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Abstract: This work presents a hybrid numerical approach for solving linear systems arising
from the discretization of the two-dimensional parametric Helmholtz equation. A convolutional
neural network based on the U-Net architecture is trained in an unsupervised manner to approxi-
mate the inverse of the discretized Helmholtz operator, using a loss function involving the residual
norm of the linear system. The trained network is used as a nonlinear preconditioner within the
Flexible GMRES (FGMRES) algorithm. Numerical experiments show that while the neural net-
work is not accurate enough to act as a standalone solver, it significantly improves the convergence
of FGMRES when employed as a preconditioner. The neural preconditioner demonstrates robust
performance and generalization capabilities with respect to variations in the velocity field and the
domain size. Comparisons with classical algebraic preconditioners based on sparsified LU factor-
izations indicate superior efficiency of the neural approach under equivalent conditions. We believe
that the proposed method is not tied to a specific neural architecture and can be extended to other
parametric PDEs.
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Préconditonnement par réseaux de neuronnes: un cas d’étude
pour la résolution de 1I’équation de Helmholtz paramétrique

Résumé :  Ce travail présente une approche numérique hybride pour la résolution de systémes
linéaires découlant de la discrétisation de ’équation paramétrique bidimensionnelle de Helmholtz.
Un réseau neuronal convolutionnel basé sur I’architecture U-Net est entrainé de maniére non su-
pervisée pour approximer l'inverse de I'opérateur de Helmholtz discrétisé, en utilisant une fonc-
tion de perte impliquant la norme résiduelle du systéme linéaire. Le réseau entrainé est utilisé
comme préconditionneur non linéaire dans 1’algorithme Flexible GMRES (FGMRES). Les expéri-
ences numériques montrent que si le réseau neuronal n’est pas suffisamment précis pour servir de
solveur autonome, il améliore considérablement la convergence de I’algorithme FGMRES lorsqu’il
est utilisé comme préconditionneur. Le préconditionneur neuronal démontre des performances ro-
bustes et des capacités de généralisation en ce qui concerne les variations du champ de vitesse et de
la taille du domaine. Les comparaisons avec les préconditionneurs algébriques classiques basés sur
des factorisations LU sparifiées indiquent une efficacité supérieure de 'approche neuronale dans des
conditions équivalentes. Nous pensons que la méthode proposée n’est pas liée & une architecture
neuronale spécifique et qu’elle peut étre étendue a d’autres EDP paramétriques.

Mots-clés :  Préconditionnement, réseaux de neuronnes, méthodes de sous-espaces, equation
d’Helmholtz paramétique
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1 Introduction

In this work, we focus on solving the Helmholtz equation that is used for modeling the propagation
of acoustic waves in heterogeneous media. Specifically, we are interested in the solution of the linear
systems resulting from the discretization of this equation in a 2D domain using subspace iterative
methods. For these types of linear systems, no generic, efficient preconditioner currently exists. In
this respect we investigate the possibility of using machine learning to design such a preconditioner.
In more classical approaches such as physics-informed neural networks (PINNs) [7], the trained
neural network aims at directly finding the solutions. The main advantage of our hybrid approach
is that the subspace method ensures that the quality of the computed solution far surpasses the
quality of the solution predicted by a neural network alone. Given that neural networks have a
nonlinear response to their inputs and are typically trained in 32-bit arithmetic, we consider the
FGMRES [16] subspace method to enable a 64-bit computation suited for ill-conditioned problems.
To our knowledge, this idea was first proposed in [23, Chapter 5] and further exploited in [18]. We
show that an unsupervised-trained neural network can construct an effective preconditioner with
attractive generalization properties. Our conclusions are not restricted to this network choice and
our claim is that one may use their preferred network [18] and apply similar ideas to other linear
systems.

