.12
since the green lines, representing the plotted average density of eigenvalues given by Theorem
1.2.12, match perfectly the experimentally obtained density of eigenvalues. Furthermore, these
figures show the three zones described in Section 1.2.4 (see also Proposition 1.2.16):

The first zone, is in the middle of the spectrum (cf. Figures 1.6, 1.8) corresponding to the zone
where ‖(Ph − z)−1‖ À (

p
hδ)−1. There we see roughly an aequidistribution of points at distancep

h. The right hand side of Figures 1.7 and 1.9 shows that the number of eigenvalues in this zone
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1.3. TWO-POINT EIGENVALUE INTERACTION OF THE EIGENVALUES IN HAGER’S MODEL
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Figure 1.9: Experimental (each point represents the mean, over 1000 realizations, number of eigenvalues
in a small box) vs predicted eigenvalue density (i.e. the principal terms of the average eigenvalue density
given in Theorem 1.2.12) for h = 5 ·10−2 and δ= exp(−1/h).

is given by a Weyl law, as predicted by Proposition 1.2.16.

When comparing Figure 1.7 and 1.9 we can see clearly that the Weyl law breaks down earlier
when the coupling constant δ gets smaller. Indeed, when δ> 0 is exponentially small in h > 0, the
break down happens well in the interior of Σ, precisely as predicted by Proposition 1.2.16.

Another important property of this zone is that there is an increase in the density of the spec-
tral points as we approach the boundary ofΣ, see Figure 1.7. This is due to the fact that the density
given by the Weyl law becomes more and more singular as we approach ∂Σ (cf. Proposition 1.2.14).

We will find the second zone by moving closer to the “edge” of the spectrum, see Figure 1.6 and
1.8. It can be characterized as the zone where ‖(Ph − z)−1‖ ³ δ−1. Figures 1.7 and 1.9 show that
there is a strong accumulation of the spectrum close to the boundary of the pseudospectrum. Fur-
thermore, we see in the image on the right hand side of Figure 1.6 and of Figure 1.8 that the zone
of accumulation of eigenvalues is in a small tube around roughly a straight line. This is exactly as
predicted by Proposition 1.2.15 and Proposition 1.2.17. Finally, let us remark that when looking
at the Figures 1.6 and 1.8, we note that in this zone the average distance between eigenvalues is
much closer than in the first zone.

The third zone is between the spectral edge and the boundary of Σwhere we find no spectrum
at all. It can be characterized as the zone where ‖(Ph − z)−1‖¿ δ−1, a void region as described in
Proposition 1.2.16 (cf. Figures 1.7 and 1.9).

Let us stress again that as δ gets smaller the zone of accumulation moves further into the in-
terior of Σ, thus diminishing the zone determined by the Weyl law and increasing the zone void of
eigenvalues. This effect is most drastic in the case of δ being exponentially small in h, see Figure
1.9.

1.3 | Two-point eigenvalue interaction of the eigenvalues in Hager’s
model

To study the two-point eigenvalue interaction we are interested in the second moment of the point
processΞ, see Definition 1.2.10. We begin by recalling some facts about second moments of point
processes from [38, 11], using the example of Ξ. The second moment (with respect to the restric-
tion of the random variables introduced in Hypothesis 1.1.6) of Ξ is defined by the positive linear
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functional on C0(Ω2), T2, defined by

T2(ϕ) :=E
 ∑

z,w∈σ(Pδ
h )

ϕ(z, w)1B(0,R)

=
ˆ
C2
ϕ(z, w)dµ2(z, w)

for all ϕ ∈C0(Ω2). Here, we chooseΩb Σ̊ to be a subset of the interior of Σ:

Hypothesis 1.3.1. We assume that there exists a C > 1 such that

Ωb Σ̊ is open, convex, relatively compact and simply connected with dist(Ω,∂Σ) > 1

C
. (1.3.1)

Furthermore, we assume

Hypothesis 1.3.2. The coupling constant δ> 0 in (1.1.9) satisfies

δ := δ(h) :=
p

he−
ε0(h)

h (1.3.2)

with
(
κ− 1

2

)
h ln(h−1)+C h ≤ ε0(h) < minz∈ΩS(z)/C for some κ> 7/2 and C > 0 large and where the

last inequality is uniform in h > 0. Equivalently, δ satisfies the inequality

p
h exp

{
−minz∈ΩS(z)

C h

}
< δ¿ hκ.

Remark 1.3.3. We chose these hypotheses (cf. Hypothesis 1.3.1 and 1.3.2) because the aim of this
section is to treat the two-point eigenvalue interaction in the interior of the pseudospectrum. The
two-point interaction close to the pseudospectral boundary remains an interesting open problem.

Continuing, note that we have the splitting

T2(ϕ) =E
 ∑

z∈σ(Pδ
h )

ϕ(z, z)1B(0,R)

+E

 ∑
z,w∈σ(Pδ

h )
z 6=w

ϕ(z, w)1B(0,R)


=
ˆ
C2
ϕ(z, z)d µ̃2(z, z)+

ˆ
C2
ϕ(z, w)dν(z, w).

Both terms are positive linear functionals on C0(Ω2), and thus the above representation by the two
measures µ̃2 and ν is well-defined. The measure µ̃2 is supported on the diagonal D := {(z, z); z ∈Ω}
and is given by the push-forward ofµ1 under the diagonal map f :Ω→ D : x 7→ (x, x), i.e. µ̃2 = f∗µ1.

The second measure, ν, is called the two-point intensity measure of Ξ and it is supported on
Ω2\D . Their sum naturally yields µ2, i.e. µ2 = µ̃2 +ν. We see that µ2 is not absolutely continuous
with respect to the Lebesgue measure onC2. However, this may be the case for the measure ν.

To study the correlation of two points of the spectrum of Pδ
h , we are interested in the two-point

intensity measure ν, given by

E

 ∑
z,w∈σ(Pδ

h )
z 6=w

ϕ(z, w)1B(0,R)

=
ˆ
C2
ϕ(z, w)dν(z, w). (1.3.3)

In particular, we will give an h-asymptotic formula for its Lebesgue density valid at a distance
À h3/5 from the diagonal. ForΩ as in (1.3.1) and C2 > 0, we define the set

Dh(Ω,C2) := {(z, w) ∈Ω2; |z −w | ≤C2h3/5}. (1.3.4)

Before we state our main result of this section, recall from (1.2.14) that the direct image p∗(dξ∧d x)
of the symplectic volume form dξ∧d x on T ∗S1 is of the form

p∗(dξ∧d x) =σ(z)L(d z), (1.3.5)

where σ(z) is smooth.
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1.3. TWO-POINT EIGENVALUE INTERACTION OF THE EIGENVALUES IN HAGER’S MODEL

Theorem 1.3.4. Let Ωb Σ be as in (1.3.1). Let δ > 0 be as in Hypothesis 1.3.2 with κ > 51/10. Let
ν be the measure defined in (1.3.3) and let σ(z) be as in (1.3.5). Then, for |z −w | ≤ 1/C with C > 1
large enough, there exist smooth functions

• σh(z, w) =σ( z+w
2

)+O (h),

• K (z, w ;h) =σh(z, w) |z−w |2
4h (1+O (|z −w |+h∞)),

• Dδ(z, w ;h) = Λ(z,w)
(2πh)2(1−e−2K )

(
1+O

(
δh− 8

5

))
+O

(
e−

D
h2

)
, with

Λ(z, w ;h) =σh(z, z)σh(w, w)+σh(z, w)2(1+O (|z −w |))e−2K

+ σh(z, w)2(1+O (|z −w |))

eK sinh(K )

(
2K 2 coth(K )−4K

)
+O

(
h∞+δh− 31

10

)
and there exists a constant c > 0 such that for all ϕ ∈C ∞

0 (Ω2\Dh(Ω,c)) withˆ
C2
ϕ(z, w)dν(z, w) =

ˆ
C2
ϕ(z, w)Dδ(z, w ;h)L(d(z, w)).

Recall from Theorem 1.2.12 that the one-point density of eigenvalues inΩ, as in (1.3.1), is given
by

E[Ξ(ϕ)1B(0,R)] =
ˆ
ϕ(z)d(z;h)L(d z), ∀ϕ ∈C0(Ω),

where

d(z;h) = 1

2πh
σ(z)+O (1), (1.3.6)

where σ(z) is as in (1.3.5). In other words, we know from Theorem 1.2.12 that the average density
of eigenvalues inΩ is up to first order determined by symplectic volume form in phase space (we
recall that here we only treat the case ofΩ being in the interior of the pseudospectrum).

Theorem 1.3.4 agrees very well with this result as that the leading terms to the density Dδ(z, w ;h)
(cf. Theorem 1.3.4) are as well determined by symplectic volume form in phase space.

1.3.1 – Interaction

Using the formula obtained in Theorem 1.3.4, we will prove that two eigenvalues of Pδ
h exhibit the

following interaction:

Proposition 1.3.5. Under the hypothesis of Theorem 1.3.4, we have that

• for h
4
7 ¿|z −w |¿ h

1
2

Dδ(z, w ;h) = σ3
h(z, w)|z −w |2

(4πh)2

(
1+O

( |z −w |2
h

+δh− 8
10

))
;

• for |z −w |À (h lnh−1)
1
2

Dδ(z, w ;h) = σ(z)σ(w)+O (h)

(2hπ)2

(
1+O

(
δh− 8

5

))
.

Let us give some comments on this result: The fact that we cannot analyze the eigenvalue in-
teraction completely up to the diagonal is due to some technical difficulties. In the above propo-
sition, two eigenvalues of the perturbed operator Pδ

h show the following types of interaction:

Short range repulsion The two-point density decays quadratically in |z−w | if two eigenvalues are
too close, and we conjecture that this is the case for all z, w as above satisfying |z −w |¿ h

1
2 .

Long range decoupling If the distance between two eigenvalues is À (h lnh−1)
2
3 the two-point

density is given by the product of two one-point densities (cf. (1.3.6)). This means that at
this distance two eigenvalues are placed in average in an uncorrelated way.
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1.3.2 – Conditional density function
We can reformulate Proposition 1.3.5 in terms of the conditional density function: It follows from
(1.3.6), (1.2.14) that for h > 0 small enough d(z;h) > 0 for all z ∈ Ω as in (1.3.1). Hence, under
the assumptions of Theorem 1.3.4, the conditional average density of eigenvalues of Pδ

h given that

w0 ∈σ(Pδ
h ) is well defined and given by

Dδ
w0

(z;h) := Dδ(z, w0;h)

d(w0;h)
.

We have the following asymptotic behavior of conditional average density Dδ
w0

(z;h):

Proposition 1.3.6. Under the hypothesis of Theorem 1.3.4, we have that for w0 ∈Ω
• for h

4
7 ¿|z −w0|¿ h

1
2

Dδ
w0

(z;h) = σ2
h(z)|z −w0|2

8πh

(
1+O

( |z −w0|2
h

+δh− 8
5

))
¿ 1;

• for |z −w0|À (h lnh−1)
1
2

Dδ
w0

(z;h) = σ(z)+O (h)

2hπ

(
1+O

(
δh− 8

5

))
.

In the above proposition we see that, given an eigenvalue w0 ∈ σ(Pδ
h ), the density of finding

another eigenvalue in the vicinity of w0 shows the following behavior:

Short range repulsion The density Dδ
w0

(z;h) decays quadratically in σh(z)|z −w0| if the distance

between z and w0 is smaller than a term of order h
1
2 . Recall from Proposition 1.2.14 that

σ(z) grows towards the boundary of Σ, hence the short range repulsion is weaker forΩ close
to the boundary of Σ, as we expected from the numerical simulations, see Figure 1.6.

Long range decoupling If the distance between z and w0 is larger than a term of order (h lnh−1)
1
2 ,

the density Dδ
w0

(z;h) is given up to a small error by the 1-point density d(z;h) (see (1.3.6)).

Hence, we see that at these distances two eigenvalues of Pδ
h are up to a small error uncorre-

lated.
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Figure 1.10: Plot of the principal terms of conditional average density Dδ
w0

(z;h) for w0 = 0.

To illustrate Proposition 1.3.6, Figure 1.10 shows a plot of of the principal terms of the conditional
density Dδ

w0
as a function of |z|, for w0 = 0 and h = 0.01, assuming for simplicity that σ(z) = const.

On the left hand side of the graph we see the quadratic decay, whereas on the right hand side the
density is given by (2πh)−1σ(z).
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1.4. PERTURBATIONS OF LARGE JORDAN BLOCKS

1.4 | Perturbations of large Jordan blocks

We now turn away from the case of semiclassical differential operators and towards the case of
large Jordan matrices. We are interested in the spectrum of a random perturbation of the large
Jordan block A0 :

A0 =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . 0


:CN →CN . (1.4.1)

The spectrum of A0 is
σ(A0) = {0}.

As established in the introduction above, we have that the closed unit disc D(0,1) is a zone of spec-
tral instability and if Aδ = A0+δQ is a small random perturbation of A0 we expect the eigenvalues
to move inside a small neighborhood of D(0,1).

We are interested in the distribution of eigenvalues as the dimension of the matrix gets large,
i.e. the limit N → ∞. This situation is inherently different from the above case of semiclassical
differential operators since now we are considering here a problem with boundary.

We are interested in the small random perturbations of A0:

Hypothesis 1.4.1 (Random Perturbation of Jordan block). Let 0 < δ¿ 1 and consider the following
random perturbation of A0 as in (1.4.1):

Aδ = A0 +δQ, Q = (q j ,k (ω))1≤ j ,k≤N , (1.4.2)

where q j ,k (ω) are independent and identically distributed complex random variables, following
the complex Gaussian law NC(0,1).

E.B. Davies and M. Hager [16] studied random perturbations of A0. They showed that with
probability close to 1, most of the eigenvalues are close to a circle:

Theorem 1.4.2 (E.B. Davies-M. Hager [16]). Let Aδ be as in Hypothesis 1.4.1. If 0 < δ ≤ N−7, R =
δ1/N , σ> 0, then with probability ≥ 1−2N−2, we have σ(Aδ) ⊂ D(0,RN 3/N ) and

#(σ(Aδ)∩D(0,Re−σ)) ≤ 2

σ
+ 4

σ
ln N .

A recent result by A. Guionnet, P. Matched Wood and O. Zeitouni [30] implies that when δ is
bounded from above by N−κ−1/2 for some κ > 0 and from below by some negative power of N ,
then

1

N

∑
µ∈σ(Aδ)

δ(z −µ) → the uniform measure on S1,

weakly in probability.

�estion
Our main focus lies on obtaining, for a small coupling constant δ, more information about the
distribution of eigenvalues of Aδ in the interior of a disc, where the result of Davies and Hager
only yields a logarithmic upper bound on the number of eigenvalues (see Theorem 1.4.3 below).
In particular we are interested in a precise asymptotic formula (as N →∞) for the density of eigen-
values in this region.

In order to obtain more information in this region, we will study the expected eigenvalue den-
sity, adapting the approach of [83]. (For random polynomials and Gaussian analytic functions
such results are more classical, [40, 61, 38, 75, 62, 59].)
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1.4.1 – Main results on perturbed Jordan block matrices
According to Proposition 1.1.4 we have

P(‖Q‖2
HS ≥ x) ≤ exp

(
C0

2
N 2 − x

2

)
and hence if C1 > 0 is large enough,

‖Q‖2
HS ≤C 2

1 N 2, with probability ≥ 1−e−N 2
. (1.4.3)

In particular (1.4.3) holds for the ordinary operator norm of Q. We now state the principal result.

Theorem 1.4.3. Let Aδ be the N ×N -matrix in (1.4.2) and restrict the attention to the parameter
range e−N /O (1) ≤ δ¿ 1, N À 1. Let r0 belong to a parameter range,

1

O (1)
≤ r0 ≤ 1− 1

N
,

r N−1
0 N

δ
(1− r0)2 +δN 3 ¿ 1, (1.4.4)

so that δ¿ N−3. Then, for all ϕ ∈C0(D(0,r0 −1/N ))

E

[
1B

CN 2 (0,C1N )(Q)
∑

λ∈σ(Aδ)
ϕ(λ)

]
= 1

2π

ˆ
ϕ(z)Ξ(z)L(d z),

where

Ξ(z) = 4

(1−|z|2)2

(
1+O

( |z|N−1N

δ
(1−|z|)2 +δN 3

))
. (1.4.5)

is a continuous function independent of r0. C1 > 0 is the constant in (1.4.3).

Let us give some comments on this result: Theorem 1.4.3 states that the average density of
eigenvalues in the disk of radius r0−N−1 is given by (1.4.5). The result of E.B. Davies and M. Hager
[16] (cf. Theorem 1.4.2) only yields a logarithmic upper bound in this region. Conditions 1

O (1) ≤
r0 ≤ 1−N−1 and (1.4.4) are needed to restrict the support of the test function ϕ to the disk inside
the pseudospectrum where the average density of eigenvalues is determined by (1.4.5). Outside
this disk we obtain no information, however we refer the reader to [63] which treats this case and
obtains a probabilistic angular Weyl law in a small neighborhood of the unit circle assuming larger
perturbations.

Remark 1.4.4. However, we strongly believe that our methods can be extended to yield a complete
average density of eigenvalues in the disk of radius r0 satisfying 1

O (1) ≤ r0 ≤ 1−2/N , similar as in
the case of Hager’s model operator (cf. Section 1.2).

Condition (1.4.4) is equivalent to δN 3 ¿ 1 and

r N−1
0 (1− r0)2 ¿ δ

N
.

For this inequality to be satisfied, it is necessary that

r0 < 1−2(N +1)−1.

For such r0 the function [0,r0] 3 r 7→ r N−1(1− r )2 is increasing, and so inequality (1.4.4) is pre-
served if we replace r0 by |z| ≤ r0 and the remainder term in (1.4.5) is small.

The leading contribution to the density Ξ(z) is independent of N and is equal to the Lebesgue
density of the volume form induced by the Poincaré metric on the disc D(0,1). This yields a very
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small density of eigenvalues close to the center of the disc D(0,1) which is, however, growing to-
wards the boundary of D(0,1).

A similar result has been obtained by M. Sodin and B. Tsirelson in [76] for the distribution of
zeros of a certain class of random analytic functions with domain D(0,1) linking the fact that the
density is given by the volume form induced by the Poincaré metric on D(0,1) to its invariance
under the action of SL2(R).

1.4.2 – Numerical Simulations
To illustrate the result of Theorem 1.4.3, we present the following numerical calculations (Figure
1.11 and 1.12) for the eigenvalues of the N ×N -matrix in (1.4.2), where N = 500 and the coupling
constant δ varies from 10−5 to 10−2.
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Figure 1.11: On the left hand side δ= 10−5 and on the right hand side δ= 10−4.
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Figure 1.12: On the left hand side δ= 10−3 and on the right hand side δ= 10−2.

In Figure 1.11 and 1.12 we can see that most eigenvalues are in a close vicinity of the unit circle,
confirming the results obtained by E.B. Davies and M. Hager [16] (cf Theorem 1.4.2) as well as by
A. Guionnet, P. Matched Wood and O. Zeitouni.
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Figure 1.13: The left hand side shows the experimental density of eigenvalues (averaged over 500 realiza-
tions), as a function of the radius, of a 1001×1001-Jordan block matrix perturbed with a random complex
Gaussian matrix and with coupling δ= 2 ·10−10. The red line is the radial part of density of the hyperbolic
volume form on the unit disk. The right hand side presents a magnification of the left hand side, enlarging
the zone where the approximation with the hyperbolic volume fails.
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Figure 1.14: The left hand side shows the experimental integrated density of eigenvalues (averaged over
500 realizations), as a function of the radius, of a 1001×1001-Jordan block matrix perturbed with a random
complex Gaussian matrix and with coupling δ= 2 ·10−10. The red line is the hyperbolic volume on the unit
disk as a function of the radius. The right hand side presents a magnification of the left hand side, enlarging
the zone where the approximation with the hyperbolic volume fails.

Furthermore, we can see that the density of eigenvalues in the interior of the unit disc grows
towards the boundary of the disc, which is in agreement with the results obtained in Theorem
1.4.3 since the density Ξ (given in 1.4.5) grows towards the boundary.

Figures 1.13 compares the radial part of the density of the hyperbolic volume on the unit disk
with the radial experimental (averaged over 500 realizations of random complex Gaussian matri-
ces) density of eigenvalues of a 1001×1001-Jordan block matrix perturbed with a random complex
Gaussian matrix with coupling δ = 2 ·10−10. Figures 1.14 shows the same for the respective inte-
grated densities as functions of the radius. These Figures show that the average density and the
average integrated density of eigenvalues of (1.4.2) are determined by the hyperbolic volume on
the unit disk, as predicted by Theorem 1.4.3. Moreover, they show that here this approximation
starts to break down at a radius of r0 ≈ 0.977 which is where condition (1.4.4) starts to fail (for the
above values of N and δ).

Finally, let us remark that on the right hand side of Figure 1.12 we can see the onset of a differ-
ent phenomenon discussed in [63]: When the perturbation becomes too strong the spectral band
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will grow larger since the effects of the random Gaussian matrix will start to dominate over the
Jordan block (we refer also to the circular law for the average density of eigenvalues of random
complex Gaussian matrices, see for example [79]).

1.5 | Methods and ideas of the proofs

Chapters 2, 3 and 4 present the proofs of our main results and although they are self-contained we
will give a short overview over the general strategy of the proofs of our main results (cf Theorems
1.2.12, 1.3.4 and 1.4.3) as a rough road map through the “labyrinth” of estimates.

Let H denote a complex separable Hilbert space. We are interested in the spectrum of a ran-
dom perturbation of an operator P : D(P ) →H , of the form

Pδ,ω := P +δQω

where 0 < δ¿ 1 and Qω is a random operator of the form

Qω = ∑
j ,k≤N

α j ,k (ω)e∗k e j ,

where N is sufficiently large, e1,e2, . . . is an orthonormal bases of H and where e∗k e j u = (u|ek )e j ,
u ∈ H . Furthermore, α j ,k (ω) ∼ NC(0,1) are independent and identically distributed Gaussian
random variables with expectation 0 and variance 1. To obtain a compact perturbation we re-
strict the random variables to a large open ball, i.e. we assume that α ∈ B(0,C N ) ⊂CN 2

, for some
constant C > 1 large enough.

To obtain an effective description of the spectrum of Pδ,ω we will set up an auxiliary problem.

Grushin problem We give a short refresher on Grushin problems since they have become an
essential tool and they form a key method in the present work. As reviewed in [74], the central
idea is to set up an auxiliary problem of the form(

P − z R−
R+ 0

)
: H1 ⊕H− −→H2 ⊕H+,

where P−z is the operator of interest and R± are suitably chosen. We say that the Grushin problem
is well-posed if this matrix of operators is bijective. If dimH− = dimH+ <∞, one usually writes

(
P − z R−

R+ 0

)−1

=
(

E(z) E+(z)
E−(z) E−+(z)

)
.

The key observation, going back to the Shur complement formula or equivalently the Lyapunov-
Schmidt bifurcation method, is that the operator P (z) : H1 → H2 is invertible if and only if the
finite dimensional matrix E−+(z) is invertible and when E−+(z) is invertible, we have

P−1(z) = E(z)−E+(z)E−1
−+(z)E−(z).

E−+(z) is sometimes called effective Hamiltonian. In the case of the large Jordan block we may
take the vectors

e1 := (1,0, . . . ,0)t ∈CN , eN := (0, . . . ,0,1)t ∈CN ,

and set R+u = (u|e1) and R−u− = u−eN (cf Section 4.2 and [74]) to gain a well-posed Grushin
problem. In the case of Hager’s model operators will use quasimodes, see the paragraph entitled
“quasimodes” below.
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Grushin problem for the perturbed operator For δ> 0 small enough, we can use the same R± as
for the unperturbed operator P , to gain a well-posed Grushin problem for the perturbed operator(

Pδ,ω− z R−
R+ 0

)
: H1 ⊕H− −→H2 ⊕H+,

with (
Pδ,ω− z R−

R+ 0

)−1

=
(

Eδ,ω(z) Eδ,ω
+ (z)

Eδ,ω− (z) Eδ,ω
−+ (z)

)
.

Using Eδ,ω
−+ (z), we have an effective description of the spectrum of Pδ,ω. In our case dimH± = 1 (cf

Section 2.2 and 4.2), wherefore
σ(Pδ,ω) = (Eδ,ω

−+ )−1(0).

Quasimodes For Hager’s operator P (cf Section 1.1.1), we will use quasimodes e± for the unper-
turbed operator P and its adjoint P∗ to construct the auxiliary operators R± by setting R+u = (u|e+)
and R−u− = u−e− (details will be given in Section 2.1 and 2.2). For e±, we will use two kinds of
quasimodes:

• The eigenfunctions e0 and f0 of the self-adjoint auxiliary operators Q(z) and Q̃(z) (cf Section
1.2.2), which have the advantage of being valid in all of Σ, see (1.1.13), however, at the price
of being less explicit.

• Local WKB approximate solutions ewkb and fwkb of the form

ewkb(x, z;h) = a(z;h)χe (x, z,h)e
i
hφ+(x,z), fwkb(x, z;h) = b(z;h)χ f (x, z,h)e

i
hφ−(x,z),

where φ±(x, z) are phases satisfying the eikonal equations

p(x,∂xφ+) = z, and p(x,∂xφ−) = z,

where p is the semiclassical principal symbol of P and p the one of P∗. Furthermore,
χe, f (x, z,h) are smooth compactly supported cut-off functions and a(z;h) ∼ h−1/4(a0(z)+
ha1(z)+ . . . ) and b(z;h) ∼ h−1/4(b0(z)+hb1(z)+ . . . ) are normalization factors.

These quasimodes are more explicit than e0 and f0, they are, however, only valid in certain
subsets of Σ.

Moments of linear statistics Using the effective Hamiltonian Eδ,ω
−+ (z) of the perturbed operator,

we will study the first two moments of linear statistics of the random point process

Ξ := ∑
z∈σ(Pδ,ω)

δz =
∑

z∈(Eδ,ω
−+ )−1(0)

δz .

More precisely, we will study µ1 the one-point intensity measure of Ξ, given by

E

 ∑
z∈(Eδ,ω

−+ )−1(0)

ϕ(z) 1B(0,C N )(α)

=
ˆ
C

ϕ(z)dµ1(z)

where ϕ is a continuous compactly supported function. Moreover, we will study ν, the two-point
intensity measure of Ξ, given by

E

 ∑
z,w∈(Eδ,ω

−+ )−1(0)
z 6=w

ϕ(z, w) 1B(0,C N )(α)

=
ˆ
C2
ϕ(z, w)dν(z, w).

In particular, we will examine their Lebesgue densities and use these to obtain Theorems 1.2.12,
1.3.4 and 1.4.3 and their consequences.

There are two essential steps involved in obtaining these densities:
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1. We obtain a formula to describe these densities.

(a) In the case of the Jordan block, Eδ,ω
−+ depends holomorphically on z and on the random

variables α which is very useful. We will see that

T :=
{

(z,α) ∈Ω×B(0,C N ); Eδ,ω
−+ (z,α) = 0

}
is a a smooth complex hypersurface in Ω×B(0,C N ) ⊂C×CN 2

, where Ω ⊂C is open,
bounded and connected. Exploiting this, we will show that

E

 ∑
z∈(Eδ−+)−1(0)

ϕ(z) 1B(0,C N )(α)

=
ˆ

T
ϕ(z)e−α

∗α(2i )−N 2
dα∧dα, (1.5.1)

where we view (2i )−N 2
dα∧dα as a complex (N 2, N 2)-form onΩ×B(0,C N ), restricted

to T , which yields a non-negative differential form of maximal degree on T .

(b) In the case of Hager’s model operator, Eδ,ω
−+ depends only smoothly on z but it satisfies

additionally a ∂-equation, i.e. there exists a smooth function f δ such that

∂z Eδ
−+(z)+ f δ(z)Eδ

−+(z) = 0.

Using this, together with approximations of the delta function, we obtain an explicit
formula for the one-point density:

E

 ∑
z∈(Eδ−+)−1(0)

ϕ(z) 1B(0,C N )(α)

= lim
ε→0

ˆ
ϕ(z)Dε(z;h,δ)L(d z),

where Dε(z;h,δ) :=π−N
ˆ

B(0,C N )
χ

(
Eδ−+(z,α)

ε

)
1

ε2

∣∣∣∂z Eδ
−+(z,α)

∣∣∣2
e−ααL(dα). (1.5.2)

Here, χ ∈C ∞
0 (C) such that χ≥ 0 and

´
χ(w)L(d w) = 1. The formula for the two-point

density is similar.

2. The second step to analyze these densities will be to choose appropriate coordinates in the
space of random variables: In the case of the one-point densities, we will find a vector X (z) ∈
CN 2

such that ‖X (z)‖ 6= 0 and

Eδ,ω
−+ (z,α) = 0 ⇒

(
X (z) ·∂α

)
Eδ,ω
−+ (z,α) 6= 0.

Using this vector we have the following corresponding orthogonal decomposition

α=β1X (z)+β′, β′ ∈ X (z)⊥, β1 ∈C.

Here, X (z)⊥ is identified withCN 2−1 via an orthonormal basis. Performing a change of vari-
ables corresponding to this choice of basis in the integrals (1.5.1) and (1.5.2), we will obtain
(after a lengthy calculation) the desired asymptotic formulas describing the densities.

The case of the two-point density is similar.

1.6 | Some open problems

We end the introduction by discussing some interesting open problems on which we are currently
working.
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1.6.1 – Random perturbations of non-self-adjoint semiclassical pseudo-di-
�erential operators

We have seen above some consequences of random perturbations on the spectra of non-self-
adjoint operators. However, there are many more compelling open questions.

Generalizations of the results The methods used to prove the result on Hager’s model can be ex-
tended to a much broader class of one-dimensional semiclassical pseudo-differential oper-
ators. It would also be very interesting to consider the case of small multiplicative random
perturbations of differential operators since these allow us to remain in the class of differ-
ential operators.

Furthermore, to obtain similar results on the average density in all of the pseudo-spectrum
would be very interesting in the case of multi-dimensional semiclassical pseudo-differential
operators.

The Jordan block matrix can be see as a model for a differential operator with boundary
conditions. We have seen that in this case eigenvalues are produced through small random
perturbations even outside the image of the principal symbol. Further investigating this
phenomenon seems very promising.

Interaction close to the pseudospectral boundary In the above we have only given a description
of the interaction of two eigenvalues in the interior of the pseudospectrum. However, we still
miss a description of the interaction of two eigenvalues close to the pseudospectral bound-
ary. In view of the numerical simulations presented in Figure 1.1 and of Theorem 1.2.12
it is clear that the behavior of the eigenvalues changes completely when approaching the
pseudospectral boundary.

Weaker non-self-adjointness The class of semiclassical differential operators that we considered
in this thesis (cf Section 1.1.1) has the property that the semiclassical principal symbol p (cf
(1.1.7)) is complex valued. However, in the case of the damped wave equation (cf [64]) the
principal symbol is real-valued and the non-self-adjointness comes from the subprincipal
symbol. The effects of random perturbations in this case are as of yet unknown.

1.6.2 – Resonances of random Schrödinger operators

Following the discussion on resonances of Schrödinger operators at the beginning of this chapter,
we turn now to the particular case of discrete random Schrödinger operators. Here, the particle
is restricted to move on the lattice Zd instead of the space Rd . More precisely, we consider the
random discrete Anderson model, introduced by P.W. Anderson [3], that is, on `2(Zd ),

Hω =−∆+λVω,

where −∆ is the free discrete centered Laplace operator given by

(−∆u)(n) = ∑
|m−n|=1

u(m), for u ∈ `2(Zd ),

and Vω is a random potential

(Vωu)(n) =Vω(n)u(n), for u ∈ `2(Zd ),

and λ > 0 the coupling constant. We assume that the random variables (Vω)n∈Zd are indepen-
dent identically distributed and that their common law admits a bounded compactly supported
continuous density g .

29



1.6. SOME OPEN PROBLEMS

Properties of the Anderson model The spectral theory of the Anderson model (and many other
types of random Schrödinger operators) has been study extensively, see for example [22, 81, 35,
10, 28, 49, 26, 46, 57] and the references in [42].

Let σ(Hω) be the spectrum of Hω. It is known (see e.g. [22]) that, ω-almost surely,

σ(Hω) =Σ := [−2d ,2d ]+ supp g . (1.6.1)

The Anderson model satisfies the following important hypotheses:

Wegner estimate (W) Let I b Σ be a relatively compact open subset of the almost sure spectrum
Σ. We say that a Wegner estimate hold in I , if there exists a C > 0 such that, for J ⊂ I , and a
cubeΛ⊂Zd , one has

E
[
tr(1J (Hω(Λ))

]≤C |J | |Λ|. (1.6.2)

Here, E[·] denotes the expectation with respect to the random variables and Hω(Λ) denotes the
operator Hω restricted to the cube Λ ⊂ Zd with Dirichlet boundary conditions (other boundary
conditions work as well, e.g. periodic boundary conditions). More precisely, for L ≥ 1, ΛL = Λ
denotes the cube �−L,L�d := [−L,L]d ∩Zd ⊂Zd . In the sequel we will write |Λ|→∞, meaning that
L →∞.

A Wegner estimate has been proven for many different random Schrödinger operators, such as
the Anderson model, both in the discrete and the continuous case under quite general conditions
on potentials and randomness, see for example [81, 35, 10, 28]. The left hand side of (1.6.2) yields
an upper bound on the probability to have at least one eigenvalue of the operator Hω(Λ) in J .

By (W), we have that the integrated density of states, defined by

N (E) := lim
|Λ|→∞

#{λ ∈σ(Hω(Λ)); λ≤ E }

|Λ| ,

is the distribution function of a measure that is absolutely continuous with respect to the Lebesgue
measure on R. We denote by R 3 E 7→ n(E), defined E-almost everywhere, the density of states
which is the Lebesgue density of the above measure. Furthermore, for any continuous function
ϕ :R→R, we have that ˆ

R

ϕ(E)n(E)dE =E[〈δ0,ϕ(Hω)δ0〉].

Here, δi ∈ `2(Zd ) is defined by δi ( j ) = 0 for i 6= j and δi ( j ) = 1 for i = j . In fact the collection
{δi }i∈Zd is an orthonormal basis of `2(Zd ).

Another important consequence of (W) is that any given E ∈ J is not an eigenvalues ofσ(Hω(Λ))
for almost all ω.

Minami estimate (M) Let I b Σ be a relatively compact open subset of the almost sure spectrum
Σ. We say that a Minami estimate hold in I , if there exists a C > 0 such that, for J ⊂ I , and a
cubeΛ⊂Zd , one has

E
[
tr(1J (Hω(Λ))

[
tr(1J (Hω(Λ))−1

]]≤C (|J | |Λ|)2. (1.6.3)

The Minami estimate is proven for much less models than the Wegner estimate. However, in the
case of the discrete Anderson model it has been proven to hold for I = Σ, see [49]. The right hand
side can be lower bound by the probability to find at least two eigenvalues in J . The Minami
estimate tells us that the eigenvalues of Hω(Λ) are ω-almost surely simple.

Localization (Loc) Let I ⊂ Σ be a compact interval. We say that I lies in the region of complete
localization if for all ξ ∈]0,1[, we have

sup
L>0

sup
supp f ⊂I
| f |≤1

E

( ∑
γ∈Zd

e|γ|
ξ ∥∥1{0} f (Hω(Λ))1{γ}

∥∥
2

)
<∞. (1.6.4)

Here, f is a Borel function onR.
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We note that (Loc) implies that the spectrum of Hω is pure point in I (cf [42, 27]) with associated
sub-exponentially decaying eigenfunctions. It is known that there exists a λ0 such that for all
λ≥λ0 we have that (Loc) holds for all I ⊂Σ (cf [1]).

In case of the discrete Anderson model we have the finite volume fractional moment method
available. For I satisfying the finite volume fractional moment criteria (cf [2]) for large enough
cubes Λ, we may replace e|γ|

ξ

in (1.6.4) by eη|γ| with η> 0. In particular for large enough coupling
λ we have this for I = Σ, for large enough cubes Λ, with associated exponentially decaying eigen-
functions (cf [44, 1]):

There exists ν(λ) > 0 such that, for any p > 0, there exists q > 0 and L0 > 0 such that, for L ≥ L0,
with probability ≥ 1−L−p , if

(1) ϕn,ω is a normalized eigenvector of Hω(Λ) associated to an eigenvalue En,ω(Λ) ∈Σ,

(2) xn,ω ∈Λ is a maximum of x →|ϕn,ω(x)| inΛ,

then, for x ∈Λ, one has
|ϕn,ω(x)| ≤ Lq e−ν(λ)|x−xn,ω|. (1.6.5)

Here, the point xn,ω is called a localization center for ϕn,ω.

Resonances for a random potential restricted to a large box The main object of interest is the
self-adjoint operator

Hω,Λ :=−∆+λVωχΛ (1.6.6)

as |Λ|→∞. Here, χΛ(n) = 1 if n ∈Λ and 0 if not.
Since VωχΛ is compact and self-adjoint, it follows from Weyl’s essential spectrum theorem (cf

for example [55]) that the essential spectrum of Hω,Λ is that of −∆, that is [−2d ,2d ]. The operator
Hω,Λ has therefore only discrete spectrum inR\[−2d ,2d ].

We are interested in giving a description of the resonances of the operator close to the real
axis. These can be defined as the poles of the meromorphic continuation of the resolvent of Hω,Λ

through ]−2d ,2d [.

Meromorphic continuation of the resolvent By the discrete Fourier transformation F : `2(Zd ) →
L2(Rd /(2πZd )), we see that H0 is a Fourier multiplier with symbol

p(θ) := 2
d∑

k=1
cosθk ∈ [−2d ,2d ] =:Td . (1.6.7)

p is a Morse function with critical values given by

Λ0 := {−2d +4k; 0 ≤ k ≤ d}. (1.6.8)

Using (1.6.7), one has, for H0 := −∆, for Im z > 0 and for n,m ∈ Zd , that the kernel of R0(z), the
resolvent of H0, is given by

R0(z;n,m) := 〈(H0 − z)−1δm |δn〉 = 1

(2π)d

ˆ
Td

ei (n−m)θ

p(θ)− z
dθ. (1.6.9)

We are interested in the analytical continuation of (1.6.9) from C+ when z crosses through ]−
2d ,2d [. Analogous integrals have already been studied extensively, see e.g. [50, 23, 43, 45], and
one can prove the following result.

Theorem 1.6.1. The operator valued functionC+ 3 z 7→ (H0−z)−1 admits an analytic continuation
formC+ to

C\

(
]−∞,−2d ]∪ ⋃

1≤k≤d−1
(−2d +4k − iR+)∪ [2d ,∞[

)
with values in the operators from `2

comp (Zd ) to `2
loc (Zd ).
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Using analytic Fredholm theory, one deduces from Theorem 1.6.1 the following result.

Theorem 1.6.2. The operator valued functionC+ 3 z 7→ Rω,Λ(z) := (Hω,Λ−z)−1 admits a meromor-
phic continuation formC+ to

C\

(
]−∞,−2d ]∪ ⋃

1≤k≤d−1
(−2d +4k − iR+)∪ [2d ,∞[

)

with values in the operators from `2
comp (Zd ) to `2

l oc (Zd ).

The resonances are defined as the poles of this meromorphic continuation, see Figure 1.15.
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Figure 1.15: Resonances as poles of the meromorphic continuation of the resolvent (Hω,Λ− z)−1.

The case of d = 1 has been studied extensively by F. Klopp, see [45]. Therein, Klopp gives a
detailed description of the resonances of Hω,Λ and compares them to the case of resonances of
periodic Schrödinger operators (i.e. the potential V is periodic and not random). He proves that
in both cases there is a gap between the real axis and the resonances. However, remarkably, in the
random case the width of this gap is exponentially small in L, whereas in the periodic case it is
only polynomially small in L.

Theorem 1.6.3 (F. Klopp [45]). Let d = 1 and let I be a compact interval in ]−2,2[∩Σ̊ (cf (1.6.1)).
Then, ω-almost surely, one has that for ε ∈]0,1[, there exists L0 > 0 such that, for L ≥ L0, there are no
resonances of Hω,Λ in the rectangle{

z ∈C; Re z ∈ I , Im z ≥−e−ρL(1+ε)}
where ρ is the maximum of the Lyapunov exponent ρ(E) on I .

We recall that the Lyapunov exponent ρ(E) is defined as follows.

ρ(E) := lim
L→∞

ln‖TL(E ,ω)‖
L+1

,

where TL(E ,ω) is the L-step transfermatrix, i.e.

TL(E ,ω) :=
(
E −Vω(L) −1

1 0

)
· · ·

(
E −Vω(0) −1

1 0

)
.

The number resonances of Hω,Λ closest to the real axis is given asymptotically by the integrated
density of states. Indeed, F. Klopp proves in [45] the following result.

Theorem 1.6.4 (F. Klopp [45]). Let d = 1 and let I be a compact interval in ]−2,2[∩Σ̊. Then, for any
κ ∈]0,1[, ω-almost surely, one has

#
{

z resonance of Hω,Λ s.t Re z ∈ I , Im z ≤−e−Lκ
}

L
−→
ˆ

I
n(E)dE , L →∞.
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To prove this result Klopp uses the eigenvectorsϕn,ω associated to the energies En,ω (cf (1.6.5))
as quasimodes for the operator Hω,Λ to construct resonances (we refer also to the similar works
[78, 77]).

Using (M) and (Loc), for a large enough coupling constant λ, we have exponentially decaying
eigenvectors ϕn,ω associated to almost surely simple energies En,ω. This should allow us to follow
a strategy similar to Klopp’s to prove the extension of Theorem 1.6.4 to d-dimensions. Due to some
preliminary results we strongly believe that Theorem 1.6.4 holds true in the d-dimensional case.

Conjecture 1.6.5. Let I ⊂]−2d ,2d [∩Σ̊ be a compact interval. Then, for some constant C À 1, ω-
almost surely, one has

#
{

z resonance of Hω,Λ s.t Re z ∈ I , Im z ≤−e−C L
}

L
−→
ˆ

I
n(E)dE , L →∞.
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CHAPTER 2

AVERAGE DENSITY OF EIGENVALUES
FOR A CLASS OF NON-SELF-ADJOINT

OPERATORS UNDER RANDOM
PERTURBATIONS

The intention of this chapter is to prove the results discussed in Section 1.2. We consider Hager’s
model operator (cf (1.1.9)), a non-self-adjoint h-differential model operator Ph in the semiclassical
limit (h → 0), subject to small random perturbations.

We study the intensity measure of the random point process of eigenvalues and prove an h-
asymptotic formula for the average density of eigenvalues. With this we show that there are three
distinct regions of different spectral behavior in Σ: The interior of the pseudospectrum is solely
governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a
tunneling effect followed by a region where the density decays rapidly. The material presented in
this chapter can be found in [83].

2.1 | �asimodes

The purpose of this section is to construct quasimodes for the operator

Ph − z

for z ∈ΩbΣwith

ΩbΣ is open, relatively compact with dist(Ω,∂Σ) >C h2/3 for some constant C > 0. (2.1.1)

We will in particular always assume that this assumption on Ωb Σ is satisfied, if nothing else is
specified.

We make the distinction between the following two cases:

Quasimodes in the interior of Σ We consider z being in the interior of Σ, i.e. z ∈Ωi b Σ̊ such that
there exists a constant CΩi > 0 such that

dist(Ωi ,∂Σ) > 1

CΩi

.

In this case, following the approach of Hager [32], we can find quasimodes by a WKB con-
struction for the operator (Ph − z);
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Quasimodes close to the boundary Σ We consider z being close to the boundary of Σ, i.e. z ∈
Ω∩ (Ωa

η ∪Ωb
η) where, following the notation used in [4], we define for some constant C > 0

Ωa
η :=

{
z ∈C :

η

C
≤ Im z ≤Cη

}
,

Ωb
η :=

{
z ∈C :

η

C
≤ (Im g (b)− Im z) ≤Cη

}
, (2.1.2)

with h2/3 ¿ η ≤ const. (recall from Hypothesis 1.1.2 that Im g (a) = 0). The precise value
of the above constant C > 0 is not important for the obtained asymptotic results. We will
only consider the case z ∈Ωa

η since z ∈Ωb
η can be treated the same way. We may follow the

approach of Bordeaux-Montrieux [4] and find quasimodes by a WKB construction for the
rescaled operator

P̃h̃ − z̃ := h

η3/2
D x̃ +

g (
p
ηx̃)

η
− z

η
:= h̃D x̃ + g̃ (x̃)− z̃, (2.1.3)

with the rescaling

S1 3 x =p
ηx̃ and h̃ := h

η3/2
.

Note that in this case demanding h̃ ¿ 1 implies the condition h2/3 ¿ η. The rescaling is
motivated by analyzing the Taylor expansion of Im g (x) around the critical point a yielding
that for Im z → 0

|x±(z)−a| ³p
η, (2.1.4)

where x±(z) are as (1.1.14). This shows that the rescaling shifts the problem of constructing
quasimodes for z close to the boundary of Σ to constructing quasimodes for z well in the
interior of the range of the semiclassical principal symbol of the new operator P̃h̃ .

Remark 2.1.1. Throughout this text we shall work with the convention that when writing an
estimate, e.g. O

(
δqηr hs

)
or A ³ ηr hs , we implicitly set η= 1 when dist(z,∂Σ) > 1/C but keep

η when z ∈Ωa
η .

Let us note, that by Taylor expansion we may deduce that S = S(z), as defined in Definition
1.2.2, satisfies

S(z) ³ η3/2 (2.1.5)

2.1.1 – �asimodes for the interior of Σ

Definition 2.1.2. Let z ∈ Ωi b Σ̊ and let x−, x+ be as in the introduction. Let ψ ∈ C ∞
0 (R) with

suppψ⊂]0,1[ and
´
ψ(x)d x = 1. Define χe ∈C ∞

0 (]x−−2π, x−[) and χ f ∈C ∞
0 (]x+, x++2π[) by

χe (x, z;h) :=
ˆ x

−∞
h− 1

2

{
ψ

(
y −x−+2πp

h

)
−ψ

(
x−− yp

h

)}
d y,

χ f (x, z;h) :=
ˆ x

−∞
h− 1

2

{
ψ

(
y −x+p

h

)
−ψ

(
x++2π− yp

h

)}
d y. (2.1.6)

Furthermore, define for x ∈]x−−2π, x−[

φ+(x, z) :=
ˆ x

x+

(
z − g (y)

)
d y,

and for x ∈]x+, x++2π[

φ−(x, z) :=
ˆ x

x−

(
z − g (y)

)
d y.

