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Une méthode bloc de sous-espace minimisant la norme des résidus
pour des séquence de systèmes linéaires

Résumé : Nous nous intéressons à la solution itérative de systèmes linéaires avec plusieurs second-
membres disponibles un groupe après l’autre, y compris le cas où il y a un nombre massif (comme des
dizaines de milliers) de second-membres associés à une seule matrice de sorte que tous ne peuvent pas
être résolus en une fois mais doivent plutôt être divisés en morceaux de tailles variables possibles. Pour
de telles séquences de systèmes linéaires à matrices et second-membres multiples, nous développons une
nouvelle méthode de recyclage des résidus conjugués généralisés par blocs avec orthogonalisation interne
et convergence partielle (IB-BGCRO-DR), qui exploite technique de recyclage subspatial dans GCRO-
DR [SIAM J. Sci. Comput., 28(5) (2006), pp. 1651-1674] mécanisme de convergence partielle dans IB-
BGMRES [Algèbre linéaire, 419 (2006), pp. 265-285] pour garantir que ce nouvel algorithme pourrait
réutiliser les informations spectrales pour les cycles suivants ainsi que pour les systèmes linéaires restants
à résoudre. La variante connexe IB-BFGCRO-DR qui convient au préconditionnement flexible est conçue
pour faire face aux contraintes de certaines applications tout en permettant un calcul de précision mixte,
ce qui présente des avantages en termes de vitesse et d’utilisation de la mémoire par rapport à la double
précision ainsi que dans la perspective des unités de calcul émergentes telles que les GPU. En outre, nous
discutons également des choix possibles lors de la construction d’un sous-espace de recyclage ainsi que
de la manière d’exploiter le mécanisme de convergence partielle pour réaliser la flexibilité des politiques
d’expansion de l’espace de recherche et surveiller les seuils de convergence individuels pour chaque
second-membre. Comme effet secondaire, on peut également illustrer le fait que cette méthode peut être
appliquée au cas des matrices constantes ou variant lentement. Enfin, nous démontrons les avantages
numériques et informatiques de la combinaison de ces idées dans de tels algorithmes sur un ensemble
d’exemples académiques simples.

Mots-clés : Méthode bloc de sous-espace, augmentation, déflation, recyclage de sous-espace, block-
GMRES, convergence partielle.
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1 Introduction
Many scientific and industrial simulations require the solution of a sequence of linear systems with

multiple right-hand sides and possibly slowly-changing left-hand sides. In that context, one has to solve
a series of linear systems of the form

A(`)X(`) = B(`), ` = 1, 2, . . . , (1)

where, associated with the `th family, A(`) ∈ Cn×n is a square nonsingular matrix of large dimension
n along the family index `, B(`) = [b(`,1), b(`,2), . . . , b(`,p

(`))] ∈ Cn×p(`) are simultaneously given right-
hand sides of full rank with p(`) � n, andX(`) = [x(`,1), x(`,2), . . . , x(`,p(`))] ∈ Cn×p(`) are the solutions
to be computed. Both the coefficient matrix A(`) and right-hand sides B(`) change from one family to the
next, and the families of linear systems are typically available in sequence.

When solving sequences of linear systems as Equation (1), attractive approaches are those that can
exploit information generated during the solution of a given system to accelerate the convergence for the
next ones. Deflated restarting implements a similar idea between the cycles in the generalized minimum
residual norm method (GMRES) [18,21,27]; it is realized by using a deflation subspace containing a few
approximate eigenvectors deemed to hamper the convergence of the Krylov subspace methods [10–12].
Another alternative technique is the subspace recycling strategy proposed in the generalized conjugate
residual method with inner orthogonalization (GCRO) and deflated restarting (GCRO-DR) method [15].
This latter method can reuse information accumulated in previous cycles as well as that accumulated in
previous families. Given the multiple right-hand sides of Equation (1) are simultaneously available, block
Krylov subspace methods are often considered as the suitable candidates for their capability of sharing
search subspace that can be generated using basic linear algebra subprograms, level 3, (BLAS3)-like
implementation [9]. A common issue in block Krylov subspace methods is the rank deficiency that might
appear when expanding the residual spaces, which is caused by the convergence of individual or linear
combination of solution vectors. Such rank deficiency problem could lead the block Arnoldi process to
break down before the solutions for all the right-hand sides are found. For the sake of balancing robustness
and convergence rate, Robbé and Sadkane proposed an inexact breakdown detecting mechanism for the
block GMRES algorithm (denoted by IB-BGMRES) [19], which could keep and reintroduce directions
associated with the almost converged parts in next iteration if necessary. We refer to [1,2,19] for relevant
works on inexact breakdown detection, as well as to [23–26, 28] for related variants of block Krylov
subspace methods for solving linear systems with multiple right-hand sides.

The contribution of this paper is twofold. We first show how to combine subspace recycling tech-
niques of GCRO-DR [15] for recycling spectral information at a new cycle/family with the inexact break-
down mechanism introduced by Robbé and Sadkane in IB-BGMRES [19] for handling the issue of almost
rank deficient block generated by the block Arnoldi procedure to develop the IB-BGCRO-DR algorithm,
a new recycling block GCRO-DR variant with inexact breakdown detection. This is a natural exten-
sion of our previous work IB-BGMRES-DR [1], that enables the deflated restarting strategy proposed
by Morgan [12] to be applied not only at restart but also when solving a sequence of linear systems; the
IB-BGCRO-DR can reuse spectral information both from the solutions of previous cycle and family thus
showing obvious advantages when solving sequences of linear systems like Equation (1). The second
contribution is related to the block search space expansion policies that can be further developed based
on the inexact breakdown mechanism. In particular, for stopping criterion based on backward error we
introduce new strategies enabling to focus on the computational effort while ensuring the final accuracy
of each individual solution.

The remainder of this paper is organized as follows. Section 2 is devoted to the development of the
new algorithm, it contains some background parts that enable us to introduce the various numerical in-
gredients and notations required to design our algorithm. In Section 2.1 we first recall the governing
ideas of the minimum norm residual Krylov method GCRO in a single right-hand side setting and briefly
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6 Giraud, Jing & Xiang

present its block variant in Section 2.2. Next in Section 2.3 we present how the original inexact break-
down mechanism [19] introduced for block GMRES can be applied to block GCRO as well. These two
main ingredients are combined to develop the new algorithm IB-BGCRO-DR in Section 2.4 and its flex-
ible preconditioning variant referred to as IB-BFGCRO-DR discussed in Section 2.5. In Section 3, we
describe how to extend the original inexact breakdown mechanism to best adapt the computational effort
and reach the targeted accuracy prescribed by the stopping criterion in terms of backward errors for the
individual solutions. In particular, we derive strategies to manage the situation where the individual right-
hand sides need to be solved with different convergence thresholds. We also present policies adapted to
stopping criterion based on normwise backward error on the right-hand side only (i.e. classical residual
norm scaled by the norm of the right-hand side) or the more general one used to establish the backward
stability of GMRES [13]. In Section 4, some remarks on computational and algorithmic aspects are de-
tailed; the associated pseudocode of the IB-BGCRO-DR algorithm is presented as well. In Section 5 we
present numerical experiments that illustrate the benefits of the new algorithm with both constant and
slowly varying successive linear systems with multiple right-hand sides as well as the numerical capa-
bilities of the novel search space expansion policies. Finally some concluding remarks are detailed in
Section 6.

The symbol ||·|| denotes the Euclidean norm defaultly for both vectors and matrices, and the Frobenius
norm is denoted with the subscript F . The superscript H denotes the transpose conjugate and T for
transpose. Because many notations are involved, we make choices to help the readability of the paper.
The vectors are described by lowercase letter, matrices with multiple columns described by uppercase
letter, the calligraphy uppercase letters like V represent the matrices whose columns are enlarged by
multiple columns at each iteration as commonly appearing in the block Krylov context, and the uppercase
letter with blackboard bold form like V refers to the block Krylov basis generated at each iteration. The
superscript † refers to the Moore-Penrose inverse and other superscripts with different contents are also
employed in main context for target illustrations, which will be explained when it locally appears thus we
omit here. For convenience of the algorithm illustration and presentation, some MATLAB notations are
used. Without special note, a subscript j for a vector (in single right-hand case) or a matrix (in block case)
is used to indicate that the vector or matrix is obtained at iteration j and the positive subscript integer
m represents the maximal iteration number of each (block) Krylov cycle. All the involved recycling
subspaces of dimension k are described as a matrix with the subscript k whose columns form a basis.
A matrix C ∈ Cm×` consisting of m rows and ` columns sometimes is denoted as Cm×` explicitly.
The identity and null matrices of dimension m are denoted respectively by Im and 0m or just I and 0
when the dimension is evident from the context. If C ∈ Cm×`, the singular values of C are denoted by
σ1(C) ≥ . . . ≥ σmin(m,`)(C) in descent order; furthermore we denote span(C) the space spanned by the
columns of C.

For simplicity and notational convenience, we drop in the rest of this paper the superscript (`) in B(`)

and X(`) when considering to solve the current `th family of linear systems in the entire sequence of
families. We indicate the superscript for a family order explicitly when necessary. That is, suppose that
the current `th family of linear systems to be solved is

AX = B, (2)

where, A ∈ Cn×n is the current square nonsingular matrix of dimension n, B = [b(1), b(2), . . . , b(p)] ∈
Cn×p are the simultaneously given right-hand sides and X = [x(1), x(2), . . . , x(p)] ∈ Cn×p are the
solutions to be computed.

2 Block GCRO-DR with inexact breakdown
For the sake of completeness of the exposure, this section contains some possibly well-known back-

ground which enables us to introduce the numerous notations required to describe the new algorithm

Inria



Block GCRO-DR methods with inexact breakdowns 7

and detail its properties. In that respect, we first recall the main ingredients of the subspace recycling
techniques existing in the minimum residual Krylov methods GCRO [6] and GCRO-DR [15] that are
presented in the single right-hand side context. The straightforward extension to the multiple right-hand
sides framework, that is the block formulation of GCRO-DR (BGCRO-DR) [14,16,17] is next introduced.
Then the driving ideas of inexact breakdown mechanism [19] as well as the corresponding block Arnoldi-
like recurrence equation are derived in the block GCRO-DR context leading to the new IB-BGCRO-DR
algorithm.

2.1 GCRO
The background of GCRO [6] is briefly reviewed first in the case of a single right-hand side and then

extended to the block case. The GCRO method relies on a given full-rank matrix Uk ∈ Cn×k, and a
matrix Ck as the image of Uk by A satisfying the relations

AUk = Ck, (3)
CHk Ck = Ik. (4)

For the solution of a single right-hand side linear system Ax = b and a given initial guess x0, the
governing idea is to first define x1 ∈ x0 + Range(Uk) that minimizes the residual norm. From x1 and
its associated residual r1, Arnoldi iterations are performed to enlarge the nested orthonormal basis of the
residual spaces. The vector

x1 = argmin
x∈x0+Range(Uk)

||b−Ax||,

is defined by
x1 = x0 + UkC

H
k r0, and r1 = (I − CkCHk )r0 so that r1 ∈ C⊥k .

Starting from the unitary vector v1 = r1/‖r1‖, the Arnoldi procedure enables us to form an orthonormal
basis Vm = [v1, ..., vm] of the Krylov spaceKm((I−CkCHk )A, v1) = span(v1, (I−CkCHk )Av1, ..., ((I−
CkC

H
k )A)m−1v1) that can be written in the matrix form as

(I − CkCHk )AVm = Vm+1Hm, (5)

where Hm ∈ C(m+1)×m is a Hessenberg matrix. Combining Equation (3) and (5) in a matrix form
allows us to write a relation very similar to an Arnoldi equality that reads

AŴm = V̂m+1Gm,

where Ŵm = [Uk, Vm] defines a basis of the search space, V̂m+1 = [ Ck, Vm+1] is an orthonomal basis

of the residual space and Gm =

[
Ik Bm

0(m+1)×k Hm

]
∈ C(k+m+1)×(k+m) with V̂ Hm+1V̂m+1 = Im+1

and Bm = CHk AVm. The minimum residual norm solution in the affine space x1 + Range(Ŵm) can be
written as xm = x1 + Ŵmym where

ym = argmin
y∈Ck+m

‖c−Gmy‖

and c = V̂ Hm+1r1 = (0k, ‖r1‖, 0m)T ∈ Ck+m+1 are the components of the residual associated with x1 in
the residual space spanned by the columns of V̂m+1.

GCRO and GMRES [21], both belong to the family of residual norm minimization approaches and
rely on an orthonormal basis of the residual space. In addition to sharing the Arnoldi procedure to form
part of or all this basis, they do also share the property of “happy breakdown”; that is, if the search space
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8 Giraud, Jing & Xiang

cannot be enlarged because the new direction computed by the Arnoldi process is the null vector, then the
solution is exactly found in the search space. This sharing of features does extend to the block context for
the solution of linear system with multiple right-hand sides; in particular the inexact breakdown principle
introduced in [19] in the context of block GMRES can be extended to block GCRO as discussed in the
sequel. The purpose of the inexact breakdown mechanism is to prevent in an elegant and effective way
the loss of numerical rank of the search space basis, that turns out to be also a way to monitor the search
space extension according to the final target accuracy.

