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Abstract
The deflated block conjugate gradient (D-BCG)method is an attractive approach for the solu-
tion of symmetric positive definite linear systems with multiple right-hand sides. However,
the orthogonality between the block residual vectors and the deflation subspace is gradually
lost alongwith the process of the underlying algorithm implementation, which usually causes
the algorithm to be unstable or possibly have delayed convergence. In order to maintain such
orthogonality to keep certain level, full reorthogonalization could be employed as a remedy,
but the expense required is quite costly. In this paper, we present a new projected variant of
the deflated block conjugate gradient (PD-BCG) method to mitigate the loss of this orthog-
onality, which is helpful to deal with the delay of convergence and thus further achieve the
theoretically faster convergence rate of D-BCG. Meanwhile, the proposed PD-BCG method
is shown to scarcely have any extra computational cost, while having the same theoretical
properties as D-BCG in exact arithmetic. Additionally, an automated reorthogonalization
strategy is introduced as an alternative choice for the PD-BCG method. Numerical exper-
iments demonstrate that PD-BCG is more efficient than its counterparts especially when
solving ill-conditioned linear systems or linear systems suffering from rank deficiency.

Keywords Block conjugate gradient · Deflated block conjugate gradient · Deflation ·
Projection · Rank deficiency · Reorthogonalization
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1 Introduction

In this paper, we consider a new projected variant of the deflated block conjugate gradient
method for the solution of linear systemswithmultiple right-hand sides given simultaneously

AX = B, (1)

where A ∈ R
n×n is a large sparse symmetric positive definite (SPD) matrix, and B =

[b(1), b(2), . . . , b(s)] ∈ R
n×s are the given right-hand sides. This problem may originate

from various scientific and industrial applications, such as multi-objective optimization [16],
electro-magnetics [14], direct current resistivity problem [11], and the real-life packaging
problem [32]. The block conjugate gradient (BCG) method [30] has always been considered
to be attractive [10,24,30,41] for solving (1) as a block version of the conjugate gradient
(CG) method [23]. However, as observed in [30], the block matrices involved in BCG may
suffer from linear dependencies along with the algorithm implementation, which results in
the so-called breakdown problem. That is, the algorithm terminates early without finding
a satisfactory approximate solution. Refer to [4,6–8] for more comprehensive descriptions
of such breakdown issue, which arouses many interests in developing various strategies
[10,28,30]. In particular, based on the potential reduced block search subspaces, Ji and Li
formulate the parameter matrices in a novel way to handle this breakdown issue gracefully,
resulting in the breakdown-free block conjugate gradient (BFBCG) method [24].

Instead of grouping themultiple right-hand sides into blocks, another approach to solve (1)
is to apply deflation [13,19] techniques to CG to solve each individual system sequentially,
like deflated CG methods [25,29,35] and augmented CG methods [5,17,36]. Actually, the
later type ofmethods can be viewed as a particular case of the deflated CGmethod.Moreover,
deflation can be also used in related methods for solving nonsymmetric and more general
cases, like GMRES-DR and its block variants [3,20,26,27,37–40], as well as subspace recy-
cling methods [31,34]. A typical deflation technique is to inject to the Krylov subspace a
deflation subspace containing a few approximate eigenvectors usually corresponding to the
eigenvalues close to the origin, which are deemed to hamper the convergence.

In practice, when using the deflated CG method to solve the SPD systems with multiple
right-hand sides, the approximate subspace is obtained during the course of CG iteration and
dynamically updated once a system is solved. And it is reused immediately for deflation to
solve the next system sequentially [35]. If the approximate subspace is expensive to construct,
another strategy is to run a separate single-vector Lanczos algorithm to compute the desired
deflation subspace [2,10]. In fact, deflation can be considered as a method that implicitly
modifies the spectrum of the original matrix and reduces its condition number to improve
the convergence behaviour [19].

However, as pointed out by Saad et al. [35], the deflated variant for CG method does
not always behave so well due to the gradual loss of orthogonality during the algorithm
implementation. And the same issue has again been mentioned that the loss of orthogonality
between the block residual vectors and the deflation subspace in practise hampers conver-
gence seriously when Chen developed the deflated version of the block conjugate gradient
(D-BCG) method [10]. As a matter of fact, this issue could be worse particularly when
solving ill-conditioned systems, since the accumulated round-off errors in computation may
be magnified greatly [9,22,30], and thus the loss of orthogonality may be so high to ruin
convergence. In order to deal with this catastrophe, both Saad et al. [35] and Chen [10] use
reorthogonalization to maintain this orthogonality. However, the reorthogonalization process
is quite costly and may not be necessary [33].
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In order to address the instability problem of deflated BCGvariants indicated by Chen [10]
and Saad et al. [35], in this paper, by means of transforming the projection procedures [12],
we present a projected variant of the deflated block conjugate gradient (PD-BCG) method
to mitigate the loss of orthogonality between the block residual vectors and the deflation
subspace, hoping to further improve the computational convergence rate of the D-BCG [10]
method. Actually, when the loss of orthogonality is mitigated, the algorithm may reach its
targeted convergence threshold before the accumulated loss of orthogonality is so high to
ruin convergence, which is quite significant in finite precision arithmetic. Briefly speaking,
in order to construct the PD-BCG method, we implement orthogonal projection procedures
of the deflation subspace against the block search vectors rather than against the (precondi-
tioned) block residual vectors. The latter is usually used by standard deflated variants. No
extra computational cost is needed for this new deflated variant compared with the standard
one, because it just needs to transform the projection object of the deflation subspace during
the block iteration. Moreover, the PD-BCG method also inherites the novel techniques to
construct parameter matrices from the BFBCG method [24] to handle the aforementioned
breakdown problem of block methods. Subsequently, an additional automated reorthogonal-
ization is developed as an alternative choice to furthermake the PD-BCGmethodmore robust
and effective even with badly ill-conditioned systems and right-hand sides of rank deficiency.
It is proved that the PD-BCG method is mathematically equivalent to the classical D-BCG
method [10] in exact arithmetic. However, in the context of finite precision arithmetic, PD-
BCG outperforms D-BCG remarkably as shown by our numerical experiments.

The paper is organized as follows. In Sect. 2, we first have a brief review of the BCG
method and the D-BCG method, and discuss their orthogonality and convergence properties
accordingly. In Sect. 3, we develop the PD-BCGmethod with an analysis of its orthogonality
and convergence properties. Subsequently, we present the construction of deflation subspace
and the new automated reorthogonalization strategy to be designed for the PD-BCGmethod.
Numerical experiments are presented in Sect. 4 to demonstrate the efficiency of our proposed
methods, and conclusions are given in Sect. 5.

The symbol ‖ · ‖2 denotes the Euclidean norm. The superscripts T and ⊥ respectively
denote the transpose and the orthogonal space of a vector or a matrix. For convenience of
the algorithm illustration and presentation, some MATLAB notation is used. A subscript
k for a scalar or a matrix is used to indicate that the scalar or the matrix is obtained at
iteration k. A superscript (i) labels the i th column of a matrix. The symbol “∼” indi-
cates that these matrices may have rank deficiency. The identity matrix is denoted by I,
and block-span {C1, C2, . . . , Ck} denotes the subspace spanned by these block matrices Ci

(1 ≤ i ≤ k).