36



CHAPTER 2. AVERAGE DENSITY OF EIGENVALUES FOR A CLASS OF NON-SELF-ADJOINT
OPERATORS UNDER RANDOM PERTURBATIONS

Consider the L2(S1)-normalized quasimodes

ewkb(x, z;h) := h− 1
4 a(z;h)χe (x, z;h)e

i
hφ+(x,z) ∈C ∞

0 (]x−−2π, x−[) (2.1.7)

and
fwkb(x, z;h) := h− 1

4 b(z;h)χ f (x, z;h)e
i
hφ−(x,z) ∈C ∞

0 (]x+, x++2π[) (2.1.8)

where a(z;h) and b(z;h) are normalization factors obtained by the stationary phase method. Thus,
a(z;h) ∼ a0(z)+ha1(z)+ ·· · 6= 0 and b(z;h) ∼ b0(z)+hb1(z)+ ·· · 6= 0 depend smoothly on z such
that all derivatives with respect to z and z are bounded when h → 0.

The quasimodes ewkb and fwkb are WKB approximate null solutions to (Ph − z) and (Ph − z)∗

since locally

(Ph − z)e
i
hφ+(x,z) = 0, and (Ph − z)∗e

i
hφ−(x,z) = 0.

This follows from the fact that φ±(x, z) satisfy the eikonal equations

p(x,∂xφ+(x, z)) = z, and p(x,∂xφ−(x, z)) = z,

where p is as in (1.1.7). Furthermore, ewkb and fwkb are exponentially precise quasimodes since
we have that

‖(Ph − z)ewkb‖2 =O
(p

he−
S
h

)
, and

∥∥(Ph − z)∗ fwkb
∥∥

2 =O
(p

he−
S
h

)
,

where S = S(z) is as in Definition 1.2.2. These estimates can be obtained similar to the proof of
Proposition 2.1.7.

The factors a(z;h) and b(z;h) are the asymptotic expansions of the normalization coefficients
and it is easy to see that for all β ∈N2

∂
β

zz
a(z;h),∂β

zz
b(z;h) =O (h−|β|). (2.1.9)

We have the following explicit expressions for the leading terms of a(z;h) and b(z;h).

Lemma 2.1.3.

a0 =
(−Im g ′(x+)

π

) 1
4

, and b0 =
(

Im g ′(x−)

π

) 1
4

. (2.1.10)

Proof. We will show the proof only for ai
0 since the statement for bi

0 can be achieved by analogous
steps. To gain the asymptotic expansion of the normalization coefficient use the stationary phase
method to calculate

Ih := h− 1
2

ˆ
χe (x, z;h)2e

−Φ(x,z)
h d x,

where

−Φ(x, z) := iφ+(x, z)− iφ+(x, z) =−2Im

ˆ x

x+(z)
(z − g (y))d y.

On the support of χe the phase Φ(x, z) has the unique critical point x = x+(z) and it is non-
degenerate since ∂2

xxΦ(x+(z), z) =−2Im g ′(x+(z)) > 0. Thus the Morse Lemma (see e.g.: [29]) guar-
antees the existence of a local C ∞ diffeomorphism κ : V →U , where V ⊂R is a neighborhood of
x+(z) and U ⊂R is a neighborhood of 0, such that

Φ(κ−1(x), z) =Φ(x+(z), z)+ x2

2
,

κ−1(0) = x+(z) and

dκ

d x
(x+(z)) = |∂2

xxΦ(x+(z), z)| 1
2 =

√
−2Im g ′(x+(z)) 6= 0. (2.1.11)
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Let χ ∈C ∞
0 (R) be supported in a small enough neighborhood of x+(z), assume that 1 ≥ χ≥ 0 and

suppose that χ≡ 1 near x+(z). One then gets that

Ih =p
2π

N∑
n=0

1

n!

(
h

2

)n

(∆nu)(0)+O (hN+1)

with u(y) =χe (κ−1(y), z)2χ(κ−1(y))|κ′(κ−1(y))|−1. Since u(0) = (−2Im g ′(x+(z)))−1/2,

Ih =
(

π

−Im g ′(x+(z))

) 1
2 +O (h).

By the natural projectionΠ :R→ S1 as in Section 1.1.1 we can identify

C ∞
0 (]x+, x++2π[) = {u ∈C ∞(S1) : x+ ∉ suppu}

and
C ∞

0 (]x−−2π, x−[) = {u ∈C ∞(S1) : x− ∉ suppu},

with the slight abuse of notation that on the left hand side x± ∈ R and on the right hand side
x± ∈ S1. This identification permits us to define ewkb(x, z;h), fwkb(x, z;h) on C ∞(S1).

2.1.2 – �asimodes close to the boundary of Σ
Now let z ∈Ωa

η . Following [4], we will construct quasimodes for the operator Ph − z, for z close to

the boundary of Σ, by looking at the rescaled operator P̃h̃ − z̃ as defined in (2.1.3).
Let us first note that i

hφ+(x, z) and i
hφ−(x, z) have the following behavior under the rescaling

described at the beginning of this section:

i

h
φ+(x, z) = i

h

ˆ x

x+

(
z − g (y)

)
d y = i

h̃

ˆ x̃

x̃+

(
z̃ − g̃ (ỹ)

)
d ỹ =:

i

h̃
φ̃+(x̃, z̃) (2.1.12)

and analogously for i
hφ−(x, z). Taylor expansion shows us that the rescaled phases φ̃±(x̃, z̃) have

for z ∈Ωa
η a non-degenerate critical point x̃±(z̃) and they satisfy the relation

x±(z) =p
ηx̃±(z̃). (2.1.13)

It is easy to see that locally

(P̃h̃ − z̃)e
i
h̃
φ̃+(x̃,z) = 0,

Thus, the natural choice of quasimodes for z ∈Ω∩Ωa
η in the rescaled variables is as follows.

Proposition 2.1.4. LetΩbΣ, z ∈Ω∩Ωa
η and set h̃ := h

η3/2 . Then there exist functions

aη(z̃; h̃) ∼ aη0 (z̃)+ h̃aη1 (z̃)+·· · 6= 0, bη(z̃; h̃) ∼ bη0 (z̃)+ h̃bη1 (z̃)+·· · 6= 0,

depending smoothly on z̃ such that all z̃- and z̃-derivatives remain bounded as h → 0 and h
2
3 < η→

0, such that

eηwkb(x̃, z̃; h̃) := (
h̃η

)− 1
4 aη(z̃; h̃)χe (x̃, z̃; h̃)e

i
h̃
φ̃+(x̃,z̃) and

f ηwkb(x̃, z̃; h̃) := (
h̃η

)− 1
4 bη(z̃; h̃)χ f (x̃, z̃; h̃)e

i
h̃
φ̃−(x̃,z̃),

are L2(S1/
p
η,
p
ηd x̃)-normalized. Here, χe, f are as in Definition 2.1.2. Furthermore,

aη0 (z̃) =
( |Im g ′′(a)(x̃+(z̃)−a/

p
η)(1+o(1))|

π

) 1
4

, z ∈Ωa
η ,

bη0 (z̃) =
( |Im g ′′(a)(x̃−(z̃)−a/

p
η)(1+o(1))|

π

) 1
4

, z ∈Ωa
η .
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Remark 2.1.5. In Proposition 2.1.4, we stated the Taylor expansion of the first order terms of
aη(z;h) and bη(z;h). However, note that we have

a0(z) =
(−Im g ′(x+(z))

π

) 1
4

= η 1
8 aη0 (z̃),

where a0 is the first order term of the normalization coefficient a of the quasimode ewkb ; see
Lemma 2.1.3. Similar for bη0 .

Proof. We will consider the proof only for the case of eηwkb since the case of f ηwkb is the same.
By (2.1.13), (2.1.6) one computes that

χe (
p
ηx̃, z;h/η1/2) =χe (x̃, z̃; h̃)

Consider ‖χe (·, z;h/η1/2)e
i
hφ+(·,z)‖2

L2(S1)
and perform the change of variables x =p

ηx̃. Hence,
ˆ
χe (x, z;h/η1/2)2e−

2
h Imφ+(x,z)d x =p

η

ˆ
χe

(
x̃, z̃; h̃

)2
e−

2
h̃

Im
´ x̃

x̃+ (z̃−g̃ (ỹ))d ỹ d x̃. (2.1.14)

The stationary phase method yields that (2.1.14)∼p
ηh̃

1
2 (c̃0(z̃)+ h̃c̃1(z̃)+ . . . ), where the c̃ j (z̃) de-

pend smoothly on z̃ such that all z̃- and z̃-derivatives remain bounded as h → 0 and h
2
3 < η→ 0.

On the other hand, the stationary phase method applied to ‖χe e
i
hφ+‖2 (compare with Section

2.1.1) yields that

‖χe (·, z;h)e
i
hφ+(·,z)‖2

L2(S1) ∼ h
1
2 (c0(z)+hc1(z)+ . . . )

with

c0(z) =
(

π

−Im g ′(x+(z))

) 1
2

.

Since χe (x, z;h) ≡χe (x, z;h/η1/2) locally around x+(z), we may conclude that for all k ∈N0

c̃k (z̃) = η 3k
2 + 1

4 c j (z).

In particular, the Taylor expansion around the critical point a yields that

c̃0(z̃) =
(

π

|Im g ′′(a)(x̃+(z̃)−a/
p
η)(1+o(1))|

) 1
2

, z ∈Ωa
η .

Thus, we conclude the statement of the proposition.

Considering the above describe quasimodes in the original variable x ∈ S1 leads to the follow-
ing

Definition 2.1.6. LetΩbΣ, z ∈Ω∩Ωa
η and set h̃ := h

η3/2 . Then define

eηwkb(x, z;h) :=
(

h

η1/2

)− 1
4

aη(z̃; h̃)χηe (x, z;h/η1/2)e
i
hφ+(x,z) and

f ηwkb(x, z;h) :=
(

h

η1/2

)− 1
4

bη(z̃; h̃)χηf (x, z;h/η1/2)e
i
hφ−(x,z),

where χηe, f (x, z;h/η1/2) = χe, f (x, z;h/η1/2). We choose this notation to make the distinctions be-

tween the two cases z ∈Ωi and z ∈Ωa
η more apparent.

Furthermore, we have the following estimates for the precision of the quasimodes eηwkb and

f ηwkb : ∥∥(Ph − z)eηwkb

∥∥
2
=O

(
h1/2η1/4e−

S
h

)
, and

∥∥(Ph − z)∗ f ηwkb

∥∥
2
=O

(
h1/2η1/4e−

S
h

)
,

where S = S(z) is as in Definition 1.2.2 (recall as well that S ³ η3/2, cf. (2.1.5)). These estimates can
be obtained similar to the proof of Proposition 2.1.7.
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2.1.3 – Approximation of the eigenfunctions of Q(z) and Q̃(z)

Recall Q and Q̃ given in Section 1.2.2. We will use the above defined quasimodes to prove estimates
on the lowest eigenvalue of Q, t 2

0 . Furthermore, we will give estimates on the approximation of the
eigenfunctions e0 and f0 by the quasimodes ewkb and fwkb . We will prove an extended version of
a result in [67, Sec. 7.2 and 7.4].

Proposition 2.1.7. Let z ∈Ωb Σ and let S = S(z) be defined as in Definition 1.2.2. Then, for h
2
3 ¿

η≤ 1/C

t 2
0 (z) ≤O

(
η

1
2 he−

2S
h

)
.

Furthermore, there exists a constant C > 0, uniform in z ∈Ω, such that

t 2
1 (z)− t 2

0 (z) ≥ η
1
2 h

C

for h > 0 small enough.

Remark 2.1.8. The case z ∈ Ω with dist(Ω,∂Σ) > 1/C has been proven in [67, Sec. 7.1]. Since it
will be useful further on we shall give a proof of the statement and indicate how to deduce the
statement in the case of z ∈Ω∩Ωa

η .

Proof. Let us first suppose that z ∈ Ωi (cf. Section 2.1). Recall the definition of the self-adjoint
operator Q(z) given in (1.2.4) and define

r := r (x, z;h) :=Q(z)ewkb(x, z;h). (2.1.15)

Recall, by (2.1.7), that ewkb(x, z;h) = h− 1
4 a(z;h)χe (x, z;h)e

i
hφ+(x,z). Since x−(z) is smooth in z and

all its z- and z-derivatives are independent of h, it follows from (2.1.6) that for all α ∈N3\{0}

∂αzzxχe (x, z;h) =O
(
h− |α|

2

)
, (2.1.16)

with support in X− :=]x−−2π, x−−2π+h1/2[∪]x−−h1/2, x−[. By definition of φ+(x, z)

(Ph − z)e
i
hφ+(x,z) = 0

for x ∈]x−−2π, x−[. This implies

(Ph − z)ewkb(x, z) = h− 1
4 a(z;h)[(Ph − z),χe (x, z;h)]e

i
hφ+(x,z)

= h− 1
4 a(z;h)

h

i
∂xχe (x, z;h)e

i
hφ+(x,z). (2.1.17)

Continuing, one computes that

(Ph − z)∗(Ph − z)ewkb(x, z) = (2.1.18)

a(z;h)
h

3
4

i

{
h

i
∂2

xxχe (x, z;h)+∂xχe (x, z;h)
(
∂xφ++ g (x)− z

)}
e

i
hφ+ .

where φ+ =φ+(x, z). Since for x ∈ X−

∂xφ+(x, z)+ g (x)− z = z − g (x)+ g (x)− z =−2i Im
(
g (x)− z

)=O
(
h

1
2

)
, (2.1.19)

it follows from (2.1.16), (2.1.18) that

r =Q(z)ewkb(x, z) =O
(
h

3
4

)
e

i
hφ+(x,z), (2.1.20)

which has its support in X−. Thus,

(ewkb |Q(z)ewkb) =
ˆ

O
(
h

1
2

)
1X−(x)e−

Φ(x,z)
h d x, (2.1.21)
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whereΦ(x, z) = 2
´ x

x+(z) Im(z − g (y))d y . By Taylor’s formula{
Φ(x, z) =Φ(x−(z), z)+O (h), for x ∈]x−−h1/2, x−[

Φ(x, z) =Φ(x−(z)−2π, z)+O (h), for x ∈]x−−2π, x−−2π+h1/2[

and thus
e−

Φ(x,z)
h ≤O

(
e−

2S
h

)
,

where S = min
(
Im
´ x−

x+ (z − g (y))d y, Im
´ x−−2π

x+ (z − g (y))d y
)
. Hence,

(ewkb |Q(z)ewkb) ≤O
(
h

1
2 e−

2S
h

)ˆ
1X−(x)d x =O

(
he−

2S
h

)
, (2.1.22)

and, since Q is self-adjoint, it follows that t 2
0 (z) =O

(
he−

2S(z)
h

)
. Similarly, one computes that

‖r‖2 =O
(
h2e−

2S
h

)
. (2.1.23)

The proof of the desired statement about t 2
1 (z)−t 2

0 (z) for z ∈Ωi can be found in the proof of Propo-
sition 7.2 in [67, Sec. 7.1].

Suppose now that z ∈Ω∩Ωa
η . The desired statement follows by a rescaling argument. Recall

(2.1.3) and, using the quasimodes eηwkb(x, z), note that

t 2
0 (Q(z)) = t 2

0 (η2(P̃h̃ − z̃)∗(P̃h̃ − z̃)) =O

(
η2h̃e−

2S̃(z̃)
h̃

)
,

where S̃ is defined in the obvious way via φ̃+ and

S̃(z̃)

h̃
= S(z)

h
. (2.1.24)

Hence,
t 2

0 (z) =O
(
hη1/2e−

2S(z)
h

)
. (2.1.25)

The estimate on t 2
1 (z)−t 2

0 (z) in the case z ∈Ω∩Ωa
η can be deduced as well by a rescaling argument:

note that t 2
1 (Q(z)) = t 2

1 (η2(P̃h̃ − z̃)∗(P̃h̃ − z̃)). The statement then follows by performing the same
steps of the proof of Proposition 7.2 in [67, Sec. 7.1] in the rescaled space L2(S1/

p
(η),

p
ηd x̃) and

using the quasimode eηwkb(x, z) together with the estimate given in Proposition 4.3.5 in [4].

Proposition 2.1.9. Let z ∈ Ω b Σ. Then the eigenvalue t 2
0 (z) is a smooth function of z and the

eigenfunctions e0(z) and f0(z) can be chosen to have the same property.

Proof. Let us suppose first that z ∈Ωi . The operator Q(z) is bounded in H 2(S1) → L2(S1) and in
norm real-analytic in z since for z0 ∈Ω

Q(z) =Q(z0)− (P − z0)∗(z − z0)− (P − z0)(z − z0)+|z − z0|2. (2.1.26)

Let ζ be in the resolvent set ρ(Q(z)) of Q(z) and consider the resolvent

R(ζ,Q(z)) := (ζ−Q(z))−1.

By [41, II - §1.3] we know that the resolvent depends locally analytically on the variables ζ and z.
More precisely if ζ0 ∉σ(Q(z0)) for z0 ∈Ω then R(ζ,Q(z)) is holomorphic in ζ and real-analytic in z
in a small neighborhood of ζ0 and in a small neighborhood of z0.

Remark 2.1.10. The proof in [41, II - §1.3] is given in the case of finite dimensional spaces. How-
ever, it can be extended directly to bounded operators on Banach spaces.
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By [41, IV - §3.5] we know that the simple eigenvalue t 2
0 (z) depends continuously on Q(z).

Thus, by Proposition 2.1.7 and the continuity of t 2
0 (z) there exists, for h > 0 small enough, a con-

stant D > 0 such that for all z in a neighborhood of a point z0 ∈Ω

t 2
1 (z) > h

D
.

Defineγ to be the positively oriented circle of radius h/(2D) centered at 0 and consider the spectral
projection of Q(z) onto the eigenspace associated with t 2

0 (z)

Πt 2
0
(z) = 1

2πi

ˆ
γ

R(ζ,Q(z))dζ.

Since the resolvent R(ζ,Q(z)) is smooth in z it follows thatΠt 2
0
(z) is smooth in z. Now set e(x, z) to

be a smooth quasimode for Ph −z for z ∈Ωi as in Section 2.1 which depends smoothly on z. Thus,
by setting

e0(x, z,h) =
Πt 2

0
(z)ewkb(x, z,h)

‖Πt 2
0
(z)ewkb(−, z,h)‖ ,

we deduce that also e0(x, z) depends smoothly on z. The statement for f0(z) follows by performing
the same argument for Q̃(z) instead of Q(z) and with the quasimode fwkb .

Using thatΠt 2
0
(z) and Q(z) are smooth and that the operatorΠt 2

0
QΠt 2

0
has finite rank we see by

t 2
0 (z) = tr

(
Πt 2

0
(z)Q(z)Πt 2

0
(z)

)
that t 2

0 (z) is smooth.

In the case of z ∈Ω∩Ωa
η for h2/3 ¿ η< const. we follow the exact same steps as above, mutatis

mutandis. We take the estimate t 2
1 (z) > h

p
η

D for z in a neighborhood of a fixed z0 ∈Ω∩Ωa
η (following

from Proposition 2.1.7) and thus we pick, as above, γ̃ to be the positively oriented circle of radius
h
p
η/(2D) centered at 0. Hence, for z ∈Ω∩Ωa,b

η

Πt 2
0
(z) = 1

2πi

ˆ
γ̃

R(ζ,Q(z))dζ, e0(x, z,h) =
Πt 2

0
(z)eηwkb(x, z,h)

‖Πt 2
0
(z)eηwkb(−, z,h)‖ .

Following the same arguments as above we conclude the statement of the proposition also in the
case of z ∈Ω∩Ωa

η .

Proposition 2.1.11. Let z ∈ΩbΣ and let e0 and f0 be the eigenfunctions of the operators Q and Q̃
with respect to their smallest eigenvalue (as in Section 2.2.1). Let S = S(z) be defined as in Definition
1.2.2. Then

• for z ∈Ωwith dist(Ω,∂Σ) > 1/C and for all β ∈N2

‖∂β
zz

(e0 −ewkb)‖, ‖∂β
zz

( f0 − fwkb)‖ =O
(
h−|β|e−

S
h

)
. (2.1.27)

Furthermore, the various z- and z-derivatives of e0, f0, ewkb and fwkb have at most temperate
growth in 1/h, more precisely for all β ∈N2

‖∂β
zz

ewkb‖, ‖∂β
zz

fwkb‖, ‖∂β
zz

e0‖, ‖∂β
zz

f0‖ =O
(
h−|β|

)
; (2.1.28)

• for h2/3 ¿ η< const ., z ∈Ω∩Ωa
η and for all β ∈N2

‖∂β
zz

(e0 −eηwkb)‖, ‖∂β
zz

( f0 − f ηwkb)‖ =O
(
η

|β|
2 h−|β|e−

S
h

)
. (2.1.29)
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Furthermore, the various z- and z-derivatives of e0, f0, eηwkb and f ηwkb have at most temperate
growth in

p
η/h, more precisely

‖∂β
zz

eηwkb‖, ‖∂β
zz

f ηwkb‖, ‖∂β
zz

e0‖, ‖∂β
zz

f0‖ =O
(
η

|β|
2 h−|β|

)
(2.1.30)

for all β ∈N2.

Remark 2.1.12. Let us recall that

• for z ∈Ωb Σ̊, in the case whereΩ is independent of h > 0 and has a positive distance to the
boundary of Σ we have 1/C ≤ S ≤ C for some constant C > 0. Thus, we may formulate the
corresponding estimates of Proposition 2.1.11 uniformly in z;

• for h2/3 ¿ η< const . and z ∈Ω∩Ωa
η (2.1.5) implies estimates uniform in z but η dependent.

This implies the following

Corollary 2.1.13. Under the assumptions of Proposition 2.1.11,

• for z ∈Ωi there exists a constant C > 0 such that for all β ∈N2

‖∂β
zz

(e0 −ewkb)‖, ‖∂β
zz

( f0 − fwkb)‖ =O
(
h−|β|e−

1
C h

)
; (2.1.31)

• for h2/3 ¿ η< const ., z ∈Ω∩Ωa,b
η and for all β ∈N2

‖∂β
zz

(e0 −eηwkb)‖, ‖∂β
zz

( f0 − f ηwkb)‖ =O

(
η

|β|
2 h−|β|e−

³η3/2

h

)
. (2.1.32)

Remark 2.1.14. The proof of Proposition 2.1.11 is unfortunately somewhat long and technical
and we have split it into several lemmas. Furthermore, we will only be discussing the results for
ewkb(z), eηwkb(z) and e0(z), since the others can be obtained similarly.

Lemma 2.1.15. LetΩbΣ such that dist(Ω,∂Σ) > 1/C . For z ∈Ωdefine r := r (x, z;h) :=Q(z)ewkb(x, z)

as in (2.1.15). Then, for all β ∈N2, supp∂β
zz

r ⊂]x−−2π, x−−2π+h1/2[∪]x−−h1/2, x−[ and

‖∂β
zz

r‖ =O
(
h1−|β|e−

S
h

)
.

Proof. Using (2.1.16), (2.1.18) we conclude by the Leibniz rule that for β ∈N2

∂
β

zz
r =O

(
h

3
4−|β|

)
e

i
hφ+(x,z)

which is supported in ]x−− 2π, x−− 2π+h1/2[∪]x−−h1/2, x−[ and one computes that ‖∂β
zz

r‖2 =
O

(
h2−2|β|e−

2S
h

)
.

Lemma 2.1.16. Let Ωb Σ such that dist(Ω,∂Σ) > 1/C and let z ∈Ω. Moreover, let Πt 2
0

: L2(S1) →
Ce0 denote the spectral projection of Q(z) onto the eigenspace associated with t 2

0 . Then,

‖∂β
zz
Πt 2

0
(z)‖L2→H 2

sc
=O

(
h− |β|

2

)
.

Proof. By virtue of Proposition 2.1.7 and the continuity of t 2
0 (z) there exists for h > 0 small enough

a constant D > 0 such that for all z in a neighborhood of a point z0 ∈Ω

t 2
1 (z) > h

D
.
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Let γ be the positively oriented circle of radius h/(2D) centered at 0. Note that γ is locally inde-
pendent of z. Thus, we gain a path such that 0, t 2

1 (z) ∉ γ and which has length |γ| = hπ/D . For
λ ∈ γ we have that

‖(λ−Q(z))−1‖ = 1

dist(λ,σ(Q(z)))
=O (|γ|−1). (2.1.33)

By (2.1.26) and the resolvent identity we see that

∂z (λ−Q(z))−1 =−(λ−Q(z))−1(Ph − z)∗(λ−Q(z))−1 (2.1.34)

as well as

∂z (λ−Q(z))−1 =−(λ−Q(z))−1(Ph − z)(λ−Q(z))−1. (2.1.35)

Similarly, we see that the higher derivatives ∂n
z ∂

m
z

(λ−Q(z))−1, for (n,m) ∈N2\{0}, are finite linear
combinations of terms of the form

(λ−Q(z))−1∂
α1

zz
(Q(z))(λ−Q(z))−1 · · ·∂αk

zz
(Q(z))(λ−Q(z))−1 (2.1.36)

with α j = (1,0), (0,1), (1,1) and α1 +·· ·+αk = (n,m). Thus it is sufficient to estimate the terms of
the form (Ph − z)(Q(z)−λ)−1 and (Ph − z)∗(Q(z)−λ)−1. Since Q(z) = (Ph − z)∗(Ph − z), it follows
that

‖(Ph − z)u‖2 −|γ|‖u‖2 ≤ |((Q(z)−λ)u|u)| ≤ ‖(Q(z)−λ)u‖‖u‖. (2.1.37)

Since Q(z) > 0 is self-adjoint and since dist(λ,σ(Q(z))) ³ |γ| we have the a priori estimate

‖(Q(z)−λ)u‖ ≥C |γ|‖u‖

for all u ∈ H 2
sc (S1), where C > 0 is a constant locally uniform in z. This implies

‖(Ph − z)u‖2 ≤ (‖(Q(z)−λ)u‖+|γ|‖u‖)‖u‖
≤ C̃‖(Q(z)−λ)u‖‖u‖ ≤ C

|γ| ‖(Q(z)−λ)u‖2,

where C > 0 is a constant uniform in z. Hence

‖(Ph − z)(Q(z)−λ)−1‖L2→L2 =O
(
|γ|− 1

2

)
.

Finally, note that since [P∗
h ,Ph] = OH 2

sc→L2 (h) we can replace Ph by it’s adjoint in (2.1.37) and gain
the estimate

‖(Ph − z)∗(Q(z)−λ)−1‖L2→L2 =O
(
|γ|− 1

2

)
.

Using (2.1.36) and the fact that |γ| = hπ/D we have that for all β ∈N2\{0}

‖∂β
zz

(λ−Q(z))−1‖L2→H 2
sc
=O

(
h− |β|+2

2

)
. (2.1.38)

Since for u ∈ L2(S1)
1

2πi

ˆ
γ

(λ−Q(z))−1udλ=Πt 2
0
u,

(2.1.38) implies

‖∂β
zz
Πt 2

0
(z)‖L2→H 2

sc
=O

(
h− |β|

2

)
.

Lemma 2.1.17. Under the assumptions of Lemma 2.1.16 we have

‖∂β
zz

ewkb(·, z)‖,‖∂β
zz
Πt 2

0
ewkb(·, z)‖ =O

(
h−|β|

)
.
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Proof. Using (2.1.7), one computes that

∂z ewkb(x, z) = h− 1
4

{
∂zχe (x, z;h)ai (z;h)+χe (x, z;h)∂z ai (z;h)

+χe (x, z;h)ai (z;h)
i

h
∂zφ+(x, z)

}
e

i
hφ+(x,z).

By the triangular inequality, we get

‖∂z ewkb(·, z)‖ ≤ h− 1
4 ‖∂zχe (·, z)ai (z;h)e

i
hφ+(·,z)‖

+h− 1
4 ‖χe (·, z)∂z ai (z;h)e

i
hφ+(·,z)‖

+h− 1
4 ‖χe (·, z)ai (z;h)i h−1∂zφ+(·, z)e

i
hφ+(·,z)‖.

Recalling from (2.1.16) that ∂zχe (x, z;h) =O (h−1/2) is supported in ]x−−2π, x−−2π+h1/2[∪]x−−
h1/2, x−[, one computes

h− 1
4 ‖∂zχe (·, z)ai (z;h)e

i
hφ+(·,z)‖ =O

(
h− 1

2 e−
S
h

)
.

Using (2.1.9), the stationary phase method implies

h− 1
4 ‖χe (·, z)∂z ai (z;h)e

i
hφ+(·,z)‖ =O (h−1).

Furthermore, since

∂zφ+(x, z) =
ˆ x

x+(z)
d y −ξ+(z)∂z x+(z) (2.1.39)

it follows by the stationary phase method that

h− 1
4 ‖χe (·, z)ai (z;h)

i

h
∂zφ+(·, z)e

i
hφ+(·,z)‖ = 1

h
|ξ+(z)∂z x+(z)|+O (1).

Hence, by putting all of the above together

‖∂z ewkb(·, z)‖ =O
(
h−1) .

Similarly, using (2.1.9), (2.1.16), the stationary phase method implies

‖∂β
zz

ewkb(·, z)‖ =O
(
h−|β|

)
.

Lemma 2.1.16 then implies by the Leibniz rule that

‖∂β
zz
Πt 2

0
ewkb‖ =O

(
h−|β|

)
.

Remark 2.1.18. As in Lemma 2.1.17, we have for z ∈Ωwith dist(Ω,∂Σ) > 1/C

‖∂β
zz

fwkb(·, z)‖ =O
(
h−|β|

)
and

‖∂β
zz
Π̃t 2

0
fwkb‖ =O

(
h−|β|

)
.

where Π̃t 2
0

: L2(S1) →C f0 is the spectral projection of Q̃(z) onto the eigenspace associated with the

eigenvalue t 2
0 .
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Proof of Proposition 2.1.11. Part I - First, suppose that z ∈ Ωi . Let r be as in Lemma 2.1.15 and
consider for λ ∈C

(λ−Q(z))ewkb =λewkb − r.

If λ ∉σ(Q(z))∪ {0} we have

(λ−Q(z))−1ewkb = 1

λ
ewkb +

1

λ
(λ−Q(z))−1r.

As in the proof of Lemma 2.1.15, define γ to be the positively oriented circle of radius h/(2D)
centered at 0. γ is locally independent of z. Thus, we gain a path such that 0, t 2

1 (z) ∉ γ and which
has length |γ| = hπ/D . Hence

1

2πi

ˆ
γ

(λ−Q(z))−1ewkbdλ= ewkb +
1

2πi

ˆ
γ

1

λ
(λ−Q(z))−1r dλ. (2.1.40)

By Lemma 2.1.15, (2.1.25) and (2.1.33)∥∥∥∥∥ 1

2πi

ˆ
γ

1

λ
(λ−Q(z))−1r dλ

∥∥∥∥∥=O
(
e−

S
h

)
By (2.1.40)

‖Πt 2
0
ewkb −ewkb‖ =O

(
e−

S
h

)
. (2.1.41)

Recall that ewkb is normalized. Pythagoras’ theorem then implies

‖Πt 2
0
ewkb‖2 = ‖ewkb‖2 −‖ewkb −Πt 2

0
ewkb‖2 = 1−O

(
e−

2S
h

)
(2.1.42)

which yields

e0 = 1

‖Πt 2
0
ewkb‖

Πt 2
0
ewkb =

(
1+O

(
e−

2S
h

))
Πt 2

0
ewkb . (2.1.43)

Let us now turn to the z- and z-derivatives of e0 −ewkb . By (2.1.43)

∥∥∥∂βzz
(e0(z)−ewkb(z))

∥∥∥=
∥∥∥∥∥∂βzz

(
Πt 2

0
ewkb(z)

‖Πt 2
0
ewkb(z)‖ −ewkb(z)

)∥∥∥∥∥
=

∥∥∥∥∥∂βzz

(
(Πt 2

0
−1)ewkb + (1−‖Πt 2

0
ewkb‖)ewkb

‖Πt 2
0
ewkb(z)‖

)∥∥∥∥∥ .

First, note that Lemma 2.1.28 together with (2.1.42) implies

∂
β

zz
‖Πt 2

0
ewkb‖ =O

(
h−|β|

)
. (2.1.44)

Using this result and (2.1.42) implies by the Leibniz rule applied to (2.1.43) that

‖∂β
zz

e0‖ =O
(
h−|β|

)
.

Next, applying Lemma 2.1.15 and (2.1.38) to (2.1.40) yields

∥∥∥∂βzz
(Πt 2

0
−1)ewkb

∥∥∥=
∥∥∥∥∥∂βzz

1

2πi

ˆ
γ

1

λ
(λ−Q(z))−1r dλ

∥∥∥∥∥=O
(
h−|β|e−

S
h

)
. (2.1.45)

Using (2.1.42) and the fact that ewkb is normalized, it follows that

1−‖Πt 2
0
ewkb‖ =

∥∥∥(Πt 2
0
−1)ewkb

∥∥∥2

1+‖Πt 2
0
ewkb‖

.
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This, together with (2.1.45), (2.1.44) and the Leibniz rule imply that

∂
β

zz
(1−‖Πt 2

0
ewkb‖) =O

(
h−|β|e−

2S
h

)
.

Thus, Lemma 2.1.28 and (2.1.42) together with the Leibniz rule then imply∥∥∥∂βzz
(e0(z)−ewkb(z))

∥∥∥=O
(
h−|β|e−

S
h

)
.

Part II - Now, let z ∈ Ωa
η with h

2
3 ¿ η < const. The statements of the proposition follow from a

simple rescaling argument. For the rescaling we use the same notation as in the beginning of
Section 2.1. Let ẽ0(z̃) be the L2(S1/

p
η,d x̃)-normalized eigenfunction of the operator Q̃(z̃) = (P̃h̃ −

z̃)∗(P̃h̃ − z̃) and note that η
1
4 eηwkb is L2(S1/

p
η,d x̃)-normalized. Thus,

∥∥∥∂βzz
(ẽ0(z̃)−eηwkb(·, z̃, h̃)

∥∥∥
L2(S1/

p
η,d x̃)

=O

(
h̃−|β|e−

S̃
h̃

)
,

where S̃ is as in (2.1.24). Since e0(z) = η−1/4ẽ0(z̃), it follows by rescaling that∥∥∥∂βzz
(e0(z)−eηwkb(z))

∥∥∥
L2(S1,d x)

=O
(
η

|β|
2 h−|β|e−

S
h

)
.

The results on ‖∂β
zz

eηwkb‖ and on ‖∂β
zz

e0‖ can be proven by the same rescaling argument.

2.2 | Grushin problem for the unperturbed operator Ph

To start with we give a short refresher on Grushin problems since they have become an essential
tool in microlocal analysis and it is a key method to the present work. As reviewed in [74], the
central idea is to set up an auxiliary problem of the form

(
P (z) R−
R+ 0

)
: H1 ⊕H− −→H2 ⊕H+,

where P (z) is the operator of interest and R± are suitably chosen. We say that the Grushin problem
is well-posed if this matrix of operators is bijective. If dimH− = dimH+ <∞, one usually writes

(
P (z) R−
R+ 0

)−1

=
(

E(z) E+(z)
E−(z) E−+(z)

)
.

The key observation, going back to the Shur complement formula or equivalently the Lyapunov-
Schmidt bifurcation method, is that the operator P (z) : H1 → H2 is invertible if and only if the
finite dimensional matrix E−+(z) is invertible and when E−+(z) is invertible, we have

P−1(z) = E(z)−E+(z)E−1
−+(z)E−(z).

E−+(z) is sometimes called effective Hamiltonian.

The principal aim of this section is to introduce the three different Grushin Problems needed
to study Pδ

h : one valid in all ofΣwhich is however less explicit (here we will follow the construction
given in [67, Sec. 7.2 and 7.4]), and two very explicit Grushin Problems, one valid in the interior of
Σ and one valid close to ∂Σ (here we will recall the construction given by Hager in [32] respectively
Bordeaux-Montrieux in [4]).
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2.2.1 – Grushin problem valid in all of Σ
Following the ideas of [67], we will use the eigenfunctions e0 and f0 to set up the Grushin problem

Proposition 2.2.1. Let z ∈ΩbΣ be open and relatively compact, and let α0 be as in (1.2.8). Define

R+ : H 1(S1) −→C : u 7−→ (u|e0)

R− :C−→ L2(S1) : u− 7−→ u− f0. (2.2.1)

Then

P (z) :=
(
Ph − z R−

R+ 0

)
: H 1(S1)×C−→ L2(S1)×C

is bijective with the bounded inverse

E (z) =
(

E(z) E+(z)
E−(z) E−+(z)

)
where E−(z)v = (v | f0), E+(z)v+ = v+e0 and E(z) = (Ph − z)−1|( f0)⊥→(e0)⊥ and E−+(z)v+ = −α0v+.
Furthermore, we have the estimates

• for z ∈Ωwith dist(Ω,∂Σ) > 1/C

‖E−(z)‖L2→C,‖E+(z)‖C→H 1 =O (1),

‖E(z)‖L2→H 1 =O (h−1/2),

|E−+(z)| =O
(p

he−
S
h

)
=O

(
e−

1
C h

)
; (2.2.2)

• for z ∈Ω∩Ωa
η with h

2
3 ¿ η< const.

‖E−(z)‖L2→C,‖E+(z)‖C→H 1 =O (1),

‖E(z)‖L2→H 1 =O ((h
p
η)−1/2),

|E−+(z)| =O
(p

hη
1
4 e−

S
h

)
=O

(
e−

³η3/2

h

)
. (2.2.3)

Proof. For a proof of the existence of the bounded inverse as well as the estimate for ‖E(z)‖L2→H 1

in the case of dist(Ω,∂Σ) > 1/C see [67, Section 7.2].
The other estimate for ‖E(z)‖L2→H 1 can be proven by performing the same steps as in the case

of dist(Ω,∂Σ) > 1/C , mutatis mutandis, together with the estimate given by Bordeaux-Montrieux
in [4, Proposition 4.3.5]. The estimates for |E−+(z)| follow from Proposition 2.1.7, whereas the
estimates on ‖E−(z)‖L2→C and ‖E+(z)‖C→H 1 come from the fact that e0 and f0 are normalized.

Alternatively, one can conclude the result in the case of z ∈ Ω∩Ωa
η by a rescaling argument

similar to the one in the proof of Proposition 2.1.11.

2.2.2 – Tunneling
We prove now the following formula for a tunnel effect between e0 which is microlocalized in
ρ+(z) and f0 which is microlocalized in ρ−(z) (cf. (1.1.14) and Proposition 2.2.7), from which we
conclude Proposition 1.2.8. Recall in particular that S is the imaginary part of the action between
ρ+(z) and ρ−(z) (cf. Definition 1.2.2).

Proposition 2.2.2. Let z ∈Ωb Σ and let e0 and f0 be as in (1.2.6) and in (1.2.9). Furthermore, let
Φ(z,h) be as in Proposition 1.2.5, let S be as in Definition 1.2.2 and let p be (1.1.7) as in and ρ± be
as in (1.1.14). Let h

2
3 ¿ η< const. Then, for all z ∈Ωwith |Im z −〈Im g 〉| > 1/C , C À 1,

|(e0| f0)| =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
4

p
πh

|∂Im z S(z)|
(
1+O

(
η−

3
4 h

1
2

))
e−

S
h
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where for all β ∈N2

∂
β

zz
O

(
η−3/4h

1
2

)
=O

(
η

|β|
2 − 3

4 h−|β|+ 1
2

)
.

This implies Proposition 1.2.8. Furthermore, Proposition 2.2.2 implies by direct calculation
the following result:

Proposition 2.2.3. Under the assumptions of Proposition 2.2.2 we have for h
2
3 ¿ η< const .

∂Im z |(e0| f0)|2 = 2
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πh2 |∂Im z S(z)|2(−∂Im z S(z))e−
2S
h

+O
(
η5/4h− 3

2 e−
2S
h

)
,

∂Re z |(e0| f0)|2,∂Re z∂Im z |(e0| f0)|2 =O
(
e−

1
C h e−

2S
h

)
.

Remark 2.2.4. Let us point out that we can find an even more detailed formula for |(e0| f0)| (cf.
(2.2.9)) valid even for |Im z −〈Im g 〉| ≥ 1/C :

|(e0| f0)| =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
4

p
πh

e−
S
h |∂Im z S|

(
1+ 2π−|∂Im z S|

|∂Im z S| eReΦ
)

+O
(
e−

S
h

)
+O

(
η3/4h− 1

2 e−
S
h +ReΦ

)
Proof of Proposition 2.2.2. First, suppose that z ∈Ω with dist(Ω,∂Σ) > 1/C . Then, by Proposition
2.1.11

(e0| f0) = (e0| fwkb)+O
(
e−

S
h

)
= (ewkb | fwkb)+O

(
e−

S
h

)
. (2.2.4)

Recall the definition of the quasimodes ewkb and fwkb from Section 2.1. Moreover, recall from
Section 1.1.1 that by the natural projection Π : R→ S1 we identify S1 with the interval [x−(z)−
2π, x−(z)[. This choice leads to the fact that φ+ is given by

φ+(x) =
ˆ x

x+(z)
(z − g (y))d y

on this interval, whereas φ− is given by

φ−(x) =


ˆ x

x−(z)
(z − g (y))d y, for x ∈ [x+(z), x−(z)[,ˆ x

x−(z)−2π
(z − g (y))d y, for x ∈ [x−(z)−2π, x+(z)[.

Define

R := abp
h
=

( i
2 {p, p}(ρ+) i

2 {p, p}(ρ−)
) 1

4

p
π

+O (
p

h), (2.2.5)

where we used Lemma 2.1.3, Proposition 2.1.4 and (2.2.22) to gain the equality. A straight forward
computation yields that

(ewkb | fwkb) = Re
i
h

´ x−(z)−2π
x+(z) (z−g (y))d y

ˆ x+(z)

x−(z)−2π
χe (x)χ f (x)d x

+Re
i
h

´ x−(z)
x+(z) (z−g (y))d y

ˆ x−(z)

x+(z)
χe (x)χ f (x)d x. (2.2.6)
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Using (2.1.6) and Definition 2.1.6, we have that
ˆ x+(z)

x−(z)−2π
χe (x)χ f (x)d x = x+(z)− (x−(z)−2π)

−
ˆ x−−2π+ph

x−−2π
(1−χe (x))d x −

ˆ x++2π

x++2π−ph
(1−χ f (x))d x

= x+(z)− (x−(z)−2π)+O
(p

h
)

, (2.2.7)

and similarly
ˆ x−(z)

x+(z)
χe (x)χ f (x)d x = x−(z)−x+(z)+O

(p
h
)

. (2.2.8)

Now let us assume that we are below the spectral line of Ph , i.e. Im z ≤ 〈Im g 〉. There, we see that

|(ewkb | fwkb)| = |R|e− 1
h Im
´ x−(z)

x+(z) (z−g (y))d y
∣∣∣(x−(z)−x+(z))+O

(p
h
)

+
(
x+(z)− (x−(z)−2π)+O

(p
h
))

e−
2πi

h (z−〈g 〉)
∣∣∣.

Analogously, if we are above the spectral line, i.e. Im z ≥ 〈Im g 〉,

|(ewkb | fwkb)| = |R|e− 1
h Im
´ x−(z)−2π

x+(z) (z−g (y))d y
∣∣∣(x+(z)− (x+(z)−2π))

+O
(p

h
)
+

(
x−(z)−x+(z)+O

(p
h
))

e
2πi

h (z−〈g 〉)
∣∣∣.

Together with (2.2.4), we conclude that

|(e0| f0)| =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
4

p
πh

e−
S
h |∂Im z S|

(
1+ 2π−|∂Im z S|

|∂Im z S| eReΦ
)

+O
(
e−

S
h

)
+O

(
η3/4h− 1

2 e−
S
h +ReΦ

)
(2.2.9)

whereΦ=Φ(z,h) is as in Proposition 1.2.5. Note that exp{Φ(z,h)} is exponentially small for |Im z−
〈Im g 〉| > 1/C . Thus,

|(e0| f0)| =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
4

p
πh

e−
S
h |∂Im z S(z)|

(
1+O

(
η−3/4h

1
2

))
. (2.2.10)

Now let us discuss the ∂β
zz

-derivatives of the errors. First let us treat the error term O
(p

h
)

from

the definition of R which is given as a product of the normalization coefficients of the quasimodes
ewkb and fwkb . Thus, it is easy to see that

∂
β

zz
O

(p
h
)
=O

(
h−(|β|−1/2)

)
. (2.2.11)

The ∂β
zz

-derivatives of the error term in (2.2.7), (2.2.8) can be treated as follows: note that

∂z

ˆ x−−2π+ph

x−−2π
(1−χe (x, z))d x =

(
χe (x−−2π, z)−χe (x−−2π+

p
h, z)

)
∂z x−−

ˆ x−−2π+ph

x−−2π
∂zχe (x, z)d x.

By (2.1.16)

ˆ x−−2π+ph

x−−2π
∂zχe (x, z)d x =−

ˆ x−−2π+ph

x−−2π
ψ

(
x −x−+2πp

h

)
∂z x−(z)d x

=−∂z x−(z).
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Since χe (x−−2π, z) = 0 and χe (x−−2π+p
h, z) = 1,

∂z

ˆ x−−2π+ph

x−−2π
(1−χe (x, z))d x = 0.

(2.2.8) as well as the respective z-derivatives can be treated analogously, and we conclude that

∂
β

zz
O (

p
h) = 0 for all β ∈N2\{0}. Hence, we have

∂n
z ∂

m
z O

(
η−3/4h

1
2

)
=O

(
η

|β|
2 − 3

4 h−|β|+ 1
2

)
.

Finally, in the case where z ∈Ω∩Ωa
η we can conclude the statement by a rescaling argument similar

as in the proof of Proposition 2.1.11.

Remark 2.2.5. It is a direct consequence of (2.2.6), (2.2.4) and Proposition 2.1.11 that

∂
β

zz
(e0| f0) =O

(
η

|β|+3/2
2 h−(|β|+1/2)e−

S
h

)
,

where we conclude the case where z ∈ Ω∩Ωa
η by a rescaling argument similar as in the proof of

Proposition 2.1.11.