In recent years, the use of machine learning techniques, particularly neural networks (NNs), has
been considered in various ways for developing preconditioners for Krylov subspace methods. One
contribution in this field, close to ours, comes from Oseledets and colleagues [15], who introduced
a discretization-invariant neural operator used as a nonlinear preconditioner within the flexible
conjugate gradient (FCG) method, enabling efficient solutions of elliptic PDEs across multiple linear
systems. In their work, Trifonov et al. [20] proposed a GNN-based preconditioner that learns optimal
sparsity patterns and improves the convergence of iterative solvers for complex physical models.
In a related study, they further refined this concept for conjugate gradient solvers, demonstrating
significant reduction in iteration counts and computational cost [21]. Furthermore, Kopani¢akova
and Karniadakis [9] proposed a hybrid preconditioning strategy that leverages DeepONet models
to capture low-frequency error components while classical iterative methods handle high-frequency
ones. Their framework demonstrated robust performance and convergence acceleration across a
wide range of parameterized linear systems, offering a novel perspective distinct from purely GNN-
based or multigrid techniques. This approach complements other neural preconditioning methods
and reveals the potential of operator learning frameworks in the preconditioning landscape. Yusuf
et al. [24], who designed ILU preconditioners via GNNs for advection-dominated PDEs; and Li et
al. [10], who introduced neural operators to accelerate PDE solvers directly. Azulay and Treister [1]
combined multigrid methods with deep learning for Helmholtz problems, while Moore [12] explored
residual neural networks for constructing adaptive preconditioners. Dimola et al. [4] and Nieto
Juscafresa [6] also proposed data-driven techniques tailored for GMRES solvers.

The field of scientific machine learning is rapidly evolving, and the few references provided herein
are not intended to offer an exhaustive overview of the state of the art, as such an undertaking
would far exceed the scope of the present work.
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2 Background

2.1 The Helmholtz equation

We consider the two-dimensional Helmholtz equation, subject to the so-called Sommerfeld radiation
condition,
VZiu+k*>u = f in R?,

ou
(9 = ak(x)ut) ) =

where 7 € C denotes the imaginary unit such that 5> = —1, and u: R? = C, f: R? = C, k: R? —
R* are scalar fields, referred to as the solution field, the source field, and the wavenumber field,
respectively. The latter is defined by k: x + w/c(x), where w € R* is the angular frequency of
the source, and c: R? — R* is the velocity field. In what follows, we restrict ourselves to the case
w = 1. Numerically, the unbounded domain R? is truncated to a computational, square domain
Q= [~L, L]?> C R? and the derivatives in eq. (1) are discretized using Fourier differentiation |13, 19,

| with N points in each direction. Consequently, there is a total of n := N? degrees of freedom.
The boundary conditions are (approximately) enforced using perfectly matched layers (PMLs) [2]
in the outer region Qpm1 := Q\ Qinner, where Qinner = [~ Linners Linner]?, With Linner := L — £ and
¢ < L, as illustrated in Figure 1.

(1)

. 1/2
1mhhﬁmwm/<

i1

2L Qinncr

Figure 1: Illustration of the PML.

The discretization of the Helmholtz problem (1) yields a system of linear equations of the form
A(c)x = b, involving the discrete velocity field ¢ € R™ and the associated discretized operator
(matrix) A(c) € C"*™, as well as the discretized source term b € C™ and solution z € C".

2.2 Subspace solver with nonlinear preconditioner

The solution of large linear systems of equations is often approached by iterative methods. Among
the advantages of these techniques are their moderate memory consumption and the ability to
stop the iterations when the quality of the solution is similar to the possible uncertainty in the
matrix entries or right-hand sides, which may arise from discretization errors in the case of a PDE
solution or from uncertainty in some input data. Backward error analysis [13, 22] provides powerful
techniques for designing meaningful stopping criteria. In recent decades, subspace methods, such as
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Krylov subspace methods, have attracted much attention and have become standard techniques for
solving linear systems. For unsymmetric problems, the best known method is certainly GMRES [17],
which computes the minimum residual norm approximation in a Krylov subspace. This technique
relies on the so-called Arnoldi process, which incrementally builds an orthonormal basis of the nested
subspaces. At step k, the Arnoldi algorithm computes a set of orthonormal vectors Vi, = [v, ..., vg]
that satisfy the so-called Arnoldi relation, which is written in matrix form:

AVy = Vi1 Hy, with VI Vi = T

where Hj, € C*+D*k js ypper Hessenberg. The minimum residual norm iterate x;, € span{vy, ..., vk},
that is z, = Vi with yp = argmin,ccr (|[Hry — Beil|2) where § = [[b]|2. In practice, a precon-
ditioner M is used to speed up the convergence of GMRES, where M is expected to approximate
A~! somehow. For GMRES it is recommended to use the preconditioner on the right, i.e., GMRES
solves AMt = b, with Mt = x. Thus, at each iteration, GMRES still minimizes the residual norm
of the residual associated with the original linear system. The Arnoldi relation is

AMVy, = Vi1 Hy, with Vi Vit = Ir.