2 Deflated Block Conjugate Gradient Method

In this section, we first review the standard form of the block conjugate gradient (BCG)
method proposed by O’Leary [30] and a deflated version of the block conjugate gradient (D-
BCG)method presented by Chen [10]. Then, we have an analysis on associated orthogonality
and convergence properties of BCG andD-BCG, whichwill be used to illustrate the necessity
and importance to keep the orthogonality between the block residual vectors and the deflation
subspace.
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2.1 Block Conjugate Gradient Algorithm

We recapitulate the main results of the block conjugate gradient method [30] briefly. Given
an SPD preconditioner M , full rank matrices γ j of dimension s × s, j = 0, 1, . . ., an initial
guess X0 with the corresponding initial block residual R0 = B− AX0, Z0 = M R0 and initial
block search direction vectors P0 = Z0γ0. The standard BCG algorithm runs the following
iterations until convergence:

X j+1 = X j + Pjα j ,

R j+1 = R j − APjα j ,

Z j+1 = M R j+1,

Pj+1 = (Z j+1 + Pjβ j )γ j+1, j = 0, 1, . . .

where the α j and β j are parameter matrices with various forms (one could refer to [10,24,30]

for the details), the X j = [x (1)
j , x (2)

j , . . . , x (s)
j ] are approximate solution vectors, and R j are

the corresponding block residual vectors. The matrices γ j are arbitrary nonsingular matrices
selected to orthogonalize the columns of Pj and thus to improve the numerical stability of
BCG.

The orthogonality properties, such as the residual vectors R j+1 being orthogonal to the
previous search directions Pi (i.e., RT

j+1Pi = 0 for all i < j + 1), the A-orthogonality
of the search directions Pj ’s and the M-orthogonality of the residual vectors R j ’s (i.e.,
PT

i APj = 0 and RT
i M R j = 0 for all i �= j), have all been deduced by O’Leary in [30].

As for the convergence rate of BCG, define the error matrix E j as

E j =
[
e(1)

j , . . . , e(s)
j

]
= X∗ − X j

at the j th iteration, where e(i)
j is the i th column of E j and X∗ = A−1B is the exact block

solution of Eq. (1). Then according to [30, Section 4], the block residual R j at iteration j ( j =
1, 2, 3, . . .) of the BCG algorithm is orthogonal to block-span{M R0, (M A)M R0, . . . , (M A)
j−1M R0} denoted as K M

j (A, R0), and thus X j is the minimizer of the error trace[
(X∗ − X)T A(X∗ − X)

]
over all X ∈ X0 + K M

j and

trace
[
(X∗ − X j )

T A(X∗ − X j )
]

=
s∑

i=1

‖e(i)
j ‖2A.

To determine the convergence rate of BCG, the initial residual matrix R0 plays an important
role in bounding the errors at each iteration step. Under the assumption that R0 has full
column rank, O’Leary [30] showed that the minimum error in component i (1 ≤ i ≤ s) is
bounded as

‖e(i)
j ‖2A ≤ c(i)

(√
κ − 1√
κ + 1

)2 j

, (2)

where c(i) is a constant only related to e(i)
0 , and κ = λn/λs . Here, for all j , the λ j ’s are the

j th eigenvalues of the preconditioned system M1/2AM1/2T
(or equivalently written as M A)

with eigenvalues in increasing order, and s is the column number of the right-hand sides.
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2.2 Deflated Block Conjugate Gradient Algorithm

The deflated BCG (D-BCG) algorithm discussed in [10] uses an n × t (t < n) nonsingular
matrix W for deflation, whose columns correspond to the targeted eigenvalues which are
deemed to hamper the convergence. Within the framework of D-BCG, the initial vectors X0

are determined by an orthogonal property: R0 = B − AX0 ⊥ W , and the relevant initial
block iterates are computed as Z0 = M R0 and P0 = orth(Z0 − W (W T AW )−1W T AZ0),
where orth(·) is a matrix operation in MATLAB used to generate an orthonormal basis for
the range of the underlying matrix for the consideration of numerical stability. We directly
recall the D-BCG method with parameter matrices developed in [24] in Algorithm 1.

Algorithm 1 Deflated block conjugate gradient algorithm [10]

Require: a matrix A ∈ R
n×n , a matrix B ∈ R

n×s , an initial guess X−1 ∈ R
n×s , a deflation matrix

W ∈ R
n×t , an SPD preconditioner M ∈ R

n×n , the targeted backward error ε > 0, and maximum number
of iterations maxit ∈ N+.

Ensure: an approximate solution X j+1 ∈ R
n×s .

1: Choose t linearly independent vectors ω1, . . . , ωt . Define W = [ω1, . . . , ωt ]
2: Choose X−1
3: R−1 = B − AX−1
4: X0 = X−1 + W (W T AW )−1W T R−1
5: R0 = B − AX0
6: Z0 = M R0
7: solve (W T AW )μ0 = W T AZ0 for μ0
8: P0 = orth(−Wμ0 + Z0)
9: for j = 0, 1, 2, . . . , maxit do
10: Q j = APj

11: α j = (PT
j Q j )

−1(PT
j R j )

12: X j+1 = X j + Pj α j
13: R j+1 = R j − Q j α j
14: If converged with respect to ε, then stop.
15: Z j+1 = M R j+1

16: β j = −(PT
j Q j )

−1(QT
j Z j+1)

17: solve (W T AW )μ j+1 = W T AZ j+1 for μ j+1
18: Z j+1

′ = −Wμ j+1 + Z j+1
19: Pj+1 = orth(Z j+1

′ + Pj β j )
20: end for

Compared with the standard BCG algorithm, the iteration in Algorithm 1 uses different
search directions Pj for updating approximate solutions. Moreover, it is clear that in addition
to the matrices A and M , another four block matrices are required to be stored: W , AW ,
W T AW and μ. Define two auxiliary matrices as

H = I − W (W T AW )−1(AW )T , (3)

to be the A-orthogonal projector onto W ⊥A and

H T = I − AW (W T AW )−1W T , (4)

to be the A−1-orthogonal projector onto W ⊥. From lines 4 and 5 of Algorithm 1 and Eq. (4),
the initial block residual vector is orthogonal to the deflation matrix. Moreover, the projector
H satisfies the following relations based on Eqs. (3) and (4)

AH = H T A = H T AH . (5)
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By a simple induction and formula (3), it is easy to show the A-orthogonality of the Pj ’s
and the M-orthogonality of the residual vectors R j ’s, which inherit from the standard BCG
algorithm. Besides, the residual vectors R j and block vectors APj are both orthogonal to the
deflation matrix W . That is, W T R j = 0 and W T APj = 0 in step j .

As for the convergence rate of D-BCG, Chen [10, Corollary 3.3] showed the minimum
error in component i (1 ≤ i ≤ s) is bounded as

‖e(i)
j ‖2A ≤ c(i)

(√
κD − 1√
κD + 1

)2 j

, (6)

where κD = λn/λs+t with t being the dimension of the deflation matrix. Compared to κ

presented in (2), it is obvious that κD < κ and the error bound obtained by (6) is smaller than
that obtained by (2) in step j . According to O’Leary [30, Section 4], the prominent factor that
determines the convergence rate of the BCG-like algorithms is the distribution of eigenvalues
of M A (if the same initial guess X0 is chosen). For fast convergence, M can be chosen so
that the preconditioned matrix M A has a narrow cluster of n − s + 1 eigenvalues, which
becomes amore clustered spectrumwith n−s−t +1 eigenvalues after deflating the targeted t
eigenvalues to zero [10]. Theoretically, the convergence rate of D-BCG cannot be slower than
the standard BCG method, especially when the deflation matrix W is sufficiently accurate to
approximate the targeted eigenvectors which hamper the convergence behaviour. From this
perspective, exploiting deflation can be considered to use an extra implicit preconditioner for
the preconditioned system to improve the convergence rate.