Proof of Proposition 2.2.3. The first statement follows directly from Proposition 2.2.2. The state-
ments regarding the derivatives can be derived by a direct calculation from Proposition 2.2.2 to-
gether with the fact that the z- respectively the z-derivative of the error term increases its growth
at most by a term of order η1/2h−1. Moreover, we use that eΦ is exponentially small in h due to

|Im z −〈Im g 〉| > 1/C . Furthermore, we use that the prefactor
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
4 is the first

order term of R (cf. (2.2.5)). Recall that R is defined via the normalization coefficients of the quasi-
modes ewkb and fwkb . It is thus independent of Re z and its ∂Im z derivative is of order O (η−1/4)
which can be seen by the stationary phase method and a rescaling argument similar to the one in
the proof of Proposition 2.1.11.

Now let us give estimates on the derivatives of the effective Hamiltonian E−+(z).

Proposition 2.2.6. Let z ∈ΩbΣ and let E−+(z) be as in Proposition 2.2.1. Then there exists a C > 0
such that for h > 0 small enough and all β ∈N2

|∂β
zz

E−+(z)| =O
(
η

|β|+1/2
2 h−|β|+1/2e−

S
h

)
.

Proof. Take the ∂z derivative and the ∂z derivative of the first equation in (1.2.8) to gain

(Ph − z)∂z e0 = (∂zα0) f0 +α0∂z f0, (Ph − z)∂z e0 −e0 = (∂zα0) f0 +α0∂z f0.

Now consider the scalar product of these equations with f0 and recall from Proposition 2.2.1 that
E−+(z) =−α0(z) to conclude

∂z E−+(z) = E−+(z)
{
(∂z e0|e0)− (∂z f0| f0)

}
and

∂z E−+(z) = E−+(z)
{
(∂z e0|e0)− (∂z f0| f0)

}+ (e0| f0). (2.2.12)

The statement of the Proposition then follows by repeated differentiation of (2.2.12) and induc-

tion using Remark 2.2.5, the estimate |E−+(z)| = O (η
1
4 h

1
2 e−

S
h ) given in (2.2.2) and (2.2.3) and the

estimates given in Proposition 2.1.11.

Finally, Proposition 2.2.2 permits us to prove the following extension of Proposition 2.1.11:

Proposition 2.2.7. Let z ∈Ωb Σ and let e0 and f0 be the eigenfunctions of the operators Q and Q̃
with respect to their smallest eigenvalue (as in Section 2.2.1). Let S = S(z) be defined as in Definition
1.2.2. Then
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• for z ∈Ωwith dist(Ω,∂Σ) > 1/C and for all α ∈N3

‖∂αzzx (e0 −ewkb)‖, ‖∂αzzx ( f0 − fwkb)‖ =O
(
h−|α|e−

S
h

)
.

Here, we set ∂α
zzx

= ∂α1
z ∂

α2

z
∂
α3
x . Furthermore, the various z-, z- and x-derivatives of e0, f0, ewkb

and fwkb have at most temperate growth in 1/h, more precisely

‖∂αzzx ewkb‖, ‖∂αzzx fwkb‖, ‖∂αzzx e0‖, ‖∂αzzx f0‖ =O
(
h−|α|)

for all α ∈N3;

• for h2/3 ¿ η< const ., z ∈Ω∩Ωa
η and for all α ∈N3

‖∂αzzx (e0 −eηwkb)‖, ‖∂αzzx ( f0 − f ηwkb)‖ =O
(
η
α1+α2

2 +α3 h−|α|e−
S
h

)
.

Furthermore, the various z-, z- and x-derivatives of e0, f0, eηwkb and f ηwkb have at most tem-
perate growth in

p
η/h, more precisely

‖∂αzzx eηwkb‖, ‖∂αzzx f ηwkb‖, ‖∂αzzx e0‖, ‖∂αzzx f0‖ =O
(
η
α1+α2

2 +α3 h−|α|
)

for all α ∈N3.

Proof. Will show the proof in the case of e0(z) since the case of f0(z) is similar. Suppose first that
z ∈Ωwith dist(Ω,∂Σ) > 1/C . Recall from (1.2.8) that

(Ph − z)e0 =α0 f0 and (Ph − z)∗ f0 =α0e0 (2.2.13)

First consider the ∂n
z ∂

m
z

derivatives of (2.2.13):

(Ph − z)∂n
z ∂

m
z e0(z) = n∂n−1

z ∂m
z e0(z)+ ∑

|α1+β1|=n
|α2+β2|=m

(
η+β
β

)
(∂ηα0(z))(∂β f0(z)) (2.2.14)

and

(Ph − z)∗∂n
z ∂

m
z f0(z) = m∂n

z ∂
m−1
z f0(z)+ ∑

|α1+β1|=n
|α2+β2|=m

(
η+β
β

)
(∂ηα0(z))∂βe0(z)

and thus

h‖Dx∂
n
z ∂

m
z e0(z)‖ ≤n‖∂n−1

z ∂m
z e0(z)‖+ ∑

|α1+β1|=n
|α2+β2|=m

(
η+β
β

)
‖∂ηα0(z)‖‖∂β f0(z)‖

+‖g − z‖L∞(S1) · ‖∂n
z ∂

m
z e0(z)‖

and

h‖Dx∂
n
z ∂

m
z f0(z)‖ ≤m‖∂n

z ∂
m−1
z f0(z)‖+ ∑

|α1+β1|=n
|α2+β2|=m

(
η+β
β

)
‖∂ηα0(z)‖‖∂βe0(z)‖

+‖g − z‖L∞(S1) · ‖∂n
z ∂

m
z f0(z)‖.

By Proposition 2.2.6, there exists a constant C > 0 such that

|∂k
z∂

j
z
α0(z)| = |∂k

z∂
j
z

E−+(z)| =O
(
h−(k+ j )e−

S
h

)
. (2.2.15)
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By (2.1.28) we conclude

‖Dx∂
n
z ∂

m
z e0(z)‖, ‖Dx∂

n
z ∂

m
z f0(z)‖ =O

(
h−(n+m+1)) .

Repeated differentiation of (2.2.14) and induction then yield that for all l ∈N

‖D l
x∂

n
z ∂

m
z e0(z)‖,‖D l

x∂
n
z ∂

m
z f0(z)‖ =O

(
h−(l+n+m)

)
.

The estimate

‖D l
x∂

n
z ∂

m
z ewkb‖,‖D l

x∂
n
z ∂

m
z fwkb‖ =O

(
h−(l+n+m)

)
follows directly by the stationary phase method together with (2.1.9), (2.1.16). Finally, using (1.2.8),
(2.1.7), consider

(Ph − z)(e0 −ewkb) =α0 f0 −h− 1
4 a(z)

h

i
∂xχe e

i
hφ+(x)

which implies for k ≥ 1 that (hDx )k∂n
z ∂

m
z

(e0 −ewkb) is equal to

(hDx )(k−1)∂n
z ∂

m
z (α0 f0)− (hDx )(k−1)∂n

z ∂
m
z

(
h− 1

4 a(z)
h

i
∂xχe e

i
hφ+(x)

)
+ (hDx )(k−1)∂n

z ∂
m
z (g (x)− z)(e0 −ewkb).

By induction over k together with Proposition 2.1.11 and (2.2.15), (2.1.16), we conclude the first
point of the Proposition. The results in the case where z ∈Ω∩Ωa

η follow by a rescaling argument
similar as in the proof of Proposition 2.1.11.

2.2.3 – Alternative Grushin problems for the unperturbed operator Ph

In [32] Hager set up a different Grushin problem for Ph and z ∈Ωi which results in a more explicit
effective Hamiltonian E H−+(z). To avert confusion, we will mark the elements of Hager’s Grushin
problem with an additional “H”.

Bordeaux-Montrieux in [4] then extended Hager’s Grushin problem to z ∈ Ω∩Ωa
η . It is very

useful for the further discussion to have an explicit effective Hamiltonian. Thus we will briefly
introduce Hager’s Grushin problem P H and show that E−+(z) and E H−+(z) differ only by an expo-
nentially small error.

Proposition 2.2.8 ([32, 4]). For z ∈ΩbΣ, let x±(z) ∈R be as in (1.1.14).

• for z ∈Ωwith dist(Ω,∂Σ) > 1/C : let I± be open intervals, independent of z such that

x±(z) ∈ I±, x∓(z) ∉ I± for all z ∈Ω.

Let φ±(x, z) be as in Definition 2.1.2. Then, there exist smooth functions c±(z;h) > 0 such that

c±(z;h) ∼ h− 1
4
(
c0
±(z)+hc1

±(z)+ . . .
)

and, for e+(z;h) := c+(z;h)exp( iφ+(x,z)
h ) ∈ H 1(I+) and e−(z;h) := c−(z;h)exp( iφ−(x,z)

h ) ∈ H 1(I+),

‖e+‖L2(I+) = 1 = ‖e−‖L2(I−).

Furthermore, we have

c0
+(z) =

(−Im g ′(x+(z))

π

) 1
4

, and c0
−(z) =

(
Im g ′(x−(z))

π

) 1
4

.
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• for z ∈Ω∩Ωa
η with h2/3 ¿ η< const .: let J± be open intervals, such that

x±(Ωa
η) ∈ J±, dist(J+, J−) > 1

C
η1/2.

Define Ĩ± := S1\J∓. Let φ±(x, z) be as in Definition 2.1.2 and set h̃ := h/η3/2. Then, there exist
smooth functions c±(z; h̃) > 0 such that

cη±(z; h̃) ∼ h̃− 1
4η−1/4

(
c0,η
± (z)+ h̃c1,η

± (z)+ . . .
)

and, for eη+(z;h) := cη+(z; h̃)exp( iφ+(x,z)
h ) ∈ H 1(Ĩ+) and eη−(z;h) := cη−(z; h̃)exp( iφ−(x,z)

h ) ∈ H 1(Ĩ+),

‖eη+‖L2(Ĩ+) = 1 = ‖eη−‖L2(Ĩ−).

Furthermore, we have

c0,η
+ (z) =

( |Im g ′′(a)(x̃+(z̃)−a/
p
η)(1+o(1))|

π

) 1
4

, z ∈Ωa
η ,

c0,η
− (z) =

( |Im g ′′(a)(x̃−(z̃)−a/
p
η)(1+o(1))|

π

) 1
4

, z ∈Ωa
η .

Proof. For a proof of the first statement see [32]. The second statement has been proven in [4] with
the exception of the representation of c0,η

± (z) which can be achieved by an analogous argument to
the one used in the proof of Proposition 2.1.4.

Note that (Ph −z)e•+(x, z) = 0 on I+ and that (Ph −z)∗e•−(x, z) = 0 on I−. With these quasimodes
Hager and then Bordeaux-Montrieux set up a Grushin problem P H and proved the existence of
an inverse E H .

Proposition 2.2.9 ([32]). For z ∈Ωi b Σ̊ and x±(z) as in (1.1.14). Let g ∈C ∞(S1;C) be as in (1.1.6)
and let a < b < a+2πwhere a denotes the minimum and b the maximum of Im g . Let J+ ⊂ (b, a+2π)
and J− ⊂ (a,b) such that {x±(z) : z ∈Ω} ⊂ J±. Let χ± ∈ C ∞

c (I±) be such that χ± ≡ 1 on J± and
supp(χ+)∩ supp(χ−) =;. Define

R H
+ : H 1(S1) −→C : u 7−→ (u|χ+e+)

R H
− :C−→ L2(S1) : u− 7−→ u−χ−e−.

Then

P H (z) :=
(
Ph − z R H−

R H+ 0

)
: H 1(S1)×C−→ L2(S1)×C

is bijective with the bounded inverse

E H (z) =
(
E H (z) E H+ (z)
E H− (z) E H−+(z)

)
where

‖E H (z)‖L2→H 1 =O (h−1/2), ‖E H
− (z)‖L2→C =O (1),

‖E H
+ (z)‖C→H 1 =O (1), |E H

−+(z)| =O
(
e−

1
C h

)
. (2.2.16)

Furthermore,

E H
−+(z) =

((
i

2
{p, p}(ρ+)

i

2
{p, p}(ρ−)

) 1
4
(

h

π

) 1
2 +O

(
h

3
2

))
·(

e
i
h

´ x−
x+ (z−g (y))d y −e

i
h

´ x−+2π
x+ (z−g (y))d y

)
, (2.2.17)

where the prefactor of the exponentials depends only on Im z and has bounded derivatives of order
O (

p
h).
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Proof. See [32].

Proposition 2.2.10 ([4]). LetΩbΣ. For z ∈Ω∩Ωa,b
η and x±(z) as in (1.1.14). Let g ∈C ∞(S1) be as

in (1.1.6). Let J± and I± be as in the second point of Proposition 2.2.8. Let χη± ∈ C ∞
c (I±) such that

χ
η
± ≡ 1 on J± and supp(χη+)∩ supp(χη−) =;. Define

Rη
+ : H 1(S1) −→C : u 7−→ (u|χ+eη+)

Rη
− :C−→ L2(S1) : u− 7−→ u−χ−eη−.

Then

P η(z) :=
(
Ph − z Rη−

Rη
+ 0

)
: H 1(S1)×C−→ L2(S1)×C

is bijective with the bounded inverse

E η(z) =
(

Eη(z) Eη
+(z)

Eη−(z) Eη
−+(z)

)
where

‖Eη(z)‖L2→H 1 =O ((
p
ηh)−1/2), ‖Eη

−(z)‖L2→C =O (1),

‖Eη
+(z)‖C→H 1 =O (1), |Eη

−+(z)| =O

(
η1/4h1/2e−

³η3/2

h

)
. (2.2.18)

Furthermore,

Eη
−+(z) =

(
c0,η
+ (z)c0,η

− (z)
(
h
p
η
) 1

2 +O
(
h

3
2η−5/4

))
·
(
e

i
h

´ x−
x+ (z−g (y))d y −e

i
h

´ x−+2π
x+ (z−g (y))d y

)
, (2.2.19)

where the prefactor of the exponentials depends only on Im z and has bounded derivatives of order
O (

√
h
p
η).

Proof. See [4]. (2.2.19) has not been stated in this form on [4]. However, it can easily be deduce
from the results in [4] together with Proposition 2.2.8.

Remark 2.2.11. The cut-off function χη± in the above proposition can be chosen similarly to χηe, f in
Definition 2.1.6 (compare also with Definition 2.1.2).

2.2.4 – Estimates on the e�ective Hamiltonians

In [32] Hager chose to represent S1 as an interval between two of the periodically appearing min-
ima of Im g and thus chose the notation for x± accordingly (this notation was used in (2.2.17)). In
our case however, we chose to represent S1 as an interval between two of the periodically appear-
ing maxima of Im g . This results in the following difference between notations:

x+(z) = xH
+ (z)−2π and x−(z) = xH

− (z).

Thus, in our notation, we have for • = H ,η

E•
−+(z) =V •(z,h)

(
e

i
h

´ x−−2π
x+ (z−g (y))d y −e

i
h

´ x−
x+ (z−g (y))d y

)
, (2.2.20)

where V • =V •(z,h) satisfies

V • =


( i
2 {p, p}(ρ+) i

2 {p, p}(ρ−)
) 1

4
(

h
π

) 1
2

(1+O (h)) , if • = H , z ∈Ωi

c0,η
+ (z)c0,η− (z)

(
h
p
η
) 1

2

(
1+O

(
η−

3
2 h

))
, if • = η, z ∈Ωa

η .
(2.2.21)
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Note that Taylor expansion around the point a yields

{p, p}(ρ±) =−2i Im g ′(x±) (2.2.22)

= 2i
p
η

∣∣∣Im g ′′(a)(x̃±(z̃)−a/
p
η)(1+op

η(1))
∣∣∣ , for z ∈Ωa

η .

Therefore, we may write for all z ∈ΩbΣ

V (z,h) :=V •(z,h) =
(

i

2
{p, p}(ρ+)

i

2
{p, p}(ρ−)

) 1
4
(

h

π

) 1
2 (

1+O
(
η−

3
2 h

))
(2.2.23)

where the first order term is η1/4 for z ∈Ω∩Ωa
η . Note that∣∣∣e i

h

´ x−−2π
x+ (z−g (y))d y −e

i
h

´ x−
x+ (z−g (y))d y

∣∣∣= e−
S
h

∣∣∣1−eΦ(z,h)
∣∣∣ , (2.2.24)

whereΦ(z,h) is defined already in Proposition 1.2.5. For the readers convenience:

Φ(z,h) =
{
−2πi

h (z −〈g 〉), if Im z < 〈Im g 〉,
2πi

h (z −〈g 〉), if Im z > 〈Im g 〉,
Hence

|E•
−+(z)| =V (z,h)e−

S
h

∣∣∣1−eΦ(z,h)
∣∣∣ . (2.2.25)

The aim of this section is to prove the following proposition.

Proposition 2.2.12. Let z ∈Ωb Σ, let Φ(z,h) be as in Proposition 1.2.5 and let E−+(z) the effective
Hamiltonian given in Proposition 2.2.1. Then, for h > 0 small enough, there exists a constant C > 0
such that for h

2
3 ¿ η≤ const.

|E−+(z)| =V (z,h)e−
S(z)

h

∣∣∣1−eΦ(z,h)
∣∣∣(1+O

(
e−

³η3/2

h

))
.

Furthermore, for all β ∈N2 the ∂β
zz

derivatives of the error terms are bounded and of order

O

(
η

|β|
2 h−|β|e−

³η
3
2

h

)
.

Proof of Proposition 1.2.9. Recall that (Ph − z)e0 = α0 f0 (cf. (1.2.8)). Suppose first that z ∈Ω with
dist(Ω,∂Σ) > 1/C . By Proposition 2.1.11 we find(

(1−χ)(Ph − z)e0| f0
)=α0( f0|(1−χ) f0)

=α0

(
( fwkb |(1−χ) fwkb)+O

(
e−

S
h

))
.

Since the phase of fwkb has no critical point on the support of χ, it follows that there exists a
constant C > 0, depending on χ but uniform in z ∈Ω, such that(

(1−χ)(Ph − z)e0| f0
)=O

(
α0e−

1
C h

)
.

By a similar argument we find that(
(Ph − z)χe0| f0

)=α0
(
χe0|e0

)=O
(
α0e−

1
C h

)
.

In the case where z ∈Ω∩Ωa
η , we perform a rescaling argument similar to the one in the proof of

Proposition 2.1.11. Thus,

(
(1−χ)(Ph − z)e0| f0

)
,
(
(Ph − z)χe0| f0

)=O

(
α0 exp

{
− η

3
2

C h

})
.
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Note that Proposition 2.1.11 implies that each z- and z- derivative of the exponentially small error
term increases its order of growth at most by factor of order O (η1/2h−1). Thus, using (1.2.8) yields

α0 =
(
(1−χ+χ)(Ph − z)e0| f0

)= (
[χ,Ph]e0| f0

)+O

(
α0 exp

{
− η

3
2

C h

})
(2.2.26)

The statement of the Proposition then follows by the fact that |α0| = |E−+(z)| (cf. Proposition 2.2.1)
together with Proposition 2.2.12.

We give some estimates on the elements of the Grushin problems introduced in Section 2.2.

Proposition 2.2.13. Let Ωb Σ, let E•−+,E•
±,R•

±,E• be as in the Propositions 2.2.1, 2.2.9 and 2.2.10,
where • = −, H ,η with “−” symbolizing no index. Furthermore, let S(z) as in Definition 1.2.2. Then
we have the following estimates

1. for • =−, H and for z ∈Ωi ⊂Ω

‖∂β
zz

R•
±‖,‖∂β

zz
E•
±‖ =O

(
h−|β|

)
,

|∂β
zz

E H
−+| =O

(
h−(|β|− 1

2 )e−
S(z)

h

)
, ‖∂β

zz
E•‖ =O

(
h−(|β|+1/2)

)
.

2. for • =−,η and for z ∈Ωa,b
η ⊂Ω

‖∂β
zz

R•
±‖,‖∂β

zz
E•
±‖ =O

(
η

|β|
2 h−|β|

)
,

|∂β
zz

Eη
−+| =O

(
η

|β|+1/2
2 h−(|β|− 1

2 )e−
³η3/2

h

)
,

‖∂β
zz

E•‖ =O
(
η

|β|−1/2
2 h−(|β|+1/2)

)
.

Proof. Recall the definition of R± and E± given in Proposition 2.2.1. By the estimates on the z- and
z-derivatives of e0 and f0 given in Proposition 2.1.11, we may conclude for z ∈Ω that

‖∂β
zz

E+‖C→L2 , ‖∂β
zz

R+‖H 1→C ≤ ‖∂β
zz

e0‖L2 =O
(
η

|β|
2 h−|β|

)
,

‖∂β
zz

E−‖L2→C, ‖∂β
zz

R−‖C→L2 ≤ ‖∂β
zz

f0‖L2 =O
(
η

|β|
2 h−|β|

)
, (2.2.27)

and thus prove the corresponding “-”-cases in the Proposition. The estimates for the other cases
of R•

± and E•
± then follow from (2.2.27), (2.2.28) and (2.2.32).

Recall from Proposition 2.2.1 that E (z)P (z) = 1. Thus, note that

∂zE (z)+E (z)(∂zP (z))E (z) = 0,

∂zE (z)+E (z)(∂zP (z))E (z) = 0,

which implies

∂z E =−E(∂z (Ph − z))E −E+(∂z R+)E −E(∂z R−)E−
= E 2 −E+(∂z R+)E −E(∂z R−)E−

and

∂z E(z) =−E+(z)(∂z R+)E(z)−E(z)(∂z R−)E−(z).

Thus, by induction we conclude from this, from (2.2.27) and from Proposition 2.2.1 that for z ∈Ω

‖∂β
zz

E(z)‖ =O
(
η

|β|−1/2
2 h−(|β|+ 1

2 )
)

.
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The estimates on ‖∂β
zz

E•(z)‖, for • = η, H , can be conclude by following the same steps and by
using the corresponding estimates on R•

± and E•
± and the Propositions 2.2.9 and 2.2.10.

It remains to prove the estimates on |∂β
zz

Eη
−+(z)| and |∂β

zz
E H−+(z)|: let us first consider the case

where z ∈ Ωi ⊂ Ω. Recall (2.2.20) and recall from Proposition 2.2.9 that the prefactor V H (z) has
bounded z- and z-derivatives of order O (

p
h). Thus, the statement follows immediately.

In the case where z ∈ Ωa,b
η ⊂ Ω, recall (2.2.20) and from Proposition 2.2.10 that the prefactor

V η(z) has bounded z- and z-derivatives of order O (
√

h
p
η). Using that

e
i
h

´ x−−2π
x+ (z−g (y))d y −e

i
h

´ x−
x+ (z−g (y))d y

= e
i
h̃

´ x̃−−2π/
p
η

x̃+ (z̃−g̃ (ỹ))d ỹ −e
i
h̃

´ x̃−
x̃+ (z̃−g̃ (ỹ))d ỹ ,

(2.1.5) implies

|∂β
zz

Eη
−+(z)| = η−|β||∂β

z̃ z̃
Eη
−+(z)| =O

(
η

|β|+1/2
2 h−(|β|− 1

2 )e
³η3/2

h

)
.

Proof of Proposition 2.2.12. Let • = H ,ηdenote the quasimodes and elements of the Grushin prob-
lems corresponding to the different zones of z.

Since P •E • : L2(S1)×C −→ L2(S1)×C let us introduce the following norm for an operator-
valued matrix A : L2(S1)×C−→ L2(S1)×C:

‖A‖∞ := max
1≤i≤2

2∑
j=1

‖Ai j‖,

where ‖Ai j‖ denotes the respective operator norm for Ai j . Next, note that

P E • = (
P •+ (P −P •)

)
E • = 1+ (P −P •)E •.

Estimates for (P −P •) Recall the definition of P and of P • from the Propositions 2.2.1, 2.2.9 and
2.2.10 and note that

P −P • =
(

0 R−−R•−
R+−R•+ 0

)
.

We will now prove that for all (n,m) ∈N2

‖∂β
zz

(R+−R•
+)‖H 1(S1)→C ≤ ‖∂β

zz
(e0 −χ•+e•+)‖

=


O

(
h−|β|e−

1
C h

)
, for z ∈Ω, dist(Ω,∂Σ) > 1/C ,

O

(
η

|β|
2 h−|β|e−

³η
3
2

h

)
, for z ∈Ωa

η ,
(2.2.28)

where the first estimate follows from the Cauchy-Schwartz inequality. Note that

‖∂β
zz

(e0 −χ•+e•+)‖ ≤ ‖∂β
zz

(e•wkb −χ•+e•+)‖+‖∂β
zz

(e0 −e•wkb)‖. (2.2.29)

By Proposition 2.1.11 it remains to prove the desired estimate on ‖∂β
zz

(e•wkb −χ•+e•+)‖. Recall the
definition of the quasimodes e•wkb and e•+ from Section 2.1 and from Proposition 2.2.8.

Let us first consider the case of z ∈Ω with dist(Ω,∂Σ) > 1/C : recall from Proposition 2.2.9 that
all z- and z-derivatives of χ+ are bounded independently of h > 0, whereas for the derivatives of
χe we have (2.1.16). Thus

∂
β

zz
χ+,∂β

zz
χe =O (h−|β|/2).
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Thus, since χe (·, z) Â χ+ for all z ∈Ωi , which implies that x+(z) ∉ supp(χe (·, z)−χ+) for all z ∈Ωi ,
the Leibniz rule then implies∥∥∥∂βzz

((
χe (·, z)−χ+

)
e

i
hφ+(·,z)

)∥∥∥≤O
(
h−|β|e−

F
h

)
. (2.2.30)

where F > 0 is given by the infimum of Imφ(x, z) over all z ∈Ω and all

x ∈
( ⋃

z∈Ω
supp(χe (·, z))

)
\{x ∈ I+ : χ+ ≡ 1}.

Note that F > 0 is strictly positive because x−(z) ∉ I+ for all z ∈Ω and χ+ ∈ C ∞
0 (I+) (cf. Proposi-

tions 2.2.9 and 2.2.8).

Recall that h−1/4a(z;h) and c+(z;h) are the normalization factors of ewkb and e+ (cf. (2.1.7)
and Proposition 2.2.8). Hence, for z ∈Ωi ,

h− 1
4 ∂

β

zz
a(z;h), ∂β

zz
c+(z;h) =O

(
h−(|β|+1/2)

)
.

Thus the Leibniz rule and (2.2.30) imply

|∂β
zz

c+(z;h)−∂β
zz

h−1/4a(z;h)|

=
∣∣∣∣∣∣∂βzz

∥∥∥(
χe (·, z)e

i
hφ+(·,z)

)∥∥∥−∥∥∥(
χ+e

i
hφ+(·,z)

)∥∥∥∥∥∥(
χe (·, z)e

i
hφ+(·,z)

)∥∥∥∥∥∥(
χ+e

i
hφ+(·,z)

)∥∥∥
∣∣∣∣∣∣

=O
(
h−(|β|+1/2)e−

F
h

)
.

Since h− 1
4 a(z;h),c+(z;h) =O (h− 1

4 ), the Leibniz rule and the above imply that for z ∈Ωi

‖∂β
zz

(
ewkb −χ+e+

)‖ ≤O
(
h−(|β|+1/2)e−

F
h

)
.

Thus there exists a constant C > 0, for h > 0 small enough, such that for z ∈Ωi

‖∂β
zz

(
ewkb −χ+e+

)‖ =O
(
h−|β|e−

1
C h

)
. (2.2.31)

Now let us consider the case z ∈Ω∩Ωa,b
η : recall the quasimodes eηwkb and eη+ as given in Definition

2.1.6 and Proposition 2.2.8. A rescaling argument similar to the one in the proof of Proposition
2.1.11 then implies

‖∂β
zz

(
eηwkb −χ

η
+eη+

)‖ =O

(
η

|β|+3/2
2 h−(|β|+1/2)e−

³η
3
2

h

)
.

Absorbing the factor η3/4h−1/2 into e−
³η

3
2

h then yields the desired estimate.
It is possible to achieve an analogous estimate for R−−R•−, namely that for all z ∈Ω and for all

(n,m) ∈N2

‖∂β
zz

(R−−R•
−)‖C→H 1(S1) = ‖∂β

zz
( f0 −χ•−e•−)‖

=


O

(
h−|β|e−

1
C h

)
, for z ∈Ω, dist(Ω,∂Σ) > 1/C ,

O

(
η

|β|
2 h−|β|e−

³η
3
2

h

)
, for z ∈Ωa

η ,
(2.2.32)

This can be achieved by analogous reasoning as for the estimate on R+−R•+.

A formula for E−+ Using (2.2.28), (2.2.32), it follows that for h > 0 small enough

‖(P −P •)E •‖∞ ¿ 1.
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H

Thus, 1+ (P −P •)E • is invertible by the Neumann series, wherefore

P E • [
1+ (P −P •)E •]−1 = 1.

We conclude that
E = E • ∑

n≥0
(−1)n [

(P −P •)E •]n .

Define g− := R− −R•− and g+ := R+ −R•+. Hence, by Propositions 2.2.9 and 2.2.10 as well as by
(2.2.29) and (2.2.28), there exists a constant C > 0 such that

(P −P •)E • =
(

g−E•− g−E•−+
g+E• g+E•+

)
=

O
(
e−

1
C h

)
E•−+O

(
e−

1
C h

)
O

(
e−

1
C h

)
O

(
e−

1
C h

)  .

By induction it follows that for n ∈N

[
(P −P •)E •]n =

O
(
e−

n
C h

)
E•−+O

(
e−

n
C h

)
O

(
e−

n
C h

)
O

(
e−

n
C h

)  .

We conclude that

E−+(z) = E•
−+

(
1+ ∑

n≥1
O

(
e−

n
C h

))
= E•

−+
(
1+O

(
e−

1
C h

))
.

Finally, by the estimates on g+ and g+ obtained above and by the estimates given in Proposition
2.2.13 we conclude the desired estimates on the z- and z-derivatives of the error term.

2.3 | Grushin problem for the perturbed operator Pδ
h

For δ> 0 small enough, we can use the Grushin problem for the unperturbed operator Ph to gain
a well-posed Grushin problem for the perturbed operator Pδ

h .

Proposition 2.3.1 ([67]). Let z ∈ Ω b Σ, let h2/3 ¿ η ≤ const. and let R−,R+ be as in Proposition
2.2.1. Then

Pδ(z) :=
(
Pδ

h − z R−
R+ 0

)
: H 1(S1)×C−→ L2(S1)×C

is bijective with the bounded inverse

Eδ(z) =
(

Eδ(z) Eδ+(z)
Eδ−(z) Eδ−+(z)

)
where

Eδ(z) = E(z)+Oη−1/2

(
δh−2)=O (η−1/4h−1/2)

Eδ
−(z) = E−(z)+O

(
δη−1/4h−3/2)=O (1)

Eδ
+(z) = E+(z)+O

(
δη−1/4h−3/2)=O (1)

and

Eδ
−+(z) = E−+(z)−δ

(
E−QωE++

∞∑
n=1

(−δ)nE−Qω(EQω)nE+
)

= E−+(z)−δ(
E−QωE++O (δη−1/4h−5/2)

)
(2.3.1)

Proof. The statement follows immediately from Proposition 2.2.1 by use of the Neumann series.
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By (2.2.2) we get

E−QωE+ = ∑
| j |,|k|≤

⌊
C1
h

⌋α j ,k (e0|ek ) · (e j | f0) = ∑
| j |,|k|≤

⌊
C1
h

⌋α j ,k ê0(k) f̂0( j ).

Recall from Corollary 1.1.5 that the random variables satisfy α ∈ B(0,C /h). For a more convenient
notation we make the following definition:

Definition 2.3.2. For x ∈R we shall denote the Gauss brackets by bxc := max{k ∈Z : k ≤ x}. Let
C1 > 0 be big enough as above and define N := (2bC1

h c+1)2. For z ∈ΩbΣ, let X (z) = (X j ,k (z))| j |,|k|≤bC1
h c ∈

CN be given by

X j ,k (z) = ê0(z;k) f̂0(z; j ), for | j |, |k| ≤
⌊

C1

h

⌋
.

Thus, for z ∈ΩbΣ and α ∈ B(0,C /h) ⊂CN

Eδ
−+(z) = E−+(z)−δ [X (z) ·α+T (z,α)] , (2.3.2)

where the dot-product X (z) ·α is the bilinear one, and

T (z,α) :=
∞∑

n=1
(−δ)nE−Qω(EQω)nE+ =O (δη−1/4h−5/2), (2.3.3)

where the estimate comes from Proposition 2.3.1. Note that T (z,α) is C ∞ in z and holomorphic
in α in a ball of radius C /h, B(0,C /h) ⊂CN , by Corollary 1.1.5.

Proposition 2.3.3. Let z ∈ Ω b Σ, let X (z) be as in Definition 2.3.2. Let h|k| ≥ C for C > 0 large
enough, then the Fourier coefficients satisfy

ê0(z;k), f̂0(z;k) =O
(
|k|−M dist(Ω,∂Σ)−

M
2

)
, dist(Ω,∂Σ) À h

2
3

for all M ∈N. In particular
‖X (z)‖2 = 1+O

(
h∞)

.

Proof. We will show the proof in the case of e0(z) since the case of f0(z) is similar. Let us first
suppose that z ∈ Ω with dist(Ω,∂Σ) > 1/C . Recall the definition of the quasimode ewkb given in
(2.1.7). By Proposition 2.2.7

ê0(z;k) =
ˆ (

ewkb(z, x)+OC∞
(
e−

S
2h

))
e−i kx d x.

For k ∈Z\{0}, repeated integration by parts using the operator

t L := i

k

d

d x

applied to the error term yields by Proposition 2.2.7 that for all n ∈N

ê0(z;k) =
ˆ

ewkb(z, x)e−i kx d x +O
(|k|−nh∞)

.

Define the phase functionΦ(x, z) := (φ+(x, z)h−1−kx). Since h|k| ≥C is large enough and sinceΩ
is relatively compact, it follows that

|∂xΦ(x, z)| = |∂xφ+(x, z)h−1 −k| ≥C1|k| > 0.

Repeated integration by parts using the operator

t L′ := 1

∂xΦ(x, z)
Dx
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yields that for all n ∈N
ˆ

ewkb(z, x)e−i kx d x =O
(|k|−n)

.

Thus, for all n ∈N

ê0(z;k) =O
(|k|−n)

.

For z ∈ Ω∩Ωa
η one performs a similar rescaling argument as in the proof of Proposition 2.1.11.

Since in the rescaled coordinates k̃ =p
ηk, we conclude that for all n ∈N

|ê0(z;k)| ≤O
(
η−

n
2 |k|−n

)
.

Finally, by definition 2.3.2, Parseval identity and the estimates on the Fourier coefficients above, it
follows that

‖X (z)‖2 = ∑
| j |,|k|≤bC1

h c
|ê0(z; j )|2| f̂0(z;k)|2 = (e0(z)|e0(z))( f0(z)| f0(z))+O

(
h∞)

.

Since ‖e0‖,‖ f0‖ = 1, we conclude the second statement of the Proposition.

The following is an extension of Proposition 2.3.3.

Proposition 2.3.4. Let z ∈ Ω b Σ, let X (z) be as in Definition 2.3.2. Let h|k| ≥ C for C > 0 large
enough, then for dist(Ω,∂Σ) À h

2
3 and for all n,m ∈N0

∂n
z ∂

m
z ê0(z;k),∂n

z ∂
m
z f̂0(z;k) =

(
|k|−M dist(Ω,∂Σ)−

M
2

)
.

Furthermore,

‖∂n
z ∂

m
z X (z)‖ =O

(
dist(Ω,∂Σ)

n+m
2 h−(n+m)

)
.

Proof. Since

∂n
z ∂

m
z ê0(z;k) =

ˆ
∂n

z ∂
m
z e0(z, x)e−i kx d x.

We then conclude similar to the proof of Proposition 2.3.3 that for all N ∈N

|∂n
z ∂

m
z ê0(z;k)| =O

(
η−

N
2 |k|−N

)
.

The second statement of the Proposition is a direct consequence of Parseval’s identity and Propo-
sition 2.1.11.

2.4 | Connections with symplectic volume and tunneling e�ects

The first two terms of the effective Hamiltonian Eδ−+ for the perturbed operator Pδ
h (cf. (2.3.2))

have a relation to the symplectic volume form on T ∗S1 and to the tunneling effects described in
Section 2.2.2.

62



CHAPTER 2. AVERAGE DENSITY OF EIGENVALUES FOR A CLASS OF NON-SELF-ADJOINT
OPERATORS UNDER RANDOM PERTURBATIONS

2.4.1 – Link with the symplectic volume
Proposition 2.4.1. Let z ∈ΩbΣ and let p be as in (1.1.7) and ρ± be as in (1.1.14). Let X (z) be as in
Definition 2.3.2. Then we have for h > 0 small enough and h2/3 ¿ η≤ const.

(∂z X |∂z X )− |(∂z X |X )|2
‖X ‖2 = 1

h

(
i

{p, p}(ρ+(z))
− i

{p, p}(ρ−(z))

)
+O (η−2),

where
|{p, p}(ρ±)| ³p

η.

The ∂β
zz

derivatives of the error term O (η−2) are of order O
(
η

|β|
2 −2h− |β|

2

)
.

Proposition 2.4.2. Let z ∈ΩbΣ, let p be as in (1.1.7), let ρ± be as in (1.1.14), and let dξ∧d x be the
symplectic form on T ∗S1. Then,

1

h

(
i

{p, p}(ρ+(z))
− i

{p, p}(ρ−(z))

)
L(d z) = 1

2h
(dξ−∧d x−−dξ+∧d x+)

= 1

2h
p∗(dξ∧d x)

Proof of Proposition 2.4.2. In the following we will conform to ideas from [32, 4, 67]: Since p(x±,ξ±) =
z, we find the following system of linear equations{

p ′
x ·∂z x±+p ′

ξ
·∂zξ± = 1

p ′
x ·∂z x±+p ′

ξ
·∂zξ± = 0

and since x±,ξ± ∈R {
p ′

x ·∂z x±+p ′
ξ
·∂zξ± = 1

p ′
x ·∂z x±+p ′

ξ ·∂zξ± = 0.

This system can be solved and we find

∂z x± =
−p ′

ξ

{p, p}
(ρ±), ∂z x± =

p ′
ξ

{p, p}
(ρ±) (2.4.1)

and

∂zξ± = p ′
x

{p, p}
(ρ±), ∂zξ± = −p ′

x

{p, p}
(ρ±).

Hence we have

dξ±∧d x± = (
∂zξ±∂z x±−∂zξ±∂z x±

)
d z ∧d z =

(
1

{p, p}
(ρ±)

)
d z ∧d z.

Since the Lebesgue measure with the standard orientation ofC can be represented as

L(d z) ' i

2
d z ∧d z,

and the statement of the Proposition follows.

To prove Proposition 2.4.1 we first prove the following result.

Lemma 2.4.3. Let z ∈ΩbΣ such that dist(Ω,∂Σ) > 1/C and let g ∈C ∞(C) and ρ± be as in (1.1.14).
Let ewkb and fwkb be as in (2.1.7) and (2.1.8). LetΠewkb : L2(S1) → L2(S1) andΠ fwkb : L2(S1) → L2(S1)
denote the orthogonal projections onto the subspaces spanned by ewkb and fwkb respectively. Then,

‖(1−Πewkb )∂z ewkb(·, z)‖2 = −1

2hIm g ′(x+(z))
+O (1),

‖(1−Π fwkb )∂z fwkb(·, z)‖2 = 1

2hIm g ′(x−(z))
+O (1).
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Remark 2.4.4. In the following, we shall regard z as a fixed parameter. Hence, by the support of
functions depending on both x and z we mean the support with respect to the variable x.

Proof. We will consider only the case of ewkb since the case of fwkb is similar. One calculates

∂z ewkb(x, z) = h− 1
4

{
∂zχe (x, z)a(z;h)+χe (x, z)∂z a(z;h)

+χe (x, z)a(z;h)
i

h
∂zφ+(x, z)

}
e

i
hφ+(x,z). (2.4.2)

Thus

(∂z ewkb |ewkb) = h− 1
2

ˆ ((
∂zχe (x, z)

) |a(z;h)|2 + (∂z a(z;h)) a(z;h)χe (x, z)

+|a(z;h)|2χe (x, z)
i

h
∂zφ+(x, z)

)
χe (x, z)e−

Φ(x,z)
h d x, (2.4.3)

where

Φ(x, z) :=−i (φ+(x, z)−φ+(x, z)) = 2Im

ˆ x

x+(z)
(z − g (y))d y. (2.4.4)

First, we will compute

h− 1
2

ˆ (
∂zχe (x, z)

)
χe (x, z)|a(z;h)|2e−

Φ(x,z)
h d x. (2.4.5)

Using (2.1.16) and the fact that ∂zχe (z, ·) has support in ]x−− 2π, x−− 2π+h1/2[∪]x−−h1/2, x−[,
Taylor expansion ofΦ(·, z) at x− and x−−2π yields that

e−
Φ(x,z)

h ≤O
(
e−

2S
h

)
,

uniformly in ]x−−2π, x−−2π+h1/2[∪]x−−h1/2, x−[. Here S is as in Definition 1.2.2. Now, applying
this and (2.1.16) to (2.4.5), yields

h− 1
2 |a(z;h)|2

ˆ
∂zχe (x, z)χe (x, z)e−

Φ(x,z)
h d x =O

(
h− 1

2 e−
2S
h

)
. (2.4.6)

Next, we will treat the other two contributions to (2.4.3). First, consider

h− 1
2 (∂z a(z;h)) a(z;h)

ˆ
χe (x, z)2e−

Φ(x,z)
h d x.

Since h− 1
2 |a(z;h)|2 is the normalization factor of ‖ewkb‖2 we see that

h− 1
2 ∂z a(z;h)a(z;h)

ˆ
χe (x, z)2e−

Φ(x,z)
h d x = ∂z a(z;h)

a(z;h)
. (2.4.7)

Let us now turn to the third contribution to (2.4.3)

Ih := h− 1
2 |a(z;h)|2

ˆ
i

h
∂zφ+(x, z)χe (x, z)2e−

Φ(x,z)
h d x.

The stationary phase method implies together with (2.1.10) that

Ih = i

h
∂zφ+(x+(z), z)+O (1). (2.4.8)

Thus, by combining (2.4.6), (2.4.7) and (2.4.8)

(∂z ewkb |ewkb) = i

h
∂zφ+(x+(z), z)+O (1)
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and thus

(∂z ewkb |ewkb)ewkb(x, z) = h− 1
4

{
a(z;h)

i

h
∂zφ+(x+(z), z)+O (1)

}
χe (x, z)e

i
hφ+(x,z). (2.4.9)

Subtract (2.4.9) from (2.4.2) and note that the term a(z;h)∂zχe (x, z)e
i
hφ+(x,z) is exponentially small

in h like in (2.4.6). Thus

(1−Πewkb )∂z ewkb(x, z)

= e
i
hφ+(x,z)

h1/4

{
a(z;h)χe (x, z)

i

h

(
∂zφ+(x, z)−∂zφ+(x+(z), z)

)}+OL2 (1). (2.4.10)

It remains to treat

Ih :=
∥∥∥∥a(z;h)χe (x, z)

i

h
5
4

(
∂zφ+(x, z)−∂zφ+(x+(z), z)

)
e

i
hφ+(x,z)

∥∥∥∥2

= h− 1
2

ˆ
χe (x, z)2|a(z;h)|2

∣∣∣∣ i

h

(
∂zφ+(x, z)−∂zφ+(x+(z), z)

)∣∣∣∣2

e−
Φ(x,z)

h d x, (2.4.11)

where Φ(x, z) is given in (2.4.4). This can be done by the stationary phase method, as in the proof
of Lemma 2.1.3. Thus

Ih =p
2π

N∑
n=0

1

n!

(
h

2

)n

(∆n
y u)(0)+O (hN+1),

where

u(y) =χe (κ−1(y), z)2 |a(z;h)|2
|κ′(κ−1(y))|

∣∣∣∣ i

h

(
∂zφ+(κ−1(y), z)−∂zφ+(x+(z), z)

)∣∣∣∣2

and κ : V →U is a local C ∞ diffeomorphism from V ⊂R, a neighborhood of x+(z), to U ⊂R, a
neighborhood of 0, such that

Φ(κ−1(x), z) =Φ(x+(z), z)+ x2

2
,

κ−1(0) = x+(z) and

dκ

d x
(x+(z)) = |∂2

xxΦ(x+(z), z)| 1
2 =

√
−2Im g ′(x+(z)) 6= 0. (2.4.12)

This implies that u(0) = 0 and thus we have to calculate the second order term in the above asymp-
totics, i.e. ∆y u(y) is equal to(

∆yχe (κ−1(y), z)2 |a(z;h)|2
|κ′(κ−1(y))|

)∣∣∣∣ i

h

(
∂zφ+(κ−1(y), z)−∂zφ+(x+, z)

)∣∣∣∣2

+2
d

d y

(
χe (κ−1(y), z)2 |a(z;h)|2

|κ′(κ−1(y))|
)

d

d y

1

h2

∣∣∂zφ+(κ−1(y), z)−∂zφ+(x+, z)
∣∣2

+χe (κ−1(y), z)2 |a(z;h)|2
|κ′(κ−1(y))|∆y

(∣∣∣∣ i

h

(
∂zφ+(κ−1(y), z)−∂zφ+(x+, z)

)∣∣∣∣2)
.

Note that at y = 0 the first and the second term of the right hand side vanish. By (2.1.39)

∆y

(∣∣∣∣ i

h

(
∂zφ+(κ−1(y), z)−∂zφ+(x+(z), z)

)∣∣∣∣2)∣∣∣∣
y=0

= 2h−2
∣∣∣∣ d

d y
κ−1(0)

∣∣∣∣2

.

Thus, since χe (κ−1(0), z) =χe (x+(z), z) = 1 (cf. Definition 2.1.2),

(∆y u)(0) = 2|a(z;h)|2
h2|κ′(x+(z))|3 .
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Using (2.4.12)and (2.1.10), we have that

(∆y u)(0) = 1p
2πh2

(−Im g ′(x+(z))
)−1 +O (h−1)

which yields

Ih = −1

2hIm g ′(x+(z))
+O (1).

This, together with (2.4.10), yields

‖(1−Πewkb )∂z ewkb(·, z)‖2 = −1

2hIm g ′(x+(z))
+O (1).

Proof of Proposition 2.4.1. Recall that e0(z) (respectively f0(z)) denotes an eigenfunction of the z-
dependent operator Q(z) (respectively Q̃(z)). Using Definition 2.3.2, Proposition 2.3.3, Corollary
2.3.4 and the Parseval identity one computes that

(∂z X |∂z X )− |(∂z X |X )|2
‖X ‖2 =

= (∂z e0|∂z e0)−|(∂z e0|e0)|2 + (∂z f0|∂z f0)−|( f0|∂z f0)|2 +O
(
h∞)

.