2.2 Block GCRO
The straightforward extension of the GCRO method in the block context is briefly described below.

To facilitate reading, we change the calligraphy of the notation but keep the same letters to denote the
block counterpart of the quantities involved in the method. Starting from the block initial guess X0 =

[x
(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] ∈ Cn×p and associated initial residual block R0 = B −AX0, one can define

X1 = argmin
X∈X0+Range(Uk)

||B −AX||F ,

given by
X1 = X0 + UkC

H
k R0 and R1 = (I − CkCHk )R0 such that R1 ∈ C⊥k . (6)

For the sake of simplicity of exposure, we first assume that R1 is of full rank and denote R1 = V1Λ1

as its reduced QR-factorization. The orthonormal block V1 is then used to build the search space via m
steps of block Arnoldi procedure depicted in Algorithm 1 to generate Vm = [V1, ...,Vm] whose columns
form an orthonormal basis of Km((I − CkCHk )A,V1) =

⊕p
t=1Km((I − CkCHk )A, v

(t)
1 ). The block

Algorithm 1 Block Arnoldi procedure with deflation of the Ck space
1: Given a nonsingular coefficient matrix A ∈ Cn×n, choose an unitary matrix V1 of size n× p
2: for j = 1, 2, . . . ,m do
3: Compute Wj = (I − CkCHk )AVj
4: for i = 1, 2, . . . , j do
5: Hi,j = VHi Wj

6: Wj = Wj − ViHi,j

7: end for
8: Wj = Vj+1Hj+1,j (reduced QR-factorization of Wj)
9: end for

Arnoldi procedure leads to the matrix equality

(I − CkCHk )AVm = Vm+1H m, (7)

where H m is a block Hessenberg matrix with (i, j) block defined by Hi,j . Similarly to the single right-
hand side case, Equation (3) and (7) can be gathered in a matrix form

AŴm = V̂m+1Gm, (8)

where Ŵm = [Uk,Vm] ∈ Cn×(k+mp), V̂m+1 = [Ck,Vm+1] ∈ Cn×(k+(m+1)p) and Gm =

[
Ik Bm

0(m+1)p×k H m

]
=[

Gm
0p×(k+(m−1)p) Hm+1,m

]
∈ C(k+(m+1)p)×(k+mp) with V̂ H

m+1V̂m+1 = I(m+1)×p and Bm =

Inria



Block GCRO-DR methods with inexact breakdowns 9

CHk AVm ∈ Ck×mp with mp = m × p. The minimum residual norm solution in the affine space
X1 + Range(Ŵm) can be written as Xm = X1 + ŴmYm where

Ym = argmin
Y ∈C(k+mp)×p

‖C − GmY ‖F ,

C = V H
m+1R1 = (0k×p,Λ

T
1 , 0mp×p)

T ∈ C(k+(m+1)p)×p and the columns of C are the components of the
initial residual block R1 in the residual space Vm+1.

2.3 Block GCRO with inexact breakdowns
When one solution or a linear combination of the solutions has converged, the block-Arnoldi pro-

cedure implemented to build an orthonormal basis of Kj((I − CkCHk )A,V1) needs to be modified to
account for this partial convergence. This partial convergence is characterized by a numerical rank de-
ficiency in the new p directions that are usually introduced for enlarging the search space at the next
iteration. In [19], the authors present an elegant numerical variant that enables the detection of what is
referred to as inexact breakdowns. In that approach the directions that have a low contribution to the
residual block are discarded from the set of vectors used to expand the search space at the next iteration,
but these abandoned directions are kept and reintroduced in iterations afterwards if necessary. In this
section, we try to give an insight and the main equality required to derive the IB-BGCRO-DR algorithm.
We refer the reader to the original paper [19] for a detailed and complete description. For the sake of
simplicity of exposure and easy cross-reading, we adopt most of the notations from [1, 19].

Because when an inexact breakdown occurs, not all the space spanned by Wj is considered to build
Vj+1 in order to expand the search space. For the sake of simplicity, we assume that p1 = p and we
denote by pj+1 the number of columns of the block orthonormal basis vector Vj+1. Then Vj+1 ∈
Cn×pj+1 ,Wj ∈ Cn×pj and Hj+1,j ∈ Cpj+1×pj . As a consequence the dimension of the search space
Kj((I −CkCHk )A,V1) considered at the jth iteration is no longer necessarily equal to j × p but is equal
to nj =

∑j
i=1 pi; that is, the sum of the column rank of V′is (i = 1, . . . , j).

When no inexact breakdown has occurred pj+1 = pj = . . . = p1 = p, the range of Wj has always
been used to enlarge the search space and we obtain the block relation given by Equation (8). To account
for a numerical deficiency in the residual block Rj = B − AXj in a way that is described later, Robbé
and Sadkane [19] proposed to split

Wj = Vj+1Hj+1,j +Qj (9)

so that the columns of Qj and Vj+1 are orthogonal to each other and only Vj+1 is used to enlarge Vj to
form Vj+1. We can then extend Equation (8) into

AŴj = V̂jGj + [0n×k, Qj−1, Wj ], (10)

where Gj ∈ C(k+nj)×(k+nj) is the first k+nj rows of Gj ∈ C(k+nj+p)×(k+nj),Qj−1 = [Q1, . . . , Qj−1] ∈
Cn×nj−1 accounts for all the abandoned directions. The matrix Qj−1 is rank deficient, and it reduces to
the zero matrix of Cn×nj−1 as long as no inexact breakdown has occurred.

In order to characterize a minimum norm solution in the space spanned by Ŵj using Equation (10)
we need to form an orthonormal basis of the space spanned by [V̂j ,Qj−1,Wj ]. This is performed by first
orthogonalizing Qj−1 against V̂j , that is Q̃j−1 = (I − V̂jV̂ H

j )Qj−1. Because Qj−1 is of low rank so is
Q̃j−1 that can be written

Q̃j−1 = Pj−1Gj−1 with
{
Pj−1 ∈ Cn×qj has orthonormal columns with V̂ H

j Pj−1 = 0,
Gj−1 ∈ Cqj×nj−1 is of full rank with qj = p− pj .

(11)
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10 Giraud, Jing & Xiang

Next Wj , that is already orthogonal to V̂j , is made to be orthogonal to Pj−1 with Wj − Pj−1Ej where
Ej = PHj−1Wj ; then one computes W̃jDj with W̃j ∈ Cn×pj and Dj ∈ Cpj×pj by carrying out the
reduced QR-factorization of the tall and skinny matrix Wj − Pj−1Ej . Eventually, the columns of the
matrix [V̂j , Pj−1, W̃j ] form an orthonormal basis of the residual space spanned by [V̂j ,Qj−1,Wj ].

With this new basis, Equation (10) writes

A[Uk,Vj ] = [Ck,Vj ]

[
I Bj
0 Lj

]
+

[
0k, Pj−1Gj−1,

[
Pj−1, W̃j

] [ Ej
Dj

]]

=
[
Ck,Vj , Pj−1, W̃j

]
Ik Bj

0(nj+p)×k

Lj

Gj−1 Ej
0 Dj

 , (12)

where Lj =


H1,1 H1,2 H1,3 · · · H1,j

H2,1 H2,2 H2,3 · · · H2,j

VH3 Q1 H3,2 H3,3 · · · H3,j

...
...

...
. . .

...
VHj Q1 · · · VHj Qj−2 Hj,j−1 Hj,j

 ∈ Cnj×nj is no longer upper Hessenberg

as soon as one inexact breakdown occurs, i.e., ∃`, s.t., Q` 6= 0.
Equation (12) can be rewritten in a more compact form as

A[Uk,Vj ] =
[
Ck,Vj , [Pj−1, W̃j ]

]
F j ,

so that the least-squares problem to be solved to compute the minimum residual norm solution associated
with the generalized Arnoldi relation (12) becomes

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, (13)

with

F j =


Ik Bj

0(nj+p)×k

Lj

Gj−1 Ej
0 Dj

 =

[
Fj

Hj

]
∈ C(k+nj+p)×(k+nj) (14)

and Λj =

 0k×p
Λ1

0nj×p

 ∈ C(k+nj+p)×p, where Fj =

[
Ik Bj

0nj×k Lj

]
∈ C(k+nj)×(k+nj)

and Hj =

[
0p×k

Gj−1 Ej
0 Dj

]
∈ Cp×(k+nj).

The numerical mechanism to select Vj+1 out of
[
Pj−1, W̃j

]
follows the same ideas as discussed

in [1, 19] in the context of block GMRES. The governing idea consists in building an orthonormal basis
for the directions that contribute the most to the individual residual norms and make them larger than a
prescribed threshold τ . Specifically, the singular value decomposition (SVD) is applied to the least-square
residual used in [1, 19] as

Λj −F jYj = U1,LΣ1UH1,R + U2,LΣ2UH2,R, (15)

where Σ1 contains the pj+1 singular values larger than the prescribed threshold τ . Then we decom-

pose U1,L =

(
U(1)

1

U(2)
1

)
in accordance with

[
[Ck,Vj ] , [Pj−1, W̃j ]

]
, that is U(1)

1 ∈ C(k+nj)×p and U(2)
1 ∈

Inria



Block GCRO-DR methods with inexact breakdowns 11

Cp×p. Because, the objective is to construct orthonormal basis we consider [W1,W2] unitary so that
Range(W1) = Range(U(2)

1 ). The new set of orthonormal candidate vectors used to expand the search
space

Vj+1 =
[
Pj−1, W̃j

]
W1 (16)

is the one that contributes the most to the residual norms while

Pj =
[
Pj−1, W̃j

]
W2,

is the new set of orthogonal abandoned directions. Through this mechanism, directions that have been
abandoned at a given iteration can be reintroduced, if the residual block has a large component along
them. Furthermore, this selection strategy ensures that all the solutions have converged when p inexact
breakdowns have been detected. We do not give the details of the calculation and refer to Section 3
of [19] for a complete description, but only state that via this decomposition the main terms that appear
in Equation (12) can be computed incrementally.

2.4 Subspace recycling policies along with inexact breakdown

So far, we have not made any specific assumption on the definition of the recycling space Uk except
that it has full column rank. In the context of subspace recycling, one key point is to specify what subspace
is to be recycled at restart. At the cost of the extra storage of k vectors, block GCRO offers more flexibility
than block GMRES in the choice of the recycling space. This extra storage, that enables us to remove the
constraints to have the search space included in the residual space, allows us to consider any subspace to
be deflated at restart. In particular any of the two classical alternatives, that are Rayleigh-Ritz procedure
and harmonic-Ritz procedure, can be considered to compute targeted approximated eigenvectors to define
Uk and Ck at restart.

Definition 1. harmonic-Ritz projection.
Consider a subspace W of Cn. Given a general nonsingular matrix A ∈ Cn×n, λ ∈ C and g ∈ W ,
(λ, g) is a harmonic-Ritz pair of A with respect to the spaceW if and only if

Ag − λ g ⊥ AW

or equivalently,

∀w ∈ Range(AW) wH (Ag − λ g) = 0.

The vector g is a harmonic-Ritz vector associated with the harmonic-Ritz value λ.

Definition 2. Rayleigh-Ritz projection.
Consider a subspace W of Cn. Given a general nonsingular matrix A ∈ Cn×n, λ ∈ C and g ∈ W ,
(λ, g) is a Rayleigh-Ritz pair of A with respect to the spaceW if and only if

Ag − λ g ⊥ W

or equivalently,

∀w ∈ Range(W) wH (Ag − λ g) = 0.

The vector g is a Rayleigh-Ritz vector associated with the Rayleigh Ritz value λ.

RR n° 9393



12 Giraud, Jing & Xiang

Once the maximum size of the search space has been reached, we have

AŴm = V̂m+1Fm =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm, (17)

Xm = X1 + ŴmYm, (18)

Rm = B −AXm =
[
Ck,Vm, [Pm−1, W̃m]

]
(Λm −FmYm), (19)

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F , Λm = [0p×k,Λ
T
1 , 0p×nm

]T . (20)

Then, a restart procedure has to be implemented to possibly refine the spectral information to be recycled
during the next cycle. Based on these equalities we will compute the approximated eigen-information as
shown in Proposition 1 and then use it to define the new deflation basis Unewk and its orthonormal image
by A for Cnewk as described in Theorem 1.

Proposition 1. At restart of IB-BGCRO-DR, the update of the recycling subspace for the next cycle relies
on the computation of harmonic-Ritz vectors g(HR)

i ∈ span(Ŵm), or Rayleigh Ritz vectors g(RR)
i ∈

span(Ŵm), of A with respect to Ŵm = [Uk,Vm] ∈ Cn×(k+nm).

• The harmonic-Ritz pairs (θi, Ŵmg
(HR)
i ) to be possibly used for the next restart satisfy

FH
mFmg

(HR)
i = θjF

H
mV̂ H

m+1Ŵmg
(HR)
i , for 1 ≤ i ≤ nm, (21)

where V̂ H
m+1Ŵm =


CHk Uk 0k×nm

V H
m Uk Inm

PHm−1Uk
W̃H
mUk

0p×nm

 ∈ C(k+nm+p)×(k+nm).

• The Rayleigh Ritz pairs (θi, Ŵmg
(RR)
i ) to be possibly used for the next restart satisfy

Ŵ H
m V̂m+1Fmg

(RR)
i = θjŴ

H
m Ŵmg

(RR)
i , for 1 ≤ j ≤ nm

where Ŵ H
m V̂m+1 =

[
UHk Ck UHk Vm UHk Pm−1 UHk W̃m

0nm×k Inm
0nm×p

]
∈ C(k+nm)×(k+nm+p) and

Ŵ H
m Ŵm =

[
UHk Uk UHk Vm
V H
m Uk Inm

]
∈ C(k+nm)×(k+nm).

Proof. The proofs basically rely on some matrix computations as shortly described below:

• According to Definition 1, each harmonic-Ritz pair (θi, Ŵmg
(HR)
i ) satisfies

∀w ∈ Range(AŴm) wH (AŴmg
(HR)
i − θi Ŵmg

(HR)
i ) = 0,

which is equivalent to

(AŴm)H (AŴmg
(HR)
i − θi Ŵmg

(HR)
i ) = 0.

Substituting Equation (17) into the above one leads to(
V̂m+1Fm

)H (
V̂m+1Fmg

(HR)
i − θi Ŵmg

(HR)
i

)
= 0. (22)

Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of each cycle is orthonormal, Equa-
tion (22) becomes

FH
m Fmg

(HR)
i − θiFH

mV̂ H
m+1Ŵmg

(HR)
i = 0,

which gives the formulation (21).
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Block GCRO-DR methods with inexact breakdowns 13

• Rayleigh Ritz pairs: using Definition 2 and similar arguments and matrix computation enable to
derive the proof.

Depending on the region of the spectrum that is intended to be deflated (e.g., subspace associated with
the smallest or/and largest eigenvalues in magnitude), a subset of k approximated eigenvectors is chosen
among the nm ones to define a space that will be used to span Unewk . Then, we describe in Theorem 1
the update of Unewk and its image Cnewk with respect to A at restart of IB-BGCRO-DR.

Theorem 1. At restart of the IB-BGCRO-DR, if we intend to deflate the space span([Uk,Vm]G
(∗)
k ) where

G
(∗)
k =

[
g

(∗)
1 , ..., g

(∗)
k

]
with G(∗)

k = G
(HR)
k or G(∗)

k = G
(RR)
k is the set of vectors associated with the

targeted eigenvalues, the matrices Unewk and Cnewk to be used for the next cycle are defined by

Unewk = ŴmG
(∗)
k R−1 = [Uk,Vm]G

(∗)
k R−1, (23)

Cnewk = V̂m+1Q =
[
Ck,Vm, [Pm−1, W̃m]

]
Q, (24)

where Q and R are the factors of the reduced QR-factorization of the tall and skinny matrix FmG
(∗)
k ,

which AUnewk = Cnewk and (Cnewk )
H
Cnewk = Ik.

