Corrigé du problème

Mines-Ponts 1995, première épreuve

Première partie

1. a) • On note $\mathcal{T}(U)$ l'ensemble des périodes d'une suite complexe périodique U; alors $\mathcal{T}(U)$ est un sousensemble non vide de \mathbb{N} qui admet donc un plus petit élément, noté p_0 . Soit p une autre période de U et effectuons la division euclidienne de p par p_0 , $p = qp_0 + r$ avec $0 \le r < p_0$. Comme p_0 et p sont des périodes de U, pour tout $n \in \mathbb{N}$,

$$u_n = u_{n+p} = u_{n+qp_0+r} = u_{n+r}.$$

On constate que ou bien r est également une période de U ou bien r = 0. Comme p_0 est la plus petite période de U et $r < p_0$, nécessairement r = 0 et toute période de U est un multiple de p_0 .

- Pour $\Omega = (\omega_n)$ avec $\omega_n = 1$, on a $\mathcal{T}(\Omega) = \mathbf{N}^*$.
- Pour $C = (c_n)$ avec $c_n = \operatorname{Re}(i^{n+1})$, on $\mathcal{T}(C) = \{4n, n \in \mathbf{N}^*\}$.
- b) On note \mathcal{P} l'ensemble des suites périodiques complexes et \mathcal{B} l'ensemble des suites complexes bornées.
- Soit U et V deux suites dans \mathcal{P} et notons p_0 et q_0 leur plus petite période respective. Soit m le ppcm de p_0 et q_0 ; alors $m \in \mathcal{T}(U)$ et $m \in \mathcal{T}(V)$ par la question précédente et $u_{n+m} + v_{n+m} = u_n + v_n$. On en déduit que U + V est périodique.
- Pour $\lambda \in \mathbf{C}$, la suite (λU) est également périodique.
- De plus, \mathcal{P} n'est pas vide : $\Omega \in \mathcal{P}$.

 \mathcal{P} est un sous-espace vectoriel de \mathcal{B} .

c) Considérons les suites $U^{(p)}$ de plus petite période p définies de par $u_n^{(p)} = 0$ si p ne divise pas n et $u_n = 1$ si p divise n. Le système $(U^{(p)})$ est un système libre de \mathcal{P} . En effet, soit $\sum_{1 \leq i \leq k} \lambda_i U^{(p_i)} = 0$ où $p_1 < p_2 < \cdots < p_k$. En considérant le terme de rang p_1 , on voit que $\lambda_1 = 0$, puis par récurrence que $\lambda_i = 0$ pour tout i.

 \mathcal{P} contient un système libre non fini, donc \mathcal{P} n'est pas de dimension finie.

- **2**. On pose $A(U, p, n) = \frac{1}{p} \sum_{0 \le k \le p-1} u_{n+k}$ pour U suite de \mathcal{P} , p et n des entiers naturels.
- a) On suppose que p est une période de U; alors $u_{n+k}=u_i$ pour un entier i entre 0 et p-1 et $\{n+k, 0 \le k \le p-1\}$ est en bijection avec $\{i, 0 \le i \le p-1\}$ d'où

$$A(U, p, n) = \frac{1}{p} \sum_{0 \le k \le p-1} u_{n+k} = \frac{1}{p} \sum_{0 \le k \le p-1} u_k.$$

De plus si $p=qp_0$, $A(U,p,n)=\frac{1}{qp_0}\sum_{0\leq k\leq qp_0-1}u_k=\frac{1}{p_0}\sum_{0\leq k\leq p_0-1}u_k$. On voit que A(U,n,p) ne dépend pas de n ni de la période p choisie.

On note L(U) = A(U, n, p) lorsque p est une période de U.

- b) $L(\Omega) = 1$ et $L(C) = \frac{1}{4}(1+i-1-i) = 0$.
- c) On note \mathcal{P}_0 le noyau de L; comme L est une forme linéaire, \mathcal{P}_0 est un hyperplan de \mathcal{P} et toute suite n'appartenant pas à \mathcal{P}_0 engendre un supplémentaire de \mathcal{P}_0 dans \mathcal{P} . Le calcul précédent montre que $\Omega \notin \mathcal{P}_0$, d'où $\mathcal{P} = \mathcal{P}_0 + \mathcal{P}_1$ où $\mathcal{P}_1 = \text{Vect }\Omega$.
- **3**. A $U = (u_n)$ dans \mathcal{P} , on associe $U' = (u'_n)$ définie par $u'_n = u_{n+1} u_n$.
- a) Notons p une période de U; alors $u'_{n+p} = u_{n+p+1} u_{n+p} = u_{n+1} u_n = u'_n$, donc U' est aussi une suite périodique de période p et $U \mapsto U'$ induit une application de \mathcal{P} dans \mathcal{P} .
- Soit U et V dans \mathcal{P} et λ un complexe. Clairement $D(\lambda U) = \lambda D(U)$ et D(U + V) = D(U) + D(V); donc D est un endomorphisme de \mathcal{P} .
- $D(\Omega)$ est la suite nulle et $D(C) = (c'_n)$ de période 4 avec $c'_0 = i 1, c'_1 = -1 i, c'_2 = 1 + i$ et $c'_3 = -i 1$.
- Soit $U \in \text{Ker } D$; alors $u_{n+1} u_n = 0$ pour tout n. Le noyau de D est l'ensemble des suites constantes.
- L'image de D est incluse dans \mathcal{P}_0 . Réciproquement, soit $U' \in \mathcal{P}_0$ et choisissons u_0 quelconque dans \mathbf{C} . La suite U définie par u_0 et $u_n = u'_{n-1} + u_{n-1}$ est périodique et vérifie U' = D(U). On en déduit que l'image de D est \mathcal{P}_0 .