Suppose that z ∈ Ω with dist(Ω,∂Σ) > 1/C . By Corollary 2.1.13 it then follows that (∂z e0|∂z e0)−
|(∂z e0|e0)|2 is equal to

(∂z ewkb |∂z ewkb)−|(∂z ewkb |ewkb)|2 +O
(
h−1e−

1
C h

)
.

LetΠewkb andΠ fwkb be as in Lemma 2.4.3 and note that

‖(1−Πewkb )∂z ewkb‖2 = ‖∂z ewkb‖2 −|(∂z ewkb |ewkb)|2 and

‖(1−Π fwkb )∂z fwkb‖2 = ‖∂z fwkb‖2 −|(∂z fwkb | fwkb)|2. (2.4.13)

Hence

(∂z X |∂z X )− |(∂z X |X )|2
‖X ‖2 =‖(1−Πewkb )∂z ewkb‖2 +‖(1−Π fwkb )∂z fwkb‖2

+O
(
h−1e−

1
C h +h∞

)
. (2.4.14)

Since {p, p}(ρ±) =−2i Im g ′(x±), it follows by Lemma 2.4.3 and (2.4.14) that

(∂z X |∂z X )− |(∂z X |X )|2
‖X ‖2 = 1

h

(
i

{p, p}(ρ+(z))
− i

{p, p}(ρ−(z))

)
+O (1) (2.4.15)

Now let us consider the case where z ∈Ω∩Ωa
η . Similar to Lemma 2.4.3 we get that

‖(1−Πeηwkb
)∂z̃ eηwkb(·, z̃)‖2

L2(S1/
p
η,
p
ηd x̃) =

−1

2h̃Im g ′(x+(z))
+O (1),

‖(1−Π f ηwkb
)∂z̃ f ηwkb(·, z̃)‖2

L2(S1/
p
η,
p
ηd x̃) =

1

2h̃Im g ′(x−(z))
+O (1),

where |Im g ′(x±(z))| ³ p
η. A rescaling argument, similar to the one in the proof of Proposition

2.1.11, and Corollary 2.1.13 then imply

(∂z e0|∂z e0)−|(∂z e0|e0)|2 = −1

2h̃Im g ′(x+(z))
+O (η−2)

and similar for (∂z f0|∂z f0)−|( f0|∂z f0)|2. Hence,

(∂z X |∂z X )− |(∂z X |X )|2
‖X ‖2 = 1

h

(
i

{p, p}(ρ+(z))
− i

{p, p}(ρ−(z))

)
+O (η−2)

with |{p, p}(ρ±(z))| ³ p
η. The statement on the derivatives of the error estimates follow by the

Stationary phase method and the usual rescaling argument.
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2.4.2 – Link with the tunneling e�ects
We will prove the following result in the light of Proposition 2.2.2.

Proposition 2.4.5. Let z ∈Ωb Σ, let X (z) be as in Definition 2.3.2 and let E−+(z) be as in Proposi-
tion 2.2.1. Let S be as in Definition 1.2.2. Then,∣∣∣∣∂z E−+(z)−E−+(z)

(∂z X (z)|X (z))

‖X (z)‖2 − (e0| f0)

∣∣∣∣≤O
(
h∞e−

S
h

)
.

Proof of Proposition 2.4.5. Apply the ∂z derivative to the first equation in (1.2.8),

(Ph − z)∂z e0 −e0 = ∂zα0 · f0 +α0∂z f0.

Taking the scalar product with f0 (which is L2-normalized) then yields

(∂z e0|(Ph − z)∗ f0)− (e0| f0) = ∂zα0 +α0(∂z f0| f0).

Recall from Proposition 2.2.1 that E−+(z) =−α0(z) and use the second equation in (1.2.8) to see

∂z E−+(z)−E−+(z)((∂z e0|e0)− (∂z f0| f0))− (e0| f0) = 0. (2.4.16)

By Definition 2.3.2 we have the following identity

(∂z X |X ) = ∑
| j |,|k|<C1

h

(
∂z ê0(z; j ) f̂0(z;k)+ ê0(z; j )∂z f̂0(z;k)

)(
ê0(z; j ) f̂0(z;k)

)
.

Proposition 2.3.3, Corollary 2.3.4 and the Parseval identity then imply

(∂z X |X )

‖X ‖2 = (∂z e0|e0)+ ( f0|∂z f0)+O
(
h∞)

. (2.4.17)

Note that in the above we also used that e0 and f0 are normalized. Since ( f0|∂z f0) =−(∂z f0| f0) we
conclude by the triangular inequality∣∣∣∣∂z E−+(z)−E−+(z)

(∂z X (z)|X (z))

‖X (z)‖2 − (e0| f0)

∣∣∣∣≤O (h∞)|E−+(z)|.

The statement of the proposition then follows by the estimate |E−+(z)| = O
(
η

1
4 h

1
2 e−

S
h

)
given in

Proposition 2.2.6.

2.5 | Preparations for the distribution of eigenvalues of Pδ
h

To calculate the intensity measure of Ξwe make use of the following observations:

2.5.1 – Counting zeros
Lemma 2.5.1. LetΩ⊂C be open and convex and let g ,F :Ω−→C be C∞ such that g 6≡ 0 and

∂z g (z)+∂z F (z) · g (z) = 0 (2.5.1)

holds for all z ∈ Ω. The zeros of g form a discrete set of locally finite multiplicity.The notion of
multiplicity here is the same as for holomorphic functions, more details can be found in the proof.
Furthermore, for all ϕ ∈C0(Ω)〈

χ
( g

ε

) 1

ε2

∣∣∂z g
∣∣2 ,ϕ

〉
−→ ∑

z∈g−1(0)

ϕ(z), ε→ 0,

where χ ∈C ∞
0 (C) such that χ≥ 0 and

´
χ(w)L(d w) = 1 and the zeros are counted according to their

multiplicities.
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H

Proof. (2.5.1) implies that
eF (z)g (z) (2.5.2)

is holomorphic inΩ. g has the same zeros as the holomorphic function (2.5.2). Thus, the zeros of
g in Ω form a discrete set and the notion of the multiplicity of the zeros of g is well-defined since
we can view the zeros as those of a holomorphic function.

Let z0 ∈ g−1(0) have multiplicity n. There exists a neighborhood W ⊂ Ω of z0 such that W ∩
g−1(0) = z0. Since eF (z)g (z) is holomorphic, there exists a neighborhood U ⊂Ω of z0 and a holo-
morphic function f : U →C such that for all z ∈U

f (z) 6= 0, and eF (z)g (z) = f (z)(z − z0)n . (2.5.3)

Choose a λ > 0 such that |e−F (z) f (z)−e−F (z0) f (z0)| < |e−F (z0) f (z0)| for |z − z0| < λ. In this disk we

can define a single-valued branch of n
√

e−F (z) f (z).
We take a test function ϕ ∈C0(Ω) with

suppϕ⊂ (U ∩W ∩ {z : |z − z0| <λ}) =: N (2.5.4)

and consider for ε> 0〈
χ

( g

ε

) 1

ε2

∣∣∂z g
∣∣2 ,ϕ

〉
= 1

ε2

ˆ

N

χ

(
g (z)

ε

)
|∂z g (z)|2ϕ(z)L(d z).

Let us perform a change of variables. Define

w := g (z) = (z − z0)ne−F (z) f (z), (2.5.5)

On computes that

∂z w(z) = (z − z0)n−1e−F (z) (n f (z)+ (z − z0)(∂z f (z)−∂z F (z) f (z))
)

,

∂z w(z0) = 0. (2.5.6)

Let r0 > 0 be such that D(z0,r0) ⊂U , and define

C (r0) := min
z∈D(z0,r0)

| f (z)| and M(r0) := max
z∈D(z0,r0)

|∂z f (z)−∂z F (z) f (z)|.

By (2.5.3) it follows that C (r0) > 0 and we may assume that M(r0) > 0 since else, it follows immedi-
ately from (2.5.6) that ∂z w(z) 6= 0 for all z ∈ D(z0,r0)\{z0}.

Let 0 < r < min{C (r0)n/(2M(r0)),r0}, the triangular inequality applied to (2.5.6) then implies
that ∂z w(z) 6= 0 for all z ∈ D(z0,r )\{z0}. The implicit function theorem implies that we can invert
equation (2.5.5) for z in the disk D(z0,r )\{z0}, and w in the n-fold covering surface of w(D(z0,r )\{z0}).
Thus, if we denote the domain on each leaf of the covering by Bk , for k = 1, . . . ,n, as a subset ofC,
and the respective branch of g by gk we get for ε> 0 small enough〈

χ
( g

ε

) 1

ε2

∣∣∂z g
∣∣2 ,ϕ

〉
=

n∑
k=1

1

ε2

ˆ
Bk

ϕ(g−1
k (w))χ

( w

ε

)
(1+O (w2))L(d w),

with g−1
k (0) = z0. In the above we used that

L(d w) = (|∂z g (z)|2 −|∂z g (z)|2)Ld(z)

and the ∂-equation (2.5.1) which implies

|∂z g (z)|2 = |∂z F (z)g (z)|2 =O (w2).

Thus we can conclude〈
χ

( g

ε

) 1

ε2

∣∣∂z g
∣∣2 ,ϕ

〉
−→

n∑
k=1

ϕ(z(0)) = nϕ(z0), for ε→ 0. (2.5.7)
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Since g has at most countably many zeros inΩ, there exists some index set I ⊂N such that we can
denote the set of zeros of g in Ω by {zi }i∈I := g−1(0)∩Ω. Furthermore, let m(i ) for all i ∈ I denote
the multiplicity of the respective zero zi .
For each zero zi we can construct a neighborhood Ni , as above, such that for a test function with
support in Ni we have the convergence as in (2.5.7). By potentially shrinking the Ni we can gain
Ni ∩N j =; for i 6= j . Consider the following locally finite open covering ofΩ

Ω=
(⋃

i∈I
Ni

)
∪ (Ω\{zi : i ∈ I }) .

Let {χi }i∈I∪{0} be a partition of unity subordinate to this open covering such that

1 = ∑
i∈I
χi +χ0.

Here χi ∈ C ∞
0 (Ni ) and χi ≡ 1 in a neighborhood of zi for all i ∈ I . Furthermore, χ0 ∈ C ∞(Ω) and

zi ∉ suppχ0 for all i ∈ I . Let ϕ ∈C0(Ω) be an arbitrary test function. By (2.5.7) we have for ε→ 0〈
χ

( g

ε

) 1

ε2

∣∣∂z g
∣∣2 ,ϕ

〉
= ∑

i∈I

〈
χ

( g

ε

) 1

ε2

∣∣∂z g
∣∣2 ,χiϕ

〉
→ ∑

i∈I
m(i )χi (zi )ϕ(zi ).

Since g (z) 6= 0 for all z ∈ suppχ0 we have for ε> 0 small enough〈
χ

( g

ε

) 1

ε2

∣∣∂z g
∣∣2 ,χ0ϕ

〉
= 0

and we can conclude the statement of the Lemma.

2.5.2 – An implicit function theorem
Lemma 2.5.2. Let R > 0 and a > c ≥ 0 be constants. Let D(0,R) ⊂ C be the open disk of radius R
centered at 0 and let g , f : D(0,R) −→C be holomorphic such that

‖g‖∞ ≤ c, and for all z ∈ D(0,R) : ∂z f (z) = a + g (z). (2.5.8)

Assume that
ξ ∈ D

(
f (0), (a − c)R

)⊂C.

Then the equation
f (z) = ξ

has exactly one solution z = z(ξ) ∈ D(0,R) and it depends holomorphically on ξ.

Proof. For z ∈ D(0,R)

f (z) =
ˆ z

0

(
a + g (w)

)
d w + f (0) = az + f (0)+G(z),

where G(z) := ´ z
0 g (w)d w . Now let us consider the equation

az + f (0)−ξ= 0.

The unique solution lies in the disk D(0,R) since

|ξ− f (0)|
a

< |a − c|
a

R < R.

Now consider for ε> 0 and for z ∈ D(0,R −ε) the equation

f (z)−ξ= az + f (0)−ξ+G(z) = 0.
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Recall that ξ ∈ D
(

f (0), (a − c)R
)

which implies that there exists a ε(ξ) > 0 such that |ξ− f (0)| ≤
(a − c)(R −ε(ξ)). Thus for all ε< ε(ξ)

|az + f (0)−ξ| ≥ |az|− | f (0)−ξ| > a|z|− (a − c)(R −ε)

and, using that |G(z)| ≤ c|z|, we may conclude that for |z| = R −ε

|G(z)| < |az + f (0)−ξ|.

By Rouché’s theorem we have that az + f (0)− ξ and f (z)− ξ have the same number of zeros in
the disk D (0,R −ε). We also see that f (z)− ξ has no zero in D (0,R)\D (0,R −ε) and the result
follows.

Proposition 2.5.3. Let a > c ≥ 0 be constants, n ∈N, letΩ⊂Cn be open, bounded and of the form

Ω= {z = (z ′, zn) ∈Cn : z ′ ∈Ω′, |zn | < Rz ′}

where Rz ′ > 0 is continuous in z ′. Furthermore, assume that

• g ,F :Ω−→C are holomorphic such that

‖g‖∞ ≤ c, and for all z ∈Ω : ∂zn F (z) = a + g (z), (2.5.9)

• ΓbΩ′ is open so that inf
z ′∈Γ

Rz ′ ≥ const. > 0,

• ξ ∈⋂
z ′∈ΓD

(
F (z ′,0), (a − c)Rz ′

)⊂C.

Then, when z ′ ∈ Γ, the equation
F (z ′, zn) = ξ

has exactly one solution zn(z ′,ξ) ∈ D(0,Rz ′) and it depends holomorphically on ξ and on z ′ ∈ Γ.

Proof. Lemma 2.5.2 implies the existence an uniqueness of the solutions
zn(z ′,ξ) in each disk D(0,Rz ′). By (2.5.9) it follows that

∂F

∂zn
(z ′, zn(z ′,ξ)) 6= 0

for all z ′ ∈ Γ and all ξ ∈ D
(
F (z ′,0), (a − c)(Rz ′ −λ)

)
. Hence, the implicit function theorem implies

that zn(z ′,ξ) depends holomorphically on ξ and z ′.

2.6 | A formula for the intensity measure of the point process of
eigenvalues of Pδ

h

We prove the following formula for the intensity measure of Ξ (cf (1.2.10)):

Proposition 2.6.1. Let h2/3 ¿ η < const. and let Ω := Ωa
η b Σ. Let C > 0 and let C1 > 0 be as in

(1.1.10) such that C −C1 > 0 is large enough. Let δ be as in Hypothesis 1.2.6 with κ > 4, define
N := (2bC1/hc+1)2 and let B(0,R) ⊂CN be the ball of radius R :=C h−1 centered at zero. For z ∈Ω
let X (z) be as in Definition 2.3.2, let E−+(z) be as in Proposition 2.2.1 and let e0 and f0 be as in (1.2.6)
and (1.2.9). There exist functions

Ψ(z;h,δ) = (∂z X |∂z X )− 1

‖X ‖2
|(∂z X |X )|2

+δ−2
∣∣(e0| f0)(1+O

(
h∞)

)+O
(
η1/4δ2h−7/2)∣∣2 +O

(
δ3h−3) , (2.6.1)

Θ(z;h,δ) = |E−+(z)+O
(
δ2η−1/4h−5/2

) |2
δ2‖X (z)‖2 , (2.6.2)
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and D > 0 and C̃ > 0 such that for all ϕ ∈C0(Ω) and for h > 0 small enough

E
[
Ξ(ϕ)1B(0,R)

]=ˆ ϕ(z)
1+O

(
δη−1/4h−3/2

)
π‖X ‖2 Ψ(z;h,δ)e−Θ(z;h,δ)L(d z)

+O
(
e−

D
h2

)
.

Here, O
(
η−1/4δh−3/2

)
is independent of ϕ and O

(
e−

D
h2

)
means 〈Th ,ϕ〉 where Th ∈ D′(C) such that

|〈Th ,ϕ〉| ≤C‖ϕ‖∞e−
D
h2 for all ϕ ∈ C0(Ω) where C and D is independent of h, δ, η and ϕ. Moreover,

the estimates in (2.6.1) and (2.6.2) are stable under application of η−
n+m

2 hn+m∂n
z ∂

m
z

.

Proof. Step I Recall from Sections 2.2 and 2.3 thatσ(Pδ
h ) = (Eδ−+)−1(0), thusΞ (cf. Definition 1.2.10)

satisfies
Ξ= ∑

z∈(Eδ−+)−1(0)

δz .

It has been shown in [67], that Eδ−+(z) satisfies a ∂-equation, i.e. there exists a smooth function
f δ :Ω→C such that

∂z Eδ
−+(z)+ f δ(z)Eδ

−+(z) = 0.

This implies that the zeros of Eδ−+(z) are isolated and countable and we may use the same notion
of multiplicity as for holomorphic functions. In particular, Eδ−+(z) satisfies condition (2.5.1). Let
χ be as in Lemma 2.5.1, then by Lemma 2.5.1, Fubini’s theorem and the dominated convergence
theorem we have

E

 ∑
z∈(Eδ−+)−1(0)

ϕ(z) 1B(0,R)

= lim
ε→0

ˆ
ϕ(z)

(ˆ
B(0,R)

D(z,α)L(dα)

)
L(d z),

where D(z,α) =π−Nχ

(
Eδ−+(z,α)

ε

)
1

ε2

∣∣∣∂z Eδ
−+(z,α)

∣∣∣2
e−αα. (2.6.3)

Step II Next we give an estimate on ∂z Eδ−+(z). By (2.3.2)

∂z Eδ
−+(z) = ∂z E−+(z)−δ (∂z X (z) ·α+∂z T (z,α)) , (2.6.4)

where the derivative ∂z acts on X (z) component wise and the dot-product ∂z X (z)·α is bilinear. To
estimate ∂z T (z,α), recall (2.3.3) and consider the derivative

∂z E−Qω(EQω)nE+ = (∂z E−)Qω(EQω)nE+

+E−Qω

[
n∑

j=1
(EQω) j−1 (∂z E)Qω (EQω)n− j

]
E++E−Qω(EQω)n(∂z E+),

with the convention (EQω)0 = 1. Recall the Grushin problem from Proposition 2.2.1 and take the
derivative with respect to z of the relation E (z)P (z) = 1 to obtain

∂zE (z)+E (z)(∂zP (z))E (z) = 0.

A direct calculation yields

∂z E =−E(∂z (Ph − z))E −E+(∂z R+)E −E(∂z R−)E−
= E 2 −E+(∂z R+)E −E(∂z R−)E−.

Recall the definition of R+ and R− given in (2.2.1). By the estimates on the z- and z- derivatives of
e0 and f0 given in Lemma 2.1.11, we conclude that

‖∂z R+‖H 1→C,‖∂z R−‖C→L2 =O
(
η1/2h−1) .
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Similarly, we have the same estimates on ‖∂z E+‖C→L2 and ‖∂z E−‖H 1→C. Thus, since ‖E(z)‖L2→H 1 =
O ((h

p
η)−1/2) and ‖E±‖ =O (1), we have

‖∂z E‖L2→H 1 =O (η1/4h−3/2).

Putting all of this together, we get that the series of ∂z T (z,α) converges again geometrically and
we gain the estimate

∂z T (z,α) =O
(
η1/4δh−7/2) . (2.6.5)

Analogously, we conclude for all β ∈N2

η−
|β|
2 h|β|∂β

zz
T (z,α) =O

(
η−1/4δh−5/2) . (2.6.6)

Thus,
∂z Eδ

−+(z) = ∂z E−+(z)−δ∂z X (z) ·α+O
(
η1/4δh−7/2) .

Step III Consider the integral (2.6.3) and choose vectors e1,e2, · · · ∈ CN as a basis of the α-space
such that e1 = X /‖X ‖ and such that e1,e2 and X /‖X ‖,∂z X span the same space: Therefore, we
perform a unitary transformation in the α-space such that with a slight abuse of notion

α=α1
X (z)

‖X (z)‖ +α2b

(
∂z X (z)

‖∂z X (z)‖ − (∂z X (z)|X (z))X (z)

‖∂z X (z)‖ ‖X (z)‖2

)
+α⊥, (2.6.7)

where α1,α2 ∈C and α⊥ ∈CN−3 and b > 0 is a factor of normalization,

b = ‖∂z X (z)‖ ‖X (z)‖√
‖∂z X (z)‖2 ‖X (z)‖2 −|(∂z X (z)|X (z))|2

. (2.6.8)

This change of variables is well defined by Lemma 2.4.1. In the following we will also use the
notation (α1,α2,α⊥) = (α1,α′). This choice of basis yields by (2.3.3) and (2.3.2)

Eδ
−+(z) = E−+(z)−δ‖X (z)‖α1 +O

(
η−1/4δ2h−5/2) (2.6.9)

and by (2.6.4), (2.6.7), (2.6.8)

∂z Eδ
−+(z) = ∂z E−+(z)−δ (∂z X (z)|X (z))

‖X (z)‖ α1

−δ
(
‖∂z X (z)‖2 − |(∂z X (z)|X (z))|2

‖X (z)‖2

) 1
2

α2 +O
(
η1/4δ2h−7/2) . (2.6.10)

Now let us split the ball B(0,R), R = C h−1, into two pieces: pick C0 > 0 such that 0 < C1 < C0 < C
and define R0 := C0h−1. Then we shall consider one piece such that ‖α′‖CN−1 < R0 and the other
such that ‖α′‖CN−1 > R0. Hence, (2.6.3) is equal to

lim
ε→0

ˆ
ϕ(z)

ˆ

B(0,R)
‖α′‖CN−1<R0

D(z,α)L(dα)L(d z)+ lim
ε→0

ˆ
ϕ(z)

ˆ

B(0,R)
‖α′‖CN−1>R0

D(z,α)L(dα)L(d z)

=: I1(ϕ)+ I2(ϕ). (2.6.11)

Step IV In this step we will calculate I1(ϕ) of (2.6.11). There we perform a change of variables such
that β := Eδ−+(z,α) is one of them. Due to (2.6.9) it is natural to express α1 as a function of β and
α′. To this purpose we will apply Proposition 2.5.3 to the function Eδ−+(z,α):
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Eδ−+(z,α1,α′) is holomorphic in α in ball of radius R = C h−1 centered at 0. Here, α plays the
role of z in the Proposition, in particular α1 plays the role of zn . Recall (2.3.2) and note that since
T (z,α) =O

(
η−1/4δh−5/2

)
(cf. (2.3.3)) we can conclude by the Cauchy inequalities that

∂α1δT (z,α) =O
(
η−1/4δ2h−3/2)

which implies
∂α1 Eδ

−+(z,α1,α′) =−δ‖X (z)‖+O
(
η−1/4δ2h−3/2) . (2.6.12)

By Proposition 2.3.3 we have that ‖X (z)‖ = 1+O (h∞) which implies that

∂α1 Eδ
−+(z,α1,α′) =−δ(

1+O
(
h∞+η−1/4δh−3/2)) .

Hence, Eδ−+(z,α) satisfies the assumptions of Proposition 2.5.3. Since we restrictedα′ to ‖α′‖CN−1 < R0

and since
|α1| < R2 −‖α′‖CN−1 =: Rα′ ,

it follows by Proposition 2.5.3 that for

β ∈ ⋂
‖α′‖CN−1<R0

D
(
Eδ
−+(z,0,α′),rα′

)
(2.6.13)

with

rα′ ≥ δ(
1+O

(
h∞+η−1/4δh−3/2)) √

C 2 −C 2
0

h
≥ δh−1

³ 1
> 0. (2.6.14)

and h > 0 small enough, β = Eδ−+(z,α1,α′) has exactly one solution α1(β,α′) in the disk D(0,Rα′)
and it depends holomorphically on β and α′. More precisely,

α1(β,α′) = −β+E−+(z)+O
(
η−1/4δ2h−5/2

)
δ‖X (z)‖ . (2.6.15)

Furthermore,
L(dα) = |∂α1 Eδ

−+|−2L(dβ)L(dα′).

Since the support of χ is compact, we can restrict our attention to β and Eδ−+(z,0,α′) in a small
disk of radius ε > 0 centered at 0. By choosing ε < δh−1/C , C > 0 large enough, as in (2.6.14) we
see that β,Eδ−+(z,0,α′) ∈ D(0,ε) implies (2.6.13). By performing this change of variables and by
picking ε> 0 small enough as above, we get

I1(ϕ) = lim
ε→0

ˆ
ϕ(z)


ˆ

C

χ

(
β

ε

)
1

ε2Λ(β, z)L(dβ)

L(d z), (2.6.16)

where Λ(β, z) depends smoothly on z and on β and, using (2.6.10), is given by

Λ(β, z) :=π−N
ˆ

‖α′‖CN−1<R0

1B(0,R)(α1,α′)
∣∣∣∂α1 Eδ

−+(α1,α′, z)
∣∣∣−2

·
∣∣∣∣A(α, z)−β (∂z X (z)|X (z))

‖X (z)‖2 −B(z)α2 +O
(
η1/4δ2h−7/2)∣∣∣∣2

·exp

{
−α′α′−

∣∣∣∣∣−β+E−+(z)+O
(
η−1/4δ2h−5/2

)
δ‖X (z)‖

∣∣∣∣∣
2}

L(dα′), (2.6.17)

where where α1 =α1(β,α′, z) and A(α, z),B(z) are defined as follows:

A(α, z) : = ∂z E−+(z)− (∂z X (z)|X (z))

‖X (z)‖2

(
E−+(z)+O

(
η−1/4δ2h−5/2))

+O
(
η1/4δ2h−7/2)

= (e0| f0)(1+O
(
h∞)

)+O
(
η1/4δ2h−7/2)

=O

(
η3/4h− 1

2 e−
³η3/2

h

)
+O

(
η1/4δ2h−7/2) . (2.6.18)
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The second identity for A is due to Proposition 2.4.5 and the following estimate∣∣∣∣ (∂z X (z)|X (z))

‖X (z)‖2

∣∣∣∣≤ ‖∂z X (z)‖
‖X (z)‖ = (

1+O
(
h∞))

O
(
η1/2h−1)=O

(
η1/2h−1)

which follows from Propositions 2.3.3 and 2.3.4. In the last line we used Proposition 2.2.6 together
with (2.1.5). Furthermore, recall by Step II and Step III that A(α, z) is holomorphic in α.

Similarly, we define

B(z) := δ
(
‖∂z X (z)‖2 − |(∂z X (z)|X (z))|2

‖X (z)‖2

) 1
2

=O
(
η−1/4δh− 1

2

)
. (2.6.19)

The estimate in (2.6.19) follows from Proposition 2.4.1.

Remark 2.6.2. It follows from Proposition 2.4.5, Proposition 2.2.6, Proposition 2.3.4 and from
(2.6.6) that

η−
n+m

2 hn+m∂n
z ∂

m
z A(z) =O

(
η3/4h− 1

2 e−
³η3/2

h

)
+O

(
η1/4δ2h−7/2) ,

η−
n+m

2 hn+m∂n
z ∂

m
z B(z) =O

(
η−1/4δh− 1

2

)
. (2.6.20)

Since Λ(β, z) is continuous in β, the dominated convergence theorem shows that

I1(ϕ) =
ˆ
ϕ(z)Λ(0, z)L(d z).

Next, let us look at the indicator function 1B(0,R)(α1(β,α′, z),α′) for ‖α′‖ < R0: By (2.6.15) we have

|α1(0,α′)| =
∣∣E−+(z)+O

(
δ2h−5/2

)∣∣
δ‖X (z)‖ .

Thus,1B(0,R)(α1(0,α′, z),α′) = 1 if |α1(0,α′)|2 ≤ R2−R2
0 = C̃ 2

h2 , ‖α′‖ < R2
0 and if R2−R2

0 < |α1(0,α′)|2 <
R2, ‖α′‖ < R2

0 − |α1(0,α′)|2, and 1B(0,R)(α1(0,α′, z),α′) = 0 if R2 ≤ |α1(0,α′)|2, with C̃ 2 := C 2 −C 2
0 .

Hence, we splitΛ(0, z) into

Λ(0, z) =Λ(0, z)

(
1

{
p
Θ(z;h,δ)≤ C̃

h }
(z)+1{

C̃
h <

p
Θ(z;h,δ)<R

}(z)

)
=:Λ1(0, z)+Λ2(0, z), (2.6.21)

where

Θ(z;h,δ) := |E−+(z)+O
(
δ2η−1/4h−5/2

) |2
δ2‖X (z)‖2 .

We start by treatingΛ1. Note that the function

{‖α′‖CN−1 < R0} 3α′ 7−→ exp
{
− ∣∣α1(0,α′, z)

∣∣2
}
∈ [0,1]

is continuous, bounded and recall that (2.6.15) holds for all α′ ∈ {‖α′‖CN−1 < R0}. Furthermore,
note that all factors in the integral (2.6.17) are positive. Since the ball {‖α′‖CN−1 < R0} is simply
connected the intermediate value theorem yields

Λ1(0, z) =π−N1
{
p
Θ(z;h,δ)≤ C̃

h }
(z)

∣∣δ‖X (z)‖+O
(
η−1/4δ2h−3/2)∣∣−2

·exp{−Θ(z;h,δ)}

ˆ

‖α′‖CN−1<R0

|A(α, z)−δB(z)α2|2 e−α
′α′

L(dα′). (2.6.22)

Here we also applied (2.6.12). Before we can further simplify (2.6.22), let us prove the following
technical Lemma:
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Lemma 2.6.3. Let h > 0, let C0,C1 > 0 and let N := (2bC1
h c+1)2. Let n ∈NN−1,m ∈NN−1, let R0 =

C0/h and let α ∈CN . If C0 >C1 > 0 are large enough and such that

ln

(
2+ eR2

0

N −2

)
< R2

0

2(N −2)
,

then, for h > 0 small enough, there exists a constant Dn,m =: D > 0 such that∣∣∣∣∣π1−N
ˆ
‖α′‖CN−1≥R0

α′nα′me−α
′α′

L(dα′)

∣∣∣∣∣=O
(
e−

D
h2

)
.

Proof. Define

2u :=
{
|n|+ |m|, if it is even

|n|+ |m|+1, else

and notice ∣∣∣∣∣π1−N
ˆ
‖α′‖CN−1≥R0

α′nα′me−α
′α′

L(dα′)

∣∣∣∣∣
≤π1−N

∣∣S2N−3
∣∣ˆ ∞

R0

r 2u+2N−3e−r 2
dr = 2

(N −2)!

ˆ ∞

R2
0

τu+N−2e−τdτ.

Repeated partial integration then yields

2

(N −2)!
e−R2

0

u+N−2∑
i=0

(
u +N −2

i

)
(u +N −2− i )!R2i

0 . (2.6.23)

Using Stirling’s formula one gets that (2.6.23)≤

e
p

(u +N −2)

(N −2)!
e−R2

0

u+N−2∑
i=0

(
u +N −2

i

)(
u +N −2

e

)u+N−2−i

R2i
0

≤ e
p

(u +N −2)p
2π(N −2)

e−R2
0

( e

N −2

)N−2
(
R2

0 +
u +N −2

e

)u+N−2

= e−R2
0

ep
2π

√
1+ u

N −2

(
R2

0e

N −2
+1+ u

N −2

)N−2 (
R2

0 +
u +N −2

e

)u

.

Since u/(N −2) is bounded for h > 0 small, it remains to consider

exp

{
−R2

0 + (N −2)ln

(
R2

0e

N −2
+1+ u

N −2

)
+u ln

(
R2

0 +
u +N −2

e

)}
. (2.6.24)

However, there exists a 1 > κ> 0 such that

−R2
0 + (N −2)ln

(
R2

0e

N −2
+1+ u

N −2

)
≤−R2

0κ=−C 2
0

h2 ,

which implies that (2.6.24) is dominated by

exp

{
−C 2

0

h2

(
κ− h2

O (1)
ln(h)

)}
,

and we conclude the statement of the Lemma for h > 0 small enough.
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Let us return to (2.6.22): We are interested in the integral

π−N
ˆ

‖α′‖CN−1<R0

|A−Bα2|2 exp
{
−α′α′

}
L(dα′). (2.6.25)

We will investigate each term of (2.6.25) separately. Since B is constant in α and since

ˆ
|α2|2 exp(−α′α′)L(dα′) =πN−1,

we conclude, by Lemma 2.6.3 for C0 > C1 > 0 large enough and h > 0 small enough, that there
exists a constant D > 0 such that

π−N
ˆ

‖α′‖CN−1<R0

|Bα2|2e−α
′α′

L(dα′) =π−1|B |2 +O
(
η−

1
2δ2h−1e−

D
h2

)
.

The mean value theorem, (2.6.18) and Lemma 2.6.3 imply that there exists a constant D > 0 (not
necessarily the same as above) such that

π−N
ˆ

‖α′‖CN−1<R0

|A|2 exp
{
−α′α′

}
L(dα′) =π−1|A|2 +O

(
e−

D
h2

)
.

Note that after the equality sign we have A = A(α̃′, z) for an α̃′ ∈ B(0,R0) given by the mean value
theorem. Next, since (2.6.19) is independent of α,

π−N
ˆ

‖α′‖CN−1<R0

ABα2e−α
′α′

L(dα′) =π−N B

ˆ

‖α′‖CN−1<R0

Aα2e−α
′α′

L(dα′).

Since A(α, z) is holomorphic in α we gain from (2.6.18) by the Cauchy inequalities

|∂α2 A| =O
(
η1/4δ2h−5/2) . (2.6.26)

Here we used that the first term in (2.6.18) is independent of α. Extend A to a function on CN−1

such that the above estimate still holds. Then, by Lemma 2.6.3 there exists a constant D > 0 such
that

π−N B

ˆ

‖α′‖CN−1≥R0

Aα2e−α
′α′

L(dα′) =O

(
η1/2h−1δe−

³η3/2

h +δ3h−4
)

e−
D
h2 .

Here we used (2.6.18) and (2.6.19). Stokes’ theorem and (2.6.26) imply

π−N B

ˆ
CN−1

Aα2e−α
′α′

L(dα′) =π−N B

ˆ
CN−1

(
∂α2

A
)

e−α
′α′

L(dα′)

≤O
(
δ3h−3) .

Plugging the above into (2.6.25), we gather that there exist a constant D > 0 such that

π−N
ˆ

‖α′‖CN−1<R0

|A−Bα2|2 exp
{
−α′α′

}
L(dα′)

=π−1 (|A(z)|2 +|B(z)|2)+O
(
δ3h−3 +e−

D
h2

)
=: δ2Ψ(z,h,δ). (2.6.27)
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By (2.6.18) and (2.6.19), we see that π−1(|A(z)|2 +|B(z)|2) is equal to

δ2

π

(
(∂z X |∂z X )− 1

‖X ‖2
|(∂z X |X )|2

+δ−2
∣∣(e0| f0)(1+O

(
h∞)

)+O
(
η1/4δ2h−7/2)∣∣2

)
.

The above, (2.6.27), (2.6.22) and

∣∣δ‖X (z)‖+O
(
η−1/4δ2h−3/2)∣∣−2 =

(
1+O

(
η−1/4δh−3/2

))
δ2π‖X (z)‖2 ,

imply that for h > 0 small enough, there exists a constant D > 0 such that

Λ1(0, z) :=
(
1+O

(
η−1/4δh−3/2

))
π‖X (z)‖2 1

{
p
Θ(z;h,δ)≤ C̃

h }
(z)Ψ(z,h,δ)exp−Θ(z;h,δ) . (2.6.28)

Finally, let us estimate Λ2 from (2.6.21): applying (2.6.18), (2.6.19) and Lemma 2.6.3 to (2.6.17)
yields

Λ2(0, z) ≤ e−
C̃

h2 O

(
δ4η1/2h−7 +η1/2h−1δe−

³η3/2

h

)
=O

(
e−

D
h2

)
,

for some D > 0. Thus, we can substitute 1
{
p
Θ(z;h,δ)≤ C̃

h }
(z) with 1 in (2.6.28), up to an error of order

O(e−
D
h2 ).

Step V In this step we will estimate I2(ϕ) of (2.6.11). Therefore, we increase the space of inte-
gration

ˆ

B(0,R)
‖α′‖CN−1>R0

χ

(
Eδ−+(z,α)

ε

)
1

ε2

∣∣∣∂z Eδ
−+(z,α)

∣∣∣2
e−ααL(dα)

≤
ˆ

B(0,2R)
R0<‖α′‖CN−1<2R0

χ

(
Eδ−+(z,α)

ε

)
1

ε2

∣∣∣∂z Eδ
−+(z,α)

∣∣∣2
e−ααL(dα) =: Wε.

It is easy to see that Lemma 2.5.2 holds true for the set B(0,2R)∩ {R0 < ‖α′‖CN−1 < 2R0}, potentially
by choosing a larger C > 0 in Corollary 1.1.5 larger. We can proceed as in Step IV: perform the same
change of variables and the limit of ε→ 0. This yields

lim
ε→0

Wε =π−N
ˆ

R0<‖α′‖CN−1<2R0

1B(0,2R)(α1(0,α′, z),α′)
∣∣∂α1β(α1,α′, z)

∣∣−2

· |A(α, z)−B(z)α2|2 exp
{
−α′α′−Λ(z,h,δ)2

}
L(dα′).

By (2.6.18), (2.6.19) and Lemma 2.6.3 we see that there exists a constant D > 0 such that

π−N
ˆ

R0<‖α′‖CN−1<2R0

|A−Bα2|2e−α
′α′

L(dα′)

≤ e−
D̃
h2 O

(
δ4η1/2h−7 +η1/2h−1δe−

³η3/2

h

)
=O

(
e−

D
h2

)
.

The statement about the derivatives of the error terms follows from (2.6.20), (2.6.6).
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2.7 | Average Density of Eigenvalues

First, we will give the proof the principal result of Section 1.2:

Proof of Theorem 1.2.12. Due to (1.1.15) and Hypothesis 1.1.6 we have that, for κ > 4 (as in Hy-

pothesis 1.2.6) large enough, that (1.1.16) holds. Therefore, we assume that
(
h ln 1

h

)2/3 ¿ η ≤ C ,
where C > 0 is a constant.

In particular, we now strengthen assumption (2.1.1) and assume from now on that Ωb Σ sat-
isfies Hypothesis 1.1.7 if nothing else is specified, i.e. we assume that

ΩbΣ is open, relatively compact with dist(Ω,∂Σ) À (
h lnh−1)2/3

.

Recall the definition ofΩa
η ∩Ω given in (2.1.2):

Ωa
η =

{
z ∈Ω :

η

C
≤ Im z ≤Cη

}
for some constant C > 0. Define

Ω̃a
η :=

{
z ∈Ω :

η

2C
≤ Im z ≤ 2Cη

}
.

Define η j :=C− j , j ∈N0, and consider the open covering ofΩ

Ω⊂ ⋃
j∈N0

Ω̃a
η j
∪

(
Ω\

⋃
j∈N0

Ωa
η j

)
,

where dist(Ω\
⋃

j∈N0
Ωa
η j

,∂Σ) > 1/C , thus, conforming with the previous notation, we may define

Ωi :=Ω\
⋃

j∈N0

Ωa
η j

.

Let {χη j } j∈N0 be a partition of unity subordinate to this locally finite open subcovering such that

1 = ∑
j∈N

χη j +χη0 ,

in a neighborhood of Ω. Here, for j ∈ N, χη j ∈ C ∞
0 (Ω̃a

η), supported in either Ω̃a
η . Furthermore,

χη0 ∈C ∞(Ωi ). This partition of unity together with Proposition 2.6.1 yields

E
[
Ξ(ϕ)1B(0,R)

]= ∑
j∈N
E

[
Ξ(ϕχη j )1B(0,R)

]+E[
Ξ(ϕχ0)1B(0,R)

]

= ∑
j∈N

ˆ
ϕ(z)χη j (z)

1+O
(
η−1/4

j δh−3/2
)

π‖X ‖2 Ψ(z;h,δ)e−Θ j L(d z)

+
ˆ
ϕ(z)χ0(z)

1+O
(
δh−3/2

)
π‖X ‖2 Ψ(z;h,δ)e−Θ0 L(d z)+O

(
e−

D
h2

)
.

where

Θ j :=

∣∣∣E−+(z)+O
(
η−1/4

j δ2h−5/2
)∣∣∣2

δ2‖X ‖2 , Θ0 := |E−+(z)+O
(
δ2h−5/2

) |2
δ2‖X ‖2 .

Note that to gain the exponentially small error estimate in the above we used that the bound on
the distribution Th ∈ D ′(C) (cf. Proposition 2.6.1) is independent of η. Thus,∣∣∣∣∣ ∑

j∈N
〈Th ,ϕχη j 〉

∣∣∣∣∣= |〈Th ,ϕ〉| ≤C‖ϕ‖∞e−
D
h2 .
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Analysis of the density Ψ Recall the formula for the density of eigenvalues given in Proposition
2.6.1. Define

Ψ1(z;h,δ) := (∂z X |∂z X )− 1

‖X ‖2
|(∂z X |X )|2 +O

(
δ3h−3) (2.7.1)

Since the error above is of order O (1), it follows from Proposition 2.4.1 that

Ψ1(z,h,δ) = 1

h

{
i

{p, p}(ρ+(z))
− i

{p, p}(ρ−(z))

}
+O

(
dist(z,∂Σ)−2) ,

where we used that Im z ³ η j for z ∈Ωa
η j

. Proposition 2.4.2 implies

Ψ1(z,h,δ)L(d z) = 1

2h
p∗(dξ∧d x)+O

(
dist(z,∂Σ)−2)L(d z).

Furthermore, Proposition 2.6.1 and Proposition 2.4.1 yield that

η−
n+m

2 hn+m∂n
z ∂

m
z O

(
η−2

j

)
=O

(
η−2

j

)
,

where O
(
η−2

j

)
is the error term ofΨ1. Next, let us turn to the second part ofΨ:

δ−2
∣∣∣(e0| f0)(1+O

(
h∞)

)+O
(
η1/4

j δ2h−7/2
)∣∣∣2

= δ−2
∣∣(e0| f0)

∣∣2 (1+O
(
h∞)

)+O
(
η1/2

j δ2h−7
)
+O

(
η1/4

j h−7/2
∣∣(e0| f0)

∣∣)
= δ−2

∣∣(e0| f0)
∣∣2 (1+O

(
h∞)

)+O
(
η j h−4e−

S
h +η1/2

j δ2h−7
)

.

In the last line, we applied an estimate on
∣∣(e0| f0)

∣∣ which follows from Proposition 2.2.2 and from

Remark 2.2.4. The error term O (η j h−4e−
S
h ) is bounded by O (η j ) because ηÀ (−h lnh)2/3. We then

absorb O (η j ) into the error term O (η−2
j ) of Ψ1 as well as the error term O (η1/2

j δ2h−7) ≤ O (η1/2
j ).

Then, one defines

Ψ2(z;h,δ) :=
∣∣(e0| f0)

∣∣2

δ2

(
1+O

(
η−3/4

j h1/2
))

. (2.7.2)

As in (2.6.20), the error estimates don’t change if we apply η−
n+m

2 hn+m∂n
z ∂

m
z

.

Analysis of the exponential Θ Recall from Proposition 2.2.1 that −α0 = E−+ and use (2.2.26) to
find that

E−+(z) = ([Ph ,χ]e0| f0)

(
1+O

(
exp

[
−
η3/2

j

h

]))
.

Here χ ∈ C ∞
0 (S1) with χ ≡ 1 in a small open neighborhood of {x−(z); z ∈Ω}. Thus, using ‖X ‖ =

(1+O (h∞)) (cf. Proposition 2.3.3), we have the following equation forΘ given in Proposition 2.6.1

Θ(z,h,δ) =

∣∣∣E−+(z)+O
(
η−1/4

j δ2h−5/2
)∣∣∣2

δ2‖X ‖2

=

∣∣∣([Ph ,χ]e0| f0)+O
(
η−1/4

j δ2h−5/2
)∣∣∣2

δ2(1+O (h∞))

(
1+O

(
e−

η3/2
j
h

))
. (2.7.3)

As in (2.6.20), the error estimates stay invariant under the action of

η
− n+m

2
j hn+m∂n

z ∂
m
z

. Finally, to conclude the density given in the Theorem, note that

1+O
(
η−1/4

j δh−3/2
)

π‖X ‖2 = 1+O
(
dist(z,∂Σ)−1/4δh−3/2

)
π

.
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In the case of the operator Pδ
h , it is possible to state more explicit formulas for the different

parts of the density of eigenvalues given in Theorem 1.2.12:
It follows by Propositions 2.4.1 and 2.4.2 that

1

2h
p∗(dξ∧d x) = 1

h

{
i

{p, p}(ρ+(z))
+ i

{p, p}(ρ−(z))

}
L(d z)

³ 1

h
√

dist(z,∂Σ)
L(d z)

where we used that Im z ³ η j for z ∈ Ωa
η . For our purposes we can assume that |Im z −〈Im g 〉| >

1/C , C À 1, since inside this tube Ψ2 and Θ are exponentially small in h > 0. In the case of Ψ2,
this follows from the assumptions on δ (cf. Hypothesis 1.2.6) and from Remark 2.2.4. In the case
of Θ, this follows from the assumptions on δ and Proposition 2.2.12 and (2.7.3). Thus, applying
Proposition 2.2.2 to (2.7.2) yields

Ψ2(z;h,δ) =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πhδ2 |∂Im z S(z)|2e−
2S
h

(
1+O

(
η−3/4h1/2)) . (2.7.4)

As in (2.6.20), the error estimates don’t change if we applyη−
n+m

2 hn+m∂n
z ∂

m
z

. Moreover, since Im z ³
η j for z ∈Ωa

η ,

Ψ0
2(z;h,δ) ³ (dist(z,∂Σ))3/2e−

2S
h

hδ2 .

Apply Proposition 2.2.12 to (2.7.3) gives that

Θ(z,h,δ) =V (z,h)2 e−
2S
h

δ2

(
1+O

(
h∞)+O

(
e−

³η3/2
j

h

))
+O

(
η−1/2

j δ2h−5
)
+O

(
V h−5/2e−

S
h

)
. (2.7.5)

Since 0 ≤V =O
(
η1/4

j h1/2
)

by (2.2.23), it follows that

Θ(z,h,δ) =h
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

π

e−
2S
h

δ2

(
1+O

(
η−1/4

j h
3
2

))
+O

(
η−1/2

j δ2h−5
)
+O

(
η1/4

j h−2e−
S
h

)
.