Proof. LetQ and R be the factors of the reducedQR-factorization of the tall and skinny matrix FmG
(∗)
k .

And right multiplying G
(∗)
k on both sides of Equation (17) leads to AŴmG

(∗)
k = V̂m+1FmG

(∗)
k =

V̂m+1QR, that is equivalent to AŴmG
(∗)
k R−1 = V̂m+1FmG

(∗)
k R−1 = V̂m+1Q concluding the proof

as span(ŴmG
(∗)
k R−1) = span(ŴmG

(∗)
k ) and V̂m+1Q is the product of two matrices with orthonormal

columns so are its columns.

Corollary 1. The residual block at restart Rnew1 = Roldm = B − AXnew
1 with Xnew

1 = Xold
m is

orthogonal to Cnewk .

Proof. Xold
m = X1 + ŴmYm where Ym solves the least-squares problem (20) so that (Λm −FmYm) ∈

(Range(Fm))⊥ = Null(FH
m). We also have Roldm = V̂m+1 (Λm −FmYm), consequently

(Cnewk )HRoldm =
(
V̂m+1Q

)H (
V̂m+1 (Λm −FmYm)

)
=

(
V̂m+1FmG

(∗)
k R−1

)H (
V̂m+1 (Λm −FmYm)

)
= R−HG

(∗)H
k FH

m (Λm −FmYm)︸ ︷︷ ︸
= 0 because of (20)

= 0.

2.5 A variant suited for flexible preconditioning
All what have been described in the previous sections are naturally extended to the right precondi-

tioning case with a fixed preconditioner M , and the central equality writes as

A[Uk,MVm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm. (25)
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14 Giraud, Jing & Xiang

The least-squares problem to be solved to compute the minimum norm solution becomes

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F ,

and the solution is
Xm = X1 + [Uk,MVm]Ym.

If we denote Mj a (possibly nonlinear) nonsingular preconditioning operator at iteration j and Mj(Vj)
denotes the action of Mj on a block vector Vj , Equation (25) translates into

A[Uk,Zm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm with Zm = [M1(V1), ...,Mm(Vm)] ,

which writes in a more compact form as

AẐm = V̂m+1Fm with Ẑm = [Uk,Zm] and V̂m+1 =
[
Ck,Vm, [Pm−1, W̃m]

]
. (26)

The solution update is Xm = X1 + [Uk,Zm]Ym. To keep the notation simple, we choose to keep the
notation for quantities that have the same meaning as in the non-flexible case but of course will have
different values.

In the context of flexible preconditioning many strategies for defining harmonic-Ritz vectors can be
envisioned for GCRO-DR. Among those considered in [3], we follow the one with a lower computational
cost required in solving the generalized eigenvalue problem, referred to as Strategy C in [3], thanks to
the introducing of the third recycling subspaceWk that is initially empty but will be updated as in Equa-
tion (28). Furthermore, it also allows us to obtain very similar properties in the flexible preconditioning
case to the ones we have exposed in the non-preconditioned case as shown in Section 2.4. We refer to
Appendix A for another two strategies for approximating targeted eigen-information. Proposition 2 indi-
cates that with an appropriate definition of the harmonic-Ritz vectors, all the properties of IB-BGCRO-DR
extend to the flexible preconditioning variant denoted as IB-BFGCRO-DR.

Proposition 2. At the end of a cycle of the IB-BFGCRO-DR algorithm, if the deflation space is built on
the harmonic-Ritz vectors gi ∈ span(Wm) ofAẐmW†m with respect toWm = [Wk, Vm] ∈ Cn×(k+nm) :

1. The harmonic-Ritz pairs (θi,Wmgi) for all restarts satisfy

FH
mFmgi = θjF

H
mV̂ H

m+1Wmgi, for 1 ≤ i ≤ nm, (27)

where V̂ H
m+1Wm =


CHk Wk 0k×nm

V H
m Wk Inm

PHm−1Wk

W̃H
mWk

0p×nm

 ∈ C(k+nm+p)×(k+nm),

2. At restart, if Gk = [g1, . . . , gk] is associated with the k targeted eigenvalues, the matricesWnew
k ,

Unewk and Cnewk to be used for the next cycle are updated by

Wnew
k = WmGkR

−1 = [Wk,Vm]GkR
−1, (28)

Unewk = ẐmGkR
−1 = [Uk,Zm]GkR

−1, (29)

Cnewk = V̂m+1Q =
[
Ck,Vm, [Pm−1, W̃m]

]
Q,

whereQ andR are the factors of the reducedQR-factorization of the tall and skinny matrix FmGk
ensuring AUnewk = Cnewk with (Cnewk )

H
Cnewk = Ik.

Inria



Block GCRO-DR methods with inexact breakdowns 15

3. The residual at restart Rnew1 = Roldm = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to Cnewk .

Proof. The proof essentially follows the same arguments as the ones developed for IB-BGCRO-DR de-
scribed in Section 2.4, and we refer the reader to the Appendix B for the details.

We also mention that a closely related numerical technique that extends IB-BGMRES-DR in the flex-
ible preconditioning context can be derived similarly although that is also novel. We refer to Appendix C
where the resulting algorithm named IB-BFGMRES-DR is detailed and its properties are described.

3 Search space expansion policies governed by the stopping crite-
rion

In this section we describe a few novel policies to expand the search space that generalize the original
one considered for inexact breakdown detection [19]. In particular we first show how numerical criteria
for detecting inexact breakdown can be consider for the search space expansion that can be tuned to
ensure that a targeted threshold for a prescribed stopping criterion based on the individual backward error
solution will eventually be satisfied. Secondly, we present how computational constraints can be taken
into account, and combined with any of the previous numerical criteria, to best cope with the performance
of the underlying computer architecture.

The inexact breakdown mechanism shortly described in Section 2.3 ensures that if all the singular
values of the least squares residual are smaller than the threshold τ , then all the linear system residual
norms are also smaller than τ (i.e., p inexact breakdowns have occurred). This is due to the following
inequality

∀i ‖b(i) −Ax(i)
j ‖ ≤ ‖B −AXj‖ = ‖Λj −F jYj‖ = σmax(Λj −F jYj) ≤ τ, (30)

which follows from the fact that the 2-norm of a matrix is an upper-bound of the 2-norm of its individual
columns and V̂j+1 has orthonormal columns.

3.1 Search space expansion policy governed by ηb

A classical stopping criterion for the solution of a linear system Ax = b is based on backward error
analysis and consists in stopping the iteration when

ηb(xj) =
‖b−Axj‖
‖b‖

≤ ε. (31)

This criterion was considered in [1] where it was consequently proposed to define τ = ε min
i=1,...,p

‖b(i)‖.
With this choice, when the iteration complies with Equation (30), we have

ηb(x
(i)
j ) ≤

‖b−Ax(i)
j ‖

min
i=1,...,p

‖b(i)‖
≤ ε. (32)

When the different right-hand sides have very different norms in magnitude, the subspace expansion
associated with this criterion might not be effective as the upper-bound in Equation (32) will not be tight
leading to enlarging the search space with directions that are not relevant (generating useless computa-
tion). In that context a better choice would be to better focus on the space expansion to reduce more the
residual associated with right-hand side of large norm. For that purpose, the idea is to perform the SVD
not directly on the least squares residual but on its scaled least squares residual.
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Proposition 3. Performing the SVD of the scaled least squares residual (Λj−F jYj)Db,ε with threshold
τ = 1 and Db,ε = ε−1diag(‖b(1)‖−1, · · · , ‖b(p)‖−1) ensures that when p inexact breakdowns have
occurred, so that the search space cannot be enlarged, the current individual iterates comply with the
stopping criterion (31).

Proof. This is a direct consequence of the following inequalities

max
i=1,..,p

‖b(i) −Ax(i)
j ‖

ε‖b(i)‖
≤ ‖(B −AXj)Db,ε‖ = ‖(Λj −F jYj)Db,ε‖ ≤ 1

that implies ∀i ηb(x(i)
j ) ≤ ε.

In some applications all the solutions associated with a block of right-hand sides do not need to
be solved with the same accuracy. That is, we may have to solve a family of right-hand sides B =
[b(1), ..., b(p)] with individual convergence thresholds ε(i) for the solution associated with each right-hand
side b(i) (i = 1, · · · , p), thus we have a more general version of Equation (31) as

ηb(i)(x
(i)
j ) =

‖b(i) −Ax(i)
j ‖

‖b(i)‖
≤ ε(i). (33)

In that context, the subspace expansion policy can be easily adapted to ensure the convergence for each
individual accuracy.

Corollary 2. Performing the SVD of the scaled least squares residual (Λj −F jYj)Db,εi with threshold
τ = 1 and Db,εi = diag((ε1‖b(1)‖)−1, · · · , (εp‖b(p)‖)−1) ensures that when p inexact breakdowns have
occurred the current individual iterates comply with the stopping criterion (33).

3.2 Search space expansion policy governed by ηA,b

One can also adapt the expansion policy described in the previous section to the situation where the
stopping criterion is based on the normwise backward error on A and b, defined by

ηA,b(xj) =
‖b−Axj‖

‖b‖+ ‖A‖ ‖xj‖
≤ ε. (34)

It suffices to define accordingly the scaled least squares residual in the SVD that is involved in the search
space expansion. We notice that this type of stopping criterion will have a computational penalty as the
approximations of all individual iterations have to be computed.

Corollary 3. Performing the SVD of the scaled least squares residual (Λj −F jYj)DA,b,ε with thresh-

old τ = 1 and DA,b,ε = ε−1diag((‖A‖‖x(1)
j ‖ + ‖b(1)‖)−1, · · · , (‖A‖‖x(p)

j ‖ + ‖b(p)‖)−1) ensures that
when p inexact breakdowns have occurred, the current individual iterates comply with the stopping cri-
terion (34).

We do not develop further these ideas but similarly we could define expansion policies where for each
solution we can select either ηb or ηA,b as stopping criterion with individual threshold setting.

The occurrence of p inexact breakdowns is a sufficient condition that ensures the convergence of the
p solution vectors, but the convergence might happen before and a more classic stopping criterion can be
accommodated at a low computational cost. Given the norms of true residuals are very close to those of
the least squares residuals when the loss of orthogonality of the generated block Krylov basis is not too
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Block GCRO-DR methods with inexact breakdowns 17

serious, one can also check the convergence by looking at the norm of the least squares residual, which is
easy to compute. Let QLSj RLSj be a full QR-factorization of F j (i.e., QLSj is unitary) , then

Λj −F jYj = QLSj

(
0(nj+k)×p

R`sj

)
, (35)

where R`sj ∈ Cp×p are the last p rows of (QLSj )HΛj so that ‖b(i)−Ax(i)
j ‖ = ‖R`sj (:, i)‖. Those residual

norm calculations are part of the stopping criterion based on ηb or ηA,b

3.3 Search space expansion policy governed by computational performance
Based on any of these expansion policies, the abandoned directions at a given iteration might be

reintroduced in a subsequent one, thereby we can trade on the considered numerical policy and select
for the subspace expansion only a subset of those eligible. In particular, it might be relevant to choose
a prescribed block size pCB (here the superscript CB stands for Computational Blocking) that is suited
to best cope with the computational features on a given platform rather than selecting the numerical
block size pj+1 defined as the number of singular values larger than the prescribed threshold τ = 1.
In that respect, we consider a subspace expansion policy so that the block size at the end of step j is
defined as pCBj+1 = min(pCB , pj+1). We refer this variant as Inexact Breakdown Block GCRO-DR with
computational blocking (denoted by IB-BGCRO-DR-CB).

Note that all the subspace expansion policies discussed in Section 3 could be applied to any other
block minimum residual norm methods equipped with the inexact breakdown mechanism such as the
IB-BGMRES [19] and IB-BGMRES-DR [1] algorithms.

4 Remarks on some computational and algorithmic aspects
The mathematical description made in the previous section assumes exact calculation. In practice,

the numerical behavior of the algorithm does depend on numerical algorithm selected to perform the
computation. In particular, all the above descriptions assume the orthonormality of the residual basis
that ensures the norm equality of the true linear system residual and their least squares counterpart which
governs the numerical search space expansion policies described in the previous section. In our nu-
merical experiments, we use the Modified Gram-Schmidt (MGS) algorithm whenever orthogonality is
prescribed. For the sake of consistency, MGS is used for performing the reduced QR-factorization as
well as the Arnoldi steps that rely on the MGS-Ruhe algorithm [20] so that the orthogonalization of the
residual basis is performed one vector at a time (and not as described in Algorithm 1 that was used to
introduce the notations). For the sake of conciseness, we do not necessarily give the full technical details
of what we briefly expose in the core of the paper but sometimes refer to a particular part in the appendix.

4.1 Inexact breakdown and re-orthogonalization at restart
For the sake of simplicity of exposure, in the previous sections we made the assumption that the

initial residual block was of full rank. In practice, this constraint can be removed by applying the inexact
breakdown (IB) mechanism to the initial residual block. In that case, only a subspace of the space
spanned by the columns of the initial residual block will be selected to define the first search space
and the abandoned directions are kept in the basis of the residual space. This has two main consequences:

1. The first iteration needs some extra attentions to set up the initial basis V1 and abandoned directions
P0 defined in Equation (11).
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2. A consequence of having abandoned directions in the first search space is that the projection of the
initial residual block in the residual space, that defines the right-hand side of the least squares resid-
ual solved at each block iteration, will no longer have the nested block structure that is expanded
by a p× p zero block at each block iteration as presented in Equation (20).

Without loss of generality, let us present the inexact breakdown and re-orthogonalization at restart
where the recycling subspace Unewk and Cnewk are defined by Equation (23) and (24), so that mathemati-
cally AUnewk = Cnewk and (Cnewk )

H
Cnewk = Ik and the initial residual block Rnew1 = R1 in Corollary 1

is orthogonal to Cnewk . For a prescribed stopping criterion and convergence threshold, let us denote Dε

the diagonal matrix used to select the space expansion described in the Section 3. Let

R1Dε = [Vnew1 , Pnew0 ]

[
Σp1

Σq1

]
VHR1

= [Vnew1 , Pnew0 ]Λ̂
′

1, (36)

where Vnew1 ∈ Cn×p1 , Pnew0 ∈ Cn×q1 with p1 + q1 = p, and Σp1 contains the p1 singular values of
R1Dε larger than or equal to the prescribed τ , and Σq1 the ones smaller than τ .