However, due to the gradual loss of orthogonality between the block residual vectors
R j and the deflation matrix W in the finite precision arithmetic, the convergence of D-BCG
seems to be unstable and we thus cannot theoretically realize the faster convergence as shown
in (6). Moreover, what is worse is that the loss of this orthogonality may be so serious that it
even ruins convergence [10,35]. Instead of using the costly reorthogonalization process, in
the next section, we present a new projected variant of the deflated block conjugate gradient
algorithm to deal with this instability of D-BCG [10] with scarcely any extra computational
cost.

3 A New Projected Variant of the Deflated BCGMethod

In this section, we first develop the projected variant of the deflated block conjugate gradient
(PD-BCG) method, which additionally exploits the technique of the breakdown-free block
conjugate gradient (BFBCG) method [24] to address the (near) breakdown problem [24,30]
that may occur as the PD-BCG algorithm progresses. And then we theoretically analyze
the orthogonal properties and convergence rate of the PD-BCG method. The associated
construction of the deflation matrix W and the new automated reorthogonalization strategy
to be taken in this paper are discussed afterwards.

3.1 Derivation of PD-BCG

For the simplicity of expression and easy cross-reading, we use most of the notation from the
D-BCG method [10]. But the copperplate P j is used to denote the matrix whose columns
span the search space at iteration j in the remaining parts. We still ensure the initial residual
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vectors to satisfy R0 = B−AX0 ⊥ W , and define Z0 = M R0.And thenwith left-multiplying
the projector H expressed in (3), we start with

P0 = H Z0 = (I − W (W T AW )−1W T )Z0,

which are the descent directions and orthogonal to the deflation matrix W .
In fact, once the deflation matrix W has been constructed, considering the construction

of the residual vectors R j+1 = R j − AP jα j and the condition that W T R0 = 0 is rigor-
ously established in D-BCG, the loss of orthogonality between the residual vectors and the
deflation matrix W mainly originates from the accumulated round-off errors in finite preci-
sion computation and the computation of the search directions. Although the accumulated
round-off error is inevitable, we could adjust the construction of the search space matrix
P j ( j = 1, 2, . . .) to make sure the subspaces span{AP j } belong to the orthogonal space
of span{W }. Thus, we introduce auxiliary block search directions P j

′ constructed as those
of the D-BCG method (i.e., P j

′ = H Z j + P j−1β j−1). And then we project the auxiliary
directionsP j

′ onto the subspace span{W ⊥A } by (3) to update the block search directions as
P j = HP j

′ = H Z j + P j−1β j−1 − W (W T AW )−1W T AP j−1β j−1, (7)

which indicates that the PD-BCG algorithm can be viewed as a projection method. That is,
we successively ensure the A-orthogonality between the search space matrix P j and the
deflation matrix W with the help of projector H . Moreover, observe that if the third term in
the right-hand side expression of (7) vanishes when the search vectors are orthogonal to the
deflation matrix, then PD-BCG reduces to the classical D-BCG algorithm [10].

On the other hand, the breakdown problem caused by rank deficiency, which is originated
from the linear dependence of the residual vectors R j or the search spacematrixP j , is a well-
known practical difficulty during the implementation of the BCG variants. When breakdown
occurs, at least one of the parameter matrices involved in the BCG variants is unavailable,
leading these algorithms to terminate early without finding a satisfactory approximation. It
is remarkably noticed that Ji and Li [24] recently developed a breakdown-free BCG method
with novel forms of parameter matrices and the matrix operation orth(·), used to select
an orthogonal basis, to avoid the breakdown problem cased by rank deficiency. Specifically,
according to the orthogonal properties of the BCGmethod, the parametermatrixα j is derived
by imposing the orthogonal condition that the next residual matrix R j+1 be orthogonal to the
current search space matrix P j , while the parameter matrix β j is defined by the conjugacy
condition that the new search direction matrix P j+1 is conjugate to all the previous search
direction matricesPk (k < j + 1). Moreover, the matrix operation orth(·) is used to extract
an orthogonal basis as the columns of P̃j from the search space matrixP j , which guarantees
that the matrix P̃T

j AP̃j is nonsingular and thus meaningful to obtain its inverse to compute
the parameter matrices α j and β j . When rank deficiency associated with the search space
matrixP j occurs, the parameter matrices may turn into rectangular matrices of size r j × s,
where r j is the rank dimension of the current search space matrix P j and is possibly less
than s with s being the original number of the right-hand sides in (1). And then, there is
P j = P̃jσ j , where σ j is an r j × s matrix of rank r j (r j ≤ s). We here extend the main idea
of addressing the breakdown issue in [24] to the PD-BCG method to handle rank deficiency.

As a summary, we present the PD-BCG method as in Algorithm 2, in which the P̃j

obtained from P j is used in iterations. Compared with lines 17 and 18 of Algorithm 1,
where the D-BCG method implements orthogonal projection procedures of the deflation
subspace against the preconditionedblock residual vectors, this newprojection-based deflated
variant transforms the projection object of the deflation subspace into the block search vectors
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alternatively, which is illustrated in lines 9 and 10 of Algorithm 2. Moreover, according to
line 17 of Algorithm 1 and line 9 of Algorithm 2, if the column number of P̃j

′ equals
to that of Z j+1, then the computational complexity of Algorithm 2 is the same as that of
Algorithm 1. Since the adoption of orth(·) and the possible rank deficiency of P j

′ existing
in actual computation could reduce the number of multiplications with A (i.e., the AP̃j

′ in
line 9 of Algorithm 2), the computational complexity of Algorithm 2 would be less than that
of Algorithm 1.

Algorithm 2 Projected variant of the deflated BCG algorithm

Require: a matrix A ∈ R
n×n , a matrix B ∈ R

n×s , an initial guess X−1 ∈ R
n×s , a deflation matrix

W ∈ R
n×t , an SPD preconditioner M ∈ R

n×n , the targeted backward error ε > 0, and maximum number
of iterations maxit ∈ N+.

Ensure: an approximate solution X j+1 ∈ R
n×s .

1: Choose t linearly independent vectors ω1, . . . , ωt . Define W = [ω1, . . . , ωt ]
2: Choose X−1
3: R−1 = B − AX−1
4: X0 = X−1 + W (W T AW )−1W T R−1
5: R0 = B − AX0
6: Z0 = M R0
7: P̃0

′ = orth(Z0)
8: for j = 0, 1, 2, . . . , maxit do
9: solve (W T AW )μ j = W T AP̃j

′ for μ j

10: P̃j = P̃j
′ − Wμ j

11: Q j = AP̃j

12: α j = (P̃T
j Q j )

−1(P̃T
j R j )

13: X j+1 = X j + P̃j α j
14: R j+1 = R j − Q j α j
15: If converged with respect to ε, then stop.
16: Z j+1 = M R j

17: β j = −(P̃T
j Q j )

−1(QT
j Z j+1)

18: end if
19: P̃j+1

′ = orth(Z j+1 + P̃j β j )
20: end for

3.2 Properties of PD-BCG

In this section, based on these properties of the projector H presented in Eqs. (3), (4) and (5),
we first present orthogonal properties of the PD-BCG method in Theorem 1, subsequently
deduce the Petrov-Galerkin condition and convergence rate of PD-BCG in Theorem 2 and
Sect. 3.3, respectively.