- b) Pour $U \in \mathcal{P}_0$, l'image $D(U) \in \mathcal{P}_0$, donc \mathcal{P}_0 est stable par D.
- Le noyau de la restriction de D à \mathcal{P}_0 est l'ensemble de suites constantes U telles que L(U) = 0; il est donc restreint à la suite nulle. La restriction de D à \mathcal{P}_0 est injective.
- Soit $U' \in \mathcal{P}_0$ et U une suite de \mathcal{P} telle que D(U) = U' de période p.

$$\frac{1}{p} \sum_{0 \le k \le p-1} u_k = \frac{1}{p} (pu_0 + \sum_{1 \le k \le p-1} \sum_{0 \le i \le k-1} u_i');$$

si l'on choisit $u_0 = -\frac{1}{p} \sum_{1 \le k \le p-1} \sum_{0 \le i \le k-1} u_i'$, on voit que $U \in \mathcal{P}_0$. La restriction de D à \mathcal{P}_0 est surjective et induit un automorphisme de \mathcal{P}_0 .

- c) Si λ est une valeur propre de D asociée à un vecteur propre U non nul, alors $\lambda u_n = u_{n+1} u_n$ pour tout $n \in \mathbb{N}$. La suite U est une suite vérifiant $u_{n+1} = (1+\lambda)u_n$; c'est une suite géométrique de raison $1+\lambda$. De plus, U est périodique, donc il existe un entier p tel que $(1+\lambda)^p = 1: 1+\lambda$ est une racine de l'unité.
- Réciproquement si λ est tel que $1 + \lambda$ soit une racine de l'unité d'ordre p, toute suite U définie par $u_n = u_0(1+\lambda)^n$ avec $u_0 \neq 0$, est périodique de période p et vérifie $u'_n = u_{n+1} u_n = u_0(1+\lambda-1)(1+\lambda)^n = \lambda u_n$. C'est donc un vecteur propre de D asocié à λ .
- 4. A $U \in \mathcal{P},$ on associe $\theta(U) = U^* = (u_n^*)$ définie par $u_n^* = \sum_{0 \le k \le n} u_k$.
- a) Soit $U \in \mathcal{P}_0$ de période p; alors U^* est une suite périodique de période p; En effet

$$u_{n+p}^* = \sum_{0 \le k \le n+p} u_k = \sum_{0 \le k \le n} u_k + \sum_{n+1 \le k \le n+p} u_k = \sum_{0 \le k \le n} u_k = u_n^*.$$

D'autre part, on remarque que θ est linéaire, d'où une application linéaire de \mathcal{P}_0 dans \mathcal{P} .

- b) Le noyau de θ est l'ensemble des suites U de \mathcal{P}_0 telles que $\sum_{0 \le k \le n} u_k = 0$ pour tout $n \in \mathbb{N}$; par récurrence sur les termes de la suite, on voit que nécessairement $u_n = 0$ pour tout n. L'application θ est injective.
- Soit $U^* \in \mathcal{P}$ et posons $u_0 = u_0^*$, $u_n = u_n^* u_{n-1}^*$ pour $n \ge 1$. On vérifie facilement que $\theta(U) = U^*$ et $U \in \mathcal{P}_0$ par la question **2**.. L'application θ est surjective.