We first perform a MGS re-orthogonalization of the columns of [Cnewk , [Vnew1 , Pnew0 ]] that writes

[Cnewk , [Vnew1 , Pnew0 ]] = [Ck, [V1, P0]]

[
R11 R12

R22

]
, (37)

where all the columns of [Ck, [V1, P0]] are orthogonal to each other,
[
R11 R12

R22

]
∈ C(k+p)×(k+p) is

an upper triangular matrix with R11 ∈ Ck×k and R22 ∈ Cp×p. Next, we update Uk = Unewk R−1
11 to

satisfy Equation (3), and V1 = V1 will serve to span the first search space and P0 will be abandoned for
this first block iteration that will be run as follows.

1. Form W1 = AV1 and orthogonalize (using MGS) it against the set of orthonormal vectors that
are part of the residual space [Ck,V1, P0] which enables the computation of the entries of B1 =
CHk W1, L1,1 = VH1 W1 and E1 = PH0 W1.

2. The resulting block W̄1 formally writes W̄1 = W1 − CkB1 − V1L1,1 − P0E1 with W̄1 = W̃1D1

its reduced QR-factorization.

3. In matrix form the above relations also writes

W1 = AV1 =
[
Ck,V1, [P0, W̃1]

]
B1

L1,1

E1

D1

 .
So that we have the first Arnoldi-like relation

A[Uk,V1] =
[
Ck,V1, [P0, W̃1]

]
F 1 (38)

with

F 1 =

 Ik B1

0(p1+p)×k
L1,1

H̃1

 ∈ C(k+p1+p)×(k+p1) and H̃1 =

[
E1

D1

]
∈ Cp×p1 .
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4. Next, define the minimum norm solution X2 = X1 + [Uk,V1]Y and notice that R1 belongs to the
space [Ck,V1, P0, W̃1] where its components in this orthogonal basis are given by [Ck,V1, P0, W̃1]HR1.
From Equation (38) we have

‖B −AX2‖F = ‖R1 −A [Uk,V1]Y ‖F = ‖R1 − [Ck,V1, P0, W̃1]F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]HR1 −F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]H [Vnew1 , Pnew0 ]Λ̂1 −F 1Y ‖F ,

because from Equation (36), we have

R1 = [Vnew1 , Pnew0 ]Λ̂
′

1D
−1
ε = [Vnew1 , Pnew0 ]Λ̂1 with Λ̂1 = Λ̂

′

1D
−1
ε . (39)

So that from (37), the right-hand side of the above least squares residual reads

Λ1 = [Ck,V1, P0, W̃1]H [Vnew1 , Pnew0 ]Λ̂1 = [Ck,V1, P0, W̃1]H [CkR12 + [V1, P0]R22]Λ̂1

=
(

[Ck,V1, P0, W̃1]HCkR12 + [Ck,V1, P0, W̃1]H [V1, P0]R22

)
Λ̂1

=

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1 0p1×q1

R22Λ̂1 ∈ C(k+p1+p)×p. (40)

5. Compute Y1 the solution of the first new least-squares problem

Y1 = argmin
Y ∈C(k+p1)×p

‖Λ1 −F 1Y ‖F .

6. Execute the search space expansion policy following the IB principles

(a) compute the SVD of the scaled least squares residual

(Λ1 −F 1Y1)Dε = U1,LΣ1VH1,R + U2,LΣ2VH2,R, where σmin(Σ1) ≥ 1 > σmax(Σ2).

(b) Compute W1 and W2 such that Range(W1) = Range(U(2)
1 ) ∈ Cp×p2 with U1,L =

(
U(1)

1

U(2)
1

)
∈

C(k+p1+p)×p2 , [W1, W2] is unitary and W2 ∈ Cp×q2 with p2 + q2 = p.

(c) Compute the new orthonormal matrices V2 and P1 as

V2 = [P0, W̃1]W1 ∈ Cn×p2 , P1 = [P0, W̃1]W2 ∈ Cn×q2 ,

as well as the last block row matrix L2,: of L 1 and G1 as

L2,: = WH
1 H̃1 ∈ Cp2×p1 , G1 = WH

2 H̃1 ∈ Cq2×p1 .

7. Set L 1 =
(

L1

L2,:

)
∈ C(p1+p2)×p1 = Cn2×p1 .

Whenever an inexact breakdown is detected in R1, some of its components (along Pnew0 ) are firstly
abandoned but could be reintroduced in some subsequent iterations. One of the consequences, is that
the last q1 columns of the least squares right-hand side problem will evolve from one iteration to the
next, depending on how some of the Pnew0 directions will be re-introduced in the search space along the
iterations. There is a way to incrementally update the least squares right-hand side to be discussed in the
next proposition.
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Proposition 4. At each iteration of IB-BGCRO-DR, the new least-squares problem reads

Yj+1 = argmin
Y ∈C(k+nj+1)×p

∥∥Λj+1 −F j+1Y
∥∥
F
, Λj+1 ∈ C(k+nj+1+p)×p, j = 0, 1, 2, · · · (41)

with the updated right-hand sides being

Λj+1 =

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1 0pj+1×q1

R22 Λ̂1, (42)

where Φj+1 =

 Φj(1 : nj , :)

[W1,W2]
H

[
Φj(nj + 1 : nj + qj , :)

0pj×q1

]  ∈ C(nj+p)×q1 for j = 0, 1, 2, · · · , with

Φ1 =

[
0p1×q1
Iq1

]
∈ Cp×q1 , qj = p− pj(j > 0) and [W1,W2] is unitary as defined in the search space

expansion algorithm based on IB principles, R12 ∈ Ck×p and R22 ∈ Cp×p are two block components of
the upper triangular matrix as shown in the right-hand side of Equation (37).

Proof. Refer to Appendix D the proving details.

Based on the above discussions, the IB-BGCRO-DR algorithm with inexact breakdown detection
in the initial residual block and updated right-hand side of the least squares residual is presented in
Algorithm 2 for solving a series of linear systems with slowly-changing left-hand sides.

4.2 Solution of the least-squares problem and cheap SVD calculation of the scaled
least squares residual

Computing the full QR-factorization of the matrices involved in the least-squares problems allows us
to reuse its Q factor to compte the SVD of the least squares residual using a QR-SVD algorithm such that
the the actual SVD decomposition is performed on a p×p blockR`sj Dε, whereR`sj appeared in the right-
hand side of Equation (35), at each iteration (we refer to Appendix E for the details of this calculation).
Note that this observation applies naturally to the IB-BGMRES [19] and IB-BGMRES-DR [1] algorithms
as well.

5 Numerical experiments
In the following sections we illustrate the different numerical features of the novel algorithm intro-

duced above. For the sake of comparison, in some of the experiments we also display results of closely
related block methods such as BGCRO-DR [16, 17, 22, 29] or IB-BGMRES-DR [1]. All the numerical
experiments have been run using a MATLAB prototype, so that the respective performances of the algo-
rithms are evaluated in term of number of matrix-vector products, denoted as mvps (and preconditioner
applications in the preconditioned case) required to converge.

For each set of block of right-hand sides, referred to as a family, the block initial guess is equal to 0 ∈
Cn×p, where p is the number of right-hand sides. The block right-hand side B = [b(1), b(2), . . . , b(p)] ∈
Cn×p is composed of p linearly independent vectors generated randomly (using the same seed when
block methods are compared). While any part of the spectrum could be considered to define the recycling
space we consider for all the experiments the approximated eigenvectors associated with the k smallest
approximated eigenvalues in magnitude. The maximum dimension of the search space in each cycle is
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Block GCRO-DR methods with inexact breakdowns 21

Algorithm 2 IB-BGCRO-DR for slowly-changing left-hand sides and massive number of right-hand sides
Require: A ∈ Cn×n left-hand side of current family (supposed not vary much compared to previous

one)
Require: B ∈ Cn×p the block of right-hand-sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of Arnoldi step within a cycle
Require: pCB a given constant number satisfying 1 ≤ pCB ≤ p for computational blocking
Require: Dε ∈ Cp×p a diagonal matrix used to select the space expansion described in the Section 3
Require: Uk, Ck ∈ Cn×k the recycling subspaces supposed be empty for the first family and obtained

after solving previous slow-changing family
1: Compute R0 = B −AX0

/* Some families have already been solved ? */
2: if the recycling space is not empty, Uk 6= 0 then
3: Apply the reduced QR-factorization to AUk for updating Uk and Ck for the current family such

that the Uk and Ck satisfy Equation (3) and (4). Compute R1 and X1 as described in Equation (6)
4: else
5: Set R1 = R0, X1 = X0, Uk = 0, Ck = 0
6: end if

/* Loop over the restarts */
7: while the stopping criterion based on Section 3.1 or 3.2 is not met do
8: Apply inexact breakdown detection in the scaled (least squares) residual block following Sec-

tion 4.1
/* Arnoldi loop */

9: for j = 2, 3, . . . ,m do
10: Orthogonalize AVj against Ck as Wj = (I − CkC

H
k )AVj . Then orthogonalize Wj against

previous block orthonormal vector Vj = [V1, . . . ,Vj ] as

Wj = AVj−CkCHk AVj−VjL1,1:j , where L1,1:j = V H
j (Wj) = V H

j (AVj) is a block column matrix

11: Set Lj =
[
L j−1, L1,1:j

]
∈ Cnj×nj , Bj =

[
Bj−1, CHk AVj

]
∈ Ck×nj

12: Orthogonalize Wj against Pj−1 and carry out its reduced QR-factorization as

W̃jDj = Wj − Pj−1Ej , where Ej = PHj−1Wj

13: Compute Yj by solving the least squares residual described in Equation (13) (or (41)) with F j

shown in Equation (14) composed by Fj and Hj but with the updated right-hand side Λj as
shown in Equation (42) instead

14: if the stopping criterion is met then
15: return Xj = X1 + [Uk,Vj ]Yj , Uk and Ck
16: end if
17: Singular value decomposition of the residuals scaled by Dε

(Λj −F jY )Dε = U1,LΣ1VH1,R + U2,lΣ2VH2,R with σmin(Σ1) ≥ 1 > σmax(Σ2)

18: if Computational blocking of Section 3.3 is activated then
19: U1,L = U1,L(:, 1 : pCBj ) with pCBj = min(pCB , nlΣ1), nlΣ1 refers to column number of Σ1

20: end if
21: Following item 6 described in Section 4.1 for computing W1 and W2

22: Compute orthonormal matrices Vj+1 and Pj , the last block row matrix Lj+1,: of L j , and Gj
as

Vj+1 =
[
Pj−1, W̃j

]
W1, Pj =

[
Pj−1, W̃j

]
W2,Lj+1,: = WH

1 Hj ,Gj = WH
2 Hj ,L j =

(
Lj

Lj+1,:

)
23: end for

/* Restart procedure */
24: Compute the solution Xm as described in Equation (18) and residual Rm according to (19)
25: Compute the targeted harmonic-Ritz vectors Gk = [g1, ..., gk] by solving the generalized eigen-

value problem (21) described in Proposition 1
26: Update the values of Uk and Ck respectively by Equation (23) and (24) described in Theorem 1
27: Restart with X1 = Xm, V̂m+1, R

LS
1 = Λm −FmYm (R1 = Rm = V̂m+1R

LS
1 )

28: end while
29: return Xj for approximation of the current family; Uk, Ck for the next family to be solved
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set to be md = 15 × p. To illustrate the potential benefit of IB-BGCRO-DR when compared to another
block solver, we consider the overall potential gain when solving a sequence of ` families defined as

Gain (`) =

∑`
s=1 #mvps (method)(s)∑`

s=1 #mvps (IB-BGCRO-DR)(s)
. (43)

5.1 Rayleigh Ritz versus harmonic-Ritz approach exploited for recycling sub-
space

To illustrate the flexibility of subspace recycling in IB-BGCRO-DR as discussed in Section 2.4,
both the harmonic-Ritz (HR) and Rayleigh-Ritz (RR) projections are considered to construct the recycled
subspace; the associated algorithms are referred to as IB-BGCRO-DR(HR) and IB-BGCRO-DR(RR).
Following the spirit of the test examples considered in [11] we consider bidiagonal matrices of size 5000
with upper diagonal unity so that their spectrum is defined by their diagonal entries; we denote them
Matrix 1 and Matrix 2. Matrix 1 has diagonal entries 0.1, 1, 2, 3, . . . , 4999 and Matrix 2 has diagonal
entries 10.1, 10.2, . . . , 20, 21, . . . , 4920. We consider experiments with a family size p = 20, the size of
the recycled space k = 30 and the maximal dimension of the search space md = 300. In Figure 1 we
display some experimental results. The graphs on the left give the envelope of the convergence histories
of the p backward errors as a function of the number of matrix-vector products (mvps) for the first three
families. On the right graphs we depict mvps for each of the 30 families. For Matrix 1, one can observe
that the HR-projection does capture a space that slows down the initial convergence once the first family
has been solved; that is, for families 2 and 3 the converge histories do not exhibit anymore any plateau.
On that example the RR-projection does not capture a recycled space that helps much the convergence as
the three convergence histories exhibit very similar pattern. For Matrix 2, both RR and HR projections
work pretty much the same. In Table 1, we report the total required mvps for the two matrix examples
for 3 and 30 families. Those results do not attempt to highlight that one projection is superior to the other
one, but simply illustrate the flexibility of the GCRO approach to accommodate both. The selection or
discussion of the best suited projection method is out of the scope of this paper.

Number of families Matrix Method mvps

3 Matrix 1
IB-BGCRO-DR(HR) 7182
IB-BGCRO-DR(RR) 7583

30 Matrix 1
IB-BGCRO-DR(HR) 68262
IB-BGCRO-DR(RR) 71690

3 Matrix 2
IB-BGCRO-DR(HR) 13981
IB-BGCRO-DR(RR) 13430

30 Matrix 2
IB-BGCRO-DR(HR) 138247
IB-BGCRO-DR(RR) 137453

Table 1: Numerical results of IB-BGCRO-DR with recycling subspace generated by RR or HR-projection for Matrix
1 and Matrix 2 with p = 20, md = 300 and k = 30.

In the rest of this paper, only the HR projection is considered to build recycling subspace used in the
GCRO-DR like methods. Besides, the bidiagonal Matrix 1 is chosen as the constant left-hand sides in
following Section 5.2- 5.6, in which the related parameters are likewise set to be p = 20, k = 30 and
md = 300 defaultly.