Theorem 1 Letting M be an SPD matrix, in Algorithm 2, we have

(a) R j and AP̃j are both orthogonal to W , that is, W T R j = 0 and W T AP̃j = 0.
(b) R j

′s are M-orthogonal and the P̃j
′s are A-orthogonal, that is, RT

i M R j = 0 and

P̃T
i AP̃j = 0 for all i �= j .

Proof We first prove W T R j = 0 and W T AP̃j = 0 by induction. It is easy to deduce this is
true for the initial iteration j = 0 by the given condition R0 ⊥ W and the definition of H
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shown in Eq. (3). Assume it holds at iteration j , then at iteration j + 1, according to line 14
of Algorithm 2, we obtain

W T R j+1 = W T R j − W T AP̃jα j = 0

by induction. And according to lines 9 and 10 of Algorithm 2, we have P̃j+1 = H P̃j+1
′,

then

W T AP̃j+1 = W T AH P̃j+1
′ = 0

by the fact that H is the A-orthogonal projector onto W ⊥A , which is stated in (3).
Next, from Z j = M R j , we prove Z T

j Rm+1 = 0 and P̃T
j AP̃m+1 = 0 for all j ≤ m by

induction similarly. This is true at the initial iteration m = 0. Assume it is true at iteration
m, then at iteration m + 1, according to line 14 of Algorithm 2, we obtain

Z T
j Rm+1 = Z T

j Rm − Z T
j AP̃mαm .

We first check the cases j ≤ m − 1. We can get Z T
j Rm = 0 by induction. According to line

19 of Algorithm 2, Z j + P̃j−1β j−1 can be expressed as

Z j + P̃j−1β j−1 = P̃j
′σ j ,

where σ j ia an r j × s matrix of rank r j and r j is the rank dimension of P̃j
′. Moreover, from

P̃m = H P̃m
′, we have

Z T
j AP̃m = (P̃j

′σ j − P̃j−1β j−1)
T AP̃m = σ T

j (P̃j
′)T AH P̃m

′ − βT
j−1 P̃T

j−1AP̃m = 0

by the property AH = H T AH shown in (5) and by induction. Then for j = m, we have

Z T
m Rm+1 = (P̃m

′σm − P̃m−1βm−1)
T (Rm − AP̃mαm),

= σ T
m (P̃m

′)T (Rm − AP̃mαm) = σ T
m (P̃T

m Rm − P̃T
m AP̃mαm)

by induction and Rm = H T Rm obtained from W T R j = 0 and the definition of H T shown
in Eq. (4). Furthermore, we have P̃T

m Rm − P̃T
m AP̃mαm = 0 by the definition of αm presented

in line 12 of Algorithm 2. Thus, we obtain Z T
m Rm+1 = 0.

In the following, as an alternative, we prove P̃T
j AP̃m+1σm+1 = 0 to obtain P̃T

j AP̃m+1 =
0, where σm+1 is an rm+1 × s matrix with rank rm+1(rm+1 ≤ s). We first check the cases
j ≤ m −1. From the expression of H in (3) and the full row rank property of σm+1, we have

P̃T
j AP̃m+1σm+1 = P̃T

j AH(Zm+1 + P̃mβm)Ψm+1,

= P̃T
j AZm+1Ψm+1 − P̃T

j AWΘ∗ + P̃T
j AP̃mβmΨm+1,

where Ψm+1 is a s × s nonsingular matrix and Θ∗ = (W T AW )−1(AW )T (Zm+1 +
P̃mβm)Ψm+1 is a t × s matrix. By imposing a transpose on the first item of the right side, we
obtain

(P̃T
j AZm+1Ψm+1)

T = Ψ T
m+1Z T

m+1AP̃j = Ψ T
m+1RT

m+1M(R j − R j+1)/α j = 0

by line 14ofAlgorithm2and the M-orthogonality between R j
′s just proved above.Moreover,

it is clear that P̃T
j AP̃m = 0 by induction, and P̃T

j AW = 0 by the proved item (a), so that

P̃T
j AP̃m+1σm+1 = 0. Thus, we have P̃T

j AP̃m+1 = 0 by the full row rank property of σm+1.

As for j = m, based on P̃T
j AW = 0, we have

P̃T
m AP̃m+1σm+1 = (P̃T

m AZm+1 + P̃T
m AP̃mβm)Ψm+1 = 0
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by the definition of βm corresponding to line 17 of Algorithm 2. ��
Theorem 1 indicates that the properties W T AP̃j = 0 are theoretically well established for

all j = 0, 1, . . . in the PD-BCG iterations. And so does W T AP j = 0 byP j = P̃jσ j . Thus,
the PD-BCGmethod is mathematically equivalent to the D-BCGmethod in exact arithmetic.
However, although these two block deflated variants are theoretically equivalent, they per-
form differently in the finite precision arithmetic as shown in the numerical experiments. In
fact, the PD-BCG method successively projects the subspace span{AP̃j } (or span{AP j })
onto the subspace W ⊥ by the projector H at the initial steps of each loop (i.e., W T AP̃j = 0
is guaranteed for all j = 0, 1, . . .) and this characteristic could be also helpful for projecting
the residual vectors R j+1 onto the subspace W ⊥ indirectly. These facts contribute to the
mitigation of the gradual loss of orthogonality between the residual vectors and the defla-
tion matrix during the implementation of D-BCG [10] so as to realize the theoretically fast
convergence as far as possible.

Next, we deduce the relations between the block search space matrix P j and the block
residual vectors R j . And then we derive the solution space condition of PD-BCG.

According to lines 9, 10, 16 and 19 of Algorithm 2 and the property W T AP̃j = 0 in
Theorem 1, the block search space matrix P j at iteration j can be written as

P j = P̃jσ j = H P̃j
′σ j = H M R jΨ j + P̃j−1β j−1Ψ j ,

= · · ·
= H M R jΨ j + H M R j−1Ψ j−1Ψ j + · · · + H M R0Ψ0Ψ1 . . . Ψ j−1,

by induction and in which these Ψk(0 ≤ k ≤ j − 1) are s × s nonsingular matrices. For
simplicity, we set

block-span {P0,P1, . . . ,P j−1} = block-span {P j } ⊂ R
n×s, (8)

where “block-span” means a linear combination of all the n × s columns in {P0,

P1, . . . ,P j−1}, which is equivalent to the definition of “block span” for block Krylov
space methods mentioned by Gutknecht [20, Section 6]. To further clarify this point, for
∀C ∈ block-span {P0,P1, . . . ,P j−1}, we give the following definition

C =
j−1∑
k=0

Pkδk; ∃δk ∈ R
s×s, (k = 0, . . . , j − 1) ∈ R

n×s .