Furthermore, for e−
2S
h δ−2 ≤ 1, the error term O

(
η1/4

j h−2e−
S
h

)
is bounded by O (η1/4

j h−2δ) since there

we have that e−
S
h ≤ δ. For e−

2S
h δ−2 ≤ 1, we have that

O
(
η1/4

j h−2e−
S
h

)
≤O

(
η1/4

j h−2δe−
2S
h δ−2

)
≤O

(
η1/4

j h2e−
2S
h δ−2

)
.

Thus,

Θ(z,h,δ) =h
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

π

e−
2S
h

δ2

(
1+O

(
η−1/4

j h
3
2

))
+O

(
η1/4

j h−2δ+η−1/2
j δ2h−5

)
. (2.7.6)

Analogous to (2.6.20), the error estimates stay for β ∈N2 invariant under the action of η
− |β|

2
j h|β|∂β

zz
.

Moreover,

Θ0(z;h,δ) ³ h
√

dist(z,∂Σ)
e−

2S
h

δ2 .

We have thus proven Proposition 1.2.14 and Proposition 1.2.13. Since we will need it later on we
will state the following formulas:
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Lemma 2.7.1. Under the assumptions of Theorem 1.2.12 and for
(
h lnh−1

)2/3 ¿ η< const, we have

∂Im zΨ1 =− 1

4h

(
Im g ′′(x−)

(Im g ′(x−))3 − Im g ′′(x+)

(Im g ′(x+))3

)
+O

(
η−2)=O

(
η−3/2h−1)

and for |Im z −〈Im g 〉| > 1/C , C > 0 large enough,

∂Im zΨ2(z,h) = 2
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πh2 |∂Im z S(z)|2(−∂Im z S(z))
e−

2S
h

δ2

·
(
1+O

(
η−3/4h

1
2

))
,

∂Im zΘ(z,h) =2
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πδ2 exp{−2S
h }

(−∂Im z S(z))
(
1+O

(
η−1/4h

3
2

))
+O

(
η3/4h−3δ+δ2h−6) ,

Proof. Let us first treat Ψ1: Recall from the proof of Proposition 2.4.5 that Ψ1 was given by an
oscillatory integral where the phase vanishes at the critical point. Thus, the ∂Im z derivative of the
error term O

(
η−2

)
grows at most by η−1. Thus, taking the derivative of (2.7.1) yields

∂Im zΨ1 =− 1

4h

(
Im g ′′(x−)

(Im g ′(x−))3 − Im g ′′(x+)

(Im g ′(x+))3

)
+O

(
η−3)=O

(
η−3/2h−1) ,

where the last estimate follows from |2Im g ′(x±| = |{p, p}(ρ±| ³p
η (cf. Proposition 2.4.1) and from

the fact that the z- and z-derivative of the error term grow at most by a factor of O (η1/2h−1).

Now let us turn toΨ2: one calculates from (2.7.4) that for |Im z −〈Im g 〉| > 1/C

∂Im zΨ2(z,h) =2
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πh2 |∂Im z S(z)|2(−∂Im z S(z))
e−

2S
h

δ2

·
(
1+O

(
η−3/4h

1
2

))
.

Here we used that the z- and z-derivative of the error terms grow at most by a factor of O (η1/2h−1).
Finally, let us turn to Θ: as in the proof of Proposition 2.2.3 one calculates the formula for

∂Im zΘ from (2.7.6).

2.8 | Properties of the density

In this section we will discuss and prove the results stated in Section 1.2.4.

2.8.1 – Local maximum of the average density
First, we prove the resolvent estimate given in Proposition 1.2.5.

Proof of Proposition 1.2.5. Recall from Section 1.2.2 that the operator Q(z) is self-adjoint and that
|t0(z)| = |α0(z)|. It follows that

‖(Ph − z)−1‖ = |t0(z)|−1 = |α0(z)|−1.

Recall the Grushin problem posed in Proposition 2.2.1. Since E−1−+ =−α0, it follows by Proposition
2.2.12 that

‖(Ph − z)−1‖ = exp
{ S

h

}
V (z)|1−eΦ(z)|

(
1+O

(
e−

³η
3
2

h

)) , (2.8.1)

which together with (2.2.23) implies (1.2.3). The result about the asymptotic behavior of the resol-
vent follows from the above together with the fact that |{p, p}(ρ±)| ³p

η (cf. Proposition 2.4.1).
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We have split the proof of Proposition 1.2.15 into the following two Lemmata:

Lemma 2.8.1. Let z ∈ΩbΣc,d withΣc,d as in (1.2.16) and let S(z) be as in Definition 1.2.2. Let δ> 0
and ε(h) be as in Hypothesis 1.2.6 with κ> 1 large enough. Moreover, let E−+(z) be as in Proposition
2.2.1. Then,

• for 0 < h ¿ 1, there exist numbers y±(h) such that ε0 = S(y±(h)) with

C−1 (
h lnh−1) 2

3 ¿ y−(h) < 〈Im g 〉− ch lnh−1

< 〈Im g 〉+ ch lnh−1 < y+(h) ¿ Im g (b)−C−1 (
h lnh−1) 2

3 ,

for some constants C ,c > 1. Furthermore,

y−(h), (Im g (b)− y+(h)) ³ (ε0(h))2/3;

• there exists h0 > 0 and a family of smooth curves, indexed by h ∈]h0,0[,

γh
± : ]c,d [−→Cwith Reγh

±(t ) = t

such that
|E−+(γh

±(t ))| = δ,

and

Imγh
±(t ) = y±(ε0(h))

(
1+O

(
h

ε0(h)

))
.

Furthermore, there exists a constant C > 0 such that

dImγh
±

d t
(t ) =O

(
exp

[
−ε0(h)

C h

])
.

Lemma 2.8.2. Assume the same hypothesis as in Lemma 2.8.1 and let

D(z,h) :=
1+O

(
δh− 3

2 dist(z,∂Σ)−1/4
)

π
Ψ(z;h,δ)exp{−Θ(z;h,δ)}

be the average density of eigenvalues of the operator of Pδ
h given in Theorem 1.2.12. Then, there exists

h0 > 0 and a family of smooth curves, indexed by h ∈]h0,0[,

Γh
± : ]c,d [−→C, ReΓh

±(t ) = t ,

with Γ− ⊂ {Im z < 〈Im g 〉} and Γ+ ⊂ {Im z > 〈Im g 〉}, along which Im z 7→ D(z,h) takes its local max-
ima on the vertical line Re z = const. and

d

d t
ImΓh

±(t ) =O

(
h4

ε0(h)4

)
.

Moreover, for all c < t < d

|Γh
±(t )−γh

±(t )| ≤O

(
h5

ε0(h)13/3

)
.

Proof of Proposition 1.2.15. The first two points of the proposition follow from Lemma 2.8.1 to-
gether with the observations that |E−+(z)| = |α0| = |t0(z)| (cf. Proposition 2.2.1) and that by (2.8.1)

‖(Ph −γh
±)−1‖ = δ−1.

The third point has been proven with Lemma 2.8.2.
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Proof of Lemma 2.8.1. Recall from Proposition 1.2.3 that S is strictly monotonous above and below
the spectral line, i.e. Im z = 〈Im g 〉. Furthermore, recall from Hypothesis 1.2.6 that −(

κ− 1
2

)
h lnh+

C h ≤ ε0(h) < S(〈Im g 〉). Thus, the implicit function theorem implies that there exist y±(ε0(h)) ∈R
such that S(y±(ε0(h))) = ε0(h). Note that in the case where ε0(h) is independent of h, the same
holds true for y±(ε0). For the rest of the proof we will only treat the case where Im z ≤ 〈Im g 〉
(corresponding to y−) since the other case is similar.

Consider z ∈ Ω b Σc,d with Re z = const. First, let us prove some a priori estimates: assume
that there exists a ζ− with h2/3 ¿ Im g (a) ≤ ζ− ≤ 〈Im g 〉 such that |E−+(Re z + iζ−)|δ−1 = 1. Recall
Proposition 1.2.3 and note that

S(z)−ε0(h) =
ˆ Im z

〈Im g 〉
(∂Im z S)(t )d t +S(〈Im g 〉)−ε0(h)

=
ˆ Im z

y−(ε0(h))
(∂Im z S)(t )d t +S(y−(ε0(h)))−ε0(h). (2.8.2)

Recall Proposition 2.2.12 and Hypothesis 1.2.6. It follows by (2.8.2), that if |ζ−−〈Im g 〉| ≤ 1
C , C > 0

large enough, then |E−+(Re z+iζ−)|δ−1 ≤O
(
η1/4e−

1
Dh

)
for some D > 0 large. Thus, we may assume

that, in case it exists,

|ζ−−〈Im g 〉| > 1

C
. (2.8.3)

We conclude from (2.8.2) that
y−(h) ³ (ε0(h))2/3 (2.8.4)

and that for C > 0 large enough

|〈Im g 〉− y−(ε)| > 1

C
. (2.8.5)

(2.8.4), (2.8.5) and Hypothesis 1.2.6 imply, for κ> 1 large enough, the first point of the Lemma.

Now let us prove the existence of the points ζ−. More precisely, we will prove that for z ∈ΩΣc,d

with Im z < 〈Im g 〉−1/C (cf. (2.8.3)) and fixed Re z there exist exactly one ζ− such that

|E−+(Re z,ζ−)|δ−1 = 1.

For z ∈Ω∩Ωa
η bΣc,d one calculates from by Proposition 2.2.12 that

∂Im z |E−+(z)| =
{
−V (z)

∂Im z S(z)

h
|1−eΦ(z)|

(
1+O

(
e−

³η
3
2

h

))

+ ∂Im z

[
V (z)|1−eΦ(z)|

(
1+O

(
e−

³η
3
2

h

))]}
e−

S(z)
h , (2.8.6)

Recall that V is the product of the normalization factors of the quasimodes ewkb and fwkb when
z ∈Ωwith dist(Ω,∂Σ) > 1/C and the product of the normalization factors of the quasimodes eηwkb
and f ηwkb when z ∈Ω∩Ωa

η (cf. (2.2.21)). Since the derivative with respect to Im z of the imaginary
part of their phase function Imφ± is equal to zero at x±, it follows that

|∂Im zV (z)| =O (h1/2η−3/4). (2.8.7)

The a priori bound (2.8.3) implies that there exists a constant C > 1 such that

|1−eΦ(z)| = 1+O
(
e−

1
C h

)
, and ∂Im z |1−eΦ(z)| =O

(
e−

1
C h

)
. (2.8.8)

The fact that ∂Im z S(z) > 0 (cf. (1.2.3)) implies that ∂Im z |E−+(z)| < 0. Note that in the case where
dist(Ω,∂Σ) > 1/C one sets in the above η = 1. Recall from Propositions 2.2.9 and 2.2.10 that V is
independent of Re z. Using

∂Re z |1−eΦ(z)| =O
(
e−

1
C h

)
,
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we conclude that

∂Re z |E−+(z)| = ∂Re z

[
V (z)|1−eΦ(z)|

(
1+O

(
e−

³η
3
2

h

))]
e−

S(z)
h

=O

(
e−

³η
3
2

h

)
e−

S(z)
h . (2.8.9)

This implies that the gradient |E−+(z)| is non-zero for all z with |Im z −〈Im g 〉| > 1/C (cf. (2.8.3))
and thus we may conclude by the implicit function theorem, that for δ as above there exist lo-
cally smooth curves γh−(Re z) := (Re z,ζ−(ε0(h),Re z) such that |E−+(γh−)| = δ. Furthermore, we may
extend γ−(Re z) smoothly for c < Re z < d . By the mean value theorem applied to |E−+(z)|, there
exists a ζ between y−(h) and Imγh−(Re z) such that

||E−+(Re z + i y−(h))|− |E−+(γh
−(Re z))||

= |(∂Im z |E−+(z)|)(Re z + iζ)| · |y−(h)− Imγh
−(Re z)|.

Since |E−+| = O (
p

hη1/4e−
S
h ) (cf. Proposition 2.2.6) and ∂Im z |E−+| ³ −h−1/2η3/4e−

S
h (cf. (2.8.6)), it

follows that
|y−(h)− Imγh

−(Re z)| =O
(
η−1/2h

)
. (2.8.10)

η³ y−(h) ³ (ε0(h))2/3 implies that also Imγh−(Re z) ³ η³ (ε0(h))2/3, and we conclude that

Imγh
−(Re z) = y−(ε0(h))

(
1+O

(
h

ε0(h)

))
.

Finally, by

0 = d

dRe z
|E−+(γh

−(Re z))|

= ∂Re z |E−+(γh
−(Re z))|+∂Im z |E−+(γh

−(Re z))|dImγh−
dRe z

(Re z).

and by (2.8.6 ) and (2.8.9) we may then conclude

dImγh−
dRe z

(Re z) =O

(
e−

³η3/2

h

)
(2.8.11)

which, using η³ y−(h) ³ (ε0(h))2/3, yields the last statement of the Lemma.

Proof of Lemma 2.8.2. The idea of this proof is to search for the critical points of the average den-
sity of eigenvalues via the Banach fix point theorem. We shall only consider the case where Im z ≤
〈Im g 〉 since the other case is similar.

Recall from Proposition 1.2.13 the explicit form the density given in Theorem 1.2.12. Propo-
sition 2.4.1 and the fact that Im g has exactly two critical points imply that Ψ1 is strictly mono-
tonously decreasing. Thus, we may assume similar to (2.8.3) that for C > 0 large enough

|Im z −〈Im g 〉| > 1

C
. (2.8.12)

since elseΨ2 =O (e−
1

Dh ) with D > 0 large. Now, to find the critical points of the density of eigenval-
ues consider

π∂Im z D(z,h) = (
∂Im zΨ(z;h,δ)exp{−Θ(z;h,δ)}

)(
1+O

(
δη−1/4h−3/2))

+Ψ(z;h,δ)exp{−Θ(z;h,δ)}O
(
δη1/4h−5/2)

= 0. (2.8.13)
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Here we used that the z- and z-derivative of the error term O
(
δη−1/4h−3/2

)
increases its order of

growth at most by a term of order O (η1/2h−1) (cf. Theorem 1.2.12). By

∂Im zΨ(z;h,δ)e−Θ(z;h,δ) = (∂Im zΨ1 +∂Im zΨ2 − (Ψ1 +Ψ2)∂Im zΘ)e−Θ(z;h,δ),

and by Lemma 2.7.1 and Proposition 1.2.13, we can write (2.8.13) as

h−3F (z,h,δ)+2
e−

2S
h

δ2 |∂Im z S(z)|2(−∂Im z S(z))

( i
2 {p, p}(ρ+) i

2 {p, p}(ρ−)
) 1

2

πh2

· (1+O
(
η−3/4h1/2))(1+O (η−3/2h))− h

( i
2 {p, p}(ρ+) i

2 {p, p}(ρ−)
) 1

2

πδ2 exp{−2S
h }


= 0, (2.8.14)

where F (z,h,δ) is a function depending smoothly on z, satisfying the bound

F (z,h,δ) ³− h2

η3/2
.

Here we used ∂Im zΨ1 ³ −(η3/2h)−1 which follows from Lemma 2.7.1 using the fact that Im g has
only two critical points: a minimum at a and a maximum at b.

Remark 2.8.3. In the case Im z > 〈Im g 〉 we find similarly that F (z,h,δ) ³ h2

η3/2 .

Furthermore, the functions in (2.8.14) are smooth in z and the z- and z-derivative increase
their order of growth at most by O (η1/2h−1). Recall |E−+ (z)| as given in Proposition 2.2.12 and
define

l (z) := |E−+(z)| = h
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

π

e−
2S
h

δ2 (1+O (η−3/2h))

Thus, (2.8.14) is equal to zero if and only if

G(z,h,δ)+ l (1− l ) = 0, (2.8.15)

where G(z,h,δ) is a function depending smoothly on z, satisfying

G(z,h,δ) = F (z,h,δ)

2|∂Im z S(z)|2(−∂Im z S(z))

(
1+O

(
η−3/4h1/2))³ h2

η3 .

The z- and z-derivative increase the order of growth of G at most by O (η
1
2 h−1). For l ≥ 0 to be a

solution to (2.8.15), it is necessary that

l = 1+ h2

O (1)η3 .

Thus, l ³ 1. Define the smooth function

z 7→ t (z) := η3

h2 (l (z)−1),

with −c0 ≤ t ≤C0 and c0,C0 > 0 large enough. As in (2.8.6) on calculates

h2

η3 ∂Im z t =−2∂Im z S

h

(
1+O (η−3/2h)

)
l (Im z) ³−η

1/2

h
,

where we used that ∂Im z S ³p
η (cf. Proposition 1.2.3) and that ∂Im z

( i
2 {p, p}(ρ+) i

2 {p, p}(ρ−)
) 1

2 is of
order O (η−1/2) due to the scaling z̃ = zη as in the proof of Proposition 2.1.11. The implicit function
theorem then implies that we may locally invert and that t 7→ (Im z)(t ) is smooth. Since −c0 ≤ t ≤
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C0 we may continue (Im z)(t ) smoothly to all open subsets of the domain of t . Furthermore, we
conclude that

d(Im z)

d t
³−η−7/2h3 (2.8.16)

Substitute Im z = Im z(t ) in (2.8.15). To find the critical points, it is then enough to consider

t −G̃(t ,Re z,h,δ) = 0, G̃(t ,Re z,h,δ) := G(Im z(t ),Re z,h,δ))

η−3h2(1+η−3h2t )

and one finds
d

d t
G̃(t ,Re z,h,δ)) =O (h2η−3).

Thus, using t (γh−) = 0 as starting point, which corresponds to l (γh−) = 1, the Banach fixed-point the-
orem implies that for each Re z there exist a unique zero, t∗−(Re z), of (2.8.14), it depends smoothly
on Re z and satisfies

|t∗−(Re z)− t (γh
−)| ≤O (h2η−3). (2.8.17)

and

d t∗−(Re z)

dRe z
= 1

1−
(

d
d t G̃

)
(t∗−,Re z,h,δ)

(∂Re zG̃)(t∗−,Re z,h,δ))

= 1

1+O (h2η−3)
(∂Re zG̃)(t∗−,Re z,h,δ)).

Since the z- and z-derivative applied to G increase its order of growth at most by O (η1/2h−1), we
conclude that

d t∗−(Re z)

dRe z
=O (η1/2h−1).

Taylor’s formula applied to (Im z)(t ) yields that

(Im z)(t∗±(Re z)) = Im z(t (Imγh
±(Re z)))+

ˆ t∗±(Re z)

t (Imγh
±(Re z))

dIm z

d t
(τ)dτ.

By (2.8.17) and (2.8.16) we conclude that

(Im z)(t∗±(Re z)) = Imγh
±(Re z)+O (η−13/2h5) (2.8.18)

and using (2.8.11) that
d

dRe z
(Im z)(t∗±(Re z)) =O

(
η−6h4) .

It follows by Proposition 1.2.17 that the density has local maxima along the curves Γh
±(Re z) :=

(Re z, Im z(t∗±(Re z))). Applying this definition to (2.8.18) yields that

|ImΓh
±(Re z)− Imγh

±(Re z)| ≤O (η−13/2h5)

for all z ∈Σc,d . By Lemma 2.8.1 we have that Imγh
±(Re z) ³ ε0(h)2/3. Thus,

ImΓh
±(Re z) = Imγh

±(Re z)
(
1+O (ε0(h)−5h5)

)
,

which in particular implies that ImΓh
±(Re z) ³ ε0(h)2/3. This concludes the proof of the lemma.

Proof of Proposition 1.2.17. Proposition 1.2.13 implies that for |Im z −〈Im g 〉| > 1/C

Ψ2(z,h,δ) =
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πhδ2 e−
2S
h |∂Im z S(z)|2 (

1+O
(
η−3/4h1/2)) (2.8.19)
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and

Θ(z;h,δ) = h
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

π

e−
2S
h

δ2

(
1+O

(
η−1/4h

3
2

))
+O

(
η1/4h−2δ+η−1/2δ2h−5) .

Thus, one calculates

∣∣∣∣Ψ2 − |∂Im z S|2
h2 Θ

∣∣∣∣≤
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
2

πhδ2 e−
2S
h |∂Im z S(z)|2O

(
η−

3
4 h

1
2

)
+O

(
η5/4h−4δ+η1/2δ2h−7) ,

which implies the result given in Proposition 1.2.5.

Proof of Proposition 1.2.16. We will only consider the case z ∈ Σc,d with Im z ≤ 〈Im g 〉 since the
case of Im z > 〈Im g 〉 is similar.

A priori restrictions on the domain of integration Let y−(h) and γ−(Re z) be as in Lemma
2.8.1 and note that similarly to (2.8.2), we have

S(Im z)−ε0(h) =
ˆ Imγh

−

y−(h)
(∂Im z S)(t )d t +

ˆ Im z

Imγh−
(∂Im z S)(t )d t . (2.8.20)

Recall from (2.8.10) that (Imγh−− y−(h)) = O (hη−1/2). Then, one calculates using the mean value
theorem and Proposition 1.2.3, similar as in the proof of Lemma 2.8.1 (cf. (2.8.4)), that

ˆ Imγh
−

y−(h)
(∂Im z S)(t )d t =O (h).

and that

ˆ Im z

Imγh−
(∂Im z S)(t )d t ³ (Im z − Imγh

−)η1/2,

where η should be set to 1 in case of dist(z,∂Σc,d ) > 1/C . Next, (2.8.20) and Proposition 1.2.13
imply that

Θ(z;h,δ) = η1/2

O (1)
exp

{
−³ (Im z − Imγh−)η1/2

h

}
+O

(
η1/4h−2δ+η−1/2δ2h−5) .

Here, we used that δ=p
h exp{− ε0(h)

h }; see Hypothesis 1.2.6. Thus, for Imγh− < Im z < 〈Im g 〉

exp{−Θ(z;h,δ)} =
(

1+O

(
η1/2 exp

{
− (Im z − Imγh−)η1/2

C h

}
+η1/4h2

))
(2.8.21)

and for Im z ≤ Imγh−

1

C
exp

{
−Cη1/2 exp

[
− (Im z − Imγh−)η1/2

C h

]}
≤ exp{−Θ(z;h,δ)}

≤C exp

{
−η

1/2

C
exp

[
−C (Im z − Imγh−)η1/2

h

]}
. (2.8.22)
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Similarly, by Proposition 1.2.13

Ψ2(z;h,δ) ≤ η3/2

O (1)h2

(
1+O (η−1)eΦ(z,h)

)
exp

{
− (Im z − Imγh−)η1/2

C h

}
.

Thus, for Imγ−(Re z)+αhη−1/2 ln η1/2

h ≤ Im z ≤ 〈Im g 〉 with α > 0 large enough, we see that the
average density of eigenvalues (cf. Theorem 1.2.12)

D(z,h,δ)L(d z) = 1

2h
p∗(dξ∧d x)+O (η−2)L(d z). (2.8.23)

We then conclude the first statement of the proposition.

Next, recall from Corollary 1.1.5 that restricting the probability space to the ball B(0,R) of ra-

dius R =C h−1 implies that ‖Qω‖ ≤C /h with probability ≥
(
1−e−

1
C h2

)
. It follows from

‖(Pδ
h − z)−1‖ =

∥∥∥∥(Ph − z)−1
∑

n≥1
(−δ)n (

Qω(Ph − z)−1)n
∥∥∥∥

that for z ∉ σ(Ph) such that δ‖Qω‖‖(Ph − z)−1‖ < 1, we have that z ∉ σ(Pδ
h ) with probability ≥(

1−e−
1

C h2

)
. Proposition 1.2.5 implies that with probability ≥

(
1−e−

1
C h2

)

δ‖Qω‖‖(Ph − z)−1‖ ≤ C
∣∣1−eΦ(z,h)

∣∣−1

h3/2
( i

2 {p, p}(ρ+) i
2 {p, p}(ρ−)

) 1
4

exp

{
S(z)−ε0(h)

h

}
.

Here we used as well Hypothesis 1.2.6. Since S(z) ³ η3/2, it follows that η ³ ε0(h)2/3. Using the

mean value theorem together with Proposition 2.8.1 implies that with probability ≥
(
1−e−

1
C h2

)
there are no eigenvalues of Pδ

h with

Im z ≤β1 := Imγh
−−C

h

ε0(h)1/3
ln

(
ε0(h)1/6

h

)
, C À 1.

Thus, to count eigenvalues it is sufficient to integrate the density given in Theorem 1.2.12 over
subsets of

Σ′
c,d = {

z ∈Σc,d | β1 ≤ Im z ≤ 〈Im g 〉, c < Re z < d
}

.

Similarly, for an α large enough as above, define

α1 := Imγ−(Re z)+α h

ε1/3
0

ln
ε0(h)1/3

h

and note that (2.8.23) implies the second statement of the proposition for Im z ≥α1.

Approximate Primitive Define d(z) := dist(z,∂Σ) and recall from (2.1.2) that η³ d(z). Recall that
the density of eigenvalues given in Theorem 1.2.12 is given by Ψ1, Ψ2 and Θ which are expressed
explicitly in Proposition 1.2.13 and Theorem 1.2.12. Since Im g (x±) = Im z and ξ± = Re z −Re g (x±)
(cf (1.1.14)), we conclude together with Proposition 2.4.2 that for β1 ≤ Im z ≤α1

Ψ1(z;h) = 1

2h
∂Im z (x−(z)−x+(z))+O (d(z)−2) = 1

2h
∂2

Im z S(z)+O (d(z)−2).

Next, it follows by (2.8.19) and Lemma 2.7.1 that

|2hΨ2 − (∂Im z S)(−∂Im zΘ)| =O

(
d(z)3/4h1/2 e−

2S
h

δ2

)
+O (d(z)3/4h−3δ).

88



CHAPTER 2. AVERAGE DENSITY OF EIGENVALUES FOR A CLASS OF NON-SELF-ADJOINT
OPERATORS UNDER RANDOM PERTURBATIONS

Thus,

1+O
(
δd(z)−1/4h−3/2

)
π

{Ψ1(z;h)+Ψ2(z;h,δ)}e−Θ(z;h,δ)

= 1

2πh
∂Im z

[
(∂Im z S(z))e−Θ(z;h,δ)

]
+R(z;h,δ)e−Θ(z;h,δ), (2.8.24)

where

R(z;h,δ) :=O

(
d(z)−2 +d(z)3/4h−1/2 e−

2S
h

δ2

)
.

Let β1 ≤β2 ≤α1. Let us first treat the error term R. Similar as for (2.8.21), it follows that

R(z;h,δ) =O

(
d(z)−2 +d(z)−3/4h−1/2 exp

{
− (Im z − Imγh−)d(z)1/2

C h

})
.

Hence,

∣∣∣ˆ α1

β1

R(z;h,δ)e−Θ(z;h,δ)d(Im z)
∣∣∣≤ [d(z)−1]α1

β1

O (1)
exp{−Θ(Re z,α1;h,δ)}

+ d(z)1/4h1/2

O (1)
exp

[
−exp

{
− (Im z − Imγh−)d(z)1/2

C h

}]∣∣∣α1

β1

= β−1
1

O (1)
exp

[
−exp

{
− (α1 − Imγh−)α1/2

1

C h

}]

= ε0(h)−2/3

O (1)
. (2.8.25)

Next,

1

2πh

ˆ α1

β2

∂Im z
[
(∂Im z S(z))e−Θ(z;h,δ)]L(Im z)

= 1

2πh
(x−(Im z)−x+(Im z))e−Θ(z;h,δ)

∣∣∣α1

β2

. (2.8.26)

Since, ˆ

Σc,d
0≤Im z≤α1

1

2πh
p∗(dξ∧d x)(d z) = 1

2πh
(x−(α1)−x+(α1))

ˆ d

c
dRe z

we conclude by (2.8.22) the second statement of the proposition for

β2 = Imγ−(Re z)− h

ε0(h)1/3
ln

(
β ln

ε0(h)1/3

h

)
with β > 0 large enough. The last statement of the proposition can be deduced similarly from
(2.8.22), (2.8.26) and (2.8.25).
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CHAPTER 3

EIGENVALUE INTERACTION FOR A
CLASS OF NON-SELF-ADJOINT
OPERATORS UNDER RANDOM

PERTURBATIONS

The objective of this section is to build on the results obtained in Chapter 2 and to prove the re-
sults discussed in Section 1.3. We consider Hager’s model operator Ph (cf (1.1.9)) subject to ran-
dom perturbations with a small coupling constant δ. We study the 2-point intensity measure of
the random point process of eigenvalues of the randomly perturbed operator Pδ

h and prove an
h-asymptotic formula for the average 2-point density of eigenvalues. With this we show that two
eigenvalues of Pδ

h in the interior ofΣ exhibit close range repulsion and long range decoupling. The
results presented in this chapter can be found in [82].

3.1 | A formula for the two-point intensity measure

In this section we will give a short reminder of a well-posed Grushin problem for the perturbed
operator Pδ

h which has already been used in Chapter 2 (see also [67, 32]). We will then employ the
resulting effective Hamiltonians to derive a formula for the two-point intensity measure defined
in (1.3.3).

We recall that we always suppose thatΩb Σ̊ is such that Hypothesis 1.3.1 is satisfied, if nothing
else is specified.

A Grushin Problem for the perturbed operator Pδ
h As was discussed in Chapter 2, we us the

eigenfunctions of the operators Q and Q̃ (cf (1.2.4)) to create a well-posed Grushin Problem.

Proposition 3.1.1. Let z ∈ΩbΣwith dist(Ω,∂Σ) > 1/C and letα0,e0 and f0 be as in (1.2.8). Define

R+ : H 1(S1) −→C : u 7−→ (u|e0)

R− :C−→ L2(S1) : u− 7−→ u− f0.

Then

P (z) :=
(
Ph − z R−

R+ 0

)
: H 1(S1)×C−→ L2(S1)×C

is bijective with the bounded inverse

E (z) =
(

E(z) E+(z)
E−(z) E−+(z)

)
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3.1. A FORMULA FOR THE TWO-POINT INTENSITY MEASURE

where E−(z)v = (v | f0), E+(z)v+ = v+e0, E(z) = (Ph − z)−1|( f0)⊥→(e0)⊥ and E−+(z)v+ = −α0v+. Fur-
thermore, we have the estimates for z ∈Ω

‖E−(z)‖L2→C,‖E+(z)‖C→H 1 =O (1),

‖E(z)‖L2→H 1 =O (h−1/2),

|E−+(z)| =O
(p

he−
S
h

)
=O

(
e−

1
C h

)
; (3.1.1)

Definition 3.1.2. For x ∈ R we denote the integer part of x by bxc. Let C1 > 0 be big enough as
above and define N := (2bC1

h c+1)2. Let e0 and f0 be as in (1.2.8), let z ∈Ωb Σ and let ê0(z; ·) and

f̂0(z; ·) denote the Fourier coefficients of e0 and f0. We define the vector X (z) = (X j ,k (z))| j |,|k|≤bC1
h c ∈

CN to be given by

X j ,k (z) = ê0(z;k) f̂0(z; j ), for | j |, |k| ≤
⌊

C1

h

⌋
.

Proposition 3.1.3. Let z ∈ΩbΣ. Let N be as in Definition 3.1.2 and let B(0,R) ⊂CN be the ball of
radius R :=C /h, C > 0 large, centered at 0. Let R−,R+ be as in Proposition 3.1.1. Then

Pδ(z) :=
(
Pδ

h − z R−
R+ 0

)
: H 1(S1)×C−→ L2(S1)×C

is bijective with the bounded inverse

Eδ(z) =
(

Eδ(z) Eδ+(z)
Eδ−(z) Eδ−+(z)

)
where

Eδ(z) = E(z)+O
(
δh−2)=O (h−1/2)

Eδ
−(z) = E−(z)+O

(
δh−3/2)=O (1)

Eδ
+(z) = E+(z)+O

(
δh−3/2)=O (1)

and
Eδ
−+(z) = E−+(z)−δX (z) ·α+T (z;α), (3.1.2)

with X (z) ·α= E−QωE+, α ∈ B(0,R), and

T (z,α) :=
∞∑

n=1
(−δ)n+1E−Qω(EQω)nE+ =O (δ2h−5/2). (3.1.3)

Here, the dot-product X (z) ·α is the natural bilinear one.

Remark 3.1.4. The effective Hamiltonian Eδ−+(z) depends smoothly on z ∈Ω and holomorphically
on α ∈ B(0,R) ⊂ CN . As in (2.6.6) and Proposition 2.2.6, we have the following estimates: for all
z ∈Ω, all α ∈ B(0,R) and all β ∈N2

∂
β

zz
E−+(z) =O

(
h−|β|+1/2e−

S
h

)
, and

∂
β

zz
T (z,α) =O

(
δ2h−(|β|+ 5

2 )
)

where S is as in Definition 1.2.2.
Moreover, as remarked in [67] the effective Hamiltonian Eδ−+(z) satisfies a ∂-equation, i.e. there

exists a smooth function f δ :Ω→C such that

∂z Eδ
−+(z)+ f δ(z)Eδ

−+(z) = 0.

This implies that the zeros of Eδ−+(z) are isolated and countable and we may use the same notion
of multiplicity as for holomorphic functions.
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3.1.1 – Counting zeros

By the above well-posed Grushin Problem for the perturbed operator Pδ
h we have that σ(Pδ

h ) =
(Eδ−+)−1(0). Hence, to study the the two-point intensity measure ν defined in (1.3.3), we investigate
the integral

π−N
ˆ

B(0,R)

( ∑
z,w∈(Eδ

−+)−1(0)
z 6=w

ϕ(z, w)

)
e−α

∗·αL(dα) =
ˆ
C2
ϕ(z1, z2)dν(z1, z2)

with ϕ ∈C0(Ω×Ω). Using Remark 3.1.4, we see that the integral is finite since the number of pairs
of zeros of Eδ−+(·,α) in suppϕ is uniformly bounded for α ∈ B(0,R).

Recall the definition of the point process Ξ given in (1.2.10). Using Lemma 2.5.1, we get the
following regularization of the 2-fold counting measure Ξ⊗Ξ

〈ϕ,Ξ⊗Ξ〉 = lim
ε→0+

Ï
ϕ(z1, z2)

2∏
j=1

ε−2χ

(
Eδ−+(zl )

ε

)
|∂zl Eδ

−+(zl )|2L(d z1)L(d z2),

where χ ∈C ∞
0 (C) such that

´
χ(w)L(d w) = 1. Assuming that ϕ ∈C0(Ω×Ω) is such that {(z, z); z ∈

Ω} 6⊂ suppϕ, we see by the Lebesgue dominated convergence theorem that the two-point intensity
measure of the point process Ξ is given by

ˆ
C2
ϕ(z1, z2)dν(z1, z2) = lim

ε→0+

Ï
ϕ(z1, z2)K δ

ε (z1, z2;h)L(d z1)L(d z2) (3.1.4)

with

K δ
ε (z1, z2;h) :=

ˆ
B(0,R)

[
2∏

l=1
ε−2χ

(
Eδ−+(zl )

ε

)
|∂zl Eδ

−+(zl )|2
]

e−α
∗αL(dα).

Using (3.1.2), we see that the main object of interest is the random vector

Fδ(z, w,α;h) =


Eδ−+(z)
Eδ−+(w)

(∂z Eδ−+)(z)
(∂z Eδ−+)(w)

 (3.1.5)

=


E−+(z)
E−+(w)

(∂z E−+)(z)
(∂z E−+)(w)

−δ


X (z) ·α
X (w) ·α

(∂z X )(z) ·α
(∂z X )(w) ·α

+


T (z,α)
T (w,α)

(∂z T )(z,α)
(∂z T )(w,α)

 .

It will be very useful in the sequel to define the following Gramian matrix G .

G :=
(

A B
B∗ C

)
∈C4×4, (3.1.6)

with

A :=
(

(X (z)|X (z)) (X (z)|X (w))
(X (w)|X (z)) (X (w)|X (w))

)
,

B :=
(

(X (z)|∂z X (z)) (X (z)|∂w X (w))
(X (w)|∂z X (z)) (X (w)|∂w X (w))

)
,

C :=
(

(∂z X (z)|∂z X (z)) (∂z X (z)|∂w X (w))
(∂w X (w)|∂z X (z)) (∂w X (w)|∂w X (w))

)
. (3.1.7)

Notice that the matrices A,B ,C depend on h; see Definition 3.1.2. Next, we will state a formula for
the Lebesgue density of the two-point intensity measure ν in terms of the permanent of the Shur
complement of G , i.e Γ :=C −B∗A−1B . The permanent of a matrix is defined as follows (cf. [47]):
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3.2. STATIONARY PHASE

Definition 3.1.5. Let (Mi j )i j = M ∈ Cn×n be a square matrix and let Sn denote the symmetric
group of order n. The permanent of M is defined by

perm M := ∑
σ∈Sn

n∏
i=1

Miσ(i ). (3.1.8)

Remark 3.1.6. Although the definition of the permanent resembles closely to that of the determi-
nant, the two object are quite different. Many properties known to hold true for determinants,
fail to be true for permanents. For our purposes it is enough to note that it is multi-linear and
symmetric. For more details concerning permanents and their properties we refer the reader to
[47].

We will prove the following result:

Proposition 3.1.7. Let Ωb Σ be as in Hypothesis 1.3.1. Let δ > 0 be as in Hypothesis 1.3.2 and let
Γ=C −B∗A−1B. Moreover, let D(Ω,C2) be as in (1.3.4). Then, there exists a smooth function

Dδ(z, w ;h) =
permΓ(z, w ;h) +O

(
e−

1
C h +δh− 51

10

)
π2

(√
det A(z, w ;h)+O

(
δh− 3

2

))2 +O
(
e−

D
h2

)
.

and there exists a constant C2 > 0 such that for all ϕ ∈C0(Ω2\Dh(Ω,C2))
ˆ
C2
ϕ(z, w)dν(z, w) =

ˆ
C2
ϕ(z, w)D(z, w,h,δ)L(d(z, w)).

Remark 3.1.8. The proof of Proposition 3.1.7 will take up most of the rest of this chapter. Therefore
we give a short overview on how we will proceed:

In Section 3.2, we give a formula for the scalar product (X (z)|X (w)) by constructing holomor-
phic quasimodes for the operators (Ph −z) and (Ph −z)∗ to approximate the eigenfunction e0 and
f0, and by using the method of stationary phase.

In Section 3.3, we will use this formula to study the invertibility of the matrices G , A and Γ.
Furthermore, we will study the permanent of Γ.

In Section 3.4, we give a proof of Proposition 3.1.7.

3.2 | Stationary Phase

In this section we are interested in the scalar product (X (z)|X (w)). Recall from Definition 3.1.2 that

the vector X (z), z ∈Ω, is given by X j ,k = ê0(z;k) f̂0(z; j ), where e0 and f0 are the eigenfunctions of
the operators Q(z) and Q̃(z), respectively, associated to their first eigenvalue t 2

0 .
The Fourier coefficients ê0(z;k), f̂0(z; j ) and their z- and z-derivatives are of order O (|k|−∞),

O (| j |−∞), for | j |, |k| ≥ C /h with C > 0 large enough (cf Proposition 2.3.3 and 2.3.4). The Parseval
identity implies that for z, w ∈Ω

(X (z)|X (w)) = (e0(z)|e0(w))( f0(w)| f0(z))+OC ∞(h∞). (3.2.1)

The aim of this section is to prove the following result:

Proposition 3.2.1. LetΩbΣ be as in Hypothesis 1.3.1 and let x±(z) be as in (1.1.14). Furthermore,
for z ∈Ω let σ(z) denote the Lebesgue density of the direct image of the symplectic volume form on
T ∗S1 under the principal symbol p, i.e. σ(z)L(d z) = p∗(dξ∧d x).

Then, there exists a constant C > 0 such that for all (z, w) ∈∆Ω(C ) := {(z, w) ∈Ω2; |z −w | < 1/C }

(X (z)|X (w)) = e−
1
hΦ(z;h)− 1

hΦ(w ;h)e
2
hΨ(z,w ;h) +OC ∞

(
h∞)

where:
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• Φ(·;h) :Ω→R is a family of smooth functions depending only on i Im z, which satisfy

Φ(z;h) =Im

ˆ x0

x+(z)
(z − g (y))d y − Im

ˆ y0

x−(z)
(z − g (y))d y

+ h

4

[
ln

(
πh

−Im g ′(x+(z))

)
+ ln

(
πh

Im g ′(x−(z))

)]
+O (h2).

and

∂2
zzΦ (z;h) = 1

4
σ (z)+O (h).

• Ψ(·, ·;h) :∆Ω(C ) →C is a family of smooth functions which are almost z-holomorphic and al-
most w-anti-holomorphic extensions from the diagonal∆ := {(z, z); z ∈Ω} ⊂∆Ω(C ) ofΦ(z;h),
i.e.

Ψ(z, z;h) =Φ
(

1

2
(z − z);h

)
, ∂zΨ,∂wΨ=O (|z −w |∞).

Moreover, we have thatΨ(z, z) =Φ(z) and for z, w ∈∆Ω(C ) with |z −w |¿ 1,

Ψ(z, w ;h) = ∑
|α+β|≤2

1

2|α+β|α!β!
∂αz ∂

β

z
Φ

( z +w

2
;h

)
(z −w)α(w − z)β

+O (|z −w |3 +h∞),

and

2ReΨ(z, w ;h)−Φ(z;h)−Φ(w ;h)

=−∂2
zzΦ

( z +w

2
;h

)
|z −w |2(1+O (|z −w |+h∞));

• the functionΨ(z, w ;h) has the following symmetries:

Ψ(z, w ;h) =Ψ(w, z;h) and (∂zΨ)(z, w ;h) = (∂wΨ)(w, z;h).

Let us give some remarks on the above results: Note that the formula for Ψ stated above is
simply a special case of the more general Taylor expansion

Ψ(z0 +ζ, z0 +ω;h) = ∑
|α+β|≤2

1

2|α+β|α!β!
∂αz ∂

β

z
Φ (z0;h)ζαωβ

+O ((ζ,ω)3 +h∞),

with z0 ∈Ω and |ζ|, |ω|¿ 1.

Remark 3.2.2. Note that the formula for (X (z)|X (w)) is quite close to the notion of a Bergman
kernel (see for example [87, Sec. 13.3]). However, we will not use this notion in the sequel.

Next, we define for (z, w) ∈∆Ω(C ), as in Proposition 3.2.1,

−K (z, w) : = 2ReΨ(z, w ;h)−Φ(z;h)−Φ(w ;h) (3.2.2)

=−
(
σ

( z +w

2

)
+O (h)

) |z −w |2
4

(1+O (|z −w |+h∞)).

From the above Proposition we can immediately deduce some growth properties of certain quan-
tities that will be become important in the sequel.

Corollary 3.2.3. Under the assumptions of Proposition 3.2.1, we have that

• |(X (z)|X (w))| = e−
K (z,w)

h +OC ∞(h∞) ;

• ‖X (z)‖2‖X (w)‖2 ±|(X (z)|X (w))|2

=
(
1±e−

2K (z,w)
h

)
+OC ∞

(
h∞)

;

• ‖X (z)‖2‖X (w)‖2|(X (z)|X (w))|2

= e−
2K (z,w)

h +OC ∞
(
h∞)

.

To prove Proposition 3.2.1, we will study the scalar products (e0(z)|e0(w)) and ( f0(w)| f0(z)).
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3.2. STATIONARY PHASE

3.2.1 – The Scalar Product (e0(z)|e0(w))

We will prove

Proposition 3.2.4. Let Ωb Σ be as in Hypothesis 1.3.1 and let x+(z) be as in (1.1.14). Then, there
exists a constant C > 0 such that for all (z, w) ∈∆Ω(C ) := {(z, w) ∈Ω2; |z −w | < 1/C }

(e0(z)|e0(w)) = e−
1
hΦ1(z;h)e−

1
hΦ1(w ;h)e

2
hΨ1(z,w ;h) +O

(
h∞)

, (3.2.3)

where:

• Φ1(·;h) :Ω→R is a family of smooth functions depending only on i Im z, which satisfy

Φ1(z;h) = Im

ˆ x0

x+(Im z)
(z − g (y))d y + h

4
ln

(
πh

−Im g ′(x+)

)
+O (h2).

• Ψ1(·, ·;h) : ∆Ω(C ) →C is a family of smooth functions which are almost z-holomorphic and
almost w-anti-holomorphic extensions from the diagonal∆ := {(z, z); z ∈Ω} ⊂∆Ω(C ) ofΦ1(z;h),
i.e.

Ψ1(z, z;h) =Φ1

(
1

2
(z − z);h

)
, ∂zΨ1,∂wΨ1 =O (|z −w |∞).

Moreover, for z, w ∈∆Ω(C ) with |z −w |¿ 1, one has that

Ψ1(z, w ;h) = ∑
|α+β|≤2

1

2|α+β|α!β!
∂αz ∂

β

z
Φ1

( z +w

2
;h

)
(z −w)α(w − z)β

+O (|z −w |3 +h∞),

and that

2ReΨ1(z, w ;h)−Φ1(z;h)−Φ1(w ;h)

=−∂z∂zΦ1

( z +w

2
;h

)
|z −w |2(1+O (|z −w |+h∞));

• the functionΨ1(z, w ;h) has the following symmetries:

Ψ1(z, w ;h) =Ψ1(w, z;h) and (∂zΨ1)(z, w ;h) = (∂wΨ1)(w, z;h).

To prove Proposition 3.2.4, we begin by constructing an oscillating function to approximate
e0(z). Let us recall from Section 1.1.1 that the points a,b ∈ S1 denote the minimum and the max-
imum of Im g (x) and that for z ∈Ω the points x±(z) ∈ S1 are the unique solutions to the equation
Im g (x) = Im z. Furthermore, we will identify frequently S1 with the interval [b −2π,b[. Moreover,
let us recall that by the natural projection Π :R→ S1 =R/2πZ we identify the points x±, a,b ∈ S1

with points x±, a,b ∈R such that b −2π< x+ < a < x− < b.

Let K+ ⊂]b−2π, a[ be an open interval such that x+(z) ∈ K+ for all z ∈Ω. Let χ ∈C ∞
0 (]b−2π, a[)

and define for x ∈R
ẽ0(x, z) :=χ(x)exp

(
i

h
ψ+(x, z)

)
. (3.2.4)

where, for a fixed x0 ∈ K+,

ψ+(x, z) :=
ˆ x

x0

(
z − g (y)

)
d y. (3.2.5)

Remark 3.2.5. Note that the function u = exp(iψ+(x, z)/h) is solution to (Ph − z)u = 0 on suppχ,
since the phase function ψ+ satisfies the eikonal equation

p(x,∂xψ+) = z.