Inria



Block GCRO-DR methods with inexact breakdowns 23

0 1000 2000 3000 4000 5000 6000 7000

mvps

10 -8

10 -6

10 -4

10 -2

10 0

b
(m

in
,m

a
x
)

Convergence for 3 consecutive families of Matrix 1

IB-BGCRO-DR(RR)

IB-BGCRO-DR(HR)

0 2000 4000 6000 8000 10000 12000 14000

mvps

10 -8

10 -6

10 -4

10 -2

10 0

b
(m

in
,m

a
x
)

Convergence for 3 consecutive families of Matrix 2

IB-BGCRO-DR(RR)

IB-BGCRO-DR(HR)

0 5 10 15 20 25 30

 Family index (Matrix 1)

2200

2300

2400

2500

2600

2700

2800

m
v
p

s

 Number of matrix-vector products for each family

IB-BGCRO-DR(RR)

IB-BGCRO-DR(HR)

5 10 15 20 25 30

 Family index (Matrix 2)

4300

4350

4400

4450

4500

4550

4600

4650

4700

4750

m
v
p

s

 Number of matrix-vector products for each family

IB-BGCRO-DR(RR)

IB-BGCRO-DR(HR)

Figure 1: History of bidiagonal Matrix 1 and Matrix 2 (p = 20, md = 300 and k = 30). Left: convergence histories
of the largest/smallest backward errors ηb(i) at each mvps for 3 consecutive families. Right: consumed number of
mvps versus family index.

5.2 Comparing IB-variants with two different inexact breakdown thresholds τ
According to Equation (32) appeared in previous Section 3.1, the inexact breakdown (IB)-threshold

we adopted in this work satisfy τ = 1. Specifically, assume all the solutions corresponding to each single
right-hand sides ηb(x

(i)
j ) as described in left-hand side of Equation (32) converge to the same convergence

threshold ε, when p inexact breakdowns have occurred, we have,

||b(i) −Ax(i)
j ||

||b(i)|| × ε
≤ ||B −AXj ||
||b(i)|| × ε

≤
∥∥(Λ1 −F jYj

)
Dε

∥∥ ≤ τ for ∀i ∈ {1, · · · , p}, (44)

where Dε = ε−1 diag (||b(1)||−1, · · · , ||b(p)||−1) ∈ Cp×p with τ = 1. Comparing τ = 1 appeared
in the right-hand side of Equation (44) with the original version of IB-threshold τ = ε min

i=1,...,p
||b(i)||

described in Equation (3.17) of [1, Section 3.3] (which is specially denoted as min-IB-threshold in here
for distinguishing it from τ = 1), we conclude that the IB-variants (like IB-BGCRO-DR or IB-BGMRES-
DR) with the IB-threshold τ = 1 show clear benefit especially when the norm of each single right-hand
side ||b(i)|| is very different in magnitude, which may give rise to the min

i=1,...,p
||b(i)|| be quite different from

some others that with larger norms thus further leads to the min-IB-threshold fails to detect IB of these
columns effectively. This is illustrated by the results shown in Figure 2, in which the min-IB-BGCRO-DR
refers to the IB-BGCRO-DR algorithm with the min-IB-threshold with the form as τ = ε min

i=1,...,p
||b(i)||

while IB-BGCRO-DR is the one with the IB-threshold τ = 1 proposed and adopted in this paper.
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Figure 2: Convergence histories of the largest/smallest backward errors ηb(i) at each mvps for Section 5.2 with
different scaling size of the columns of the RHSs. Comparison the two IB-variants with two different form of IB-
threshold by solving Matrix 1 (p = 20, md = 300, ε = 10−8 and k = 30). Left: B = rand(n, p). Middle:
B = rand(n, p) and then multiply 20 to the first

p

2
columns of B. Right: be the same as the Middle case except for

multiplying 50 instead.

5.3 Benefits of recycling between the families
To illustrate the benefits of recycling spectral information from one family to next as well as the

computational saving due to the inexact breakdown (IB) mechanism, we first report on experiments with
BGCRO-DR, IB-BGCRO-DR and IB-BGMRES-DR on a series of linear systems with constant left-hand
side. We consider experiments with a family size p = 20, the size of the recycled space k = 30 and the
maximal dimension of the search space md = 300.
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Figure 3: Comparison history for Section 5.3. IB-BGCRO-DR with BGCRO-DR and IB-BGMRES-DR by solving
Matrix 1 (p = 20, md = 300 and k = 30). Left: convergence histories of the largest/smallest backward errors ηb(i)
at each mvps for 2 consecutive families. Right: varying blocksize along iterations.

In the left plot of Figure 3 we display the convergence histories for solving two consecutive fam-
ilies with ηb-based stopping criterion. Several observations can be made. Because IB-BGMRES-DR,
IB-BGCRO-DR and BGCRO-DR do not have a deflation space to start with for the first family, the con-
vergence histories of these three solvers overlap as long as the IB mechanism does not detect any partial
convergence. After this first IB-point, the convergence rate of IB-BGCRO-DR and IB-BGMRES-DR
becomes faster (in terms of mvps) than that of BGCRO-DR, and the former two convergence histories
mostly overlap as the two IB solvers remain mathematically equivalent. For the second and subsequent
families, the capability to start with a deflation space shows its benefit for BGCRO-DR and IB-BGCRO-
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DR. It is because IB-BGMRES-DR needs a few restarts to capture this spectral information again and
refines it in its subsequent search spaces; eventually it exhibits a convergence rate similar to the BGCRO-
DR counterpart. For the sake of comparison and to illustrate the benefit of the IB mechanism we also
display the converge histories of BGCRO-DR which always requires more mvps compared to its IB
counterpart. Those extra mvps mostly concur to improve the solution quality for some right-hand sides
beyond the targeted accuracy.

To visualize the effect of the IB mechanism, we also report in the right plot of Figure 3 the size of
search space expansion as a function of the iterations. Because BGCRO-DR does not implement the IB
mechanism, its search space is increased by p = 20 at each iteration. For the other two block IB-solvers,
the block size monotonically decreases down to 1. Note that the IB mechanism is implemented in initial
(least squares) residual block in IB-BGCRO-DR, thus its block size does not jump back to the original
block size p at restart. By construction, IB-BGMRES-DR implements the IB mechanism at restart so that
the same observation applies.

Number of families Method mvps its

2
BGCRO-DR 6640 332
IB-BGMRES-DR 5404 343
IB-BGCRO-DR 4928 299

20
BGCRO-DR 56940 2847
IB-BGMRES-DR 53772 3454
IB-BGCRO-DR 45652 2637

Table 2: Numerical results in both terms of mvps and its for Section 5.3 with Matrix 1 (p = 20, md = 300 and
k = 30).

A summary of the mvps and the number of block iterations (referred to as its) is given in Table 2 that
shows the benefit of using IB-BGCRO-DR.

Note that we introduced inexact breakdown (IB) detection in the initial residual block for the proposed
solver as described in Section 4.1, what would happen if we skip it for the first initial residual block ?
Let’s denote the solver with IB detection after the initial residual block as IBa-BGCRO-DR, where IBa
stands for carrying out Inexact Breakdown after initial iteration (or without IB detection in the initial
residual block), for contrasting with IB-BGCRO-DR that with IB detection in initial residual block thus
also with the updating right-hand sides of least-squares problem as shown in Equation (41). From the
pseudocode of IB-BGCRO-DR for slowly-changing left-hand sides with massive number of right-hand
sides as shown in Algorithm 2, the corresponding pseudocode for IBa-BGCRO-DR could be deduced
similarly by letting all the columns of the initial residual block be the an initial Arnoldi basis Vnew1 with
p columns thus Pnew0 is empty within such case, and by replacing the varying right-hand sides Λj shown
in Proposition 4 into a one that with simple version as Λj =

[
0p×k,Λ

T
1 , 0p×nj

]T
. Figure 4 displays the

results of adding the performance of IBa-BGCRO-DR to Figure 3 in Section 5.3 to illustrate the benefit
of introducing IB in the initial residual block, i.e., reduce mvps by avoiding block-size jumps back to the
original block-size p at restart.

5.4 Subspace expansion governed by the convergence criterion ηA,b

In this section we show the capability of the novel subspace expansion policy to drive the individual
backward errors ηA,b down to different accuracies and its benefit with respect to the original BGCRO-DR
method. In Figure 5, we display the convergence histories of the IB and IB-free method for three different
convergence thresholds, from the less stringent on the left to the most stringent on the right. We can firstly
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Figure 4: Comparison of IB-BGCRO-DR with IBa-BGCRO-DR, BGCRO-DR and IB-BGMRES-DR by solving
bidiagonal Matrix 1 (p = 20, md = 300 and k = 30). Left: convergence histories of the largest/smallest backward
errors ηb(i) at each mvps for 2 consecutive families. Right: varying blocksize along iterations.

observe that the first iteration, where the IB mechanism starts to act, depends on the targeted accuracy as it
can have been expected from the associated threshold on the singular values of the least squares residual.
The second interesting observation is that IB-BGCRO-DR is able to decrease ηA,b down to a very low
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Figure 5: Convergence histories of the largest/smallest ηA,b(i)(x
(i)
j ) at each mvps for 2 consecutive families for

Section 5.4 with different convergence thresholds. Comparison of IB-BGCRO-DR with BGCRO-DR by solving
Matrix 1 (p = 20, md = 300 and k = 30).

value close to the machine epsilon, that is O(10−16). This latter result mostly reveals the orthogonality
quality of the residual space basis computed by the Modified Gram-Schmidt with Ruhe (MGS-Ruhe) [20]
variant of the block Arnoldi implementation and the re-orthogonalization between all the columns of the
recycling subspace Ck and the initial block Arnoldi basis at restart, that both ensure the least squares
residual norms to be quite close to the linear system residual ones. This latter fact ensures the relevance
of the space expansion policy, that monitors the linear system residual norms through the least squares
residual ones. To illustrate the orthonormal quality of the basis V̂j+1 =

[
Ck,Vj , [Pj−1, W̃j ]

]
, we display

in Figure 6 the loss of orthogonality along mvps that is defined by

Loss-Orth =
∥∥∥V̂ H

j+1V̂j+1 − Ij+1

∥∥∥ . (45)
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In a quite similar manner to MGS-Ruhe-GMRES, that is backward-stable [13], it can be observed that the
loss of orthogonality mostly appears when the solutions of the linear systems converge. Note that without
the re-rothogonalization at restart, the loss of orthogonality tends to be accumulated along restart which
prevents the value of Loss-Orth to be close to the machine epsilon. Refer to Figure 7 for the corresponding
results without applying re-orthogonalization to all the columns of [Ck, [V1, P0]] at restart.
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Figure 6: Loss-Orth defined in Equation (45) of GCRO-variants with stopping criterion based on ηA,b(i)(x
(i)
j )

at each mvps for 2 consecutive families for Section 5.4 with different convergence thresholds. Comparison IB-
BGCRO-DR with BGCRO-DR for solving Matrix 1 (p = 20, md = 300 and k = 30).
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Figure 7: Loss-Orth defined in Equation (45) of GCRO-variants with stopping criterion ηA,b(i)(x
(i)
j ) ≤ 10−8 at

each mvps for 2 consecutive families for Section 5.4 with or without re-orthogonalizing Ck to V1 (V1) by MGS
at restart of (IB-)BGCRO-DR. * Note the above mentioned re-orthogonalizing Ck to V1 cannot ensures the re-
orthogonality in all the columns of Ck (or V1) thus cannot obtain results as shown in left plot of Figure 6 that with
applying re-orthogonalization to all the columns of [Ck, [V1, P0]] at restart.

5.5 Subspace expansion policy for individual convergence thresholds for ηb

To illustrate this feature, we consider a family of p right-hand sides and a convergence threshold 10−4

for the first p/2 right-hand sides and 10−8 for the last p/2 ones. As an estimate of the computational
benefit of this feature, we also compare with calculations where all the right-hand sides are solved with
the most stringent accuracy, that is 10−8. We display in the left part of Figure 8, the convergence histories
for 3 successive families. The variant that controls the individual threshold is denoted as IB-BGCRO-DR-
VA, where VA stands for Variable Accuracy. It can be seen that the numerical feature works well and that
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the envelope of the backward errors has the expected shape, that is, the minimum backward error goes
down to 10−8 while the maximum one (associated with the first p/2 solutions) only goes down to 10−4.
If we compare the convergence histories of IB-BGCRO-DR and IB-BGCRO-DR-VA, it can be seen that
the slope of IB-BGCRO-DR-VA is deeper than that of IB-BGCRO-DR once the first p/2 solutions have
converged; after this point IB-BGCRO-DR-VA somehow focuses on the new directions (produced by
mvps given for the x-axis) to reduce the residual norms of the remaining p/2 solutions that have not yet
converged. The right plot of Figure 8 shows the computational gain induced by the individual control
of the accuracy compared to the situation where all the right-hand sides would have been solved to the
most stringent one if this feature had not been designed. In this case the individual monitoring of the
convergence saves around 45 % of mvps on this example. Those results are summarized in Table 3.

We refer to Figure 11 and Table 8 of Appendix F for an illustration of extending such individual
control to the block solver IB-BGMRES-DR that can also accommodate this feature.
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Figure 8: Comparison of IB-BGCRO-DR to IB-BGCRO-DR-VA for Section 5.5 with Matrix 1 (p = 20, md = 300

and k = 30). Left: convergence histories of the largest/smallest backward errors ηb(i) at eachmvps for 3 consecutive
families. Right: Gain (`) defined in Equation (43) of IB-BGCRO-DR-VA to IB-BGCRO-DR versus family index.

Number of families Method mvps its

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-VA 5119 395

30
IB-BGCRO-DR 68263 3932
IB-BGCRO-DR-VA 47143 3566

Table 3: Numerical results of IB-BGCRO-DR with fixed/varying accuracy for each right-hand side in terms ofmvps
and its for Section 5.5, where the coefficient matrix is Matrix 1 with p = 20, md = 300 and k = 30.

5.6 Expansion policy governed by computational performance
As discussed in Section 3.3, only a subset of the candidate directions exhibited by the IB mechanism

can be eventually selected to expand the search space at the next block iteration; we denote this maximum
size pCB and refer to this variant as IB-BGCRO-DR-CB where the CB stands for Computational Block-
ing. In Table 4 we show the effect of this algorithmic parameter on mvps and its for the solutions of 3
and 30 families with Matrix 1 when pCB varies from 1 to 15 for a number of right-hand sides p = 20.
Generally, the smaller pCB is, the smaller mvps, but the larger its. While reported only on one example
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this trend has been observed in all our numerical experiments. Depending on the computational efficiency
or cost of the mvps with respect to the computational weight of the least-squares problem and SVD of
the scaled least squares residual, this gives opportunities to monitor the overall computational efficiency
of the complete solution.