Thus it is clear that

block-span {P j } = block-span {H M R0, H M R1, . . . , H M R j−1}. (9)

According to line 14 of Algorithm 2, we have

R j−1 ∈ block-span {R j−2, AP̃j−2α j−2} ⊂ block-span {R j−2, AP j−2},
which gives rise to

R j−1 ∈ block-span {R0, AP0, AP1, . . . , AP j−2}. (10)

From (9) and (10), we conclude that

R j−1 ∈ block-span {R0, AH M R0, (AH M)2R0, . . . , (AH M) j−1R0}. (11)

Then from (5) and (11), we obtain
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block-span {R0, R1, . . . , R j−1} = K j (AH M, R0) = K j (H T AH M, R0).

Therefore, just as Erhel and Guyomarch [17] have pointed out that the deflated version of
the BCG method can be viewed as BCG preconditioned by both H H T and M .

On the other hand, from (9), it is easy to get

P0 ∈ block-span {H M R0}.
Furthermore, from (9) and (11), we obtain

block-span {P j } = block-span {H M R0, H M(AH M)R0, . . . , H M(AH M) j−1R0},
= H · block-span {M R0, (M AH)M R0, . . . , (M AH) j−1M R0},
= block-span {H M R0, (H M A)H M R0, . . . , (H M A) j−1H M R0},

by the formula H M(AH M) j = H(M AH) j M = (H M A) j H M . Hence, we have

block-span {P j } = H · K j (M AH , M R0) = K j (H M A, H M R0). (12)

Similarly, it is easy to conclude

block-span {Z0, Z1, . . . , Z j−1} = K j (M AH , M R0), (13)

where Z j = M R j . Hence, the vectors H Z j andP j span the same Krylov subspace, which
corresponds to lines 17, 18 and 19 of Algorithm 1 or lines 9, 10 and 19 of Algorithm 2. It is
noted that in the unpreconditioned case, that is M = I , we have

block-span {R0, R1, . . . , R j−1} = K j (AH , R0) = block-span {Z0, Z1, . . . , Z j−1}.
For simplicity, from (13) and these orthogonal properties stated in Theorem 1, we define

a new Krylov subspace as

Kt, j (A, W , R0) = span (W ) ⊕ K j (M AH , M R0), (14)

where t is the dimension of the deflationmatrix W and the direct sum systemKt, j (A, W , R0)

obtained by “⊕” is the union of two disjointed systems span (W ) and K j (M AH , M R0).
Then, from (14), the first two terms of (12) and the definition of H in (3), we obtain the

following relation

block-span {P j } = Kt, j (A, W , R0). (15)

Next, we develop some more properties of Algorithm 2 in Theorem 2, which are used to
exploit the convergence property of PD-BCG in the next subsection.

Theorem 2 Letting M be an SPD matrix, in Algorithm 2, we have

(a) the solution space is

X j ∈ X0 + Kt, j (A, W , R0).

(b) The block Petrov–Galerkin condition is

V T R j = 0 and V T AP j = 0 for all V ∈ Kt, j (A, W , R0).

Proof According to line 13 of Algorithm 2, it can be shown that
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X j = X j−1 + P̃j−1α j−1,

= · · ·
= X0 + P̃0α0 + . . . + P̃j−1α j−1,

= X0 + P0Ψ0
′ + . . . + P j−1Ψ j−1

′,

where these Ψk
′(0 ≤ k ≤ j − 1) are s × s coefficient matrices. Hence from Eqs. (8) and

(15), we obtain

X j ∈ X0 + Kt, j (A, W , R0).

Then, in order to prove the property (b) of Theorem 2, from (13), (14) and (15), we could
first prove W T R j = 0 and Z T

i R j = RT
i M R j = 0 to verify V T R j = 0. And then, from

P j = P̃jσ j as well as V T AP̃j = 0 or P̃T
i AP̃j = 0 for all i �= j , which have all been proved

in Theorem 1, we have V T AP j = 0. Therefore, the Petrov-Galerkin condition still holds in
Algorithm 2. ��

3.3 Convergence Analysis

From Theorem 2, R j is orthogonal to Kt, j (A, W , R0) at iteration j . Using this prop-
erty, we further obtain that the j th approximate solution X j minimizes the solution error
trace

[
(X∗ − X)T A(X∗ − X)

]
over the subspace X0 + Kt, j (A, W , R0). Noting that X j ∈

X0 + Kt, j (A, W , R0), we can write x (i)
j for each i th column of X j as a polynomial form,

which has been used to analyze similar properties of block methods in [1, Section 5].
Specifically, from (15), the first and third items of (12), we can write x (i)

j as

x (i)
j = x (i)

0 +
s∑

i=1

P j (H M A)H M Ar (i)
0 ,

where P j (H M A) is a polynomial of degree less than or equal to j − 1. Then, under the
assumption that R0 has full column rank, O’Leary [30, Section 4] showed that the minimum
error square norm ‖e(i)

j ‖2A (1 ≤ i ≤ s) is bounded as

‖e(i)
j ‖2A ≤ c1

(√
κ1 − 1√
κ1 + 1

)2 j

, (16)

where κ1 = λn/λs , λn and λs are respectively the nth and sth (s is the block size of the
right-hand sides B) eigenvalues of H M A, and c1 is a constant only related to ‖E0‖.

Analogously, from (15) and the first and second items of (12), we can also write x (i)
j in

an alternative form

x (i)
j = x (i)

0 + H
s∑

i=1

J j (M AH)M Ar (i)
0 ,

where J j (M AH) is a polynomial of degree less than or equal to j − 1. Then, according to

Chen [10, Section 3.4], the minimum error square norm ‖e(i)
j ‖2A (1 ≤ i ≤ s) is bounded as

‖e(i)
j ‖2A ≤ c2

(√
κ2 − 1√
κ2 + 1

)2 j

, (17)
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where κ2 = λn/λs+t , λn and λs+t are respectively the nth and (s + t)th eigenvalues of M A,
c2 is a constant only related to ‖E0‖, and t is the dimension of the deflation matrix W .

In fact, with an effective preconditioner, the preconditioned system M A has almost all the
eigenvalues clustered within a narrow range, except for a few extreme eigenvalues deviating
from the clustered part obviously and thus hampering the convergence. In such circumstances,
deflation is particularly favorable since these extreme eigenvalues associated with the eigen-
vectors that are the columns of W can be deflated to be zero (since M AH W = 0 by Eq. (3)),
which contributes to further narrow the range of spectrum and thus possibly to further speed
up the computational convergence rate. Therefore, the spread of the spectrum of M AH is
never wider than that of M A. In the ideal case that the t columns of the deflation matrix W
correspond to the eigenvectors of M A associated with the t smallest eigenvalues in magni-
tude, then κ1 = κ2, and the boundaries presented in (16) and (17) are mathematically equal
under the same choice of the initial guess X0. Furthermore, under the framework of exact
arithmetic and such ideal case, it is easy to observe that the convergence rate of PD-BCG
described in (16) or (17) is the same as that of D-BCG presented in (6). However, the deriva-
tion of PD-BCG shows its feature of mitigating the loss of orthogonality. Thus, the actual
computational convergence rate of PD-BCG is possibly faster than that of D-BCG in finite
precision arithmetic, which will be substantiated by the numerical results to be presented in
Sect. 4. As for realizing the theoretical supporting evidence of the faster convergence rate of
PD-BCG compared with D-BCG, deducing these algorithms (i.e., D-BCG and PD-BCG) in
finite precision and analyzing their growth of local roundoff errors are indispensable, which
could be considered as an open problem for us at the moment.

When there is rank deficiency occurring in the initial residual matrix R0, that is R0 has
rank r0 < s, the convergence rate of PD-BCG is discussed in the following theorem.