Furthermore, let us remark that ẽ0(x, z) depends holomorphically on z.
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Next, we are interested in the L2-norm of ẽ0.

Lemma 3.2.6. Let Ωb Σ be as in Hypothesis 1.3.1. Then, there exists a family of smooth functions
Φ1(·;h) :Ω→R, such that

Φ1(z;h) =Φ1(i Im z;h) = Im

ˆ x0

x+(Im z)
(z − g (y))d y + h

4
ln

(
πh

−Im g ′(x+)

)
+O (h2)

and

‖ẽ0(z)‖2 = exp

{
2

h
Φ1(z;h)

}
.

Proof. In view of the definition of ẽ0(z), see (3.2.4) and (3.2.5), one gets that

‖ẽ0(z)‖2 =
ˆ
χ(x)e

i
h (ψ+(x,z)−ψ+(x,z))d x =

ˆ
χ(x)e−

2
h Imψ+(x,z)d x.

The critical point for Imψ+(x, z) is given by the equation

Im∂xψ+(x, z) = Im z − Im g (x) = 0, x ∈ suppχ.

The critical point, given by x+(Im z), is unique and it satisfies Im g ′(x+(Im z)) < 0, see (1.1.14). This
implies in particular that the critical point is non-degenerate. More precisely,

Im(∂2
xxψ+)(x+, z) =−Im g ′(x+) > 0. (3.2.6)

The critical value of Imψ+ is given by

Imψ+(x+(Im z), z) = Im

ˆ x+(Im z)

x0

(z − g (y))d y ≤ 0.

Using the method of stationary phase, one gets

‖ẽ0(z)‖2 =
√

πh

Im(∂2
xxψ+)(x+, z)

(1+O (h))exp

{
−2Imψ+(x+, z)

h

}
=: exp

{
2

h
Φ1(z;h)

}
,

whereΦ1 is smooth in z. Using (3.2.6), one gets that

Φ1(z;h) = Im

ˆ x0

x+(Im z)
(z − g (y))d y + h

4
ln

(
πh

−Im g ′(x+)

)
+O (h2).

Recall from (1.2.7) that the function e0 is an eigenfunction of the operator Q(z) (cf Section
1.2.2) corresponding to its first eigenvalue t 2

0 . We set

e0(z) =
Πt 2

0

(
e−

1
hΦ1(z;h)ẽ0(z)

)
∥∥∥Πt 2

0

(
e−

1
hΦ1(z;h)ẽ0(z)

)∥∥∥ ,

where Πt 2
0

: L2(S1) →Ce0 denotes the spectral projection for Q(z) onto the eigenspace associated

with t 2
0 .

Next, we prove that up to an exponentially small error in 1/h, e0 is given by the normalization
of ẽ0.

Lemma 3.2.7. LetΩbΣ be as in Hypothesis 1.3.1. Then, there exists a constant C > 0 such that for
all z ∈Ω and all α ∈N2 ∥∥∥∂αz,z

(
e0(z)−e−

1
hΦ1(z;h)ẽ0(z)

)∥∥∥=O
(
h−|α|e−

1
C h

)
.
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Proof. The proof of the lemma is similar to the proof of Proposition 2.1.11.

This result implies that

(e0(z)|e0(w)) = e−
1
hΦ1(z;h)− 1

hΦ1(w ;h)(ẽ0(z)|ẽ0(w))+OC ∞
(
e−

1
C h

)
. (3.2.7)

By Remark 3.2.5, (ẽ0(z)|ẽ0(w)) is holomorphic in z and anti-holomorphic in w . We can study this
scalar product by the method of stationary phase:

Proof of Proposition 3.2.4. In view of (3.2.7), it remains to study the oscillatory integral

I (z, w) := (ẽ0(z)|ẽ0(w)) =
ˆ
χ(x)exp

(
i

h
Ψ+(x, z, w)

)
d x, (3.2.8)

where ẽ0(x, z) is given in (3.2.4) andΨ+ is defined by

Ψ+(x, z, w) :=ψ+(x, z)−ψ+(x, w), z, w ∈Ω. (3.2.9)

Using (3.2.5),

Ψ+(x, z, w) =
ˆ x

x0

Re(z −w)d y +2i

ˆ x

x0

[
Im

( z +w

2

)
− Im g (y)

]
d y. (3.2.10)

Since the imaginary part of Ψ+ can be negative, we shift the phase function by the minimum of
ImΨ+.

Minimum of ImΨ+. The critical points of the function x 7→ ImΨ(x, z, w) are given by the
equation Im( z+w

2 ) = Im g (x). Since Ω is convex, this equation has, for |z − w | small enough, on
the support of χ the unique solution x+( z+w

2 ) ∈R and it satisfies Im g ′(x+( z+w
2 )) < 0 (cf. (1.1.14)).

Moreover, it depends smoothly on z and w since g is smooth. Therefore,

(∂2
xx ImΨ+)

(
x+

( z +w

2

)
, z, w

)
=−2Im g ′

x

(
x+

( z +w

2

))
> 0,

which implies that x+( z+w
2 ) is a minimum point, and that

2λ := 2λ(z, w) : = ImΨ+
(
x+

( z +w

2

)
, z, w

)
= 2

ˆ x+( z+w
2 )

x0

[
Im

( z +w

2

)
− Im g (y)

]
d y ≤ 0. (3.2.11)

We define Θ+(x, z, w) :=Ψ+(x, z, w)− iλ, and notice that ImΘ+(x, z, w) ≥ 0. Hence, we can write
(3.2.8) as follows:

I (z, w) = e−
2λ
h

ˆ
χ(x)exp

(
i

h
Θ+(x, z, w)

)
d x. (3.2.12)

To study I (z, w) by the method of stationary phase, we are interested in the critical points ofΘ+.

Critical points ofΘ+. Clearly they are the same as forΨ+(x, z, w). Note that for z = w one has
that

Ψ+(x, z, z) = 2i Im

ˆ x

x0

(z − g (y))d y

which has, on the support of χ, the unique critical point x+ and it satisfies Im g ′(x+) < 0 (cf.
(1.1.14)). Therefore,

Im(∂2
xxΨ+)(x+(z), z, z) =−2Im g ′

x (x+(z)) > 0

which implies that x+ is a non-degenerate critical point.
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In the case where z 6= w the situation is more complicated. By (3.2.10) we see that if Re(z−w) =
0, for |z −w | small enough, the critical point is real and given by x+( z+w

2 ), i.e. the minimum point
of ImΨ+.

However, if Re(z−w) 6= 0, we need to consider an almost x-analytic extension ofΨ+, which we
shall denote by Ψ̃+. As described in [48], the “critical point” of Ψ̃+ is then given by

∂xΨ̃+(x, z, w) = 0,

and we will see, by the following result, that it “moves” to the complex plane.

Lemma 3.2.8. Let Ωb Σ be as in (1.3.1). Let χ be as in (3.2.4) and let p be the principal symbol of
Ph (cf (1.1.7)). Let x+(z) be as in (1.1.14). Furthermore, let ψ̃+ denote an almost analytic extension
of ψ+ to a small complex neighborhood of the support of χ, and define ψ̃∗+(x) := ψ̃+(x). Then, the
there exists a C > 0 such that for (z, w) ∈∆Ω(C ) the function

∂xΨ̃+(x, z, w) = ∂xψ̃+(x, z)− (∂xψ̃+)∗(x, w)

has exactly one zero, xc+(z, w), and:

• it depends almost holomorphically on z and almost anti-holomorphically w at the diagonal
∆, i.e.

∂w xc
+(z, w),∂z xc

+(z, w) =O (|z −w |∞);

• it is non-degenerate in the sense that

(∂2
xxΨ̃+)(xc

+(z, w), z, w) 6= 0;

• for z, w ∈Ωwith |z −w | < 1/C , C > 1 large enough, one has

xc
+(z, w) = x+

( z +w

2

)
− Re(z −w)

{p, p}(ρ+
( z+w

2

)
)
+O (|z −w |2).

Remark 3.2.9. The proof of Lemma 3.2.8 will be given after the proof of Proposition 3.2.4.

Let Ψ̃+ denote an almost x-analytic extension ofΨ+. Using the method of stationary phase for
complex-valued phase functions (cf. Theorem 2.3 in [48, p.148]) and Lemma 3.2.8, one gets that

I (z, w) = exp

{
2Ψ1(z, w ;h)

h

}
+O

(
h∞)

e−
2λ
h . (3.2.13)

Using that Lemma 3.2.6 and (3.2.11) imply λ(z, w)+Φ(z;h)+Φ(w ;h) ≥ 0, we obtain (3.2.3) from
the above and (3.2.7).

In (3.2.13), 2Ψ1(z, w) is given by the critical value of iΨ̃+ and by the logarithm of the amplitude
c(z, w,h), given by the stationary phase method, i.e.

2Ψ1(z, w ;h) = iΨ̃+(xc
+(z, w), z, w)+h lnc(z, w,h)

and c(z, w,h) ∼ c0(z, w)+hc1(z, w)+ . . . which depends smoothly on z and w in the sense that all
z-,z̄-,w- and w̄-derivatives remain bounded as h → 0. Ψ̃+(x, z, w) is by definition z-holomorphic,
w-anti-holomorphic and smooth in x. By Lemma 3.2.8, we know that the critical point xc+(z, w)
is almost z-holomorphic and almost w-anti-holomorphic in ∆Ω(C ), a small neighborhood of the
diagonal z = w . Hence,Ψ is almost z-holomorphic and almost w-anti-holomorphic in ∆Ω(C ).

Equivalently, Ψ is an almost z-holomorphic and almost w-anti-holomorphic extension from
the diagonal of Ψ1(z, z;h). Since Ψ1(z, z;h) =Φ1(z;h), we obtain by Taylor expansion up to order
2 ofΨ at ( z+w

2 , z+w
2 ), that

Ψ1(z, w ;h) = ∑
|α+β|≤2

1

2|α+β|α!β!
∂αz ∂

β

z
Φ1

( z +w

2
;h

)
(z −w)α(w − z)β

+O (|z −w |3 +h∞),
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for |z −w | small enough. Similarly,

Φ1(z;h) = ∑
|α+β|≤2

1

2|α+β|α!β!
∂αz ∂

β

z
Φ1

( z +w

2
;h

)
(z −w)α(z −w)β

+O (|z −w |3 +h∞),

which implies that

2ReΨ1(z, w ;h) =Φ1(z;h)+Φ1(w ;h)−∂αz ∂βzΦ1

( z +w

2
;h

)
|z −w |2

+O (|z −w |3 +h∞),

concluding the proof of the second point of the proposition.

Finally, let us give a proof of the stated symmetries. The fact that Ψ1(z, w ;h) = Ψ1(w, z;h)
follows directly from the fact that (e0(z)|e0(w)) = (e0(w)|e0(z)). One then computes that

(∂zΨ1)(z, w ;h) = ∂zΨ1(z, w ;h) = ∂zΨ1(w, z;h) = (∂wΨ1)(w, z;h)

which concludes the proof of the Proposition.

Proof of Lemma 3.2.8. We are interested in the solutions of the following equation:

0 = (∂xψ̃+)(x, z)− (∂xψ̃+)∗(x, w) = z −w − g̃ (x)+ g̃∗(x), (3.2.14)

where g̃ denotes an almost analytic extension of g . Since dist(Ω,∂Σ) > 1/C , it follows from the
assumptions on g that Im g ′(x) > 0 for all x ∈ x+(Ω) ⊂R. Since g depends smoothly on x, there
exists a small complex open neighborhood V ⊂ C of x+(Ω) such that x+(Ω) ⊂ (V ∩R) and such
that for all x ∈V

g̃ ′
x (x)− g̃ ′

x (x) 6= 0, g̃ ′
x (x)− g̃ ′

x
(x) =O (|Im x|∞).

Thus, it follows by the implicit function theorem, that for (z, w) ∈∆Ω(C ), with C > 0 large enough,
there exists a unique solution xc+(z, w) to (3.2.14) and it depends smoothly on (z, w) ∈∆Ω(C ). Fur-
thermore, we have that xc+(z, z) = x+(z) ∈R. Taking the z- and z- derivative of (3.2.14) at the critical
point xc+ yields that

∂z xc
+(z, w) = 1+O (|Im xc+(z, w)|∞)

(∂x g̃ )(xc+(z, w))− (∂x g̃ )∗(xc+(z, w))
,

∂z xc
+(z, w) = O (|Im xc+(z, w)|∞)

(∂x g̃ )(xc+(z, w))− (∂x g̃ )∗(xc+(z, w))
(3.2.15)

and similarly that

∂w xc
+(z, w) = −1+O (|Im xc+(z, w)|∞)

(∂x g̃ )(xc+(z, w))− (∂x g̃ )∗(xc+(z, w))
,

∂w xc
+(z, w) = O (|Im xc+(z, w)|∞)

(∂x g̃ )(xc+(z, w))− (∂x g̃ )∗(xc+(z, w))
. (3.2.16)

Using that Im xc+(z, z) = 0, one calculates that for z = w we have that

(∂z xc
+)(z, z) = ∂z x+(z) =−(∂w xc

+)(z, z),

and (∂z xc
+)(z, z) = 0 = (∂w xc

+)(z, z), (3.2.17)

where

∂z x+(z) = 1

2i Im g ′(x+(z))
.

100



CHAPTER 3. EIGENVALUE INTERACTION FOR A CLASS OF NON-SELF-ADJOINT OPERATORS UNDER
RANDOM PERTURBATIONS

Taylor’s theorem implies that

xc
+(z +ζ, z +ω) = x+(z)+ ζ−ω

2i Im g ′(x+(z))
+O ((ζ,ω)2).

Recall that the principal symbol of the operator Ph is given by p(ρ) = ξ+ g (x) (cf (1.1.7)), which
implies that {p, p}(ρ±(z) =−2i Im g ′(x±(z)). To conclude the symmetric form of the Taylor expan-
sion stated in the Lemma, we expand around the point ( z+w

2 , z+w
2 ), for |z −w | small enough, with

ζ= z−w
2 and ω=− z−w

2 , which is possible sinceΩ is by (1.3.1) assumed to be convex.
Finally, by taking the imaginary part of the Taylor expansion of xc+, we conclude by (3.2.15) and

(3.2.16) that
∂w xc

+(z, w),∂z xc
+(z, w) =O (|z −w |∞).

3.2.2 – The Scalar Product ( f0(w)| f0(z))

We have, as in Section 3.2.1,

Proposition 3.2.10. Let Ωb Σ be as in Hypothesis 1.3.1 and let x−(z) be as in (1.1.14). Then, there
exists a constant C > 0 such that for all (z, w) ∈∆Ω(C ) := {(z, w) ∈Ω2; |z −w | < 1/C }

( f0(w)| f0(z)) = e−
1
hΦ2(z;h)e−

1
hΦ2(w ;h)e

2
hΨ2(z,w ;h) +O

(
h∞)

,

where:

• Φ2(·;h) :Ω→R is a family of smooth functions depending only on Im z, which satisfy

Φ2(z;h) =−Im

ˆ x0

x−(z)
(z − g (y))d y + h

4
ln

(
πh

Im g ′(x−(z))

)
+O (h2).

• Ψ2(·, ·;h) : ∆Ω(C ) →C is a family of smooth functions which are almost z-holomorphic and
almost w-anti-holomorphic extensions from the diagonal∆ := {(z, z); z ∈Ω} ⊂∆Ω(C ) ofΦ2(z;h),
i.e.

∂zΨ2,∂wΨ2 =O (|z −w |∞), Ψ2(z, z;h) =Φ2

(
1

2
(z − z);h

)
Moreover, for z, w ∈∆Ω(C ) with |z −w |¿ 1, one has that

Ψ2(z, w ;h) = ∑
|α+β|≤2

1

2|α+β|α!β!
∂αz ∂

β

z
Φ2

( z +w

2
;h

)
(z −w)α(w − z)β

+O (|z −w |3 +h∞),

and that

2ReΨ2(z, w ;h)−Φ2(z;h)−Φ2(w ;h)

=−∂z∂zΦ2

( z +w

2
;h

)
|z −w |2(1+O (|z −w |+h∞));

• the functionΨ2(z, w ;h) has the following symmetries:

Ψ2(z, w ;h) =Ψ2(w, z;h) and (∂zΨ2)(z, w ;h) = (∂wΨ2)(w, z;h).

3.2.3 – Link with the symplectic volume

Before the proof of Proposition 3.2.1, let us give a short description of the connection between the
functions Φ1(z;h), Φ2(z;h) in Proposition 3.2.4, 3.2.10, and the symplectic volume form on the
phase space T ∗S1.
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Proposition 3.2.11. Let z ∈ Ω b Σ be as in (1.3.1) and let Φ1 and Φ2 be as in Propositions 3.2.4
and 3.2.10. Furthermore, let p be the principal symbol of Ph (cf (1.1.7)), let ρ± ∈ T ∗S1 be the two
solutions to p(ρ) = z, see (1.1.14). Then,

σh(z) : = [
(∂2

zzΨ1)(z;h)+ (∂2
zzΦ2)(z;h)

]
= 1

4

(
1

1
2i {p, p}(ρ−(z))

+ 1
1
2i {p, p}(ρ+(z))

)
+O (h)

is, up to an error of order h, one-fourth of the Lebesgue density of the direct image, under the prin-
cipal symbol p, of the symplectic volume form dξ∧d x on T ∗S1, i.e.

σh(z)L(d z) = 1

4
p∗(dξ∧d x)+O (h)L(d z)

Proof. Using that x±(t ), with t = Im z, is the solution to the equation Im g (x±(t )) = t with

∓Im g ′
x (x±(t )) < 0

(cf (1.1.14)), we get that

x ′
±(t ) =± 1

Im g ′
x (x±(t ))

< 0.

Using Propositions 3.2.4 and 3.2.10, one then computes that

(∂2
zzΦ1)(z;h)+ (∂2

zzΦ2)(z;h) = 1

4

(
1

Im g ′
x (x−(Im z))

− 1

Im g ′
x (x+(Im z))

)
+O (h).

Since − 1
2i {p, p}(ρ±) = Im g ′

x (x±), we conclude by Proposition 2.4.2 that[
∂2

zzΦ1)(z;h)+ (∂2
zzΦ2)(z;h)

]
L(d z) = 1

4
p∗(dξ∧d x)+O (h)L(d z).

Proof of Proposition 3.2.1. The results follow immediately from (3.2.1) and the Propositions 3.2.4,
3.2.10 and 3.2.11.

3.3 | Gramian matrix

The aim of this section is to study the Gramian matrix G defined in (3.1.6) by

G :=
(

A B
B∗ C

)
∈C4×4,

where

A :=
(

(X (z)|X (z)) (X (z)|X (w))
(X (w)|X (z)) (X (w)|X (w))

)
,

B :=
(

(X (z)|∂z X (z)) (X (z)|∂w X (w))
(X (w)|∂z X (z)) (X (w)|∂w X (w))

)
,

C :=
(

(∂z X (z)|∂z X (z)) (∂z X (z)|∂w X (w))
(∂w X (w)|∂z X (z)) (∂w X (w)|∂w X (w))

)
.

The invertibility of the matrix G will be essential to the proof of Proposition 3.1.7. Indeed, we prove
the following result.

Proposition 3.3.1. LetΩbΣ be as in (1.3.1) and let z, w ∈Ω. Then,

detG(z, w) > 0 for h
3
5 ¿|z −w |¿ 1.

To prove Proposition 3.3.1 we will first study the matrices A and, if A−1 exists, the matrix Γ
given by the Shur complement formula applied to G , i.e.

Γ=C −B∗A−1B. (3.3.1)

102



CHAPTER 3. EIGENVALUE INTERACTION FOR A CLASS OF NON-SELF-ADJOINT OPERATORS UNDER
RANDOM PERTURBATIONS

3.3.1 – The matrix A

We begin by studying the determinant of A. It is non-zero if and only if the vectors X (z) and X (w)
are not co-linear. In particular we are interested in a lower bound of this determinant for z and w
close.

Proposition 3.3.2. Let Ωb Σ be as in Hypothesis 1.3.1. For |z −w | ≤ 1/C , with C > 1 large enough
(cf. Proposition 3.2.1), we have

det A(z, w) = 1−e−
2K (z,w)

h +OC ∞
(
h∞)

,

where K (z, w) is as in (3.2.2). Moreover,

• for |z −w |À
p

h lnh−1

det A(z, w) = 1+O
(
hC )

, C À 1;

• for |z −w | ≥ 1
O (1)

p
h

det A ≥ 1

O (1)
;

• let N > 1 and let C > 1 be large enough, then for 1
C hN ≤ |z −w | ≤ 1

C

p
h,

det A(z, w) = |z −w |2
2h

(
σ

( z +w

2

)
+O (h)+O (|z −w |)+O

( |z −w |2
h

))
+OC ∞

(
h∞)

≥ h2N−1

O (1)
.

Since the matrix A is self-adjoint, we have a lower bound on the matrix norm of A by its small-
est eigenvalue. Using Proposition 3.2.1 we see that tr A = 2+O (h∞) and one calculates that for a

fixed N > 1 and for |z −w | ≥ hN

O (1) the two eigenvalues of A are given by

λ1,2(z, w ;h) = 1±e−
K (z,w)

h +O (h∞).

By Taylor expansion we conclude the following result:

Corollary 3.3.3. Under the assumptions of Proposition 3.3.2, we have that for N ≥ 1 and |z −w | ≥
hN

O (1)

min
λ∈σ(A)

λ≥ hN− 1
2

O (1)
.

Proof of Proposition 3.3.2. By Corollary 3.2.3 and (3.2.2), one has that

det A(z, w) = 1−e−
2K (z,w)

h +OC ∞
(
h∞)

,

with

K (z, w) =
(
σ

( z +w

2

)
+O (h)

) |z −w |2
4

(1+O (|z −w |+h∞)).

The first two estimates are then an immediate consequence of the above formula. In the case
where |z −w | ≤ 1

C

p
h, one computes, using Taylor’s formula, that

e−
2K (z,w)

h = 1− |z −w |2
2h

(
σ

( z +w

2

)
+O (h)+O (|z −w |)+O

( |z −w |2
h

))
,
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which implies that

det A(z, w) = |z −w |2
2h

(
σ

( z +w

2

)
+O (h)+O (|z −w |)+O

( |z −w |2
h

))
+OC ∞

(
h∞)

≥ h2N−1

O (1)
.

3.3.2 – The matrix Γ
We prove the following result.

Proposition 3.3.4. LetΩbΣ be as in (1.3.1), and let DΩ(C ) andΨ(z, w ;h) for (z, w) ∈ DΩ(C ) be as
in Proposition 3.2.1. Let Γ be as in (3.3.1). For (z, w) ∈ DΩ(C ) let K (z, w) be as in (3.2.2) and define

a1 := a1(z, w ;h) := (∂zΨ)(z, z;h)− (∂zΨ)(z, w ;h),

a2 := a2(z, w ;h) :=−a1(w, z;h).

Then, for N > 1 and 1
C hN ≤ |z −w |, with C > 1 large enough, we have that

Γ= −4

h2
(
1−e−

2
h K (z,w)

) (
a1a1e−

2
h K (z,w) a1a2e

1
h (2i ImΨ(z,w)−K (z,w))

a2a1e
1
h (−2i ImΨ(z,w)−K (z,w)) a2a2e−

2
h K (z,w)

)

+ 2

h

(
Ψ′′

zw (z, z;h) Ψ′′
zw (z, w ;h)e

1
h (2i ImΨ(z,w)−K (z,w))

Ψ′′
zw

(w, z;h)e
1
h (−2i ImΨ(z,w)−K (z,w)) Ψ′′

zw
(w, w ;h)

)
+O (h∞).

We will give a proof of this result further below. First, we state formulae for the trace, the
determinant and the permanent of Γ.

Corollary 3.3.5. Under the assumptions of Proposition 3.3.4, we have that

trΓ= 2

h
(
e

2
h K (z,w) −1

)[(
Ψ′′

zw (z, z;h)+Ψ′′
zw (w, w ;h)+O (h∞)

)(
e

2
h K (z,w) −1

)
−2h−1(|a1|2 +|a2|2)

]
,

detΓ=− 16

h4
(
1−e−

2
h K (z,w)

)e−
2
h K (z,w)

[
|a1a2|2 + h

2

(|a1|2(∂2
zwΨ)(w, w ;h)

−2Re
{
(∂2

zwΨ)(w, z;h)a1a2
}+|a2|2(∂2

zwΨ)(z, z;h)
)]

+ 4

h2

(
(∂2

zwΨ)(z, z;h)(∂2
zwΨ)(w, w ;h)− (∂2

zwΨ)(z, w ;h)(∂2
zwΨ)(w, z;h)e−

2
h K (z,w)

)
+O (h∞)

and that

permΓ= 16

h4
(
1−e−

2
h K (z,w)

)2 e−
2
h K (z,w)|a1a2|2

(
1+e−

2
h K (z,w)

)

− 8

h3
(
1−e−

2
h K (z,w)

)e−
2
h K (z,w)(|a1|2(∂2

zwΨ)(w, w ;h)

+2Re
{
(∂2

zwΨ)(w, z;h)a1a2
}+|a2|2(∂2

zwΨ)(z, z;h)
)

+ 4

h2

(
(∂2

zwΨ)(z, z;h)(∂2
zwΨ)(w, w ;h)+ (∂2

zwΨ)(z, w ;h)(∂2
zwΨ)(w, z;h)e−

2
h K (z,w)

)
+O (h∞).
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Proof. The result follows from a direct computation using Proposition 3.3.4; for the definition of
the permanent of a matrix see (3.1.8).

We have the following bound on the trace of Γ:

Proposition 3.3.6. Under the assumptions of Proposition 3.3.4, we have that for |z −w |À h

0 < trΓ≤O (h−1).

Let us turn to the proofs of the above propositions. We begin by considering a very helpful
congruency transformation. In view of Proposition 3.2.1, we prove

Lemma 3.3.7. LetΩbΣ be as in (1.3.1), and let DΩ(C ), Φ(z;h) andΨ(z, w ;h) be as in Proposition
3.2.1, for (z, w) ∈ DΩ(C ). Let Γ be as in (3.3.1). Define the matrices

Ã :=
(

e
2
hΨ(z,z;h) e

2
hΨ(z,w ;h)

e
2
hΨ(w,z;h) e

2
hΨ(w,w ;h)

)
and Λ :=

(
e−

1
hΦ(z;h) 0

0 e−
1
hΦ(w ;h)

)
,

B̃ := 2h−1

(
Ψ′

w
(z, z;h)e

2
hΨ(z,z;h) Ψ′

w
(z, w ;h)e

2
hΨ(z,w ;h)

Ψ′
w (w, z;h)e

2
hΨ(w,z;h) Ψ′

w (w, w ;h)e
2
hΨ(w,w ;h)

)
and

C̃ := h−2

(
c(z, z;h)e

2
hΨ(z,z;h) c(z, w ;h)e

2
hΨ(z,w ;h)

c(w, z;h)e
2
hΨ(w,z;h) c(w, w ;h)e

2
hΨ(w,w ;h)

)
with c(z, w ;h) := 4Ψ′

z (z, w ;h)Ψ′
w

(z, w ;h)+ 2hΨ′′
zw

(z, w ;h). Then, we have for |z − w | ≥ hN /O (1)
that

Γ=Λ(C̃ − B̃∗ Ã−1B̃)Λ+OC ∞
(
h∞)

.

Proof. To abbreviate the notation, we define for (z, w) ∈ DΩ(C ) the following function

F (z, w) := e−
1
hΦ(z;h)e−

1
hΦ(w ;h)e

2
hΨ(z,w ;h).

By Proposition 3.2.1, we see that F is bounded by 1 and that all its derivatives are bounded poly-
nomially in h−1. Furthermore, the matrices A,B and C are given by

A(z, w) = A0(z, w)+OC ∞
(
h∞)

,

B(z, w) = B0(z, w)+OC ∞
(
h∞)

,

C (z, w) =C0(z, w)+OC ∞
(
h∞)

,

where (z, w) ∈ DΩ(C ) and

A0(z, w) =
(

F (z, z) F (z, w)
F (w, z) F (w, w)

)
,

and

B0(z, w) =
(

(∂w F )(z, z) (∂w F )(z, w)
(∂w F )(w, z) (∂w F )(w, w)

)
,

and

C0(z, w) =
(

(∂2
zw

F )(z, z) (∂2
zw

F )(z, w)
(∂2

zw
F )(w, z) (∂2

zw
F )(w, w)

)
.

One computes that

(∂w F )(z, w) = 1

h

[
2(∂wΨ)(z, w ;h)− (∂w )Φ(w ;h)

]
e−

1
hΦ(z;h)− 1

hΦ(w ;h)e
2
hΨ(z,w)

+OC ∞
(
h∞)

,
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and that

(∂2
zw F )(z, w)

= 1

h2

[
[2(∂zΨ)(z, w ;h)− (∂zΦ)(z;h)]

[
2(∂wΨ)(z, w ;h)− (∂wΦ)(w ;h)

]+
2h(∂2

zwΨ)(z, w ;h)
]

e−
1
hΦ(z1;h)− 1

hΦ(z2;h)e
2
hΨ(z1,z2) +OC ∞

(
h∞)

.

Using that det A0 = det A +O (h∞) and that det A ≥ h2N−1/O (1) for |z −w | ≥ hN /O (1) (cf. Proposi-
tion 3.3.2), we see that

Γ=C0 −B∗
0 A−1

0 B0 +O
(
h∞)

.

Defining,

Λ′ :=
(
∂z e−

1
hΦ(z;h) 0

0 ∂w e−
1
hΦ(w ;h)

)
we see that

A0 =ΛÃΛ,

B0 =Λ(B̃)Λ+ΛÃ(Λ′)+OC ∞
(
h∞)

,

C0 =Λ(C̃ )Λ+Λ(B̃∗)(Λ′)+Λ′(B̃)Λ+Λ′ Ã(Λ′)+OC ∞
(
h∞)

.

A direct computation then yields that

Γ=Λ(C̃ − B̃∗ Ã−1B̃)Λ+OC ∞
(
(det A)−1h∞)

.

Proof of Proposition 3.3.4. In view of Lemma 3.3.7, it remains to consider the matrix

Γ̃ := C̃ − B̃∗ Ã−1B̃ .

In the sequel we will suppress the h-dependency of the function Ψ to abbreviate our notation.
Recall the definition of Ã from Lemma 3.3.7 and note that

det Ã = e
2
hΨ(z,z)e

2
hΨ(w,w) −e

4
h ReΨ(z,w)

= e
2
hΨ(z,z)e

2
hΨ(w,w)

(
1−e−

2
h K (z,w)

)
. (3.3.2)

For 1
C hN ≤ |z −w |, Proposition 3.2.1 implies that det Ã is positive. Hence, the inverse of Ã exists

and is given by

Ã−1 := 1

det Ã

(
e

2
hΨ(w,w) −e

2
hΨ(z,w)

−e
2
hΨ(w,z) e

2
hΨ(z,z)

)
.

To calculate B̃∗, we use Lemma 3.3.7 and the symmetries of the function Ψ(z, w) given in Propo-
sition 3.2.1. Indeed, one gets that

B̃∗ := 2h−1

(
Ψ′

z (z, z)e
2
hΨ(z,z) Ψ′

z (z, w)e
2
hΨ(z,w)

Ψ′
z (w, z)e

2
hΨ(w,z) Ψ′

z (w, w)e
2
hΨ(w,w)

)

and one computes that M := hB̃∗ Ã−1hB̃ is given by

M = 4

det Ã

(
M11 M12

M21 M22

)
with

M11 =Ψ′
z (z, z)Ψ′

w (z, z)e
1
h (4Ψ(z,z)+2Ψ(w,w)) + [

Ψ′
z (z, w)Ψ′

w (w, z)

−Ψ′
z (z, w)Ψ′

w (z, z)−Ψ′
z (z, z)Ψ′

w (w, z)
]
e

1
h (2Ψ(z,z)+4ReΨ(z,w)),
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M12 =−Ψ′
z (z, w)Ψ′

w (z, w)e
1
h (4Ψ(z,w)+2Ψ(w,z)) + [

Ψ′
z (z, z)Ψ′

w (z, w)

+Ψ′
z (z, w)Ψ′

w (w, w)−Ψ′
z (z, z)Ψ′

w (w, w)
]
e

2
h (Ψ(z,z)+Ψ(z,w)+Ψ(w,w)),

and

M22 =Ψ′
z (w, w)Ψ′

w (w, w)e
1
h (2Ψ(z,z)+4Ψ(w,w)) + [

Ψ′
z (w, z)Ψ′

w (z, w)

−Ψ′
z (w, w)Ψ′

w (z, w)−Ψ′
z (w, z)Ψ′

w (w, w)
]
e

1
h (2Ψ(w,w)+4ReΨ(z,w)).

Since the matrix M is clearly self-adjoint, one has that M21 = M 12. Comparing the coefficients of M
with with those of h2(det Ã/4)C̃ (cf. Lemma 3.3.7) and using the symmetries ofΨ (cf. Proposition
3.2.1), we see that

h2Γ̃= −4

det Ã

(
a1a1e

1
h (2Ψ(z,z)+4ReΨ(z,w)) a1a2e

2
h (Ψ(z,z)+Ψ(z,w)+Ψ(w,w))

a2a1e
2
h (Ψ(z,z)+Ψ(w,z)+Ψ(w,w)) a2a2e

1
h (2Ψ(w,w)+4ReΨ(z,w))

)

+2h

(
Ψ′′

zw
(z, z;h)e

2
hΨ(z,z) Ψ′′

zw
(z, w ;h)e

2
hΨ(z,w)

Ψ′′
zw

(w, z;h)e
2
hΨ(w,z) Ψ′′

zw
(w, w ;h)e

2
hΨ(w,w)

)
(3.3.3)

with ai as in the hypothesis of Proposition 3.3.4. Recall from (3.2.2) that the function K (z, w) is
defined by

−K (z, w) = 2ReΨ(z, w)−Φ(z)−Φ(w)

whereΦ(z) =Ψ(z, z). Using (3.3.2), we find that the first matrix in (3.3.3) is equal to

−4

1−e−
2
h K (z,w)

(
a1a1e

1
h (2Ψ(z,z)−2K (z,w)) a1a2e

2
hΨ(z,w)

a2a1e
2
hΨ(w,z) a2a2e

1
h (2Ψ(w,w)−2K (z,w))

)
.

It follows by Lemma 3.3.7 that

Γ=ΛΓ̃Λ∗+OC ∞
(
h∞)

.

In the last equality we used that det A is bounded from below by a power of h; see Lemma 3.3.7.
Carrying out the matrix multiplicationΛΓ̃Λ∗ implies the statement of the proposition.

Proof of Proposition 3.3.1. The Shur complement formula yields that the determinant of the Gra-
mian matrix G is given by detG = det A detΓ. Hence, using Proposition 3.3.2 and Corollary 3.3.5,
we see that

detG =−16(1+O (h∞))

h4 e−
2
h K (z,w)

[
|a1a2|2 + h

2

(|a1|2(∂2
zwΨ)(w, w ;h)

−2Re
{
(∂2

zwΨ)(w, z;h)a1a2
}+|a2|2(∂2

zwΨ)(z, z;h)
)]

+ 4

h2

(
(∂2

zwΨ)(z, z;h)(∂2
zwΨ)(w, w ;h)− (∂2

zwΨ)(z, w ;h)(∂2
zwΨ)(w, z;h)e−

2
h K (z,w)

)
·
(
1−e−

2
h K (z,w) +O (h∞)

)
+O (h∞). (3.3.4)

Next, we consider the Taylor expansion of the terms a1 and a2 up to first order. Similarly as in
Proposition 3.2.1, we develop around the point ( z+w

2 , z+w
2 ) and get that

a1 = (∂zΨ)(z, z)− (∂zΨ)(z, w)

= (∂2
zw̄Ψ)

( z +w

2
,

z +w

2

)
(z −w)+O (|z −w |2 +h∞) (3.3.5)

and

a2 = (∂zΨ)(w, z)− (∂zΨ)(w, w)

= (∂2
zw̄Ψ)

( z +w

2
,

z +w

2

)
(z −w)+O (|z −w |2 +h∞). (3.3.6)
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Moreover, one has that for ζ,ω ∈ {z, w}

(∂2
zw̄Ψ) (ζ,ω) = (∂2

zw̄Ψ)
( z +w

2
,

z +w

2

)
+O (|z −w |+h∞). (3.3.7)

Since we suppose that |z −w | À h3/5, the above error term is equal to O (|z −w |). Since ∂2
zw̄Ψ is

evaluated at a point on the diagonal, it follows from Proposition 3.2.1, that

(∂2
zw̄Ψ)

( z +w

2
,

z +w

2

)
= (∂2

zz̄Φ)
( z +w

2
,

z +w

2

)
= 1

4
σ

( z +w

2

)
+O (h) =:

1

4
σh(z, w). (3.3.8)

Plugging the above Taylor expansion into (3.3.4), one gets that detG is equal to

σh(z, w)2

4h2

{[
1+O (|z −w |)− (1+O (|z −w |))e−

2
h K (z,w)

](
1−e−

2
h K (z,w) +O (h∞)

)
−4e−

2
h K (z,w)

((
σh(z, w)|z −w |2

4h

)2

(1+O (|z −w |))+ σh(z, w)|z −w |2
4h

O (|z −w |)
)}

+O (h∞)

= σh(z, w)2

4h2

{(
1−e−

2
h K (z,w)

)2 +O (|z −w |)
(
1−e−

2
h K (z,w)

)
+O (h∞)

−4e−
2
h K (z,w)

[(
σh(z, w)|z −w |2

4h

)2

+O

( |z −w |5
h2

)
+O

( |z −w |3
h

)]}
.

Recall from (3.2.2) that K (z, w) ³ |z −w |2, wherefore we see that detG is positive for |z −w |Àp
h.

Next, we suppose that |z −w | ³p
h. Hence, one gets that

detG = σh(z, w)2e−
2
h K (z,w)

h2

{
sinh2 K (z, w)

h
+O (|z −w |)

(
e

2
h K (z,w) −1

)
+O (h∞)

−
[(
σh(z, w)|z −w |2

4h

)2

+O

( |z −w |5
h2

)
+O

( |z −w |3
h

)]}
. (3.3.9)

Using the Taylor expansion of the sinh x and (3.2.2), one gets that

sinh2 K (z, w)

h
−

(
σh(z, w)|z −w |2

4h

)2

≥
(

1

3

σh(z, w)|z −w |2
4h

)4

(1+O (|z −w |))+O

(
σh(z, w)|z −w |5

h2

)
. (3.3.10)

Note that the principal term on the right hand side of the inequality dominates the error terms.
The same holds true for the other error terms in (3.3.9).

Next, let us suppose that h3/5 ¿|z −w |¿p
h. Since

O (|z −w |)
(
e

2
h K (z,w) −1

)
=O

( |z −w |3
h

)
,

it follows by (3.3.9) and (3.3.10) that detG is positive for |z −w |À h3/5.

Proof of Proposition 3.3.6. Using (3.3.5), (3.3.6) and (3.3.7), one gets that

trΓ= σh(z, w)

2h
(
e

2
h K (z,w) −1

)[(
e

2
h K (z,w) −1

)
(1+O (|z −w |))

− σh(z, w)|z −w |2
2h

(1+O (|z −w |))
]

. (3.3.11)

Since

e
2
h K (z,w) −1 ≥ σh(z, w)|z −w |2

2h
(1+O (|z −w |))+ σh(z, w)|z −w |4

8h2 (1+O (|z −w |)),

it follows that for |z −w | À h the trace of Γ is positive. Furthermore, the above inequality applied
to (3.3.11), implies the upper bound stated in the Proposition.
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3.3.3 – The permanent of Γ

The permanent of the matrix Γ (cf. (3.3.1)) is vital to the 2-point density of eigenvalues and there-
fore, we shall give a more detailed description of it than the one given in Corollary 3.3.5.

Proposition 3.3.8. Let σh(z, w) be as in Theorem 1.3.4 and let K (z, w) be as in (3.2.2). Under the
assumptions of Proposition 3.3.4, we have that for N > 1 and 1

C hN ≤ |z −w |,

permΓ(z, w ;h)

= 1

4h2

[
σh(z, z)σh(w, w)+σh(z, w)2(1+O (|z −w |))e−

2K (z,w)
h +O (h∞)

+ σh(z, w)2(1+O (|z −w |))

e
K (z,w)

h sinh K (z,w)
h

((
σh(z, w)|z −w |2

4h

)2

2coth
K (z, w)

h
− σh(z, w)|z −w |2

h

)]
.

Proof. Applying (3.3.5), (3.3.6) and (3.3.7) to the formula for permΓ given in Proposition 3.3.6 and
using the notation introduced in (3.3.8), one gets that

permΓ= 8coth K
h

h4 sinh K
h

e−
1
h K (z,w)|4−2σh(z, w)2(z −w)2(1+O (|z −w |)|2

− e−
1
h K (z,w)

4h3 sinh K
h

σh(z, w)3|z −w |2(1+O (|z −w |)

+ 1

4h2

(
σh(z, z)σh(w, w)+σh(z, w ;h)2(1+O (|z −w |)e−

2
h K (z,w)

)
+O (h∞).

Thus, one computes that

permΓ=σh(z, w)2(1+O (|z −w |)
4h2e

1
h K (z,w) sinh K

h

[(
σh(z, w)|z −w |2

4h

)2

2coth
K

h
− σh(z, w)|z −w |2

h

]

+ 1

4h2

(
σh(z, z)σh(w, w)+σh(z, w ;h)2(1+O (|z −w |)e−

2
h K (z,w)

)
+O (h∞)

and we conclude the statement of the proposition.

3.4 | Proof of the results on the eigenvalue interaction

We begin by proving the results of Theorem 1.3.4, Proposition 1.3.5 and of Proposition 1.3.6.

Proof of Theorem 1.3.4. The result follows directly from Proposition 3.1.7 with the density D given
by Proposition 3.3.8 and by Proposition 3.3.2.

Proof of Proposition 1.3.5. First, let us treat the case of the long range interaction: we suppose that
|z −w |À (h lnh−1)

1
2 . Here, we have that for any power N > 1 the term

(
σh(z, w)|z −w |2

4h

)N

e−K (z,w)

remains bounded. Using that sinhK (z, w) ≥ O (h−C ) > 0 with C À 1 and using that σh(z, z) =
σ(z)+O (h), it follows that

Dδ(z, w ;h) = σ(z)σ(w)+O (h)

(2hπ)2

(
1+O

(
δh− 8

5

))
.
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Next, we consider the case where h
4
7 ¿|z −w |¿ h

1
2 . Recall from Theorem 1.3.4 that

Dδ(z, w ;h) = Λ(z, w)

(2πh)2
(
1−e−2K (z,w)

) (
1+O

(
δh− 8

5

))
+O

(
e−

D
h2

)
(3.4.1)

Dδ(z, w ;h) =Λ(z, w)
(
1+O

(
h∞+δh− 51

10

))
+O

(
e−

D
h2

)
,

withΛ(z, w ;h) equal to

σh(z, z)σh(w, w)+σh(z, w)2(1+O (|z −w |))e−2K (z,w) +O
(
h∞+δh− 31

10

)
+ σh(z, w)2(1+O (|z −w |))

eK (z,w) sinhK (z, w)

((
σh(z, w)|z −w |2

4h

)2

2cothK (z, w)− σh(z, w)|z −w |2
h

)
.

Similarly to (3.3.7), we have that σh(z, z) =σh(z, w)(1+O (|z−w |). We start by considering the first
term in (3.4.1):

Λ(z, w)

(2πh)2
(
1−e−2K (z,w)

) . (3.4.2)

Set σh = σh(z, w). Using the Taylor expansions of the functions sinh x, coth x and e−x , one com-
putes, that (3.4.2) is equal to

1

hπ2σh |z −w |2
(
1+O

( |z−w |2
h

))[
σ2

h (1+O (|z −w |))−
σ3

h |z −w |2
4h

(1+O (|z −w |))

+ σ4
h |z −w |4

42h2

(
1+O

( |z −w |2
h

))
+

{
σ4

h |z −w |4
3 ·44h2

(
1+O

( |z −w |4
h2

))
−1

}
·

·
σ2

h

(
1− σh |z−w |2

4h (1+O (|z −w |))+ σ2
h |z−w |4
2·42h

(
1+O

( |z−w |2
h

)))
1+O (|z −w |)+ σ2

h |z−w |4
42·6h

(
1+O

( |z−w |2
h

)) +O
(
h∞+δh− 31

10

)
which simplifies to

Λ(z, w ;h) = σ3
h |z −w |2
(4πh)2

(
1+O

( |z −w |2
h

))
.

Hence,

Dδ(z, w ;h) = σ3
h |z −w |2
(4πh)2

(
1+O

( |z −w |2
h

+δh− 8
5

))
which concludes the proof.

.

Proof of Proposition 1.3.6. Using that σh(z, w0) = σh(z, z)(1+O (|z − w0|) (cf. (3.3.7) and (3.3.8)),
the result of Proposition 1.3.6 follows from Proposition 1.3.5.

It remains to prove Proposition 3.1.7. However, first, we state a global version of the implicit
function theorem.

Lemma 3.4.1. Let 0 < R0 < R, let n,m ∈N, with n > m, and let B(0,R) ⊂Cn =Cn−m
z ×Cm

w denote the
complex open ball of radius R > 0 centered at 0. For z ∈ BCn−m (0,R0), define R(z) := (R2−‖z‖2

Cn−m )1/2.
We consider a holomorphic function

F : B(0,R) −→Cm

such that
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• for all (z, w) ∈ B(0,R) the Jacobian of F with respect to w is given by

∂F (z, w)

∂w
= A+G(z, w),

where G : B(0,R) −→Cm×m is a matrix-valued holomorphic function and

• A ∈ GLm(C) such that
‖A−1‖ ·‖G(z, w)‖ ≤ θ < 1

for all (z, w) ∈ B(0,R).

Then, for all z ∈ BCn−m (0,R0) and for all y ∈ BCm (F (z,0), 1−θ
‖A−1‖r ), with 0 < r < R(z), the equation

F (z, w) = y (3.4.3)

has exactly one solution w(z, y) ∈ BCm (0,R(z)), it satisfies w(z, y) ∈ BCm (0,r ) and it depends holo-
morphically on z and on y.

Remark 3.4.2. Observe that the choice of R0 < R yields a uniform lower bound on R(z) and so we
can choose the radius of the ball BCm (F (z,0), 1−θ

‖A−1‖r ) uniformly in z. This will become important
in the proof of Proposition 3.1.7.