Number of families Method mvps its

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-CB (pCB = 15) 6934 467
IB-BGCRO-DR-CB (pCB = 10) 6941 668
IB-BGCRO-DR-CB (pCB = 5) 6968 1312
IB-BGCRO-DR-CB (pCB = 1) 6966 6444

30
IB-BGCRO-DR 68262 3932
IB-BGCRO-DR-CB (pCB = 15) 65364 4303
IB-BGCRO-DR-CB (pCB = 1) 65823 60836

Table 4: Numerical results of IB-BGCRO-DR and IB-BGCRO-DR-CB for pCB = 1, 5, 10, 15 in terms of mvps
and its for Section 5.6, where the coefficient matrix is Matrix 1 with p = 20, md = 300 and k = 30.

Similar to previous subsections, we notice that this subspace expansion policy also applies to IB-
BGMRES-DR and we refer to Figure 12 and Table 9 of Appendix G for an illustration.

5.7 Behavior on sequences of slowly-varying left-hand sides problems

The example used in this section is from a finite element fracture mechanics problem in the field
of Fatigue and Fracture of Engineering Components (denoted as FFEC collection), which is fully docu-
mented in [15, Section 4.1]. Over 2000 linear systems of size 3988 × 3988 from FFEC collection need
to be solved in order to capture the fracture progression, and among them 151 linear systems 400 − 550
representing a typical subset of the fracture progression in which many cohesive elements break are ex-
amined in [15]. The solutions of these linear systems have been investigated using both GCRO-DR and
GCROT (generalized conjugate residual with inner orthogonalization and outer truncation), and we refer
to [7] for a comprehensive experimental analysis. For our numerical experiments we borrow the ten lin-
ear systems numbered 400− 409 from this FFEC collection. For each set of linear system we select the
matrix and the corresponding right-hand sides that we expand to form a block of p = 20 by appending
random linearly independent vectors.

We display the convergence histories for solving the first 3 consecutive families of such linear systems
in the left plot of Figure 9. For the solution of the first linear system, the observations on the IB and DR
mechanisms discussed in Section 5.3 apply. Even though the coefficient matrix has changed, the recycling
spectral information computed for the previous family still enables a faster convergence at the beginning
of the solution of the next one. Specifically, for the solution of the first family the convergence histories of
the two methods fully overlap until the first inexact breakdown occurs, as until this step the two methods
are the same. From the initial slope of the subsequent families, it can be seen that the sequence of matrices
are close enough to ensure that the recycled space from one system to the next still makes benefit to the
convergence. The benefit of the IB mechanism is also illustrated on that example as IB-BGCRO-DR
still outperforms BGCRO-DR. The overall benefit in term of mvps saving is illustrated in the right plot
on a sequence of 10 linear systems, where the saving is more than 65 % with respect to BGCRO-DR.
Corresponding results are summarized in Table 5.
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Figure 9: Convergence results of IB-BGCRO-DR and BGCRO-DR on a sequence of slowly-changing left-hand
sides described in Section 5.7, where the coefficient matrices are built on FFEC with p = 20, md = 300 and
k = 15.

Number of families Method mvps its

3
BGCRO-DR 13050 651
IB-BGCRO-DR 7489 540

10
BGCRO-DR 39935 1990
IB-BGCRO-DR 24200 1658

Table 5: Numerical results in terms of mvps and its for Section 5.7 with p = 20, md = 300 and k = 15.

5.8 A variant suited for flexible preconditioning
In this section, we illustrate the numerical behavior of the flexible variant IB-BFGCRO-DR that we

have derived in Section 2.5 and make comparison with closely related variants namely BFGCRO-DR (a
straightforward block extension of FGCRO-DR [4]).

We consider a representative quantum chromodynamics (QCD) matrix from the University of Florida
sparse matrix collection [5]. It is the conf5.4-00l8x8-0500 matrix denoted as BQCD of size 49152 ×
49152 with the critical parameter κc = 0.17865 as a model problem. Thirty families of linear systems are
constructed that are defined asA(`) = I−κc(`)BQCD with 0 ≤ κc(`) < κc and ` = 1, 2, . . . , 30. We use
the MATLAB function linspace(0.1780, 0.1786, 30) to generate the parameters κc(`) for a sequence of
matrices and observe that those matrices have the same eigenvectors associated with shifted eigenvalues.
A sequence of p = 12 successive canonical basis vectors are chosen to be the block of right-hand sides
for a given left-hand side matrix following [15, Section 4.3] so that the complete set of the right-hand
sides for the ` linear systems reduces to the first p× ` columns of the identity matrix. This choice could
be supported by the fact that the problem of numerical simulations of QCD on a four-dimensional space-
time lattice for solving QCD ab initio (cf. [15, Section 4.3]) has a 12 × 12 block structure, and then a
system with 12 right-hand sides related to a single lattice site is often of interest to solve.

The flexible preconditioner is defined by a 32-bit incomplete LU(0) factorization of the matrix in-
volved in the linear system. In a 64-bit calculation framework, the preconditioning consists in casting the
set of directions to be preconditioned in 32-bit format, performing the forward/backward substitution in
32-bit calculation and casting back the solutions in 64-bit arithmetic. The rounding applied to the vectors
has a nonlinear effect that makes the preconditioner nonlinear.

For those experiments, we attempt to favor the recycling of the space, because the matrices share the
same invariant space, so that we choose a relative large value for k that is k = md/2. We report in the
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Figure 10: Behavior of the BGCRO-DR-solvers with flexible preconditioner on families ofQCDmatrices described
in Section 5.8 with p = 12, md = 180 and k = 90. Left: convergence histories of the largest/smallest backward
errors ηb(i) at each mvps for 3 consecutive families. Right: Gain (l) of the block methods with respect to IB-
BFGCRO-DR along family index.

Number of families Method mvps its

3
BFGCRO-DR 1944 147
IB-BFGCRO-DR 1838 148

30
BFGCRO-DR 18774 1347
IB-BFGCRO-DR 18054 1350

Table 6: Numerical results in terms of mvps and its for Section 5.8 with p = 12, md = 15×p = 180 and k = 90.

left plot of Figure 10, the convergence histories of the two flexible block variants. Similarly to what has
already been observed previously the convergences are very similar on the first family and only differ
when the IB mechanism becomes active mostly in the last restart. For the second and third families, one
can see that IB-BFGCRO-DR and BFGCRO-DR have identical convergence speed. One can observe a
shift in the convergence histories between the end of the solution of one family and the beginning of the
next one for both IB-BFGCRO-DR and BFGCRO-DR. This shift is due to the extra k mvps that have to
be performed when the matrix changes in order to adapt the recycling space as follows

1. compute A(`+1)U
(`)
k = C̃k

2. compute the reduced QR factorization of C̃k = C
(`+1)
k R

3. update the basis of the deflation space U (`+1)
k = U

(`)
k R−1 so that A(`+1)U

(`+1)
k = C

(`+1)
k .

Because k is large, we can clearly see this shift in the left plot of Figure 10. For this parameter selection
in this section, it can be noticed that the dominating effect on the convergence improvement is due to the
space recycling and not the IB mechanism. This observation is highlighted in the right plot of Figure 10,
where the benefit of using IB-BFGCRO-DR rather than BFGCRO-DR does diminish when compared to
previous experiments and is only about 4%. Numerical details are summarized in Table 6.
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6 Concluding remarks
In this paper, we develop a new variant of block GCRO-DR method denoted as IB-BGCRO-DR that

inherits the appealing genes of its two parents [15, 19]. First, it inherits the capabilities to speed up the
convergence rate when solving sequences of linear systems by recycling spectral information from one
family to the next. Second, the extended search space expansion policy enabled by the so-called inexact
breakdown allows us to focus on the convergence by considering only the most important directions.
Along this line, we introduce stopping-criterion driven search space expansion polices that enable us to
ensure that a prescribed threshold used for inexact breakdown detection will eventually be reached for a
prescribed stopping criterion based on a backward error. While introduced in the block GCRO context,
those policies apply to any block minimum residual norm approach that relies on an Arnoldi-like relation
and includes both block GMRES and GCRO variants. In exact arithmetic, these policies exploit the
close link between the least squares residual and the linear systems residual, which is guaranteed by the
orthonormal basis of the residual space. Through numerical experiments, we show that MGS-Ruhe [20]
variant of the block Arnoldi algorithm and re-orthogonalization between the columns of recycling space
and initial block Arnoldi basis at restart seems to generate good enough orthonormal basis to ensure that
such a property does also hold in finite precision calculation. To theoretically establish that this class of
algorithms is backward stable following ideas from [13] would be the topic of a future research work.
To comply with mixed-precision calculation, the flexible preconditioning variant is also proposed, which
would be of interest for emerging computing platforms where mixed-precision calculation could be a way
to reduce data movement that is foreseen as one of the major bottleneck to reach high performance.
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A Other two alternatives to compute the approximate eigen-information

Proposition 5. (Strategy A [3]) At the end of a cycle of the IB-BFGCRO-DR algorithm, if the deflation
space is built on the harmonic-Ritz vectors gi ∈ span(Ẑm) of A with respect to Ẑm = [Uk Zm] ∈
Cn×(k+nm) :

1. The harmonic-Ritz pairs (θi, Ẑmgi) for the each restart satisfy

FH
mFmgi = θjF

H
mV̂ H

m+1Ẑmgi, for 1 ≤ i ≤ nm, (46)

where

V̂ H
m+1Ẑm =


CHk Uk CHk Zm

V H
m Uk V H

m Zm[
PHm−1Uk
W̃H
mUk

] [
PHm−1Zm

W̃H
mZm

]
 ∈ C(k+nm+p)×(k+nm). (47)

2. At restart, if Gk = [g1, . . . , gk] is associated with the k targeted eigenvalues, the matrices Unewk

and Cnewk to be used for the next cycle are defined by

Unewk = ẐmGkR
−1 = [Uk,Zm]GkR

−1, (48)

Cnewk = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q, (49)

where Q and R are the factors of the reduced QR-factorization of FmGk that ensures AUnewk =

Cnewk with (Cnewk )
H
Cnewk = Ik.

3. The residual at restart Rnew1 = Roldm = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to Cnewk .

Proof. The proofs basically relay on some matrix computations as shortly described below:

• According to Definition 1, each harmonic-Ritz pair (θi, Ẑmgi) satisfies

∀w ∈ Range(AẐm) wH (AẐmgi − θi Ẑmgi) = 0, (50)

which equivalently becomes

(AẐm)H (AẐmgi − θi Ẑmgi) = 0. (51)

Using Equation (26) leads to(
V̂m+1Fm

)H (
V̂m+1Fmgi − θi Ẑmgi

)
= 0. (52)

Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of cycle is orthonormal, Equa-
tion (52) becomes

FH
m Fmgi − θiF

H
mV̂ H

m+1Ẑmgi = 0,

which is the same as formulation (46).

• Let Q and R be the factors of the reduced QR-factorization of FmGk and multiply by Gk on the
both sides of Equation (26). It leads toAẐmGk = V̂m+1FmGk = V̂m+1QR, that is equivalent to
AẐmGkR

−1 = V̂m+1FmGkR
−1 = V̂m+1Q that concludes the proof as V̂m+1Q is the product

of two matrices with orthonormal columns so are its columns.
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• The same process for proving Corollary 1.

Proposition 6. (Strategy B [3]) At the end of a cycle of the IB-BFGCRO-DR algorithm, if the defla-
tion space is built on the harmonic-Ritz vectors gi ∈ span(V̂m) of AẐmV̂ H

m with respect to V̂m =
[Ck Vm] ∈ Cn×(k+nm) :

1. The harmonic-Ritz pairs (θi, V̂mgi) for the each restart satisfy

FH
mFmgi = θi F

H
m gi for 1 ≤ i ≤ nm, (53)

2. At restart, if Gk = [gi1 , . . . , gik ] is associated with the k targeted eigenvalues, the matrices Unewk

and Cnewk to be used for the next cycle are defined by

Unewk = ẐmGkR
−1 = [Uk,Zm]GkR

−1, (54)

Cnewk = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q, (55)

where Q and R are the factors of the reduced QR-factorization of FmGk that ensures AUnewk =

Cnewk with (Cnewk )
H
Cnewk = Ik.

3. The residual at restart Rnew1 = Roldm = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to Cnewk .

Proof. Given the proof essentially follows the same arguments as the ones developed for Proposition 5
or 2, the details are omitted here.

Although the Strategy A depicted in Proposition 5 is the most efficient way among the possible three
strategies described in [3] for approximating the eigen-information of the coefficient matrix A, the com-
putational cost of the last nm columns of V̂ H

m+1Ẑm as shown in the right-hand side of Equation (47) is
too heavy especially with larger nm. Therefore, another possible alternatives are considered to reduce
the computational cost of solving such general eigen-solving problem. Inspired from the way of com-
puting eigen-information under the context of flexible GMRES with deflated restarting (FGMRES-DR)
as shown in [8, Proposition 1], Strategy B shown in Proposition 6 is described for the IB-BFGCRO-DR,
while which turns out to be not that suitable under the GCRO-DR context by numerical results shown
in Table 7. Thus, the Strategy C is devised and described in Proposition 2, which has the same sense as
Strategy A but with a lower computational cost of solving the general eigen-solving problem as shown
in Equation (27). From Table 7, it is easy to observed that the numerical result of IB-BFGCRO-DR with
Strategy C is approximate to that with Strategy A through the later one costs the fewest mvps and its.

Number of families Method mvps its

3
IB-BFGCRO-DR (Strategy A) 1807 144
IB-BFGCRO-DR (Strategy B) 2074 177
IB-BFGCRO-DR (Strategy C) 1838 148

Table 7: Numerical results of IB-BFGCRO-DR with three kinds of strategies in terms of mvps and its, in which
the involving parameters for QCD matrix are set to be p = 12, md = 15× p = 180 and k = 90.
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B Proof of Proposition 2
Proof. The proofs basically relay on some matrix computations as shortly described below:

• According to Definition 1, each harmonic-Ritz pair (θi,Wmgi) satisfies

∀w ∈ Range(AẐmW†mWm) wH (AẐmW†mWmgi − θiWmgi) = 0. (56)

Because Wm is initially set to be equal to Vm and then is updated by Equation (28), which has
full column rank, taking a left inverse for the Moore-Penrose inverse ofWm makesW†mWm = I.
Therefore, the second formula of (56) equivalently becomes

(AẐm)H (AẐmgi − θiWmgi) = 0. (57)

Using Equation (26) leads to(
V̂m+1Fm

)H (
V̂m+1Fmgi − θiWmgi

)
= 0. (58)

Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of each cycle is orthonormal, Equa-
tion (58) becomes

FH
m Fmgi − θiF

H
mV̂ H

m+1Wmgi = 0,

which is the same as formulation (27).