Theorem 3 Suppose R0 is rank deficient with rank r0 (r0 < s). The minimum error square
norm ‖e(i)

j ‖2A (1 ≤ i ≤ s) is bounded as

‖e(i)
j ‖2A ≤ c3

(√
κ3 − 1√
κ3 + 1

)2 j

,

where c3 is a constant only related to ‖E0‖, and κ3 = λn/λr0 , with λn and λr0 being respec-
tively the nth and r0th eigenvalues of H M A.

Proof Assume that the n × s residual matrix R0 has rank r0, then there exists a nonsingular
s × s matrix δ such that

R0 = (R0
′, 0)δ,

where R0
′ is an n × r0 matrix with full column rank.

It is easy to deduce E0 = A−1R0. By the definition of E j and line 13 of Algorithm 2, we
have

E j = X∗ − (X j−1 + P̃j−1α j−1),

= · · ·
= X∗ − (X0 + P0Ψ0

′ + . . . + P j−1Ψ j−1
′),

= E0 − P0Ψ0
′ − · · · − P j−1Ψ j−1

′.

From P j−1∈ block-span{H M R0, H M(AH M)R0, . . ., H M(AH M) j−1R0}, we obtain
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E j = E0 + H M R0Ψ0
′′ + H M(AH M)R0Ψ1

′′ + · · · + H M(AH M) j−1R0Ψ j−1
′′,

= E0 + H M AE0Ψ0
′′ + (H M A)2E0Ψ1

′′ + · · · + (H M A) j E0Ψ j−1
′′, (18)

where Ψk
′′ (k = 0, . . . , j − 1) are the s × s coefficient matrices.

Therefore, by defining a polynomial of degree j as Φ j (H M A) and assume Φ0 = I , and
using (18), we have

E j = Φ j (H M A)E0 = Φ j (H M A)A−1R0,

= Φ j (H M A)A−1(R0
′, 0)δ,

= (Φ j (H M A)A−1R0
′, 0)δ = (E j

′, 0)δ.

Hence, each column in E j can be expressed as

e(i)
j =

r0∑
k=1

δk,i e
′(k)
j ,

where the e
′(k)
j is the kth (k = 1, 2, . . . , r0) column of E j

′. Then by taking norms on both

sides and according to (16), we obtain an upper bound on ‖e(i)
j ‖2A as

‖e(i)
j ‖2A =

∥∥∥∥∥
r0∑

k=1

δk,i e
′(k)
j

∥∥∥∥∥
2

A

,

≤
r0∑

k=1

δ2k,i · ‖e
′(k)
j ‖2A,

≤ c3

(√
κ3 − 1√
κ3 + 1

)2 j

,

where c3 = ∑r0
k=1 δ2k,i · c1 is only related to ‖E0‖, and κ3 = λn/λr0 , with λn and λr0 being

respectively the nth and r0th eigenvalue of H M A. ��

From Theorem 3 and r0 < s, we have
√

κ1−1√
κ1+1 <

√
κ3−1√
κ3+1 since κ1 < κ3.

3.4 DeflationMatrixW

Generally, an approximation of the extreme eigenvalues is often obtained by a separate
Lanczos [10,35] or Arnoldi process [3,26]. Under the framework of the block algorithms,
Chen has made a comprehensive analysis of the construction of the deflation matrix W
in [10, Section 3.5], which aims at using the corresponding extreme eigenvectors of the
preconditioned system M A as the columns of deflation matrix W . Based on Chen’s analysis
[10, Section 3.5], in this paper, a separate single-vector Lanczos algorithm presented in [10,
Algorithm 2] is used to compute the desired deflation matrix W for these two deflated BCG
variants (i.e., D-BCG and PD-BCG). In general, the number of columns in W is problem-
dependent and is usually set to be small as compared to the dimension of A. This makes
the storage and time cost of this procedure be reasonable and these extra expenses could be
easily amortized by the reduced iterations stemming from the accelerated convergence rate.

For general problem, however, it could be more difficult to estimate the eigenvectors
than to solve the system of equations. Besides, how accurate the approximated deflation
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subspace should be is also an important problem to utilize the deflation techniques [18]. It
is because the computational performance of the deflated methods may be inferior to the
theoretical result stated in (16) or (17) when a badly low-accurate eigen-subspace is used as
the deflation subspace, which will be supported by experiments presented in Sect. 4. In such
poorly inaccurate case, full reorthogonalization related to such deflationmatrixW should also
be avoided because these repeated full reorthogonalization processes are likely to amplify
the original errors existed in the construction of W . In other words, projecting the generated
block residual matrix onto the orthogonal space of such deflation subspace step by step seems
unreasonable. Obviously, the construction of W used for deflation is crucial for the deflation
technique. And we refer readers to [6,10,17,21,35] for more detailed developments of this
area.

3.5 Automated Reorthogonalization Strategy

Although the PD-BCG method can improve the D-BCG [10] method by mitigating the loss
of orthogonality between the block residual vectors and the deflation matrix, the loss of
this orthogonality is still inevitable in practical implementation. Considering the high cost
and possible inapplicability (caused by the above-mentioned possibly low-accurate defla-
tion matrix) of full reorthogonalization, we alternatively construct an additional automated
reorthogonalization strategy here as a choice for the PD-BCG method, which is especially
meaningful under the situation that merely mitigating the loss of orthogonality is not enough
to ensure the convergence.

We first define a function at iteration j ( j = 0, 1, 2, . . .) as

othor( j) = min
1≤l≤s

min
1≤i≤t

(
| W (:, i)T R j (:, l) |

‖W (:, i)‖2‖R j (:, l)‖2

)
(19)

to monitor the level of the loss of orthogonality between the block residual vectors R j and
the deflation matrix W as these deflated block algorithms progress. It is pointed out that if
a single right-hand side for (1) needs to be solved, Eq. (19) would reduce to the function
othor( j) defined in [35, Section 7] for the deflatedCGmethod,which shows the orthogonality
between the single residual vector r j and the columns of W .

In order to establish the automated reorthogonalization strategy, an adaptive criterion
for this reorthogonalization should be available. In general, we assume the orthogonality
between the block residual vectors and the deflation matrix maintains well during the first
several iterations. Therefore, we develop an adaptive reorthogonalization criterion as

othor( j) ≥ c · √
othor(l), ( j > l), (20)

in which c is a given scale parameter used to control the level of this loss of orthogonality
and l is the first iteration number satisfying othor(l) �= 0 (generally l = 1 or 2), to perform
the reorthogonalization process between R j and W automatically. Then we add the adaptive
criterion (20) after line 14 of Algorithm 2. If the criterion (20) is satisfied, we implement the
following operation

R j+1 = R j+1 − W (W T W )−1W T R j+1

to reorthogonalize R j+1 against W adaptively. For simplicity, the PD-BCGmethod with this
automated reorthogonalization is denoted as PD-BCG-ARO.

123



Journal of Scientific Computing (2019) 80:1116–1138 1131

Table 1 Information of the four sets of test problems

Ex. Name and group ID Row Column Nonzero Cond.

1 1138_bus/HB 1 1138 1138 4054 8.573e+06

2 cbuckle/TKK 1912 13,681 13,681 676,515 3.299e+07

3 s3rmt3m3/Cylshell 1611 5357 5357 207,123 2.401e+10

s3rmq4m1/Cylshell 1607 5489 5489 262,943 1.766e+10

Example and condition number are respectively simplified as Ex. and Cond.