Proof. Let z ∈ BCn−m (0,R0) and set

BCm (0,R(z)) 3 w 7−→ F̃ (w) := F (z, w).

We begin by observing that dF̃ (w) is invertible for all w ∈ BCm (0,R(z)) and the norm of the inverse
is bounded (uniformly in z). Indeed, for one has that∥∥∥(

dF̃ (w)
)−1

∥∥∥≤ ‖A−1‖ ·‖(1+ A−1G(z, w))−1‖ ≤ ‖A−1‖
1−θ .

Claim #1: F̃ is injective.
Let w0, w1 ∈ BCm (0,R(z)) and define yi := F̃ (wi ). Hence, with wt := (1− t )w0 + t w1, we have

that
d

d t
F̃ (wt ) = dF̃ (wt ) · (w1 −w0) = (A+G(z, wt )) · (w1 −w0).

Thus,

y1 − y0 = (A+H(z, w1, w0)) · (w1 −w0), H(z, w1, w0)) =
ˆ 1

0
G(z, wt )d t ,

where ‖H(z, w1, w0)‖ ≤ supB(0,R)‖G(z, w)‖. Therefore, ‖A−1‖ · ‖H(z, w1, w0)‖ ≤ θ < 1, and we see

that (A+H(z, w1, w0)) is invertible and the norm of its inverse is ≤ ‖A−1‖
1−θ (uniformly in z). Hence,

‖w1 −w0‖ ≤ ‖A−1‖
1−θ ‖y1 − y0‖, (3.4.4)

and we conclude that F̃ is injective. In particular, we have proven the uniqueness of the solution
to the equation (3.4.3).

Claim #2: Let 0 < r < R(z). Then, for all y ∈ BCm (F̃ (0), 1−θ
‖A−1‖r ) there exists a w ∈ BCm (0,r ) such

that
F̃ (w) = y.

For y = F̃ (0), we take w = 0. Using the fact that dF̃ is invertible everywhere, the implicit func-
tion theorem implies that for all y ∈ B(F̃ (0),ρ) there exists a solution w ∈ BCm (0,r ), if ρ > 0 is small
enough (cf. (3.4.4)). Let y ∈ BCm (F̃ (0), 1−θ

‖A−1‖r ), and define yt := (1− t )F̃ (0)+ t y . Let t0 ∈ [0,1] be the

supremum of t̃ ∈ [0,1] such that there exists a solution to F̃ (wt ) = yt for all 0 ≤ t ≤ t̃ .
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We have already proven that t0 > 0. As t ↗ t0 we have that wt ∈ BCm (0,r ). Since BCm (0,r ) is
relatively compact in BCm (0,R(z)), there exists a sequence t j ↗ t0 such that wt j → w̃ with w̃ ∈
BCm (0,r ). Thus,

F̃ (w̃) = yt0 ,

and we see by (3.4.4) that w̃ ∈ BCm (0,r ).
If t0 < 1, we get by the implicit function theorem, that for all y ∈ B(yt0 ,δ), with δ > 0 small

enough, there exists a solution w ∈ BCm (0,r ). Therefore, we can solve F̃ (wt ) = yt for all 0 < t <
t0 +δ, which is a contradiction. Hence, t0 = 1, which concludes the proof of the existence of a
solution.

Finally, note that for all (z, w) ∈ B(0,R) the Jacobian ∂F (z, w)/∂w is invertible and the norm of
its inverse is uniformly bounded, indeed∥∥∥∥(

∂F (z, w)

∂w

)−1∥∥∥∥≤ ‖A−1‖ ·‖(1+ A−1G(z, w))−1‖ ≤ ‖A−1‖
1−θ .

In particular, we have that the determinant of the Jacobian is never equal to 0, and we conclude
by the holomorphic implicit function theorem that the solution w(z, y) to the equation (3.4.4)
depends holomorphically on z and y .

Proof of Proposition 3.1.7. In view of (3.1.4), it remains to study the integral

I (z1, z2,h) = lim
ε→0+π

−N
ˆ

B(0,R)
Hδ
ε (z1, z2,α;h)e−ααL(dα). (3.4.5)

with

Hδ
ε (z1, z2,α;h) :=

2∏
k=1

ε−2χ

(
Eδ−+(zk ,α)

ε

)
|∂zk Eδ

−+(zk ,α)|2

for 1/C ≥ |z1 − z2|À h3/5. We begin by performing a change of variables in the α-space.

Change of variables: For X (z) ∈CN as in Definition 3.1.2, define the matrix

t V := (
X (z1), X (z2),∂z1 X (z1),∂z2 X (z2)

) ∈CN×4

and note that the Gramian matrix G (cf. (3.1.6)) satisfies

G =
(

A B
B∗ C

)
=V ·V ∗.

Moreover, G is invertible by virtue of Proposition 3.3.1, since |z1 − z2| À h3/5. Next, we define the
matrix U ∈C4×4 by

U :=
(

1 0
B∗A−1 1

)
.

U is invertible and thus satisfies that (U−1)∗ = (U∗)−1. Define the matrix

G̃ :=
(

A 0
0 Γ

)
∈C4×4,

and notice that

U

(
A 0
0 Γ

)
U∗ =

(
1 0

B∗A−1 1

)
G̃

(
1 A−1B
0 1

)
=G .

We see that G̃ =U−1G(U∗)−1. Next, we define the matrix

Ṽ ∗ := (U−1V )∗G̃− 1
2 ∈CN×4. (3.4.6)
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Ṽ ∗ is an isometry since Ṽ Ṽ ∗ = 1C4 . Thus, its columns form an orthonormal family in CN . It
follows from (3.4.6) that the kernel of V and of Ṽ are equal, i.e. N (V ) = N (Ṽ ). The same holds
true for the range of Ṽ and of V , i.e. R(V ) =R(Ṽ ).

Next, we choose an orthonormal basis, e1, . . . ,eN ∈CN , of the space of random variablesα such
that Ṽ ∗

1 , . . . ,Ṽ ∗
4 , the column vectors of the matrix Ṽ ∗, are among them. In particular, let ei = Ṽ ∗

i for
i = 1, . . . ,4, and let e5, . . . ,eN be in the orthogonal complement of the space spanned by e1, . . . ,e4.
Hence, we write for α ∈CN

α=
N∑

i=1
α̃i ei ,

where α̃= (α̃1, . . . , α̃N ) ∈CN . Moreover, note that

α∗ ·α= α̃∗ · α̃. (3.4.7)

Remark 3.4.3. The fact that we can only guarantee the invertibility of G for h
3
5 ¿|z−w |¿ 1 makes

(1.3.4) necessary. This might be avoided by choosing another set of basis vectors.

Next, we apply this change of variables to the vector F given in (3.1.5) and we get

F (z,α(α̃);δ,h)

=


E−+(z1)
E−+(z2)

(∂z E−+)(z1)
(∂z E−+)(z2)

−δ


t X (z1)
t X (z2)

t (∂z X )(z1)
t (∂z X )(z2)

 ·α(α̃)+


T (z1,α(α̃))
T (z2,α(α̃))

(∂z T )(z1,α(α̃))
(∂z T )(z2,α(α̃))



=


E−+(z1)
E−+(z2)

(∂z E−+)(z1)
(∂z E−+)(z2)

−δ(V · Ṽ ) ·

α̃1
...
α̃4

+


T (z1,α(α̃))
T (z2,α(α̃))

(∂z T )(z1,α(α̃))
(∂z T )(z2,α(α̃))

 .

Furthermore, one computes that

V Ṽ =UG̃
1
2 =

(
A

1
2 0

B∗A− 1
2 Γ

1
2

)
, (3.4.8)

and we get that

F (z,α(α̃);δ,h) =


E−+(z1)
E−+(z2)

(∂z E−+)(z1)
(∂z E−+)(z2)

−δUG̃
1
2 ·

α̃1
...
α̃4

+


T (z1,α(α̃))
T (z2,α(α̃))

(∂z T )(z1,α(α̃))
(∂z T )(z2,α(α̃))

 .

Next, to simplify our notation, we call the α̃ variables again α. Also, to abbreviate our notation,
define

µ(z, w ;h) :=
(
E−+(z1)
E−+(z2)

)
and τ(z,α;h,δ) :=

(
T (z1,α)
T (z2,α)

)
.

and

∂zµ(z, w ;h) :=
(
(∂z E−+)(z1)
(∂z E−+)(z2)

)
and ∂zτ(z,α;h,δ) :=

(
(∂z T )(z1,α)
(∂z T )(z2,α)

)
.

Remark 3.4.4. Recall that T (cf. (3.1.3)) depends on h and on δ, though not explicit in the above
notation.

When we write ∂zµ and ∂zτ the derivatives are to be understood component wise, each of
which only depends either on z1 or z2.
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Hence,

Fδ(z,α) := F (z,α;δ,h) =
(
µ(z,h,δ)
∂zµ(z,h,δ)

)
−δUG̃

1
2

α1
...
α4

+
(
τ(z,α,h,δ)
∂zτ(z,α,h,δ)

)
. (3.4.9)

As noted in Remark 3.1.4, µ and τ are smooth in z, and τ is holomorphic inα. Moreover, τ satisfies
the estimates

τi =O
(
h−5/2δ2) , i = 1,2 and ∂ziτi =O

(
h−7/2δ2) , i = 1,2; (3.4.10)

and µ satisfies the estimates

µi =O
(
h1/2e−

S
h

)
, ∂ziµi =O

(
h−1/2e−

S
h

)
, i = 1,2 (3.4.11)

with S as in Definition 1.2.2. Finally, we perform the above described change of variables in the
integral (3.4.5), and, using the fact that we chose an orthonormal basis of the α-space, we get that

Hδ
ε (z1, z2,α;h) =

2∏
k=1

ε−2χ

(
Fδ

k (zk ,α)

ε

)
|Fδ

k+2(zk ,α)|2.

Next, let α = (α1,α2,α′) = (α̃,α′) and split the ball B(0,R), R = C h−1, into two pieces: pick C0 > 0
such that 0 <C1 <C0 <C < 2C0, and define R0 =C0h−1. Then, we perform the splitting: I (z,h) =
I1(z,h)+ I2(z,h) with

I1(z,h) := lim
ε→0+π

−N
ˆ

B(0,R)
‖α′‖CN−2≤R0

Hδ
ε (z1, z2,α;h)e−α

∗αL(dα).

and

I2(z,h) := lim
ε→0+π

−N
ˆ

B(0,R)
R0<‖α′‖CN−2<R

Hδ
ε (z1, z2,α;h)e−α

∗αL(dα). (3.4.12)

The integral I1 First, we perform a new change of variables in theα-space. Let β1, . . . ,βN ∈C such
that

β1 = Fδ
1 (z1,α), β2 = Fδ

2 (z2,α) and βi =αi , for i = 3, . . . , N .

We use the following notation: β= (β1,β2,β′) = (β̃,α′). It is sufficient to check that we can express
α̃= (α1,α2) as a function of (β̃,α′). Therefore, we apply Lemma 3.4.1 to the function

Fδ(z,α) =
(
Fδ

1 (z1,α)
Fδ

2 (z2,α)

)
.

whereα plays the role of (z, w) in the Lemma. In particular, α̃ plays the role of w . Let us check that
the assumptions of Lemma 3.4.1 are satisfied: Fδ(z,α) is by definition holomorphic in α. Using
(3.4.9) and (3.4.8), we see that its Jacobian, with respect to the variables α̃, is given by

∂F (z,α)

∂α̃
= ∂τ

∂α̃
−δA

1
2 (3.4.13)

The Cauchy inequalities and (3.4.10) imply that

∂τi

∂α̃ j
=O

(
δ2h− 3

2

)
, i , j = 1,2.

This estimate is uniform in α ∈ B(0,R) and (z1, z2) ∈ suppϕ. Expansion of the determinant yields
that

det

(
∂τ

∂α̃
−δA

1
2

)
= δ2

(p
det A+O

(
δh− 3

2

))
. (3.4.14)
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Using that A is self-adjoint, we see by Corollary 3.3.3 that for (z1, z2) ∈ suppϕ

‖A− 1
2 ‖ ≤ 1

min
λ∈σ(A)

p
λ
≤O

(
h− 1

20

)
. (3.4.15)

By the hypothesis (1.3.2), we have that δ¿ h7/2. Hence, one gets that for all α ∈ B(0,R)

δ−1‖A− 1
2 ‖·‖∂α̃τ‖≤O

(
δh− 3

2− 1
20

)
¿ 1.

Hence Fδ(z,α) satisfies the assumptions of Lemma 3.4.1. In the integral I1 we restricted α′ to the
open ball ‖α′‖CN−2 < R0. It follows by Lemma 3.4.1 that for all

β̃ ∈ BC2

(
Fδ(z;0,α′),r

)
(3.4.16)

with

r : =
(
δ‖A− 1

2 ‖−1(1− max
α∈B(0,R)

δ−1‖A− 1
2 ‖·‖∂α̃τ‖)

)√
R2 −R2

0

≥ δh
1

20−1

O (1)
> 0,

the equation β̃=Fδ(z, α̃,α′) has exactly one solution α̃(β̃,α′; z) in the ball

B
(
0,

√
R2 −‖α′‖2

CN−2

)
).

Moreover, the solution satisfies α̃(β̃,α′; z) ∈ B(0,
√

R2 −R2
0), and it depends holomorphically on β̃

and α′ and is smooth in z. Using (3.4.9), we see that the solution is implicitly given by

α̃(β̃,α′) =−δ−1 A− 1
2
(
β̃−ν(z, α̃(β̃,α′),α′,h,δ)

)
. (3.4.17)

with
ν := (ν1,ν2)t :=µ(z,h)+τ(z, α̃(β̃,α′),α′,h,δ)

where τ satisfies the estimate (3.4.10). Since the support of χ is compact (cf. Section 3.1.1), we can
restrict our attention to β̃ and Fδ(z;0,α′) in a small poly-disc of radius K ε> 0 centered at 0, with
K > 0 large enough such that suppχ⊂ D(0,K ). By choosing ε< δh/C , C > 0 large enough, we see
that β̃,Fδ(z;0,α′) ∈ D(0,K ε)×D(0,K ε) implies (3.4.16).

From (3.4.8), (3.4.9) and (3.4.17), it follows that(
Fδ

3 (z, α̃(β̃,α′),α′)
Fδ

4 (z, α̃(β̃,α′),α′)

)
= ∂zν+B∗A−1(β̃−ν)−δΓ 1

2

(
α3

α4

)
, (3.4.18)

with
∂zν= (∂zν1,∂zν2)t = (∂zµ)(z,h)+ (∂zτ)(z, α̃(β̃,α′),α′,h,δ)

where ∂zτ satisfies the estimate given in (3.4.10). Furthermore, (3.4.13) and (3.4.14) imply that

L(dα̃) = δ−4
(p

det A+O
(
δh− 3

2

))−2
L(d β̃) =: J (β̃,α′)L(d β̃) (3.4.19)

By performing this change of variables in the integral I1 and by picking ε > 0 small enough as
above, we get that I1 is equal to

lim
ε↘0

π−N
Ï

β̃∈D(0,K ε)×D(0,K ε)
(α̃(β̃,α′),α′)∈B(0,R)

‖α′‖CN−2≤R0

Hδ
ε (z1, z2, α̃(β̃,α′),α′;h)e−Φ(β̃,α′) J (β̃,α′)L(dα′)L(d β̃),
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where
Φ(β̃,α′) := α̃(β̃,α′)∗ · α̃(β̃,α′)+ (α′)∗ ·α′.

The integrand of I1 depends continuously on β̃. Hence, by performing the limit ε→ 0+, we get

I1(z,h) =π−N
ˆ

(α̃(0,α′),α′)∈B(0,R)
‖α′‖CN−2≤R0

Hδ
0 (z1, z2, α̃(0,α′),α′;h)e−Φ(0,α′) J (0,α′)L(dα′) (3.4.20)

with
Hδ

0 (z1, z2, α̃(0,α′),α′;h) = |F3(z,0,α′)F4(z,0,α′)|2.

Using (3.4.17), one computes that

Φ(0,α′) = 1

δ2ν
∗A−1ν+ (α′)∗ ·α′

and, using (3.4.18), we get(
Fδ

3 (z, α̃(0,α′),α′)
Fδ

4 (z, α̃(0,α′),α′)

)
= ∂zν−B∗A−1ν−δΓ 1

2

(
α3

α4

)
, (3.4.21)

where ν= ν(z, α̃(0,α′),α′,h,δ). Using (3.4.10), (3.4.11) and (3.4.15) one computes that

‖α̃(0,α′)‖2 = 1

δ2ν
∗A−1ν≤ C

h
1

10

[
O

(
δ−2e−

2S
h

)
+O

(
δ2h−5)] , (3.4.22)

where the constant C > 0 comes from the upper bound of ‖A−1/2‖−1 given in (3.4.15). By the
Hypothesis (1.3.2), we conclude that

‖α̃(0,α′)‖2 ¿ 1

h
1

10

.

which implies that (α̃(0,0,α′),α′) ∈ B(0,R) for all α′ with ‖α′‖CN−2 ≤ R0. Hence,

I1(z,h) =π−N
ˆ

‖α′‖CN−2≤R0

|F3(z,0,α′)F4(z,0,α′)|2e−Φ(0,α′) J (0,α′)L(dα′). (3.4.23)

Next, we want to apply a multi-dimensional version of the mean value theorem for integrals to
(3.4.23). Indeed, let U ⊂Rn be open, relatively compact and path-connected, it then holds true
that for a continuous function f : U →R and a positive integrable function g : U →R, there exists
a y ∈U such that

f (y)

ˆ
U

g (x)d x =
ˆ

U
f (x)g (x)d x.

Hence, the mean value theorem applied to (3.4.23) yields that

I1(z,h) =π−N Je−
ν̃∗A−1 ν̃

δ2

ˆ

‖α′‖CN−2≤R0

|F3(z,0,α′)F4(z,0,α′)|2e−α
′α′

L(dα′).

Here, J denotes the evaluation of the Jacobian J (0,α′) (cf. (3.4.19)) at the intermediate point for α′

given by mean value theorem. Note that J depends smoothly on z1 and z2 because τ and A do.
Similarly, ν̃ above denotes the evaluation of the function ν(z, α̃(0,α′),α′,h,δ) at the intermedi-

ate point for α′ given by mean value theorem. It depends smoothly on z1 and z2 because µ and τ
do. Moreover, using (3.4.10), we see that it satisfies

ν̃=
(
E−+(z1)
E−+(z2)

)
+O

(
δ2h− 5

2

)
.

116



CHAPTER 3. EIGENVALUE INTERACTION FOR A CLASS OF NON-SELF-ADJOINT OPERATORS UNDER
RANDOM PERTURBATIONS

In remains to study the integral

Ĩ1(z,h) :=π−N
ˆ

‖α′‖CN−2≤R0

|F3(z,0,α′)F4(z,0,α′)|2e−α
′α′

L(dα′).

Define the linear forms

l1(α′) = [Γ
1
2 ]11α3 + [Γ

1
2 ]12α4, l2(α′) = [Γ

1
2 ]21α3 + [Γ

1
2 ]22α4.

Using (3.4.21), we get that

F3(z,0,α′) = (∂zν−B∗A−1ν)1 −δl1(α′) =O
(
h− 3

5 e−
S
h +δ2h− 36

10

)
−δl1(α′).

F4(z,0,α′) = (∂zν−B∗A−1ν)2 −δl2(α′) =O
(
h− 3

5 e−
S
h +δ2h− 36

10

)
−δl2(α′).

In the last equation we used (3.4.10), (3.4.11), (3.4.15) and the fact that the Hilbert-Schmidt norm
of B∗ is ≤ 1

hO (1) which follows from the fact that elements of the matrix B∗ are bounded by a term

of order h−1.
By Proposition 3.3.6, one gets that the Hilbert-Schmidt norm of Γ

1
2 is bounded, indeed one has

that
‖Γ 1

2 ‖HS =
p

trΓ≤O (h− 1
2 ).

Since ‖α′‖CN−2 ≤ R0, one gets

|F3(z,0,α′)F4(z,0,α′)|2 = δ4
(
|l1(α′)l2(α′)|2 +O

(
e−

1
C h +δh− 51

10

))
,

where the error estimate is uniform in α′. Here we used as well that by the hypothesis (1.3.2), we

have that O (δ−1e−
S
h ) =O (e−

1
C h ). Hence,

Ĩ1(z,h) = δ4π−N
ˆ

‖α′‖CN−2≤R0

|l1(α′)l2(α′)|2e−α
′α′

L(dα′)+O
(
δ4e−

1
C h +δ5h− 51

10

)
.

Extend the function |l1(α′)l2(α′)|2 to the whole ofCN−2 by a function that satisfies the same bounds,
i.e. bounded by a term of order h−5, and note that

π2−N
ˆ

‖α′‖CN−2≥R0

|l1(α′)l2(α′)|2e−α
′α′

L(dα′) ≤O
(
e−

D
h2

)
.

Integration by parts yields that

π2−N
ˆ

CN−2

|l1(α′)l2(α′)|2e−α
′α′

L(dα′)

=π−2
ˆ
CN−2

e−α̃α̃
2∏

k=1
lk (∂α̃)

(
2∏

n=1
ln(α̃)

)
L(dα̃).

Note that for any permutation σ ∈ Sn , where Sn is the symmetric group, we have that (li |lσ(i )) =
Γiσ(i ). Thus, in view of (3.1.8), we have that

2∏
k=1

lk (∂α̃)

(
2∏

n=1
ln(α̃)

)
= ∑
σ∈S2

(l1|lσ(1))(l2|lσ(2)) = permΓ

We conclude that

I1(z,h) =
permΓ +O

(
e−

1
C h +δh− 51

10

)
π2

(p
det A+O

(
δh− 3

2

))2 +O
(
e−

D
h2

)
,
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where we used the fact that det A ≥ h
1
5

O (1) for 1/C ≥ |z −w | À h3/5, see Proposition 3.3.4, to obtain
the last equality.

The integral I2 In this step we will estimate the second integral of equation (3.4.12). Therefore,
we will increase the space of integration

π−N
ˆ

B(0,R)
R0<‖α′‖CN−2<R

2∏
k=1

ε−2χ

(
Fk (z,α)

ε

)
|∂zk Fk (z,α)|2e−ααL(dα)

≤π−N
ˆ

B(0,2R)
R0<‖α′‖CN−2<2R0

2∏
k=1

ε−2χ

(
Fk (z,α)

ε

)
|∂zk Fk (z,α)|2e−ααL(dα) =: Wε.

It is easy to see that Lemma 3.4.1 holds true for the set B(0,2R)∩ {R0 < ‖α′‖CN−2 < 2R0}. Therefore,
we can proceed as for the integral I1: perform the same change of variables and perform the limit
of ε→ 0. As for I1, the integrand remains bounded by at most a finite power of h−1 which then
yields that

lim
ε→0

Wε =O
(
e−

D
h2

)
,

where the exponential decay comes from the fact that R0 < ‖α′‖CN−2 . Therefore,

ˆ
C2
ϕ1(z1)ϕ2(z2)dν(z1, z2) =

ˆ
C2
ϕ1(z1)ϕ2(z2)D(z,h)L(d z1d z2)

with

D(z,h,δ) =
permΓ +O

(
e−

1
C h +δh− 51

10

)
π2

(p
det A+O

(
δh− 3

2

))2 +O
(
e−

D
h2

)
.
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CHAPTER 4

INTERIOR EIGENVALUE DENSITY OF
JORDAN MATRICES WITH RANDOM

PERTURBATIONS

The aim of this chapter is to study the eigenvalue distribution of a large Jordan block subject to a
small random Gaussian perturbation, as was discussed in Section 1.4, and give a precise asymp-
totic description of the expected eigenvalue density in the interior of a circle thereby extending an
existing result of E.B. Davies and M. Hager [16]. In particular, we prove the results described in
Section 1.4. The results presented here are due to J. Sjöstrand and M. Vogel [71].

4.1 | A general formula

To start with, we shall obtain a general formula (due to [83] in a similar context). Our treatment is
slightly different in that we avoid the use of approximations of the delta function and also that we
have more holomorphy available.

Let g (z,Q) be a holomorphic function on Ω×W ⊂C×CN 2
, where Ω ⊂C, W ⊂CN 2

are open
bounded and connected. Assume that

for every Q ∈W, g (·,Q) 6≡ 0. (4.1.1)

To start with, we also assume that

for almost all Q ∈W, g (·,Q) has only simple zeros. (4.1.2)

Let φ ∈C∞
0 (Ω) and let m ∈C0(W ). We are interested in

Kφ =
ˆ ( ∑

z; g (z,Q)=0
φ(z)

)
m(Q)L(dQ), (4.1.3)

where we frequently identify the Lebesgue measure with a differential form,

L(dQ) ' (2i )−N 2
dQ1 ∧dQ1 ∧ ...∧dQN 2 ∧dQN 2 =: (2i )−N 2

dQ ∧dQ.

In (4.1.3) we count the zeros of g (·,Q) with their multiplicity and notice that the integral is finite:
For every compact set K ⊂ W the number of zeros of g (·,Q) in suppφ, counted with their multi-
plicity, is uniformly bounded, for Q ∈ K . This follows from Jensen’s formula.

Now assume,
g (z,Q) = 0 ⇒ dQ g 6= 0. (4.1.4)
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Then
Σ := {(z,Q) ∈Ω×W ; g (z,Q) = 0}

is a smooth complex hypersurface inΩ×W and from (4.1.2) we see that

Kφ =
ˆ
Σ

φ(z)m(Q)(2i )−N 2
dQ ∧dQ, (4.1.5)

where we view (2i )−N 2
dQ∧dQ as a complex (N 2, N 2)-form onΩ×W , restricted to Σ, which yields

a non-negative differential form of maximal degree on Σ.
Before continuing, let us eliminate the assumption (4.1.2). Without that assumption, the inte-

gral in (4.1.3) is still well-defined. It suffices to show (4.1.5) for allφ ∈C ∞
0 (Ω0×W0) whenΩ0×W0 is

a sufficiently small open neighborhood of any given point (z0,Q0) ∈Ω×W . When g (z0,Q0) 6= 0 or
∂z g (z0,Ω0) 6= 0 we already know that this holds, so we assume that for some m ≥ 2, ∂k

z g (z0,Q0) = 0
for 0 ≤ k ≤ m −1, ∂m

z g (z0,Q0) 6= 0.
Put gε(z,Q) = g (z,Q)+ ε, ε ∈ neigh(0,C). By Weierstrass’ preparation theorem, if Ω0,W0 and

r > 0 are small enough,

gε(z,Q) = k(z,Q,ε)p(z,Q,ε) inΩ0 ×W0 ×D(0,r ),

where k is holomorphic and non-vanishing, and

p(z,Q,ε) = zm +p1(Q,ε)zm−1 +·· ·+pm(Q,ε).

Here, p j (Q,ε) are holomorphic, and p j (0,0) = 0. The discriminant D(Q,ε) of the polynomial
p(·,Q,ε) is holomorphic on W0 × D(0,r ). It vanishes precisely when p(·,Q,ε) - or equivalently
gε(·,Q) - has a multiple root inΩ0.

Now for 0 < |ε| ¿ 1, the m roots of gε(·,Q0) are simple, so D(Q0,ε) 6= 0. Thus, D(·,ε) is not
identically zero, so the zero set of D(·,ε) in W0 is of measure 0 (assuming that we have chosen W0

connected). This means that for 0 < |ε| ¿ 1, the function gε(·,Q) has only simple roots in Ω for
almost all Q ∈W0.

Let Σε be the zero set of gε, so that Σε→Σ0 =Σ∩ (Ω0 ×W0) uniformly. We have
ˆ ( ∑

z; gε(z,Q)=0
φ(z)

)
m(Q)(2i )−N 2

dQ ∧dQ =
ˆ
Σε

φ(z)m(Q)(2i )−N 2
dQ ∧dQ

for φ ∈C ∞
0 (Ω0×W0), when ε> 0 is small enough, depending on φ, m. Passing to the limit ε= 0 we

get (4.1.5) under the assumptions (4.1.1), (4.1.4), first forφ ∈C ∞
0 (Ω0×W0), and then by partition of

unity for all φ ∈C ∞
0 (Ω×W ). Notice that the result remains valid if we replace m(Q) by m(Q)1B (Q)

where B is a ball in W .
Now we strengthen the assumption (4.1.4) by assuming that we have a non-zero Z (z) ∈ CN 2

depending smoothly on z ∈ Ω (the dependence will actually be holomorphic in the application
below) such that

g (z,Q) = 0 ⇒
(

Z (z) ·∂Q

)
g (z,Q) 6= 0. (4.1.6)

We have the corresponding orthogonal decomposition

Q =Q(α) =α1Z (z)+α′, α′ ∈ Z (z)⊥, α1 ∈C,

and if we identify unitarily Z (z)⊥ withCN 2−1 by means of an orthonormal basis

e2(z), ...,eN 2 (z),

so that α′ =∑N 2

2 α j e j (z) we get global coordinates α1,α2, ...,αN 2 on Q-space (i.e. W ).
By the implicit function theorem, at least locally near any given point in Σ, we can represent Σ

by α1 = f (z,α′), α′ ∈ Z (z)⊥ 'CN 2−1, where f is smooth. (In the specific situation below, this will
be valid globally.) Clearly, since z,α2, ...,αN 2 are complex coordinates on Σ, we have on Σ that

1

(2i )N 2 dQ ∧dQ = J ( f )
d z ∧d z

2i
(2i )1−N 2

dα2 ∧dα2 ∧ ...∧dαN 2 ∧dαN 2 ,
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where we view (2i )−N 2
dQ∧dQ as a complex (N 2, N 2)-form onΩ×W , restricted toΣ (as in (4.1.5)),

and we use the convention that

J ( f )
d z ∧d z

2i
≥ 0, (2i )1−N 2

dα2 ∧dα2 ∧ ...∧dαN 2 ∧dαN 2 > 0.

Thus

Kφ =
ˆ
φ(z)m

(
f (z,α′)Z (z)+α′

)
J ( f )(z,α2, ...,αN 2 )×

(2i )−N 2
d z ∧d z ∧dα2 ∧dα2 ∧ ...∧dαN 2 ∧dαN 2 .

(4.1.7)

The Jacobian J ( f ) is invariant under any z-dependent unitary change of variables, α2, ...,αN 2 7→
α̃2, ..., α̃N 2 , so for the calculation of J ( f ) at a given point (z0,α′

0), we are free to choose the most
appropriate orthonormal basis e2(z), ...,eN 2 (z) in Z (z)⊥ depending smoothly on z. We write (4.1.7)
as

Kφ =
ˆ
φ(z)Ξ̃(z)

d z ∧d z

2i
, (4.1.8)

where the density Ξ̃(z) is given by

Ξ̃(z) =
ˆ
α′=∑N 2

2 α j e j (z)
m( f (z,α′)Z (z)+α′)J ( f )(z,α2, ...,αN 2 )×

(2i )1−N 2
dα2 ∧dα2 ∧ ...∧dαN 2 ∧dαN 2 .

(4.1.9)

4.2 | Grushin problem for the perturbed Jordan block

4.2.1 – Se�ing up an auxiliary problem

Following [74], we introduce an auxiliary Grushin problem. Define R+ :CN →C by

R+u = u1, u = (u1 ... uN )t ∈CN . (4.2.1)

Let R− : C→CN be defined by

R−u− = (0 0 ... u−)t ∈CN . (4.2.2)

Here, we identify vectors inCN with column matrices. Then for |z| < 1, the operator

A0 =
(

A0 − z R−
R+ 0

)
:CN+1 →CN+1 (4.2.3)

is bijective. In fact, identifying

CN+1 ' `2([1,2, ..., N +1]) ' `2(Z/(N +1)Z),

we have A0 = τ−1−zΠN , where τu( j ) = u( j −1) (translation by 1 step to the right, keeping in mind
that j ∈Z/(N +1)Z) andΠN u = 1[1,N ]u. Then A0 = τ−1(1− zτΠN ), (τΠN )N+1 = 0,

A −1
0 = (1+ zτΠN + (zτΠN )2 + ...+ (zτΠN )N )◦τ.

Write

E0 :=A −1
0 =:

(
E 0 E 0+
E 0− E 0−+

)
.

Then

E 0 'ΠN (1+ zτΠN + ...(zτΠN )N−1)τΠN , (4.2.4)
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E 0
+ =


1
z
..

zN−1

 , E 0
− = (

zN−1 zN−2 ... 1
)

, (4.2.5)

E 0
−+ = zN . (4.2.6)

A quick way to check (4.2.5), (4.2.6) is to write A0 as an (N +1)× (N +1)-matrix where we moved
the last line to the top, with the lines labeled from 0 (≡ N +1 mod (N +1)Z) to N and the columns
from 1 to N +1.

Continuing, we see that

‖E 0‖ ≤G(|z|), ‖E 0
±‖ ≤G(|z|) 1

2 , ‖E 0
−+‖ ≤ 1, (4.2.7)

where ‖ ·‖ denote the natural operator norms and

G(|z|) := min

(
N ,

1

1−|z|
)
³ 1+|z|+ |z|2 + ...+|z|N−1. (4.2.8)

Next, consider the natural Grushin problem for Aδ. If δ‖Q‖G(|z|) < 1, we see that

Aδ =
(

Aδ− z R−
R+ 0

)
(4.2.9)

is bijective with inverse

Eδ =
(

Eδ Eδ+
Eδ− Eδ−+

)
,

where

Eδ =E 0 −E 0δQE 0 +E 0(δQE 0)2 − ... = E 0(1+δQE 0)−1,

Eδ
+ =E 0

+−E 0δQE 0
++ (E 0δQ)2E 0

+− ... = (1+E 0δQ)−1E 0
+,

Eδ
− =E 0

−−E 0
−δQE 0 +E 0

−(δQE 0)2 − ... = E 0
−(1+δQE 0)−1,

Eδ
−+ =E 0

−+−E 0
−δQE 0

++E 0
−δQE 0δQE 0

+− ...

= E 0
−+−E 0

−δQ(1+E 0δQ)−1E 0
+.

(4.2.10)

We get

‖Eδ‖ ≤ G(|z|)
1−δ‖Q‖G(|z|) , ‖Eδ

±‖ ≤
G(|z|) 1

2

1−δ‖Q‖G(|z|) ,

|Eδ
−+−E 0

−+| ≤
δ‖Q‖G(|z|)

1−δ‖Q‖G(|z|) .

(4.2.11)

Indicating derivatives with respect to δwith dots and omitting sometimes the super- or sub-script
δ, we have

Ė =−E Ȧ E =−
(

EQE EQE+
E−QE E−QE+.

)
(4.2.12)

Integrating this from 0 to δ yields

‖Eδ−E 0‖ ≤ G(|z|)2δ‖Q‖
(1−δ‖Q‖G(|z|))2 , ‖Eδ

±−E 0
±‖ ≤

G(|z|) 3
2δ‖Q‖

(1−δ‖Q‖G(|z|))2 . (4.2.13)

We now sharpen the assumption that δ‖Q‖G(|z|) < 1 to

δ‖Q‖G(|z|) < 1/2. (4.2.14)
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Then

‖Eδ‖ ≤ 2G(|z|), ‖Eδ
±‖ ≤ 2G(|z|) 1

2 ,

|Eδ
−+−E 0

−+| ≤ 2δ‖Q‖G(|z|).
(4.2.15)

Combining this with the identity Ė−+ = −E−QE+ (recall that here the dot indicates a derivative
with respect to δ) that follows from (4.2.12), we get

‖Ė−++E 0
−QE 0

+‖ ≤ 16G(|z|)2δ‖Q‖2, (4.2.16)

and after integration from 0 to δ,

Eδ
−+ = E 0

−+−δE 0
−QE 0

++O (1)G(|z|)2(δ‖Q‖)2. (4.2.17)

Using (4.2.5), (4.2.6) we get with Q = (q j ,k ),

Eδ
−+ = zN −δ

N∑
j ,k=1

q j ,k zN− j+k−1 +O (1)G(|z|)2(δ‖Q‖)2, (4.2.18)

still under the assumption (4.2.14).

4.2.2 – Estimates for the e�ective Hamiltonian
We now consider the situation of (1.4.2):

Aδ = A0 +δQ, Q = (q j ,k (ω))N
j ,k=1, q j ,k (ω) ∼NC(0,1) independent.

W. Bordeaux-Montrieux [4] obtained the following result.

Proposition 4.2.1. There exists a C0 > 0 such that the following holds: Let

X j ∼NC(0,σ2
j ), 1 ≤ j ≤ N <∞

be independent complex Gaussian random variables. Put s1 = maxσ2
j . Then, for every x > 0, we

have

P

[
N∑

j=1
|X j |2 ≥ x

]
≤ exp

(
C0

2s1

N∑
j=1

σ2
j −

x

2s1

)
.

According to this result we have

P (‖Q‖2
HS ≥ x) ≤ exp

(
C0

2
N 2 − x

2

)
and hence if C1 > 0 is large enough,

‖Q‖2
HS ≤C 2

1 N 2, with probability ≥ 1−e−N 2
. (4.2.19)

In particular (4.2.19) holds for the ordinary operator norm of Q. In the following, we often write | · |
for the Hilbert-Schmidt norm ‖·‖HS and we shall work under the assumption that |Q| ≤ C1N . We
let |z| < 1 and assume:

δNG(|z|) ¿ 1. (4.2.20)

Then with probability ≥ 1−e−N 2
, we have (4.2.14), (4.2.18) which give for g (z,Q) := Eδ−+,

g (z,Q) = zN −δ(Q|Z (z))+O (1)(G(|z|)δN )2. (4.2.21)

Here, Z is given by

Z =
(
zN− j+k−1

)N

j ,k=1
. (4.2.22)
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Remark 4.2.2. The above Z will play in the following the role of the Z in (4.1.6).

A straight forward calculation shows that

|Z | =
N−1∑

0
|z|2ν = 1−|z|2N

1−|z|2 = 1−|z|N
1−|z|

1+|z|N
1+|z| , (4.2.23)

and in particular,
G(|z|)

2
≤ |Z | ≤G(|z|). (4.2.24)

The middle term in (4.2.21) is bounded in modulus by δ|Q||Z | ≤ δC1NG(|z|) and we assume
that |z|N is much smaller than this bound:

|z|N ¿ δC1NG(|z|). (4.2.25)

More precisely, we work in a disc D(0,r0), where

r N
0 ≤C−1δC1NG(r0) ≤C−2, r0 ≤ 1−N−1 (4.2.26)

and C À 1. In fact, the first inequality in (4.2.26) can be written m(r0) ≤ C−1δC1N and m(r ) =
r N (1−r ) is increasing on [0,1−N−1] so the inequality is preserved if we replace r0 by |z| for |z| ≤ r0.
Similarly, the second inequality holds after the same replacement since G is increasing.

In view of (4.2.20), we see that

(G(|z|)δN )2 ¿ δG(|z|)N

is also much smaller than the upper bound on the middle term.
By the Cauchy inequalities,

dQ g =−δZ ·dQ +O (1)G(|z|)2δ2N . (4.2.27)

The norm of the first term is ³ δG ÀG2δ2N , since GδN ¿ 1. (When applying the Cauchy inequal-
ities, we should shrink the radius R =C1N by a factor θ < 1, but we have room for that, if we let C1

be a little larger than necessary to start with.)
Writing

Q =α1Z (z)+α′, α′ ∈ Z (z)⊥ 'CN 2−1,

we identify g (z,Q) with a function g̃ (z,α) which is holomorphic in α for every fixed z and satisfies

g̃ (z,α) = zN −δ|Z (z)|2α1 +O (1)G(|z|)2δ2N 2, (4.2.28)

while (4.2.27) gives
∂α1 g̃ (z,α) =−δ|Z (z)|2 +O (1)G(|z|)3δ2N , (4.2.29)

and in particular, ∣∣∂α1 g̃
∣∣³ δG(|z|)2.

This derivative does not depend on the choice of unitary identification Z
⊥ ' CN 2−1. Notice that

the remainder in (4.2.28) is the same as in (4.2.21) and hence a holomorphic function of (z,Q). In
particular it is a holomorphic function of α1, ...,αN 2 for every fixed z and we can also get (4.2.29)
from this and the Cauchy inequalities. In the same way, we get from (4.2.28) that

∂α j g̃ (z,α) =O (1)G(|z|)2δ2N , j = 2, ..., N 2. (4.2.30)

The Cauchy inequalities applied to (4.2.21) give,

∂z g (z,Q) = N zN−1 −δQ ·∂z Z (z)+O (1)
(G(|z|)δN )2

r0 −|z| . (4.2.31)
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Lemma 4.2.3. For g̃ (z,α1,α′) = g (z,α1Z (z)+α′), α′ =∑N 2

2 α j e j we have that

∂z g̃ = N zN−1 −δα1∂z
(|Z |2)+O (1)

(GδN )2

r0 −|z| +O (1)G2δ2N

∣∣∣∣∣N 2∑
2
α j∂z e j

∣∣∣∣∣ , (4.2.32)

∂z g̃ =−δα1∂z
(|Z |2)+O (1)G2δ2N

∣∣∣∣∣α1∂z Z +
N 2∑
2
α j∂z e j

∣∣∣∣∣ . (4.2.33)

Proof. The leading terms in (4.2.32), (4.2.33) can be obtained formally from (4.2.28) by applying
∂z , ∂z and we also notice that

∂z |Z |2 = Z ·∂z Z , ∂z |Z |2 = Z ·∂z Z .

However it is not clear how to handle the remainder in (4.2.28), so we verify (4.2.32), (4.2.33), using
(4.2.27), (4.2.31):

∂z g̃ = ∂z g +dQ g ·
N 2∑
2
α j∂z e j

= N zN−1 −δQ ·∂z Z +O (1)
(GδN )2

r0 −|z| + (−δZ ·dQ +O (1)G2δ2N ) ·
N 2∑
2
α j∂z e j

= N zN−1 −δα1∂z
(|Z |2)−δN 2∑

2
α j e j ·∂z Z −δZ ·

N 2∑
2
α j∂z e j

+O (1)
(GδN )2

r0 −|z| +O (1)G2δ2N

∣∣∣∣∣N 2∑
2
α j∂z e j

∣∣∣∣∣ .

The 3d and the 4th terms on the right hand side of the last expression add up to

δ∂z

(
N 2∑
2
α j e j ·Z

)
= δ∂z (0) = 0,

and we get (4.2.32).
Similarly,

∂z g̃ = dQ g ·
(
α1∂z Z +

N 2∑
2
α j∂z e j

)

= (−δZ ·dQ +O (1)G2δ2N
) ·(α1∂z Z +

N 2∑
2
α j∂z e j

)
.

Up to remainders as in (4.2.33), this is equal to

−δα1Z ·∂z Z −δ
N 2∑
2
α j Z ·∂z e j =−δα1∂z

(|Z |2)−δN 2∑
2
α j∂z

(
Z ·e j

)
=−δα1∂z

(|Z |2) .

Continuing, we know that

|Z (z)| =
N−1∑

0
(zz)ν =: K (zz), (4.2.34)

∂z
(|Z (z)|2)= 2K K ′z,

∂z
(|Z (z)|2)= 2K K ′z.

(4.2.35)

Observe also that K (t ) ³G(t ) and that G(|z|) ³G(|z|2).
The following result implies that K ′(t ) and K (t )2 are of the same order of magnitude.

125



4.2. GRUSHIN PROBLEM FOR THE PERTURBED JORDAN BLOCK

Proposition 4.2.4. Let K be as in (4.2.34). For k ∈N, 2 ≤ N ∈N∪ {+∞}, 0 ≤ t < 1, we put

MN ,k (t ) =
N−1∑
ν=1

νk tν, (4.2.36)

so that
K (t ) = KN (t ) = MN ,0(t )+1, K ′(t ) ³ MN−1,1(t )+1.

For each fixed k ∈N, we have uniformly with respect to N , t :

M∞,k (t ) ³ t

(1− t )k+1
, (4.2.37)

M∞,k (t )−MN ,k (t ) ³ t N

1− t

(
N + 1

1− t

)k

. (4.2.38)

For all fixed C > 0 and k ∈N, we have uniformly,

MN ,k (t ) ³ M∞,k (t ), for 0 ≤ t ≤ 1− 1

C N
, N ≥ 2. (4.2.39)

Notice that under the assumption on t in (4.2.39), the estimate (4.2.38) becomes

M∞,k (t )−MN ,k (t ) ³ t N N k

1− t
.

We also see that in any region 1−O (1)/N ≤ t < 1, we have

MN ,k (t ) ³ N k+1,

so together with (4.2.39), (4.2.37), this shows that

MN ,k (t ) ³ t min

(
1

1− t
, N

)k+1

. (4.2.40)

Proof. The statements are easy to verify when 0 ≤ t ≤ 1−1/O (1) and the N -dependent statements
(4.2.38), (4.2.39) are clearly true when N ≤O (1). Thus we can assume that 1/2 ≤ t < 1 and N À 1.

Write t = e−s so that 0 < s ≤ 1/O (1) and notice that s ³ 1− t . For N ∈N, we put

PN ,k (s) =
∞∑
ν=N

νk e−νs , (4.2.41)

so that

PN ,k (s) =
{

M∞,k (t ) when N = 1,

M∞,k (t )−MN ,k (t ) when N ≥ 2.
(4.2.42)

We regroup the terms in (4.2.41) into sums with ³ 1/s terms where e−νs has constant order of
magnitude:

PN ,k (s) =
∞∑
µ=1

Σ(µ), Σ(µ) = ∑
N+ µ−1

s ≤ν<N+ µ

s

νk e−νs .

Here, since the sum Σ(µ) consists of ³ 1/s terms of the order νk e−(N s+µ),

Σ(µ) ³ e−(N s+µ)
∑

N+ µ−1
s ≤ν<N+ µ

s

νk ³ e−(N s+µ) (N s +µ)k

sk+1
.

Hence,

PN ,k (s) ³ e−N s

sk+1

∞∑
µ=1

e−µ(N s +µ)k

³ e−N s

sk+1
(N s +1)k = e−N s

s

(
N + 1

s

)k

.
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Recalling (4.2.42) and the fact that s ³ 1− t , 1/2 ≤ t < 1, we get (4.2.37) when N = 1 and (4.2.38)
when N ≥ 2.

It remains to show (4.2.39) and it suffices to do so for 1/2 ≤ t ≤ 1−C /N , N À 1 and for C ≥ 1
sufficiently large but independent of N . Indeed, for 1−C /N ≤ t ≤ 1−1/O (N ), both MN ,k (t ) and
M∞,k (t ) are ³ N 1+k . We can also exclude the case k = 0 where we have explicit formulae.