Deuxième partie

- 1. Soit $U = (u_n)$ une suite périodique. La suite (u_n) ne converge vers 0 que si elle est constante égale à 0. Donc la série de terme général (u_n) diverge grossièrement en général et converge vers 0 si la suite (u_n) est nulle.
- Soit $\alpha > 1$; la suite (u_n) est périodique, donc bornée. On en déduit que $|v_n| = \frac{|u_n|}{n^{\alpha}} < \frac{M}{n^{\alpha}}$, qui est le terme général d'une série convergente. (v_n) est donc le terme général d'une série absolument convergente.
- **2**. Soit $U=(u_n)$ une suite de période p; on considère $v_n=\frac{u_n}{n}$ et

$$w_k = \sum_{0 \le j \le p-1} v_{kp+j} = \sum_{0 \le j \le p-1} \frac{u_j}{kp+j}.$$

$$a)$$

$$\frac{1}{kp+j} = \frac{1}{kp} \cdot \frac{1}{1+\frac{j}{kp}} = \frac{1}{kp} \cdot (1 - \frac{j}{kp} + o(\frac{1}{k}))$$

$$= \frac{1}{p} \cdot \frac{1}{k} - \frac{j}{p^2} \cdot \frac{1}{k^2} + o(\frac{1}{k^2}).$$

$$b)$$

$$w_k = \sum_{0 \le j \le p-1} \frac{u_j}{kp+j}$$

$$= \sum_{0 \le j \le p-1} u_j (\frac{1}{p} \cdot \frac{1}{k} - \frac{j}{p^2} \cdot \frac{1}{k^2} + o(\frac{1}{k^2}))$$

 $= \frac{1}{p} \left(\sum_{0 \le i \le n-1} u_j \right) \cdot \frac{1}{k} - \frac{1}{p^2} \left(\sum_{0 \le i \le n-1} u_j j \right) \cdot \frac{1}{k^2} + o(\frac{1}{k^2}),$

car p est fixé. On en déduit que si $\sum_{0 \le j \le p-1} u_j \ne 0$, c'est-à-dire si $U \notin \mathcal{P}_0$, la série de terme général (w_k) est divergente et lorsque $U \in \mathcal{P}_0$, elle est absolument convergente.

c) $\sum_{0 \le j \le kp+p-1} v_j = \sum_{0 \le j \le k} w_j$; on en déduit que si si $U \notin \mathcal{P}_0$, la série de terme général (v_n) est divergente. Lorsque $U \in \mathcal{P}_0$, prenons n un entier et k entier défini par $kp \le n < kp+p-1$.

$$|\sum_{0 \le j \le n} v_j - \sum_{0 \le j \le k} w_j| = |\sum_{n+1 \le j \le kp+p-1} v_j| = |\sum_{n+1 \le j \le kp+p-1} \frac{u_j}{j}|$$

d'où

$$\left| \sum_{0 \le j \le n} v_j - \sum_{0 \le j \le k} w_j \right| \le \frac{1}{n+1} \sum_{n+1 \le j \le kp+p-1} |u_j| \le \frac{1}{n+1} \sum_{0 \le j \le p-1} |u_j|.$$

On conclut que la série de terme général (v_n) converge vers la même limite que la série de terme général (w_k) .

3. a) Soit $C=(c_n)$ défini par $c_n=\mathrm{Re}(i^{n+1})$, qui est une suite périodique de période 4 appartenant à \mathcal{P}_0 .

$$S(C) = \sum_{n>1} \frac{c_n}{n} = \sum_{n>1} \frac{(-1)^n}{2n-1}.$$

Considérons la série de fonctions continues de terme général $(-1)^{n+1}\frac{t^{2n-1}}{2n-1}$ sur [0,1]. Elle converge uniformément sur [0,1], vers la fonction $\sum_{n\geq 1}(-1)^n\frac{t^{2n-1}}{2n-1}=-\operatorname{Arctg} t$, par le critère d'Abel. En effet, la suite $(a_n(x))=(\frac{x^{2n-1}}{2n-1})$ est positive décroissante pour tout $x\in[0,1]$, la suite de fonctions (a_n) converge uniformément vers 0 sur [0,1] et la somme $|\sum_{n\leq r\leq n+p}(-1)^r|$ est bornée par 1 indépendemment de n et de p. On en déduit que

$$S(C) = \sum_{n>1} \frac{(-1)^n}{2n-1} = -\frac{\pi}{4}.$$

b. Soit $T=(t_n)$ de période p, définie par $t_r=1$ pour $1 \le r \le p-1$ et $t_p=1-p$. S(T) a pour limite la limite de la série de terme général (w_k) construite à partir de T.

$$\sum_{1 \le k \le pn+p-1} \frac{t_k}{k} = \sum_{1 \le k \le n} \left(\frac{1-p}{pk} + \frac{1}{pk+1} + \dots + \frac{1}{pk+p-1} \right)$$

$$= \sum_{1 \le k \le pn+p-1} \frac{1}{k} - \sum_{1 \le k \le n} \frac{1}{k}$$

$$= \ln(pn+p-1) + \gamma - \ln n - \gamma + o(1) = \ln \frac{pn+p-1}{n} + o(1).$$

On en déduit $S(T) = \ln p$.