4 Numerical Experiments

4.1 Experimental Setting

Numerical experiments are carried out on a set of four matrices chosen from the University
of Florida Sparse Matrix Collection [15]. The information of these four test matrices is
described in Table 1. In order to illustrate the numerical benefits of our proposed PD-BCG
method, the performance of PD-BCG is evaluated in comparison with the BCG method [30]
and the D-BCG method [10] in aspects of number of matrix-vector products (referred to as
Mvps), iteration number (referred to as Iters) and CPU computing time in seconds (referred
to as CPU). Since the error is generally unavailable in practice, we compare the convergence
histories of the BCG, D-BCG and PD-BCG methods in terms of the smallest and largest
norms of the residuals at each iteration. Furthermore, we also plot the function othor( j)
along with the iteration number to monitor the loss of orthogonality between R j and W
during the implementations of these two deflated BCGmethods (i.e., D-BCG and PD-BCG).
All the experiments are carried out in MATLAB 2015a with machine precision 10−16.

We set the initial guess X0 to be 0 ∈ R
n×s and the maximum number of matrix-vector

products (i.e., the value of maxit × s) to be 25, 000. We use ‖b(i) − Ax (i)
j ‖2/‖b(i)‖2 < ε

(1 ≤ i ≤ s) with a targeted accuracy threshold ε = 10−8 as the stopping criterion. The
dimension of W is set by trial and error. And the symbol “-” is used to indicate that the
method did not meet the targeted accuracy threshold ε before maxit or did not converge at
all.

4.2 Example 1: Experiment on Convergence Acceleration Using Deflation Under the
Condition of Different Numbers of Right-Hand Sides

It is known that the block size of right-hand sides can affect the behavior of the block
methods [3,6]. Thus, we first consider solving a linear system with the coefficient matrix
named as 1138_bus with different numbers of right-hand sides to compare the behaviour of
the BCG, D-BCG and PD-BCGmethods in order to show the improved convergence by using
our projection-based deflated variant. No preconditioner is involved here. The number of the
right-hand sides B (i.e., the numerical value of s) is set to be s = 3, 6, 12, 18, and the elements
of the right-hand sides B are chosen as randomly generated numbers with standard normal
distribution. The deflation matrix W used in both D-BCG and PD-BCG is constructed by
implementing 33 steps of a separate single-vector Lanczos algorithm [10, Algorithm 2]. That
is, dim(W ) = 33 or t = 33. Because the convergence curves of these block methods (i.e.,
BCG, D-BCG and PD-BCG) with such variable right-hand sides are similar, we only display

123



1132 Journal of Scientific Computing (2019) 80:1116–1138

iterations

η
b(
m
in
,m

ax
)

10-10

10-8

10-6

10-4

10-2

100

102
 1138bus

BCG
D-BCG
PD-BCG

(a)
iterations

0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900

or
th
or
(j)

10-20

10-15

10-10

10-5

100
 1138bus

D-BCG
PD-BCG

(b)

Fig. 1 a Convergence histories of Example 1 with s = 6 and ε = 10−8; b numerical values of othor( j) along
with iteration numbers

Table 2 Numerical results of
BCG, D-BCG and PD-BCG for
different numbers of right-hand
sides in Example 1 with
ε = 10−8

Matrix: 1138_bus
Num RHSs Method t Mvps Iters CPU

s = 3 BCG 4893 1631 8

D-BCG 33 4518 1484 8.2656

PD-BCG 33 4245 1393 7.6563

s = 6 BCG 5112 852 5.5469

D-BCG 33 5004 823 5.875

PD-BCG 33 4494 738 5.1094

s = 12 BCG 4800 400 2.8281

D-BCG 33 5286 435 3.375

PD-BCG 33 4436 364 2.9219

s = 18 BCG 3888 216 1.8281

D-BCG 33 4278 234 2.3125

PD-BCG 33 3450 188 1.9375

Number of the right-hand sides simplified as Num RHSs (i.e., the numer-
ical value of s)
Bold values indicate the minimum respectively for Mvps, Iters and CPU
among the involved methods

the convergence behaviour of the case s = 6 in the left plot of Fig. 1. And the corresponding
loss of orthogonality between R j and W for D-BCG and PD-BCG is displayed in the right
plot of Fig. 1.

From the left plot of Fig. 1, we can see that both of the convergence behaviors of D-
BCG and PD-BCG are better than that of BCG, which verifies the expression (17) that the
deflated variants of BCG own a faster convergence rate compared with BCG. Moreover, the
convergence rate of PD-BCG is obviously faster than that of D-BCG under the same deflation
matrix W . It could be explained that PD-BCG mitigates the loss of orthogonality between
the block residual vectors R j and the deflation matrix W as shown in the right plot of Fig. 1
so as to realize the theoretically faster convergence rate of the deflated variants of BCG in
finite precision arithmetic.

The required Mvps, Iters and CPU of BCG, D-BCG and PD-BCG with such different
numbers of right-hand sides are reported in Table 2. It is observed that these block methods
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become more efficient in terms of Iters and CPU along with the increasing block size. In the
case of s = 6, it is obviously noticed that these two deflated variants of BCG (i.e., D-BCG
and PD-BCG) yield different performance in comparison with BCG. The overall number of
Mvps is reduced by 12.1% for PD-BCG, while that is solely reduced by 2.1% for D-BCG.
Moreover, PD-BCG performs the best in terms of CPU since the reduced Mvps of PD-BCG
is pretty considerable and enough to compensate the cost of constructing the deflation matrix
W . Similar numerical results are also discovered in the case of s = 3. When it comes to
s = 12, 18, however, D-BCG cannot realize the supposed faster convergence rate compared
to BCG because of the impact of the loss of orthogonality. But PD-BCG can (at least in terms
of Iters). Thus our PD-BCG is demonstrated to be more favorable and stable in comparison
with D-BCG in the finite precision computation.

Considering the observed fact that the block size of right-hand sides can affect the
behaviour of deflated BCG methods and this issue may need another special study, we only
discuss the fixed block size in the following two experiments.

4.3 Example 2: Experiment on the Residual Vectors Rj with Rank Deficiency

In this example, we take cbuckle as the coefficient matrix. Linearly dependent right-hand
sides are used to construct the initial residual vectors with rank deficiency to show the
relative performance of these block solvers, and especially to verify the benefits of PD-BCG
for effectively handling convergence stagnation in comparison with D-BCG. The incomplete
Cholesky factorization ic(0) is employed as the preconditioner in this example. The right-
hand sides B are consisted of 7 columns, where the elements of the first 5 columns are chosen
as randomly generated numbers with standard normal distribution, and the last two columns
are linear combinations of the first 5 columns. The dimension of the deflation matrix W is
set to 10 here. The convergence histories are displayed in the left plot of Fig. 2, and the loss
of orthogonality between R j and W of D-BCG and PD-BCG is displayed in the right plot of
Fig. 2.