To get the equivalence (4.2.39) for 1/2 ≤ t ≤ 1 −C /N , k ≥ 1, it suffices, in view of (4.2.37),
(4.2.38), to show that for such t and for N À 1, we have

N k t N

1− t
≤ 1

D

1

(1− t )k+1
,

for any given D ≥ 1, provided that C is large enough. In other terms, we need

t N (1− t )k ≤ 1

D
N−k , for

1

2
≤ t ≤ 1− C

N
,

when C = C (D) is large enough and N ≥ N (C ) À 1. The left hand side in this inequality is an
increasing function of t on the interval [0,1/(1+k/N )]. If t ≤ 1−C /N ≤ 1/(1+ k/N ) (which is
fulfilled when C ≥ 2k and N À N (C )) it is

≤
(
1− C

N

)N (
C

N

)k

=
(
1+OC

(
1

N

))
e−C C k N−k .

This is ≤ N−k /D if C ≥C (D), N ≥ N (C ).

For simplicity we will restrict the attention to the region

|z| ≤ r0 −1/N ≤ 1−2/N , (4.2.43)

where G ³ (1−|z|)−1, G ′ ³ (1−|z|)−2.
It follows from the calculation (4.3.6) below, that

|∂z Z |2 =
(

2

t

(
K (t∂t )2K + (t∂t K )2))

t=|z|2
.

This is ³ 1 for |z| ≤ 1/2 and for 1/2 ≤ |z| < 1−1/N it is in view of Proposition 4.2.4 and the subse-
quent observation

³ MN ,0MN ,2 +M 2
N ,1 ³

1

(1− t )4 , t = |z|2.

In the region (4.2.43) we get:
|Z ′(z)| ³G(|z|)2. (4.2.44)

(4.2.35), (4.2.43), (4.2.44) will be used in (4.2.32), (4.2.33).
Combining the implicit function theorem and Rouché’s theorem to (4.2.28),we see that for

|α′| <C1N , α′ =∑N
2 α j e j ∈ Z (z)⊥, the equation

g̃ (z,α1,α′) = 0 (4.2.45)

has a unique solution
α1 = f (z,α′) ∈ D(0,C1N /G(|z|)). (4.2.46)

Here, we also use (4.2.20), (4.2.25). Moreover, f satisfies

f (z,α′) = zN

δ|Z |2 +O (1)δN 2 =O (1)

( |z|N
δG2 +δN 2

)
. (4.2.47)

Differentiating the equation (4.2.45) (where α1 = f ) we get

∂z g̃ +∂αg̃∂z f = 0, ∂z g̃ +∂αg̃∂z f = 0.
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Hence, {
∂z f =−(

∂α1 g̃
)−1

∂z g̃ ,

∂z f =−(
∂α1 g̃

)−1
∂z g̃ .

(4.2.48)

Since g̃ is holomorphic in α1,α′ and in α1,α2, ...,αN 2 , we see that f is holomorphic in α′ and in
α2, ...,αN 2 Applying ∂α2 , ...,∂αN 2 to (4.2.45), we get

∂α j f =−(
∂α1 g̃

)−1
∂α j g̃ , 2 ≤ j ≤ N 2. (4.2.49)

Combining (4.2.29) in the form,

∂α1 g̃ (z,α) =−(1+O (G(|z|)δN ))δ|Z (z)|2,

(4.2.30), (4.2.32), (4.2.33) with (4.2.48) and (4.2.49), we get

∂z f = (1+O (GδN ))

δ|Z (z)|2 ×(
N zN−1 −δ f ∂z

(|Z |2)+O
(
G2δ2N

)∣∣∣∣∣N 2∑
2
α j∂z e j

∣∣∣∣∣+O (1)
(GδN )2

r0 −|z|

)
.

(4.2.50)

∂z f = (1+O (GδN ))

δ|Z (z)|2 ×(
−δ f ∂z

(|Z |2)+O
(
G2δ2N

)∣∣∣∣∣ f ∂z Z +
N 2∑
2
α j∂z e j

∣∣∣∣∣
)

,

(4.2.51)

∂α j f =O (1)
G2δ2N

δG2 =O (δN ), 2 ≤ j ≤ N 2. (4.2.52)

From (4.2.35) and the observation prior to Proposition 4.2.4 we know that

∂z
(|Z |2) , ∂z

(|Z |2)³G(|z|)3|z|.
Recall also that |Z | ³G(|z|). Using this in (4.2.50), (4.2.51), we get

∂z f =O (1)

δG2 ×(
N |z|N−1 +δ| f |G3|z|+O

(
G2δ2N

)∣∣∣∣∣N 2∑
2
α j∂z e j

∣∣∣∣∣+O (1)
G2δ2N 2

r0 −|z| )

)
.

(4.2.53)

4.3 | Choosing appropriate coordinates

The next task will be to choose an orthonormal basis e1(z),e2, ...,eN 2 (z) inCN 2
with

e1(z) = |Z (z)|−1Z (z)

such that we get a good control over
∑N 2

2 α j∂z e j ,
∑N 2

2 α j∂z e j and such that

dQ1 ∧ ...∧dQN 2 |α1= f (z,α′)

can be expressed easily up to small errors. Consider a point z0 ∈ D(0,r0−N−1). We shall see below
that the vectors Z (z), ∂z Z (z) are linearly independent for every z ∈ D(0,1)

Proposition 4.3.1. There exists an orthonormal basis e1(z),e2(z), ...,eN 2 (z) inCN 2
, depending smooth-

ly on z ∈ neigh(z0) such that
e1(z) = |Z (z)|−1Z (z), (4.3.1)

Ce1(z0)⊕Ce2(z0) =CZ (z0)⊕∂z Z (z0), (4.3.2)

e j (z)−e j (z0) =O ((z − z0)2), j ≥ 3. (4.3.3)

128



CHAPTER 4. INTERIOR EIGENVALUE DENSITY OF JORDAN MATRICES WITH RANDOM
PERTURBATIONS

Proof. We choose e1(z) as in (4.3.1). Let e3(z0), ...,eN 2 (z0) be an orthonormal basis in(
CZ (z0)⊕C∂z Z (z0)

)⊥
.

Then, we get an orthonormal family e3(z), ...,eN 2 (z) in e1(z)⊥ in the following way:
Let V0 be the isometry CN 2−2 →CN 2

, defined by V0ν
0
j = e j (z0), j = 3, ..., N 2, where ν0

3, ...,ν0
N 2 is

the canonical basis in CN 2−2 with a non-canonical labeling. Let π(z)u = (u|e1(z))e1(z) be the or-
thogonal projection ontoCe1(z). For z ∈ neigh(z0,C), let V (z) = (1−π(z))V0. Then f j (z) =V (z)ν0

j ,

j = 3, ..., N 2 form a linearly independent system in e1(z)⊥ and we get an orthonormal system of
vectors that span the same hyperplane in e1(z)⊥ by Gram orthonormalization,

e j (z) =V (z)(V ∗(z)V (z))−
1
2ν0

j , 3 ≤ j ≤ N 2.

We have

V (z)ν0
j = (1−π(z))e j (z0) = e j (z0)− (e j (z0)|e1(z))e1(z),

(e j (z0)|e1(z)) = (e j (z0)|Z (z))

|Z (z)| =O ((z − z0)2),

since (e j (z0)|Z (z)) = e j (z0) ·Z (z) =: k(z) is a holomorphic function of z with

k(z0) = (e j (z0)|Z (z0)) = 0, k ′(z0) = (e j (z0)|∂z Z (z0)) = 0.

Thus, V (z) = V (z0)+O (z − z0)2) and we conclude that (4.3.3) holds. Let e2(z) be a normalized
vector in (e1(z),e3(z),e4(z), ...,eN 2 (z))⊥ depending smoothly on z. Then e1(z),e2(z), ...,eN 2 (z) is an
orthonormal basis and since e3(z0), ...,eN 2 (z0) are orthogonal to Z (z0),∂Z (z0) by construction, we
get (4.3.2).

We can make the following explicit choice:

e2(z) = | f2|−1 f2, f2 = ∂z Z (z)− ∑
j 6=2

(∂z Z (z)|e j (z))e j (z), (4.3.4)

so that for z = z0,

e2(z0) = | f2(z0)|−1 f2(z0), f2(z0) = ∂z Z (z0)− (∂z Z (z0)|e1(z0))e1(z0). (4.3.5)

We next compute some scalar products and norms with Z and ∂z Z . Recall that

Z (z) =
(
zN− j+k−1

)N

j ,k=1

and that |Z (z)| = K (|z|2), K (t ) =∑N−1
0 tν. Repeating basically the same computation, we get

z∂z Z =
(
(N − j +k −1)zN− j+k−1

)N

j ,k=1
,

and

|z∂z Z |2 =
N∑

j ,k=1
(N − j +k −1)2|z|2(N− j+k−1) =

N−1∑
ν,µ=0

(ν+µ)2|z|2(ν+µ)

=
N−1∑

0
ν2|z|2ν

N−1∑
0

|z|2µ+2
N−1∑

0
ν|z|2ν

N−1∑
0
µ|z|2µ+

N−1∑
0

|z|2ν
N−1∑

0
µ2|z|2µ

= 2
(
K (t∂t )2K + (t∂t K )2)

t=|z|2 .

(4.3.6)
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Similarly,

(z∂z Z |Z ) =
N∑

j ,k=1
(N − j +k −1)|z|2(N− j+k−1)

=
N−1∑
ν=0

N−1∑
µ=0

(ν+µ)|z|2(ν+µ)

=2(K t∂t K )t=|z|2 .

Then, by a straight forward calculation,

|∂z Z |2 − |(∂z Z |Z )|2
|Z |2 =

(
2

t

(
K (t∂t )2K − (t∂t K )2))

t=|z|2
(4.3.7)

Here,

2

t

(
K (t∂t )2K − (t∂t K )2)= 2

t

N−1∑
0

tν
N−1∑

0
ν2tν− 2

t

(
N−1∑

0
νtν

)2

=
N−1∑
ν,µ=0

(
ν2 +µ2 −2νµ

)
tν+µ−1 =

N−1∑
ν,µ=0

(ν−µ)2tν+µ−1

=
2N−3∑
k=0

ak,N t k ,

where
ak,N = ∑

ν+µ−1=k
0≤ν,µ≤N−1

(ν−µ)2.

We observe that
ak,N ≤O (1)(1+k)3 uniformly with respect to N ,

ak,N = ak,∞ is independent of N for k ≤ N −2,

ak,∞ ≥ (1+k)3/O (1).

We conclude that

1

C

(
1+MN−1,3

)≤ 2

t

(
K (t∂t )2K − (t∂t K )2)≤C

(
1+M2N−2,3

)
and (4.2.40) shows that the first and third members are of the same order of magnitude,

³ 1+MN ,3(t ) ³ min

(
1

1− t
, N

)4

which is ³ 1+M∞,3(t ), for 0 ≤ t ≤ 1−1/N . From this and Proposition 4.2.4 we get:

Proposition 4.3.2. We have

2

t
(K (t∂t )2K − (t∂t K )2) ³ K 4, 0 < t ≤ 1−1/N , (4.3.8)

where we recall that K = KN depends on N (cf. (4.2.34)) and that

KN = K∞− t N

1− t
.

We have t∂t KN = t∂t K∞+O
(

N t N

1−t

)
, t ≤ 1− 1

N ,

(t∂t )2KN = (t∂t )2K∞+O
(

N 2t N

1−t

)
, t ≤ 1− 1

N ,
(4.3.9)
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and it follows that

2

t

(
KN (t∂t )2KN − (t∂t KN )2)− 2

t

(
K∞(t∂t )2K∞− (t∂t K∞)2)

=O

(
N 2t N

(1− t )2

)
, (4.3.10)

for t ≤ 1−1/N .

Proposition 4.3.2 and (4.3.7) give

|∂z Z |2 − |(∂z Z |Z )|2
|Z |2 ³ K (|z|2)4. (4.3.11)

This implies that ∂z Z , Z are linearly independent.
Assume that

|∇z e1(z)| =O (m)

for some weight m ≥ 1. We shall see below that this holds when m = K (|z|2). Then ‖∇zΠ‖ = O (m)
and hence ‖∇zV ‖ = O (m). It follows that ‖∇z (V ∗(z)V (z))‖ = O (m). By standard (Cauchy-Riesz)
functional calculus, using also that ‖V (z)−1‖ = O (1), we get ‖∇z (V ∗(z)V (z))−

1
2 ‖ = O (m). Hence

‖∇zU (z)‖ =O (m), where
U (z) =V (z)(V ∗(z)V (z))−1/2

is the isometry appearing in the proof of Proposition 4.3.1. Since ∇z e j = (∇zU (z))ν0
j , we conclude

that ‖∇zU (z)‖ =O (m), so ∣∣∣∣∣N 2∑
3
α j∇z e j

∣∣∣∣∣≤O (m)‖α‖
CN 2−2 . (4.3.12)

We next show that we can take m = K (|z|2). We have

∇z e1 = ∇z Z

|Z | − ∇z |Z |
|Z |2 Z = ∇z Z

K
− K ′∇z (zz)

K 2 Z . (4.3.13)

By (4.3.6),

|∂z Z | =
(

2

t

(
K (t∂t )2K + (t∂t K )2)) 1

2

t=|z|2
=O (K 2).

Since Z is holomorphic, this leads to the same estimates for |∇z Z | and |∇z Z |, and |∂2
z Z | = O (K 3),

for |z| < 1−N−1, by the Cauchy inequalities. Using this in (4.3.13), we get

|∇z e1| =O (K ). (4.3.14)

Thus we can take m = K (|z|2) in (4.3.12). Let f2 be the vector in (4.3.4) so that e2(z) = | f2|−1 f2.
Recall that e j =U (z)ν0

j , where we now know that ‖∇zU (z)‖ =O (K ). Write,

∇z f2 =∇z∂z Z − ∑
j 6=2

(
(∇z∂z Z |e j )e j + (∂z Z |∇z e j )e j + (∂z Z |e j )∇z e j

)
.

Here, |∇z∂z Z | = O (K 3), as we have just seen. It is also clear that the term for j = 1 in the sum
above is O (K 3). It remains to study |I+ II+ III| ≤ |I|+ |II|+ |III|, where

I =
N 2∑
3

(∇z∂z Z |e j )e j ,

II =
N 2∑
3

(∂z Z |∇z e j )e j ,

III =
N 2∑
3

(∂z Z |e j )∇z e j .
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Here, |I| ≤ |∇z∂z Z | =O (K 3) and by (4.3.12) we have |III| ≤O (K )|∂z Z | =O (K 3). Further,

II =
N 2∑
3

(∂z Z |(∇zU (z))ν0
j )e j

=
N 2∑
3

((∇zU (z))∗∂z Z |ν0
j )e j ,

so
|II| = |(∇zU (z))∗∂z Z | =O (K )K 2 =O (K 3).

Thus,
|∇z f2| =O (K 3). (4.3.15)

Recall from (4.3.5) that for z = z0,
f2 = ∂z Z − (∂z Z |e1)e1,

| f2|2 = |∂z Z |2 − |(∂z Z |Z )|2
|Z | ,

so by (4.3.11),
| f2(z0)| ³ K (|z0|2)2,

Hence,
| f2(z)| ³ K 2, z ∈ neigh(z0).

From this, (4.3.4) and (4.3.11), we conclude first that ∇z | f2| =O (K 3) and then that

|∇z e2| =O (K ). (4.3.16)

This completes the proof of the fact that we can take m = K above. In particular (4.3.12) holds with
m = K (|z|2) ³G(|z|), so ∣∣∣∣∣N 2∑

2
α j∂z e j

∣∣∣∣∣≤O (1)G|α| ≤O (1)GN , (4.3.17)

where we used the assumption that |Q| ≤C1N in the last step.
Combining this with (4.2.53), (4.2.52), (4.2.47), (4.2.35) and the observation prior to Proposi-

tion 4.2.4, we get

∂z f = O (1)

δG2

(
N |z|N−1 +δ

( |z|N
δG2 +δN 2

)
G3 +G2δ2NGN + G2δ2N 2

r0 −|z|
)

=O (1)

(
N |z|N−1

δG2 + |z|N
δG

+GδN 2 + δN 2

r0 −|z|
)

.

In the last parenthesis the second term is dominated by the first one and the third term is domi-
nated by the fourth. If we recall that r0 −|z| ≥ 1/N , we get

∂z f =O (1)

(
N |z|N−1

δG2 +δN 3
)

. (4.3.18)

Similarly, from (4.2.51), (4.2.44) we get

∂z f = O (1)

δG2

(
δ

( |z|N
δG2 +δN 2

)
G3 +G2δ2N

(( |z|N
δG2 +δN 2

)
G2 +GN

))
=O (1)

( |z|N
δG

+δN 2G +N |z|N +G2δ2N 3 +GδN 2
)

.

Using (4.2.20), we get

∂z f =O (1)

( |z|N
δG

+δN 2G

)
, (4.3.19)

see (4.2.47). This will be used together with the estimates ∂α j f =O (δN ) in (4.2.52).
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Proposition 4.3.3. We express Q in the canonical basis in CN 2
or in any other fixed orthonormal

basis. Let e1(z), ...,eN 2 (z) be an orthonormal basis inCN 2
depending smoothly on z and with e1(z) =

|Z (z)|−1Z (z), Ce1(z)⊕Ce2(z) = CZ (z)⊕∂z Z (z). Write Q = α1Z (z)+∑N 2

2 α j e j (z), and recall that
the hypersurface

{(z,Q) ∈ D(0,r0 −1/N )×B(0,C1N ); Eδ
−+(z,Q) = 0}

is given by (4.2.46) with f as in (4.2.47). Then the restriction of dQ∧dQ to this hypersurface, is given
by

dQ ∧dQ = J ( f )d z ∧d z ∧dα′∧dα′,

J ( f ) =−|α2|2
|Z |2

∣∣∣(e2|∂z Z
)∣∣∣2 +O (1)

(
N |z|N−1

δG
+GδN 3 +|α2|δNG2

)2

+O (1)|α2|G
(

N |z|N−1

δG
+GδN 3 +|α2|G2δN

)
.

(4.3.20)

Here α′ = (α2, ...,αN 2 ), dα′∧dα′ = dα2 ∧dα2 ∧ ...∧dαN 2 ∧dαN 2 .

Proof. The differential form dQ1∧dQ2∧...∧dQN 2 will change only by a factor of modulus one if we
express Q in another fixed orthonormal basis and we will choose for that the basis e1(z0), ...,eN 2 (z0):

Q =
N 2∑
1

Qk ek (z0), Qk = (Q|ek (z0)).

Write

Q =α1 Z (z)︸︷︷︸
|Z (z)|e1(z)

+
N 2∑
2
αk ek (z)

and restrict to α1 = f (z,α2, ...,αN 2 ), where we sometimes identify α′ ∈ Z (z)⊥ with (α2, ...,αN 2 ):

Q|α1= f (z,α′) = f (z,α′)Z (z)+
N 2∑
2
αk ek (z).

Then,

Q j = f (Z (z)|e j (z0))+
N 2∑

k=2
αk (ek (z)|e j (z0)),

dQ j =(dz f +dα′ f )(Z (z)|e j (z0))+ f (dz Z (z)|e j (z0))

+
N 2∑

k=2
αk (dz ek (z)|e j (z0))+

N 2∑
k=2

dαk (ek (z)|e j (z0)).

Taking z = z0 until further notice, we get with α′ = (α2, ...,αN 2 ):

dQ j = (dz f +dα′ f )(Z |e j )+ f (∂z Z |e j )d z +α2(dz e2|e j )+
{

dα j , j ≥ 2,

0, j = 1
.

Here, we used (4.3.3). The first term to the right is equal to (dz f + dα′ f )|Z | when j = 1 and it
vanishes when j ≥ 2. The second term vanishes for j ≥ 3, by (4.3.2). The third term is equal to
−α2(e2|dz e j ) (by differentiation of the identity (e2|e j ) = δ2, j ) and it vanishes for j ≥ 3 (remember
that we take z = z0). Thus, for z = z0:

dQ1 = |Z |(dz f +dα′ f )+ f (∂z Z |e1)d z −α2(e2|dz e1),

dQ2 = dα2 + f (∂z Z |e2)d z −α2(e2|dz e2),

dQ j = dα j , j ≥ 3.

When forming dQ1∧dQ1∧...∧dQN 2∧dQN 2 we see that the terms in dα j for j ≥ 3 in the expression
for dQ1 will not contribute, so in that expression we can replace dα′ f by ∂α2 f dα2. Using (4.3.18),
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(4.3.19), (4.2.52), (4.2.47), (4.2.44) this gives, where “≡” means equivalence up to terms that do not
influence the 2N 2 form above:

dQ1 ≡−α2(e2|dz e1)+O (1)

(
N |z|N−1

δG
+GδN 3

)
d z

+O (1)

( |z|N
δ

+G2δN 2
)

d z +O (δNG)dα2.

Similarly, using also (4.3.16),

dQ2 = dα2 +O

( |z|N
δ

+δN 2G2 +|α2|G
)

d z +O (|α2|G)d z.

When computing dQ1 ∧dQ2 we notice that the terms in d z ∧d z will not contribute to the
2N 2-form dQ1 ∧dQ1 ∧ ...∧dQN 2 ∧dQN 2 . We get

dQ1 ∧dQ2 ≡−α2(e2|dz e1)∧dα2

+O (1)

(
N |z|N−1

δG
+GδN 3 +|α2|δNG2

)
d z ∧dα2

+O (1)

( |z|N
δ

+G2δN 2 +|α2|δNG2
)

d z ∧dα2.

(4.3.21)

Here,

(e2|dz e1) =
(
e2|dz

(|Z |−1) Z
)
=

(
e2||Z |−1dz Z

)
+

(
e2|dz

(|Z |−1) Z
)

= |Z |−1
(
e2|∂z Z d z

)
+0 = |Z |−1(e2|∂z Z )d z,

so the first term in (4.3.21) is equal to

− α2

|Z | (e2|∂z Z )d z ∧dα2 =O (1)α2Gd z ∧dα2.

Notice that dQ1 ∧dQ1 ∧dQ2 ∧dQ2 = −dQ1 ∧dQ2 ∧dQ1 ∧dQ2. From (4.3.21) and its complex
conjugate we get

dQ1 ∧dQ1 ∧dQ2 ∧dQ2

≡
(
−|α2|2

|Z |2
∣∣∣(e2|∂z Z

)∣∣∣2 +O (1)

(
N |z|N−1

δG
+GδN 3 +|α2|δNG2

)2

+O (1)|α2|G
(

N |z|N−1

δG
+GδN 3 +|α2|G2δN

))
d z ∧d z ∧dα2 ∧dα2.

4.4 | Proof of Theorem 1.4.3

Let Q ∈CN 2
be an N ×N matrix whose entries are independent random variables ∼ NC(0,1), so

that the corresponding probability measure is

π−N 2
e−|Q|2 (2i )−N 2

dQ1 ∧dQ1 ∧ ...∧dQN 2 ∧dQN 2 = 1

(2πi )N 2 e−|Q|2 dQ ∧dQ.

We are interested in

Kφ =E
(

1B
CN 2 (0,1)

∑
λ∈σ(A0+δQ)

φ(λ)

)
, φ ∈C0(D(0,r0 −1/N ), (4.4.1)
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which is of the form (4.1.3) with

m(Q) = 1B
CN 2 (Q)π−N 2

e−|Q|2 , (4.4.2)

so we have (4.1.8), (4.1.9) with J ( f ) as in (4.3.20) and f as in (4.2.46). More explicitly,

Ξ̃(z) =
ˆ
| f |2|Z (z)|2+|α′|2≤C 2

1 N 2
π−N 2

e−| f (z,α′)|2|Z (z)|2−|α′|2 J ( f )(z,α′)L(dα′).

By (4.2.47), (4.2.20), (4.2.25) :

| f | ≤O (1)
N

G

( |z|N
δNG

+δNG

)
¿ N

G
.

We now strengthen (4.2.20), (4.2.25) to the assumption

|z|N
δNG

+δNG ¿ 1

N
, for all z ∈ D(0,r0), (4.4.3)

implying that | f |G ¿ 1, for all z ∈ D(0,r0). Equivalently, by the same reasoning as after (4.2.26), r0

should satisfy
r N

0

δNG(r0)
+δNG(r0) ¿ 1

N
. (4.4.4)

Then

e−| f (z,α′)|2|Z (z)|2 = 1+O (1)N 2
( |z|N
δNG

+δNG

)2

,

and using (4.3.20), we get

Ξ̃(z) =
(

1+O (1)N 2
( |z|N
δNG

+δNG

)2)
×

|(e2|∂z Z )|2
|Z |2

ˆ
|( f |Z |,α′)|≤C1N

|α2|2e−|α
′|2π1−N 2

L(dα′)

+O (1)

ˆ
e−|α

′|2
(

N |z|N−1

δG
+GδN 3 +|α2|δNG2

)2

π1−N 2
L(dα′)

+O (1)

ˆ
e−|α

′|2 |α2|G
(

N |z|N−1

δG
+GδN 3 +|α2|δNG2

)
π1−N 2

L(dα′).

Since | f ||Z |¿ N , the first integral is equal toˆ
C

1

π
|w |2e−|w |2 L(d w)+O

(
e−N 2/O (1)

)
= 1+O

(
e−N 2/O (1)

)
.

The sum of the other two integrals is equal to

O (1)

((
N |z|N−1

δG
+GδN 3 +δNG2

)2

+G

(
N |z|N−1

δG
+GδN 3 +δNG2

))

=O (1)

((
N |z|N−1

δG
+GδN 3

)2

+G

(
N |z|N−1

δG
+GδN 3

))
.

Noticing that
|(e2|∂z Z )|2

|Z |2 =O (G2),

we deduce that

Ξ̃(z) =|(e2|∂z Z )|2
|Z |2

+O (1)

(
G2N 2

( |z|N−1

δG2 +δN 2
)2

+G2N

( |z|N−1

δG2 +δN 2
))

.

(4.4.5)
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We next study the leading term in (4.4.5), given by

|(∂z Z |e2)|2
π|Z |2 . (4.4.6)

Since ∂z Z belongs to the span of e1 = ∂z Z /|Z | and e2, we have

|(∂z Z |e2)|2 = |∂z Z |2 −|(∂z Z |e1)|2,

so the leading term (4.4.6) is
1

π|Z |2
(
|∂z Z |2 − |(∂z Z |Z )|2

|Z |2
)

,

which by (4.3.7) is equal to
2

πt

(
(t∂t )2K

K
− (t∂t K )2

K 2

)
t=|z|2

. (4.4.7)

Here, K = KN (t ) =∑N−1
0 tν is the function appearing in Proposition 4.3.2. Let us first compute the

limiting quantity obtained by replacing K = KN in (4.4.7) by K∞ = 1/(1− t ). Since ∂t K∞ = K 2∞, we
get

t∂t K∞ = tK 2
∞, (t∂t )2K∞ = tK 2

∞+2t 2K 3
∞,

and
2

πt

(
(t∂t )2K∞

K∞
− (t∂t K∞)2

K 2∞

)
= 2

π
K 2
∞ = 2

π

1

(1− t )2 . (4.4.8)

We next approximate the expression (4.4.7) with (4.4.8), using (4.3.10) and the fact that K =
(1+O (t N ))K∞ (uniformly with respect to N ). The expression (4.4.7) is equal to

2

πtK 2 (K (t∂t )2K − (t∂t K )2)

= 2(1+O (t N ))

πtK 2∞

(
K∞(t∂t )2K∞− (t∂t K∞)2 +O (N 2t N K 2

∞)
)

.

Here,
(t∂t K∞)2 =O (t 2K 4

∞), K∞(t∂t )2K∞ =O (tK 3
∞+ t 2K 4

∞),

so the last expression becomes,

2

πt

(
(t∂t )2K∞

K∞
− (t∂t K∞)2

K 2∞

)
+O (t N K∞+ t N+1K 2

∞+ t N−1N 2),

where the first two terms in the remainder are dominated by the last one. We conclude that the
difference between the expressions (4.4.7) and (4.4.8) is O (t N−1N 2), and using also (4.4.5), we get,

Ξ̃(z) = 2

π(1−|z|2)2 +O (|z|2(N−1)N 2)

+O (1)

(
G2N 2

( |z|N−1

δG2 +δN 2
)2

+G2N

( |z|N−1

δG2 +δN 2
))

.
(4.4.9)

The remainder term can be written

O (G2)

( |z|2(N−1)N 2

G2 + |z|2(N−1)N 2

δ2G4 +δ2N 6 + |z|N−1N

δG2 +δN 3
)

.

By (4.4.3), 1
δG À N 2, so the second term is

À |z|2(N−1)N 2

G2 N 4,
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which is much larger than the first term. We now strengthen (4.4.3) to

|z|N−1

δG2 +δN 2 ¿ 1

N
,

or equivalently to
|z|N−1N

δG2 +δN 3 ¿ 1. (4.4.10)

Then remainder in (4.4.9) becomes

O (G2)

( |z|N−1N

δG2 +δN 3
)

,

and (4.4.9) becomes

Ξ̃(z) = 2

π(1−|z|2)2

(
1+O

( |z|N−1N

δG2 +δN 3
))

. (4.4.11)

Setting Ξ̃= 1
2πΞ concludes the proof of Theorem 1.4.3.
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APPENDIX A

CODE FOR NUMERICAL SIMULATIONS

A.1 | Simulations for Hager’s model

A.1.1 – Plo�ing eigenvalues
To produce Figure 1.1, the left hand side of Figure 1.6 (resp. 1.2) and the left hand side of Figure
1.8 (resp. 1.3) we used the following MATLAB code with the values of N , h and δ specified in the
caption of the Figures.

1 %Discretization of hD+exp(-ix) on the Fourier side
clear global;

3 clear;

5 %Initialize Variables
N=0; % number of non zero eigenvalues of D

7 h=0; % Semiclassical parameter
delta=0; % Perturbation coupling constant

9 choice=0;
D=0; %Matrix dimension

11
%Input Parameters

13 N=input(’value of N? ’)
h=input(’value of h? ’)

15
%Choice in terms of Delta

17 choice = input(’Do you want to set a value for delta?\nIf yes, insert the
value for delta, if you want delta=exp(-1/h) insert 0’)

19 %Set delta according to choice
if (choice == 0 )

21 delta=exp(-1/h); %h not too small, e.g. h=0.05
elseif (choice ~= 0)

23 delta = choice;
else

25 ’error’
break

27 end

29 %Calculate Dimension
D=2*N+1;

31
%Define Matrices
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33 HD=sparse(1:(D),1:(D),(1:(D))-N-1);
HC=sparse(1:2*N,2:D,1,D,D);

35 H=h*HD+HC;

37 %Random Gaussian matrix, complex Gaussian, Expectation 0, Variance 1
H=H+delta*(1/sqrt(2))*(randn(D)+1i*randn(D));

39
%Calculate eigenvalues

41 E=eigs(H);

43 %Plot
fig=figure;

45 plot(E,’.’)
filename=’EigSim’;

47 axis equal;
print(fig,’-dpdf’,filename);

A.1.2 – Numerical density

Figure 1.7 and the right hand side of Figure 1.2 give a comparison between the theoretical (ob-
tained in Theorem 1.2.12) and experimental average density and average integrated density of
eigenvalues of a random perturbation of the discretization of hD + e−i x with the coupling con-
stant δ being polynomially small in h. These figures were obtained using the following MATLAB
code:

%Discretization of hD+exp(-ix) on the Fourier side
2 %This program will plot the experimental average density and the
%average integrated density

4 clear global;
clear;

6
tic %Time

8 % Calculate Dimension
N=1999;

10 D=2*N+1;

12 h=2*10^(-3); % Semiclassical parameter
delta=2*10^(-12); % Perturbation coupling constant

14 nsamp=400; % Number of Runs
k=1; % counter

16
E=[];

18 E1=[];
TempEigVals=[];

20 boxlength = h/3;
BoxVec = [0:boxlength:1];

22 nBox = length(BoxVec);
LengthVec =[0];

24 NumRealEigVals = [0];
IntEigVals = [0];

26 L=[0];
HR=[]; %Pertrubed Matrix

28
%Define unperturbed semiclassical Matrix

30 H=h*sparse(1:(D),1:(D),(1:(D))-N-1) + sparse(1:2*N,2:D,1,D,D);

32 % Experiments
for k = 1:(nsamp)
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34 HR=H+delta*(1/sqrt(2))*(randn(D)+1i*randn(D)); %Random Gaussian
matrix, Exp 0, Var 1
E=eig(HR); %find eigenvalues

36 HR=[];
E1 = [real(E) imag(E)]; % Store temporary

38
%Restriction of real part and imaginary part

40 for j = 1:length(E1)
if (abs(E1(j,1))<= 2)

42 if (E1(j,2)>= 0)
TempEigVals=[TempEigVals;[E1(j,1),E1(j,2)]];

44 end
end

46 end% END LOOP

48 E1 = TempEigVals;
TempEigVals =[];

50
%Sorting

52 [B,I] = sort(E1(:,2));
%R=real(EigVals);

54 %EigVals = [R(I) B];

56 E1=[];

58 % HistogramData
m=1;

60 for l = 1:nBox
if ( m < length(B) )

62 while ( B(m)<=BoxVec(l) )
if (m < length(B) )

64 m=m+1;
else

66 break
end

68 end
LengthVec(l) = m;

70 else
LengthVec(l) = m;

72 end
end

74
for j = 1:(nBox-1)

76 if (LengthVec(j+1) ~= 0)
L(j) = (4*boxlength)^(-1)*(LengthVec(j+1)-LengthVec(j));

78 else
L(j) = 0;

80 end
end

82
%Add number of Eigvals to old, normalized by total Mass in Strip

84 IntEigVals = IntEigVals + (1/length(B))*LengthVec;
NumRealEigVals = NumRealEigVals + (1/length(B))*L;

86
LengthVec=[0];

88 L=[0];
clear B;

90 clear I;

92 k %print the number of the run
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toc
94 end

96 IntEigVals=(1/nsamp)*IntEigVals; %Normalization by # of runs
NumRealEigVals= (1/nsamp)*NumRealEigVals;

98
% Theoretical density

100 [I,D,ID]=POD(1000,h,delta);
[J,W]=Weyl(1000,h);

102
figure

104 subplot(1,2,1)
scatter(BoxVec,[0,NumRealEigVals])

106 hold on
plot(I,D,’r’)

108 subplot(1,2,2)
scatter(BoxVec,[IntEigVals])

110 hold on
plot(J,W,’r’)

112 plot(I,ID,’g’)

The functions POD and Weyl are given by the following programs:

% Weyl law for Hager’s model
2 % the argument x denotes the number of points used
% to discretize the interval [0,1]

4 %
function [I,W]=Weyl(x,h)

6
%

8 D=[]; %Weyl density
W=[]; %Integrated Weyl density

10 %specifies points
invN=1/x;

12 I=[invN:invN:(1-invN)]; % discrete points, the imaginary part of "Eig"
xm=[0]; %x_+

14 xp=[0]; %x_-

16 ImDergXp=[0]; %Img’(x_+)
ImDergXm=[0]; %Img’(x_-)

18
k=1; %counter

20 %h=2*10^(-3); %Semiclassical parameter
%SQ=4/length(I);

22
while (k<=(x-1))

24 xp(k)=asin(-I(k));
xm(k)=pi-xp(k);

26 ImDergXp(k)= -cos(xp(k));
ImDergXm(k)= -cos(xm(k));

28
D(k)=(1/(2*h*pi))*((1/ImDergXm(k))-(1/ImDergXp(k)));

30
if (k==1)

32 W(k)=D(k);
else

34 W(k)=W(k-1)+(1/2)*(D(k)+D(k-1));
end

36 k=k+1;
end
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38
W=(1/W(x-1))*W;

40
end

1 % Function to plot the theoretical first density of eigenvalues
% of Hager type operators

3
function [I,D,ID]=POD(x,h,delta)

5
%Declare Variables

7 invN=0;
xm=[0]; %x_+

9 xp=[0]; %x_-
Emp_quadratic=[0]; %E_{-+}

11 ImDergXp=[0]; %Img’(x_+)
ImDergXm=[0]; %Img’(x_-)

13 FirstDensTerm=[0]; % Weyl law
SecDensTerm=[0]; %Second Density term

15 Density=[0]; %Density
ID=[0]; %Integrated Density

17 %semiclassical parameter
k=1; %counter

19 %h=2*10^(-3); % Semiclassical parameter
%delta=2*10^(-12); %coupling constant

21
% creating points

23 invN=1/x;
I=[invN:invN:(1-invN)]; %discrete points

25 SQ=4/length(I);

27 while (k<=(length(I)))
xp(k)=asin(-I(k));

29 xm(k)=pi-xp(k);
ImDergXp(k)= -cos(xp(k));

31 ImDergXm(k)= -cos(xm(k));
f(k)= (-ImDergXp(k)*ImDergXm(k))^(1/2);

33
Emp_quadratic(k)=(f(k)/pi)*exp((-2/h)*(-I(k)*(2*xp(k)+pi)-ImDergXp(k)
+ImDergXm(k)));

35 FirstDensTerm(k)=(1/(2*h))*((1/ImDergXm(k))-(1/ImDergXp(k)));
SecDensTerm(k)=(Emp_quadratic(k)/(h*delta^2))*(abs(2*xp(k)+pi))^2;

37 Density(k)=(1/pi)*(FirstDensTerm(k)+SecDensTerm(k))*exp(-(h*
Emp_quadratic(k)/delta^2));

39 if (k==1)
ID(k)=SQ*Density(k);

41 else
ID(k)=ID(k-1)+(SQ/2)*(Density(k)+Density(k-1));

43 end
k=k+1;

45 end

47 M=ID(length(I));
%Normalize the density

49 D=(M^(-1))*Density;
ID=(M^(-1))*ID;

51 %D=Density;
%plot(I,D);

53 end
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Figure 1.9 and the right hand side of Figure 1.3 present a comparison between the theoretical
(obtained in Theorem 1.2.12) and experimental average density and average integrated density of
eigenvalues of a random perturbation of the discretization of hD+e−i x with the coupling constant
δ being exponentially small in h. These figures were obtained using the following MATLAB code:

1 %Discretization of hD+exp(-ix) on the Fourier side
%This program will plot the experimental average density and the

3 %average integrated density
clear global;

5 clear;

7 tic %Time
% Calculate Dimension

9 N=1000;
D=2*N+1;

11
h=0.05; % Semiclassical parameter for exp small delta

13 delta=exp(-1/h); % Perturbation coupling constant
nsamp=400; % Number of Runs

15 k=1; % counter

17 E=[];
E1=[];

19 TempEigVals=[];
boxlength = 10^(-3);

21 BoxVec = [0:boxlength:1];
nBox = length(BoxVec);

23 LengthVec =[0];
NumRealEigVals = [0];

25 IntEigVals = [0];
L=[0];

27 HR=[]; %Perturbed Matrix

29 %Define unperturbed semiclassical Matrix
H=h*sparse(1:(D),1:(D),(1:(D))-N-1) + sparse(1:2*N,2:D,1,D,D);

31
% Experiments

33 for k = 1:(nsamp)
HR=H+delta*(1/sqrt(2))*(randn(D)+1i*randn(D)); %Random Gaussian
matrix, Exp 0, Var 1

35 E=eig(HR); %find eigenvalues
HR=[];

37 E1 = [real(E) imag(E)]; % Store temporary

39 %Restriction of real part and imaginary part
for j = 1:length(E1)

41 if (abs(E1(j,1))<= 45)
if (E1(j,2)>= 0)

43 TempEigVals=[TempEigVals;[E1(j,1),E1(j,2)]];
end

45 end
end% END LOOP

47
E1 = TempEigVals;

49 TempEigVals =[];

51 %Sorting
[B,I] = sort(E1(:,2));
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53 E1=[];

55 % Histogram Data
m=1;

57 for l = 1:nBox
if ( m < length(B) )

59 while ( B(m)<=BoxVec(l) )
if (m < length(B) )

61 m=m+1;
else

63 break
end

65 end
LengthVec(l) = m;

67 else
LengthVec(l) = m;

69 end
end

71
for j = 1:(nBox-1)

73 if (LengthVec(j+1) ~= 0)
L(j) = (4*boxlength)^(-1)*(LengthVec(j+1)-LengthVec(j));

75 else
L(j) = 0;

77 end
end

79
%Add number of Eigvals to old, normalized by total Mass in Strip

81 IntEigVals = IntEigVals + (1/length(B))*LengthVec;
NumRealEigVals = NumRealEigVals + (1/length(B))*L;

83
LengthVec=[0];

85 L=[0];
clear B;

87 clear I;

89 k %print the number of the run
toc

91 end

93 IntEigVals=(1/nsamp)*IntEigVals; %Normalization by # of runs
NumRealEigVals= (1/nsamp)*NumRealEigVals;

95
% Theoretical density

97 [I,D,ID]=POD(1000,h,delta);
[J,W]=Weyl(1000,h);

99
figure

101 subplot(1,2,1)
scatter(BoxVec,[0,NumRealEigVals])

103 hold on
plot(I,D,’r’)

105 subplot(1,2,2)
scatter(BoxVec,[IntEigVals])

107 hold on
plot(J,W,’r’)

109 plot(I,ID,’g’)
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A.2 | Simulations for Jordan Block matrices

Figures 1.11 and 1.12 were obtained using the following MATLAB code:

1 %Jordan Block perturbed with random Gaussian Matrix
clear global;

3 clear;

5 %Initialize Variables
%N=0; % number of non zero eigenvalues of D

7 delta=0; % Perturbation coupling constant
D=0; %Matrix dimension

9
%Input Parameters

11 %N=input(’value of N? ’)
delta=input(’value of delta? ’)

13
%Calculate Dimension

15 %D=2*N+1;
D=500;

17
%Define Matrices

19 %HD=sparse(1:(D),1:(D),(1:(D))-N-1);
HC=sparse(1:(D-1),2:D,1,D,D);

21 R=(1/sqrt(2))*(randn(D) +1i*randn(D));
%Random Gaussian matrix, complex Gaussian, Expectation 0, Variance 1

23 H=HC+delta*R;

25 %Clear Unused Variables
clear HC;

27 clear R;

29 %Calculate eigenvalues
%E1=eig(full(HC));

31 E=eig(H);

33 %Plot
figure

35 plot(E,’o’)
axis equal;

37 hold on % These 3 lines to plot
plot(0,0,’r*’) % also the spectrum of the

39 hold off % unperturbed Jordan block
filename=’JordanBlock’;

41 print(fig,’-dpdf’,filename);

Figures 1.13 and 1.14 were obtained using the following MATLAB code:

% This program compares the experimental average density and average
integrated

2 % density of eigenvalues of a randomly perturbed Jordan block matrix
%

4 clear global;
clear;

6
tic %Time

8 N=500;
D=2*N+1; % Matrix Dimension

10 delta=2*10^(-10); % Perturbation coupling constant
nsamp=500; % Number of Runs
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12 k=1; % counter
r=1-1/D; % Cut-off radius

14
E=[];

16 TempEigVals=[];
boxlength = 1/(2*D);

18 BoxVec = [0:boxlength:1];
nBox = length(BoxVec);

20 LengthVec =[0];
NumRealEigVals = [0];

22 IntEigVals = [0];
L=[0];

24 HR=[];

26 %Define unperturbed Jordan block matrix
H=sparse(1:(D-1),2:D,1,D,D);

28
% Experiment

30 for k = 1:(nsamp)
HR=H+delta*(1/sqrt(2))*(randn(D)+1i*randn(D)); %Random Gaussian
matrix, Exp 0, Var 1

32 E=eig(HR); %find eigenvalues
HR=[];

34
% Restriction to smaller disk

36 for j = 1:length(E)
if (abs(E(j))< r)

38 TempEigVals=[TempEigVals;[abs(E(j))]];
end

40 end% END LOOP

42 E = TempEigVals;
TempEigVals =[];

44
%Sorting

46
[B,I] = sort(E);

48 %R=real(EigVals);
%EigVals = [R(I) B];

50
E=[];

52
% HistogramData

54 m=1;
for l = 1:nBox

56 if ( m < length(B) )
while ( B(m)<=BoxVec(l) )

58 if (m < length(B) )
m=m+1;

60 else
break

62 end
end

64 LengthVec(l) = m;
else

66 LengthVec(l) = m;
end

68 end

70 for j = 1:(nBox-1)
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if (LengthVec(j+1) ~= 0)
72 L(j) = ((2*pi*boxlength)^(-1))*(LengthVec(j+1)-LengthVec(j)); %

Radial density
else

74 L(j) = 0;
end

76 end

78 %Normalization by total Mass in Strip
IntEigVals = IntEigVals + (1/length(B))*LengthVec;

80 NumRealEigVals = NumRealEigVals + (1/length(B))*L;

82 LengthVec=[0];
L=[0];

84
clear B;

86 clear I;

88 k %print the number of the run
toc

90 end

92 IntEigVals=(1/nsamp )*IntEigVals; %Normalization by # of runs
NumRealEigVals= (1/nsamp )*NumRealEigVals;

94
% Theoretical density

96 %k=min(r,0.9);
[I,J,H,ID]=PHV(1000,r);

98
figure

100 subplot(1,2,1)
scatter(BoxVec,[0,NumRealEigVals])

102 hold on
plot(J,H,’r’)

104 subplot(1,2,2)
scatter(BoxVec,[IntEigVals])

106 hold on
plot(I,ID,’r’)

The function PHV in the above code is given by the following program:

1 % This functions plots the hyperbolic volume as a function of
% the radius of the unit disk

3 % The argument x of the functions is the number discret points in the
% interval [0,r] for the evaluation of the density

5
function [I,J,H,ID]=PHV(x,r)

7 %
H=[]; %Hyperbolic volume density

9 ID=[]; % Integrated density
invN=1/x; %specifies points

11 K=min(r,(1-invN));
J=[];

13 I=[0:invN:K]; % discrete points, the imaginary part of "Eig"
k=1; %counter

15 CutOff=160;
norm=2*I(length(I))^2/(1-I(length(I))^2);

17
while (k<=length(I))

19 H(k)=(norm^(-1))*((2*pi)^(-1))*I(k)*(2/(1-I(k)^2))^2; %density
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ID(k) = (norm^(-1))*2*I(k)^2/(1-I(k)^2); %integrated density
21 if (H(k)<=CutOff)

J(k)=I(k);
23 else

H(k)=0; % ELse cut off
25 end

k=k+1;
27 end

29 H=H(1:length(J));

31 end
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