• Let Q and R be the factors of the reduced QR-factorization of FmGk and multiply by Gk on the
both sides of Equation (26). It leads toAẐmGk = V̂m+1FmGk = V̂m+1QR, that is equivalent to
AẐmGkR

−1 = V̂m+1FmGkR
−1 = V̂m+1Q that concludes the proof as V̂m+1Q is the product

of two matrices with orthonormal columns so are its columns.

• The same process for proving Corollary 1.
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C IB-BFGMRES-DR: Block flexible GMRES with inexact break-
downs and deflated restarting

C.1 Block flexible Arnoldi with inexact breakdowns
Starting from an orthonormal block vector V1 obtained from the reduced QR-factorization of the

initial residual block (denoted as R0 in this Section)1 R0 = B − AX0 = V1Λ1, Algorithm 3 describes
details about the block flexible Arnoldi process used to construct a pair of orthonormal basis. In the no
exact breakdown situation, i.e., pj+1 = pj = . . . = p1 = p, the whole columns of Wj in step 10 of
Algorithm 3 have been used to enlarge the search space, and then the block Arnoldi relation at the jth
iteration is obtained as

AZj = VjHj + [0n×nj−1 , Wj ] = Vj+1H j , (59)

in which Zj = [M1(V1), ...,Mm(Vj)], Vj = [V1, ...,Vj ] ∈ Cn×nj (nj = j × p) contains orthonormal

columns and H j =
[

Hj

0...0 Hj+1,j

]
∈ Cnj+1×nj composed by square matrices Hj+1,j ∈ Cpj×pj (pj = p)

is a block upper Hessenberg matrix. The minimum residual norm solution in the affine space X0 +
Range(Zj) can be written as Xj = X0 + ZjYj where

Yj = argmin
Y ∈Cnj×p

‖Λ̃j −H jY ‖F

and Λ̃j = V H
j+1R0 = (Λ1, 0nj×p)

T , the columns of Λ̃j are the components of the individual initial
residual in the residual space Vj+1.

Algorithm 3 BLOCK FLEXIBLE ARNOLDI PROCEDURE WITH BLOCKWISE MODIFIED GRAM-
SCHMIDT ORTHOGONALIZATION:

1: Given a nonsingular coefficient matrix A ∈ Cn×n, choose a unitary matrix V1 of size n× p
2: for j = 1, 2, . . . ,m do
3: Choose a (possibly nonlinear) preconditioning operator Mj

4: Zj = Mj(Vj)
5: Compute Wj = AZj
6: for i = 1, 2, . . . , j do
7: Hi,j = VHi Wj

8: Wj = Wj − ViHi,j

9: end for
10: Wj = Vj+1Hj+1,j (reduced QR-factorization)
11: end for

When an inexact breakdown occurs up to iteration j in Algorithm 3, the dimension of the approxima-
tion space Range(Zj) generated at the jth iteration is no longer equal to j×p but equal to nj =

∑j
i=1 pi

with nj < j × p. According to the inexact breakdown detecting mechanism in IB-BGMRES [19], the
block flexible Arnoldi with inexact breakdowns 2 and Equation (9) developed by Robbé and Sadkane [19],

1Out of simplicity, the initial residual block in here is assumed to be of full column rank, while such assumption could be
removed by introducing inexact breakdown detection in initial residual block as the contents described in Section 4.1.

2The block flexible Arnoldi with inexact breakdowns is obtained by changing the step 11 of Algorithm 2 into
11: Orthogonalize AMj(Vj) against previous block orthonormal vector Vj = [V1, . . . ,Vj ] as

L1,1:j = V H
j (AMj(Vj)), Wj = AMj(Vj)− VjL1,1:j , where L1,1:j is a block column matrix.
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the Equation (59) could be extended into

AZj = VjHj + [Qj−1, Wj ], (60)

where Qj−1 = [Q1, . . . , Qj−1] ∈ Cn×nj−1 is rank deficient and accounts for all the abandoned direc-
tions.

In order to characterize a minimum norm solution in the space spanned by Zj using Equation (60)
we need to form an orthonormal basis of the space spanned by [Vj ,Qj−1,Wj ]. This is performed by first
orthogonalizing Qj−1 against Vj , that is Q̃j−1 = (I − VjV H

j )Qj−1. Because Qj−1 is of low rank so
is Q̃j−1 that can be written as formula (11). Next Wj , that is already orthogonal to Vj , is made to be
orthogonal to Pj−1 with Wj−Pj−1Ej whereEj = PHj−1Wj ; then one computes W̃jDj the reducedQR-
factorization of Wj−Pj−1Ej . Eventually, the columns of the matrix [Vj , Pj−1, W̃j ] form an orthonormal
basis of the space spanned by [Vj ,Qj−1,Wj ].

With this new basis Equation (60) writes

AZj =
[
Vj , [Pj−1, W̃j ]

]
F̃ j , (61)

where F̃ j =

[
Lj

Ĥj

]
∈ C(nj+p)×nj with Ĥj =

[
Gj−1 Ej

0 Dj

]
∈ Cp×nj (here the notation Hj with

the wide-hat form is used for distinguishing from that already used in IB-BGCRO-DR case as appeared in
Equation (14) and (38)) and Lj ∈ Cnj×nj owns the same details as described in formula (12), which is
no longer a block upper Hessenberg as shown in the right-hand sides of Equation (59) as soon as inexact
breakdown occurs, i.e., ∃` Q` 6= 0.

The numerical mechanism to select Vj+1 out of
[
Pj−1, W̃j

]
follows the same ideas as discussed

in [1, 19] within the context of block GMRES. The governing idea consists in building the orthonormal
basis for the directions that contribute the most to the individual residual norms and make them larger
than the target threshold τ . Based on the SVD of the coordinate vector of the scaled least squares residual
(Λ̃j − F̃ jYj)Dε = U1,LΣ1VH1,R + U2,LΣ2VH2,R where Dε is a diagonal matrix used to select the space
expansion described in the Section 3, Σ1 contains the singular values larger than the prescribed IB-

threshold τ , they decompose U1,L =

(
U(1)

1

U(2)
1

)
in accordance with

[
Vj , [Pj−1, W̃j ]

]
, that is U(1)

1 ∈ Cnj×p

and U(2)
1 ∈ Cp×p. Because, the objective is to construct orthonormal basis we consider [W1,W2] unitary

so that Range(W1) = Range(U(2)
1 ). The new set of orthonormal vectors selected to expand the search

space as formula (16), which contributes the most to the residual. We do not give the detailed calculation
and refer to [19] for a complete description, but only state that via this decomposition the main terms that
appear in Equation (61) can be computed incrementally by an alternative formulation:

AZj = Vj+1L j + Q̃j , (62)

with L j =

[
Lj

Vj+1Qj−1 Hj+1,j

]
, where Lj =

L j−1

H1,j

...
Hj,j

 , the last block row of L j at next

iteration (j + 1) is given by L j+1,: = WH
1 Ĥj . The last block column of Lj+1 results from the block

flexible Arnoldi orthogonalization. The new compressed form of the abandoned direction Q̃j is given by
the new orthonomal set of vectors

Pj =
[
Pj−1, W̃j

]
W2, (63)

and the complementary part of Vj+1 and their components in the space spanned by Pj are Gj = WH
2 Ĥj .
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Consequently, in one cycle of IB-BFGMRES-DR, once the maximum size of the space has been
reached, we have

AZm =
[
Vm, [Pm−1, W̃m]

]
F̃m, (64)

AZm = Vm+1Lm + Q̃m, (65)
Xm = X0 + ZmYm, (66)

Rm =
[
Vm, [Pm−1, W̃m]

] (
Λ̃m − F̃mYm

)
, (67)

Ym = argmin
Y ∈Cnm×p

∥∥∥Λ̃m − F̃mY
∥∥∥
F
, Λ̃m = [ΛT1 , 0p×nm

]T .

C.2 Harmonic-Ritz vectors and residuals
We first illustrate how to compute the harmonic-Ritz vectors used for deflation as described in Propo-

sition 7 and then discuss the relation between the linear system residuals and the residuals of harmonic-
Ritz vectors at the restart of IB-BFGMRES-DR.

Proposition 7. At the end of a cycle of IB-BFGMRES-DR, the updating of deflated restarting used in
next cycle relies on the computation of k harmonic-Ritz vectors Yk = VmGk of AZmV H

m with respect to
Range(Vm), where each harmonic-Ritz pair (θj ,Vmgj) computed at the end of cycle satisfies

(Lm + L −Hm ĤHmĤm)gj = θj gj for 1 ≤ j ≤ k, (68)

where Lm ∈ Cnm×nm and Ĥm ∈ Cp×nm .

Proof. According to Definition 1, each harmonic-Ritz pair (θj ,Vmgj) satisfies

∀w ∈ Range(AZmV H
m Vm) wH (AZmV H

m Vmgj − θj Vmgj) = 0,

which is equivalent to
(AZm)H (AZmgj − θj Vmgj) = 0,

by the orthonormality of Vm. Substituting Equation (64) into the above one yields

(
[
Vm, [Pm−1, W̃m]

]
F̃m)H (

[
Vj , [Pm−1, W̃m]

]
F̃m gj − θj Vm gj) = 0. (69)

Because of the structure of F̃m and the orthonormality of [Vm, Pm−1, W̃m], Equation (69) becomes

(LH
m Lm + ĤHmĤm)gj = θj LH

m gj , (70)

which completes the proof since Lm is assumed to be nonsingular.

Assume RLSm =
(

Λ̃m − F̃mYm

)
∈ C(nm+p)×p, the residual of linear system presented in Equa-

tion (67) could be simplified as

Rm =
[
Vm, [Pm−1, W̃m]

]
RLSm ∈ Cn×p. (71)

Denote the corresponding residual of harmonic-Ritz vectors as R(HR)
m similarly, which owns form as

R(HR)
m = AZmGk − VmGk diag(θ1, . . . , θk) ∈ Cn×k. (72)
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Given that both Rm and R(HR)
m are resided in the subspace Range(

[
Vm, [Pm−1, W̃m]

]
) ∈ Cn×(nm+p)

and are orthogonal to the same subspace Range(AZm) ∈ Cn×nm . Therefore, the residuals of linear sys-
tem Rm and the residuals of harmonic-Ritz vectors R(HR)

m are in the same p-dimensional space denoted
as Range(AZm)⊥ ∩Range(

[
Vm, [Pm−1, W̃m]

]
), which means there exists a matrix βp×k ∈ Cp×k such

that R(HR)
m = Rmβp×k. According to Equation (71) and (72), such collinear relationship between the

linear system residuals and residuals of harmonic-Ritz vectors could be further described as the following
formula

AZmGk =
[
Vm, [Pm−1, W̃m]

]
G

[
diag(θ1, · · · , θk)

βp×k

]
, (73)

where Gk = [g1, . . . , gk] ∈ Cnm×k, G =

[
Gk

0p×k
RLSm

]
∈ C(nm+p)×(k+p), βp×k = (β1, · · · , βk) ∈

Cp×k and βi ∈ Cp (1 ≤ i ≤ k). Based on Equation (61) and the orthonormality of
[
Vm, [Pm−1, W̃m]

]
,

Equation (73) can be also expressed as

F̃mGk = G

[
diag(θ1, · · · , θk)

βp×k

]
, (74)

which is the block form of Equation (3.4) shown in [1, Lemma3.3].

C.3 Flexible block GMRES with inexact breakdowns at restart

In this section, the forthcoming Theorem 2 will be presented to illustrate that the flexible Arnoldi
relation with inexact breakdowns described in Equation (61) and (62) (or in Equation (64) and (65)) still
hold at restart of IB-BFGMRES-DR. Firstly, let us denote G = QGRG the reduced QR-factorization of
G shown in Equation (74) and the reduced factors could be partitioned as

QG =

[
Γ1

0p×k
Γ2

]
∈ C(nm+p)×(k+p), (75)

RG =

[
Θ1

0p×k
Θ2

]
∈ C(k+p)×(k+p), (76)

with Γ1 = QG(1 : nm, 1 : k), Γ2 = QG(:, k + 1 : k + p), Θ1 = RG(1 : k, 1 : k), Θ2 = RG(:, k + 1 :
k + p) and

Gk = Γ1Θ1, (77)
RLSm = QGΘ2. (78)

Theorem 2. At each restart of IB-BFGMRES-DR, the initial block-flexible-Arnoldi-like relation (61)
and (62) still hold in exact arithmetic as

AZ new
1 =

[
V new

1 , [P0, W̃1]new
]
F̃
new

1 , (79)

AZ new
1 = V new

2 L new
1 + Q̃new1 , (80)

Rnew0 = Rm =
[
V new

1 , [P0, W̃1]new
]

Λ̃new1 and Λ̃new1 = Θ2, (81)
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with

Z new
1 = ZmΓ1,

[
V new

1 , [P0, W̃1]new
]

=
[
Vm, [Pm−1, W̃m]

]
QG,

V new
1 = VmΓ1, [P0, W̃1]new =

[
Vm, [Pm−1, W̃m]

]
Γ2,

F̃
new

1 =

[
L new

1

Ĥnew1

]
and L new

1 = ΓH1 LmΓ1, Ĥnew1 = ΓH2 F̃mΓ1,

Vnew2 = [P0, W̃1]newW1, V new
2 = [V new

1 ,Vnew2 ],

L new
2,: = WH

1 Ĥnew1 , L new
1 =

[
L new

1

L new
2,:

]
,

Pnew1 = [P0, W̃1]newW2, Gnew1 = WH
2 Ĥnew1 , Q̃new1 = Pnew1 Gnew1 ,

where W1 and W2 satisfy

Range(W1) = Range(Unew(2)
1 ) with Unew1,L =

[
Unew(1)

1

Unew(2)
1

]
and [W1 W2] is unitary

with
(Λ̃new1 − F̃

new

1 Y new1 )Dε = Unew1,L Σnew1 VnewH1,R + Unew2,L Σnew2 VnewH2,R ,

where σmin(Σnew1 ) ≥ 1 ≥ σmax(Σnew2 ), the SVD to detect inexact breakdown in the restarting scaled
least squares residual block where

Y new1 = argmin
Y ∈Cn1×p

∥∥∥Λ̃new1 − F̃
new

1 Y
∥∥∥
F
.

Proof. Starting from the relationship between residual and harmonic-Ritz vectors as shown in Equa-
tion (73), let’s substitute G by these reduced factors QG in Equation (75) and RG in (76) obtained by its
reduced QR-factorization and change Gk by relation (77), then we have

AZmΓ1 =
[
Vm, [Pm−1, W̃m]

]
QGRG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−1

1

by the nonsingularity of Θ1, which could be rewritten as

AZmΓ1 =
[
VmΓ1, [Vm, [Pm−1, W̃m]]Γ2

]
RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−1

1 (82)

because of the partition of QG shown in Equation (75). Then, repeating the same processes described
above, the corresponding formula (74) could also be reformed as

F̃mΓ1 = QGRG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−1

1 ,

from which, we have

RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−1

1 = QHG F̃mΓ1.