The left plot of Fig. 2 shows that D-BCG exhibits a long plateau along iterations after
attaining the accuracy of 10−6, for which is accounted by the accumulated loss of orthogo-
nality of D-BCG as observed in the right plot of Fig. 2. The loss of orthogonality of D-BCG
as shown in the upper curve of the right plot in Fig. 2 is quite high and does not exhibit
any improvement during the subsequent iterations, causing D-BCG to ruin its convergence.
In fact, both Saad et al. [35] and Chen [10] have pointed out that the loss of orthogonality
between the block residual vectors and the deflation subspace in practise hampers conver-
gence rate of deflated methods seriously, and even completely ruins convergence if such
loss of orthogonality is high enough, even though D-BCG owns theoretically faster con-
vergence rate compared with BCG in exact arithmetic. However, numerical results in this
example demonstrate PD-BCG still converges well to the targeted accuracy by strengthening
the orthogonality as displayed in the red curve in the right plot of Fig. 2. The numerical digits
in Table 3 report the superiority of PD-BCG to BCG and D-BCG in both terms of Mvps and
CPU.

4.4 Example 3: Experiment on Handling Ill-Conditioned Coefficient Matrices with
Rank Deficient Right-Hand Sides by Deflation

Loss of orthogonality can be explained by the accumulation of round-off errors in finite
precision arithmetic, and this phenomenon may be worse when addressing ill-conditioned
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Fig. 2 a Convergence histories of Example 2 with ε = 10−8; b numerical values of othor( j) along with
iteration numbers

Table 3 Numerical results of
BCG, D-BCG and PD-BCG in
Example 2 with ε = 10−8

Matrix Method t Mvps Iters CPU

cbuckle BCG 11,662 1666 32.7344

D-BCG 10 – – –

PD-BCG 10 10,121 1443 29.4219

Bold values indicate the minimum respectively for Mvps, Iters and CPU
among the involved methods

problems [9,22] or rank deficiency problems [6]. In this section, solving linear systems with
two ill-conditionedmatrices with rank deficient right-hand sides is considered to demonstrate
the efficacy of PD-BCG. Information of these two testmatrices from structural problem [15] is
listed in the last row of Table 1 ( i.e., the s3rmt3m3 and s3rmq4m1). The shifted incomplete
Cholesky factorization ict(1e − 2) with diagcomp option alpha = 0.6 is taken as the
preconditioner M in this example. And the right-hand sides B contain 5 columns, where the
elements of the first 4 columns are chosen to be randomly generated numbers with standard
normal distribution, and the last column is constructed as a linear combination of the first 4
columns. The deflation matrix W used for these two ill-conditioned systems is constructed
by implementing 11 steps of a separate single-vector Lanczos algorithm [10, Algorithm 2].

Moreover, the PD-BCGmethod with our automated reorthogonalization process (referred
as PD-BCG-ARO) is also considered. The frequency number of implementing this automated
reorthogonalization is recorded as Nr . For the test matrices s3rmt3m3 and s3rmq4m1, we
set the scale parameter c expressed in (20) as c = 1 and c = 10−3, respectively. The
convergence histories are displayed in the left plots of Fig. 3, and the numerical values of
othor( j) of D-BCG, PD-BCG and PD-BCG-ARO are displayed in the right plots of Fig. 3.
In this example, since the dimension of W is small, which brings low accuracy by the
columns of W of approximation to the eigenvectors corresponding to extreme eigenvalues
of this preconditioned matrix, we do not compare PD-BCG-ARO and D-BCG by using full
reorthogonalization since theD-BCGmethodwith full reorthogonalization between the block
residuals and such W does not converge at all from our numerical experiments. In addition,
the construction of W and its impact on algorithms with deflation need further study.

It is observed from the left two plots of Fig. 3 and Table 4 that both our PD-BCG and
PD-BCG-AROmethods help to improve the convergence behaviour of BCG to a large extent,
even though the classical D-BCG does not converge at all under such ill-conditioned and rank
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Fig. 3 a Convergence histories of Example 3 with ε = 10−8; b numerical values of othor( j) along with
iteration numbers

deficiency circumstances. Moreover, from the right two plots of Fig. 3, it is convinced that
not only can our PD-BCG-ARO method mitigate the loss of orthogonality between R j and
W as the algorithm progresses, but such orthogonality can be maintained to an appropriate
level by adjusting the value of the scalar c.

In addition, the effort to perform the automated reorthogonalization process between R j

and W in PD-BCG-ARO accounts for the extra cost in terms of CPU. But it is observed that
PD-BCG-ARO is the best in terms of Mvps. Moreover, the fact of Nr = 1 shown in the last
column of Table 4 indicates that just one reorthogonalization step is well enough to mitigate
the loss of orthogonality by our automated reorthogonalization strategy,which again indicates
that the full reorthogonalization is unnecessary [33] when loss of orthogonality occurs.

5 Discussion and Conclusions

The gradual loss of orthogonality between the block residual vectors and the deflation matrix
of the deflated block CG-like methods hampers the convergence seriously, which has been
fully discussed in [10,35]. To improve convergence, in this paper, a new projected variant of
the deflated block conjugate gradient method (PD-BCG) is developed to mitigate the loss of
such orthogonality. The main idea behind our new projected deflation variant is to introduce
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Table 4 Numerical results of BCG, D-BCG, PD-BCG and PD-BCG-ARO in Example 3 with ε = 10−8

Martix Method t c Mvps Iters CPU Nr

s3rmt3m3 BCG 22,620 4524 235.875

D-BCG 11 – – –

PD-BCG 11 20,637 4123 211.6094

PD-BCG-ARO 11 1 18,802 3756 222.625 1

s3rmq4m1 BCG 18,765 3753 225.1406

D-BCG 11 – – –

PD-BCG 11 11,497 2295 138.8125

PD-BCG-ARO 11 10−3 10,397 2075 153.5625 1

Bold values indicate the minimum respectively for Mvps, Iters and CPU among the involved methods

auxiliary block searchvectors P̃j
′ and to exploit the A-orthogonal projector H expressed in (3)

such that the block search vectors are obtained as P̃j = H P̃j
′ (P̃j consists of the orthonormal

basis vectors of the block search space matrix P j ), which ensures the A-orthogonality
between P j and W at each iteration. Furthermore, a new automated reorthogonalization
strategy is also proposed, which is an alternative option for PD-BCG. The convergence rate
of PD-BCG is discussed under circumstances both with and without the rank deficiency
problem.

From the development of PD-BCG, we can see that the mechanism behind Algorithm 2 is
quite different from that of the D-BCG algorithm [10, Algorithm 1]. Specifically, the D-BCG
method exploits the A-orthogonal projector H as Z j = H Z j

′ rather than P̃j = H P̃j
′ used in

the PD-BCG method. Moreover, from the derivation of this automated reorthogonalization
strategy, we conclude that this new reorthogonalization process can also be applied to the
general D-BCGmethod. Numerical experiments verify that ourmethods canmitigate the loss
of the orthogonality and conquer the long-term stagnation curve, which is quite meaningful
in practical computation with finite precision arithmetic. In fact, PD-BCG would be a more
favorable choice thanD-BCG if the loss of orthogonality is so high to damage the convergence
seriously, which is pretty familiar when handling ill-conditioned linear systems [9,22] or
linear systems suffering from ill-conditioned parameter matrices caused by rank deficiency
[6]. Further interestingwork is to investigate the theoretical convergence rate of these deflated
BCG variants including PD-BGC by analyzing the impact of the loss of orthogonality on
these methods in finite precision arithmetic. Moreover, it is still necessary to put more efforts
to further study the construction of the deflation matrix in order to handle large-scale linear
systems.
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