According to the structure of QG and Fm as shown in Equation (75) and (61), we obtain

RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−1

1 =

[
ΓH

1 LmΓ1

ΓH2 F̃mΓ1

]
. (83)
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If we denote

Z new
1 = ZmΓ1, V new

1 = VmΓ1, [P0, W̃1]new =
[
Vm, [Pm−1, W̃m]

]
Γ2,

L new
1 = ΓH1 LmΓ1, Ĥnew1 = ΓH2 F̃mΓ1, F̃

new

1 =

[
L new

1

Ĥnew1

]
,

and substitute Equation (83) into (82), then Equation (79) is proven.
Next, show that equality (80) holds. Given [W1 W2] is unitary, we have

[P0, W̃1]new = [P0, W̃1]new[W1WH
1 + W2WH

2 ],

and substituting this into Equation (79) gives

AZ new
1 =

[
V new

1 , [P0, W̃1]new[W1WH
1 + W2WH

2 ]
] [ L new

1

Ĥnew1

]
,

= V new
1 L new

1 + [P0, W̃1]new[W1WH
1 + W2WH

2 ]Ĥnew1 ,

= V new
1 L new

1 + [P0, W̃1]newW1WH
1 Ĥnew1 + [P0, W̃1]newW2WH

2 Ĥnew1 ,

= V new
1 L new

1 + Vnew2 L new
2,: + Pnew1 Gnew1 ,

= [V new
1 V new2 ]

[
L new

1

L new
2,:

]
+ Pnew1 Gnew1 ,

which is relation (80).
From Equation (71) and (78), at restart we have

Rnew0 = Rm =
[
Vm, [Pm−1, W̃m]

]
RLSm

=
[
Vm, [Pm−1, W̃m]

]
QGΘ2 =

[
V new

1 , [P0, W̃1]new
]

Λ̃new1 .

This completes the proof.
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D Proof of Proposition 4

Proof. From Equation (36), (37) and (39), the initial residual block R1 with inexact breakdown detec-
tion at restart could be described as

R1 = [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]HR1 = [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]H [Vnew1 , Pnew0 ]Λ̂1

= [Ck,V1, P0, W̃1]
(

[Ck,V1, P0, W̃1]HCkR12 + [Ck,V1, P0, W̃1]H [V1, P0]R22

)
Λ̂1

= [Ck,V1, P0, W̃1]Λ1 with Λ1 =

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1 0p1×q1

R22Λ̂1,

by [Vnew1 , Pnew0 ] = CkR12 + [V1, P0]R22 obtained from Equation (37). That can also be written as

Λ1 =

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1 0k×q1
Ip1

0q1×p1
Φ1

0p1×p1 0p1×q1

R22Λ̂1,

where Φ1 =

[
0p1×q1
Iq1

]
∈ Cp×q1 and q1 + p1 = p.

Inria



Block GCRO-DR methods with inexact breakdowns 45

The right-hand sides of the least-squares problem at iteration (j + 1) for j = 1, 2, · · · , are defined by

Λj+1 = [Ck,Vj+1, [Pj , W̃j+1]]HR1 = [Ck,Vj , Vj+1, [Pj , W̃j+1]]HR1

=
[
Ck,Vj , [Pj−1, W̃j ]W1, [Pj−1, W̃j ]W2, W̃j+1

]H
R1 =

[
Ck,Vj , [Pj−1, W̃j ][W1,W2], W̃j+1

]H
[Vnew1 , Pnew0 ]Λ̂1

=

([
Ck,Vj , [Pj−1, W̃j ][W1,W2], W̃j+1

]H
CkR12 +

[
Ck,Vj , [Pj−1, W̃j ][W1,W2], W̃j+1

]H
[V1, P0]R22

)
Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


CHk V1 CHk P0

V H
j V1 V H

j P0

[Vj+1, Pj ]
H V1 [W1,W2]

H
[
Pj−1, W̃j

]H
P0

W̃H
j+1V1 W̃H

j+1P0

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +



0k×p1 0k×q1[
Ip1

0(nj−p1)×p1

]
Φj(1 : nj , :)

0p×p1 [W1,W2]
H

[
PHj−1

W̃H
j

]
P0

0pj+1×p1 0pj+1×q1

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj−p1)×p1

]
Φj(1 : nj , :)

0p×p1 [W1,W2]
H

[
Φj(nj + 1 : nj + qj , :)

0pj×q1

]
0pj+1×p1 0pj+1×q1

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1 0pj+1×q1

R22Λ̂1

where Φj+1 ∈ C(nj+p)×q1 for j = 1, 2, · · · .
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E The SVD decomposition of the least squares residual and the so-
lution of the least-squares problem

The inexact breakdown (IB) mechanism allows to extract from the residual spaces new directions to
expand the search space at the next iteration of the block method. The selection consists in extracting the
directions that contribute the most to the scaled residual block and is based on the SVD of the scaled least
squares residual. In this section, we detail how the solution of the least-squares problem (13) enables to
compute easily and cheaply the SVD of the associated scaled (least squares) residual block. The least-
squares problem

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, with F j ∈ C(k+nj+p)×(k+nj) (84)

is solved by using a fullQR-factorization of F j = QLSj RLSj , where the superscript LS comes from Least

Squares, QLSj = [Q
LS(1)
j , Q

LS(2)
j ] with QLS(1)

j ∈ C(k+nj+p)×(k+nj) and QLS(2)
j ∈ C(k+nj+p)×p,

RLSj =

[
R

LS(1)
j

0p×(k+nj)

]
∈ C(k+nj+p)×(k+nj) with RLS(1)

j ∈ C(k+nj)×(k+nj) is an upper triangular matrix,

from which the reduced QR-factorization of F j is formulated as F j = Q
LS(1)
j R

LS(1)
j if QLS(1)

j is
considered as an orthogonal basis of F j . Thus, we could still formulate Yj in a relatively economic way
as

Yj = (R
LS(1)
j )−1((Q

LS(1)
j )HΛj) ∈ C(k+nj)×p, (85)

from which we could deduce the residual of the least-squares problem described in Equation (35) as
follows:

Λj −F jYj = Λj −QLSj RLSj Yj = QLSj
(
(QLSj )HΛj −RLSj Yj

)
,

= QLSj

([
(Q

LS(1)
j )H

(Q
LS(2)
j )H

]
Λj −

[
R
LS(1)
j

0p×(k+nj)

]
Yj

)
,

= QLSj

([
0(k+nj)×(k+nj+p)

(Q
LS(2)
j )H

]
Λj

)
,

= QLSj

(
0(k+nj)×p

R`sj

)
,

where R`sj = (Q
LS(2)
j )HΛj ∈ Cp×p are the last p rows of (QLSj )HΛj . The SVD of scaled residual

R`sj Dε can be written as
R`sj Dε = U`sΣV

H
`s ,

so that the SVD of the scaled least squares residual is

(
Λj −F jYj

)
Dε = QLSj

(
0(nj+k)×p Inj+k

U`s 0p×(nj+k)

)
︸ ︷︷ ︸

Unitary

(
Σ

0(nj+k)×p

)
V H`s .
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F Numerical results for IB-BGMRES-DR-VA
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Figure 11: Comparison of IB-BGMRES-DR to IB-BGMRES-DR-VA on families built by Matrix 1 with parameters
as p = 20, md = 300 and k = 30. Left: convergence histories of largest/smallest backward errors ηb(i) at each
mvps for 3 consecutive families. Right: Gain (`) of IB-BGMRES-DR-VA to IB-BGMRES-DR verse family index.

Number of families Method mvps its

3
IB-BGMRES-DR 8066 515
IB-BGMRES-DR-VA 5903 490

30
IB-BGMRES-DR 80717 5191
IB-BGMRES-DR-VA 59069 4957

Table 8: Numerical results of IB-BGMRES-DR and IB-BGMRES-DR-VA in terms of mvps and its, where the
coefficient matrix is Matrix 1 with involving parameters defined as p = 20, md = 300 and k = 30.

RR n° 9393



48 Giraud, Jing & Xiang

G Numerical results for IB-BGMRES-DR-CB
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Figure 12: Comparison of IB-BGMRES-DR to IB-BGMRES-DR-CB on families constructed by Matrix 1 with
parameters setting as pCB = 1, p = 20, md = 300 and k = 30. Left: convergence histories of largest/smallest
backward errors ηb(i) at each mvps for 3 consecutive families. Right: number of consumed mvps verse family
index.

Number of families Method mvps its

3
IB-BGMRES-DR 8069 515
IB-BGMRES-DR-CB (pCB = 15) 7844 561
IB-BGMRES-DR-CB (pCB = 1) 7820 7250

30
IB-BGMRES-DR 80861 5198
IB-BGMRES-DR-CB (pCB = 1) 78308 72608

Table 9: Numerical results of IB-BGMRES-DR, IB-BGMRES-DR-CB with parameter pCB = 1, 15 in terms of
mvps and its, where the involving parameters for Matrix 1 are set to be p = 20, md = 300 and k = 30.
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H Numerical results for various target accuracy
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Figure 13: History of Section 5.3 for the behavior in case of different target accuracy (10−2, 10−3 and 10−4) for
the families constructed by Matrix 1 with parameters setting as p = 20, md = 300 and k = 30. Left: convergence
histories of IB-BGCRO-DR, BGCRO-DR and IB-BGMRES-DR on the largest/smallest backward errors ηb(i) at each
mvps for 10 consecutive families. Right: Gain (l) of the block methods with respect to IB-BGCRO-DR along family
index.
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I Comparison with IB-BGMRES-DR in terms of reusing informa-
tion

IB-BGMRES-DR [1] is a block GMRES method that enables the deflated restarting strategy proposed
by Morgan [12] for recycling spectral information at a new cycle and the inexact breakdown mechanism
introduced by Robbé and Sadkane [19] for handling the issue of almost rank deficient block generated
by the block Arnoldi procedure. Assume the way of approximating spectral information is the same for
the IB-BGCRO-DR and IB-BGMRES-DR methods, the major difference between this two IB methods
arise from their way of reusing such generated spectral information as described in Figure 14, in which
the content in rectangle refers to the algorithm adopted in corresponding cycle and the directed arrow
illustrates generating target spectral information at the end of the j-th (j = 1, 2, · · · ) cycle (or family)
and then reusing it in the subsequent (j + 1)-th cycle (or family) for convergence acceleration. Figure 14
illustrates that unlike IB-BGCRO-DR which could reuse spectral information from the solutions of pre-
vious family and cycle, IB-BGMRES-DR can only reuse information from the previous cycle, which
means IB-BGMRES-DR could solely solve each individual family of linear systems (1) separately with-
out benefiting from information generated when solving the previous family. Therefore, IB-BGCRO-DR
and IB-BGMRES-DR could be mathematically equivalent to each other under some conditions (like us-
ing the same way to approximate eigen-information) as the relationship between (block) GCRO-DR and
(block) GMRES-DR when solving single family in Equation (1), while the performance of the former one
overs the later one when solving subsequent related-sequence families thanks to its ability of recycling
spectral information between families as described in top red parts of Figure 14, and which has been
verified by the numerical results shown in Section 5.3.

IB-BGMRES

A(1)X(1) = B(1)

1st cycle

IB-BGCRO-DR2nd cycle

......j-th cycle

IB-BGCRO-DRlast cycle

IB-BGCRO-DR

A(2)X(2) = B(2)

IB-BGCRO-DR

......

IB-BGCRO-DR

......

IB-BGCRO-DR

A(l)X(l) = B(l)

IB-BGCRO-DR

......

IB-BGCRO-DR

IB-BGMRES1st cycle

IB-BGMRES-DR2nd cycle

......j-th cycle

IB-BGMRES-DRlast cycle

IB-BGMRES

IB-BGMRES-DR

......

IB-BGMRES-DR

......

IB-BGMRES

IB-BGMRES-DR

......

IB-BGMRES-DR

Figure 14: Flowchart of reusing spectral information in the IB-BGCRO-DR (top) and IB-BGMRES-DR
(bottom) algorithms

Inria



RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Block GCRO-DR with inexact breakdown
	GCRO
	Block GCRO
	Block GCRO with inexact breakdowns
	Subspace recycling policies along with inexact breakdown
	A variant suited for flexible preconditioning

	Search space expansion policies governed by the stopping criterion
	Search space expansion policy governed by b
	Search space expansion policy governed by A,b
	Search space expansion policy governed by computational performance

	Remarks on some computational and algorithmic aspects
	Inexact breakdown and re-orthogonalization at restart
	Solution of the least-squares problem and cheap SVD calculation of the scaled least squares residual

	Numerical experiments
	Rayleigh Ritz versus harmonic-Ritz approach exploited for recycling subspace
	Comparing IB-variants with two different inexact breakdown thresholds 
	Benefits of recycling between the families
	Subspace expansion governed by the convergence criterion A,b
	Subspace expansion policy for individual convergence thresholds for b
	Expansion policy governed by computational performance
	Behavior on sequences of slowly-varying left-hand sides problems
	A variant suited for flexible preconditioning

	Concluding remarks
	Other two alternatives to compute the approximate eigen-information
	Proof of Proposition 2
	IB-BFGMRES-DR: Block flexible GMRES with inexact breakdowns and deflated restarting
	Block flexible Arnoldi with inexact breakdowns
	Harmonic-Ritz vectors and residuals
	Flexible block GMRES with inexact breakdowns at restart

	Proof of Proposition 4
	The SVD decomposition of the least squares residual and the solution of the least-squares problem
	Numerical results for IB-BGMRES-DR-VA
	Numerical results for IB-BGMRES-DR-CB
	Numerical results for various target accuracy
	Comparison with IB-BGMRES-DR in terms of reusing information