In [16], Saad introduced the idea of a flexible preconditioner, which allows to have a different
preconditioning matrix M; at each iteration, so that the generalized Arnoldi relation becomes

AZ]c = Vk+1gk with VkﬁIVkJrl = Ik+17 (2)

where Zj, = [z1,...,2] with z; = Mv; (¢ = 1,...,k). This idea can easily be extended to the
situation where the preconditioner is no longer linear, i.e., z; = M;(v;), where each M; may
be a nonlinear operator. In the latter case, Equation (2) still holds and uniquely defines each
iterate as long as 7 remains full rank. In this paper we use this equality with M;() = Ny(),
which is the trained neural network (see section 3). The nonlinearity has two origins; first, the
activation functions in the neurons are nonlinear, and second, the preconditioner is computed in
32-bit arithmetic while the rest of the computation is done in 64-bit arithmetic. This truncation
due to casting 64 bits to 32 bits is also nonlinear. A sketch of the NN-preconditioned FGMRES
algorithm is provided in Algorithm 1.

3 Neural network components

3.1 Network architecture

As stated in Section 2.2, we propose to use a neural network as a nonlinear preconditioner. To do so,
we design a neural network based on the U-Net architecture [14], which takes the discretized source
and velocity fields as inputs. To make them suitable to the convolutional nature of the U-Net,
these 2D fields are recast as image-like tensors. Specifically, recalling that n = N2, the complex-
valued source term b € C™ may be recast as a 2 x N x N tensor composed of two N x N channels
representing the real and imaginary parts of the field. Similarly, the real-valued velocity field ¢ € R"
may be recast as a 1 x N X N tensor. These two inputs are combined in a single 3 x N x N input
tensor. The output of the network is a 2 X N x N tensor, representing a 2D, complex-valued field.
As we shall see in Section 3.2, the network will be trained to provide approximations (predictions)
Zg of discrete solution fields = of the linear system A(c)ax = b corresponding to a discretized version
of the Helmholtz problem (1).

RR n°® 9593
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Algorithm 1: Sketch of the NN-preconditioned FGMRES algorithm.

1 79 =0b— Axg, B = ||roll2, vi =710/8
2 forj=1,...,mdo

8 |z =No(v))

4 w = Az;

5 fori=1,...,jdo

6 hij = (w,v;)

7 w <—w—hi7jvi

8 end for

9 | hjt1y = wl

10 Vj41 = w/hj+1,j

11 end for

12 Hi = [hijli<j<m,1<i<j+1

13 Zm = [21,- -5 2m]

14 Yy = argmingecm [[Hny — Berll2
15 Tyy = To + ZmYm

E

e

o 32 32
iD bot >D

Figure 2: Overview of our U-Net architecture, whose main building blocks are described in Tables 1
and 2.

The specific U-Net architecture prescribed in this work is depicted in Figure 2. The modules
represented in Figure 2 are described in Table 1. They consist of sequences of parameterized layers
detailed in Table 2. The downscaling convolutions, represented by the downward orange arrows, are
designed such that the size of the “image” is halved. Similarly, the upscaling convolutions, repre-
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sented by the upward orange arrows, are designed such that the size of the “image” is multiplied by
2. Asreported in Table 1, our U-Net architecture comprises a total of 831,650 trainable parameters,
which is independent of n owing to its convolutional nature.

Module Sequence of layers #params/module #modules total #params
Ei> COIIVS,;;Q,:;JJ7 BN327 PreLU32 992 1 992
Convss,32.5.1.1, BNsa, PreLUsy 9,344 1 9,344
COHV32,32,371,1, BN32, PI‘GLU32, CODV3273273,1,1 18,592 4 74,368
COHV64,64,371,1, BN64, PreLU64, Conv6473273,1,1 55,584 4 222,336
Convsz,2,1,0,1 66 1 66

Convsz 32,8,3,2 65,568 4 262,272

ConvTaz 32,8,3,2 65,568 4 262,272

m===)  skip connection 0 4 0
Total 831,650

Table 1: Description of the modules used in the U-Net architecture depicted in Figure 2. Each
module is defined as a sequence of layers detailed in Table 2, and the associated number of param-
eters is deduced from the values provided therein.

The abstract, functional representation of the neural network with parameters # is thus a non-
linear operator,
N@: C" xR" —>(Cn,
(b, ¢) — Ny(b,c) = Ny(c)(b),

where the conversions to and from image-like tensors are implicit.

(3)

3.2 Training of the network

The training process aims at finding the parameters 8* € © of the neural network that minimize a
certain cost functional J: ©® — R, where © denotes the parameter space, i.e.,

0* € argmin J(0). (4)
€O

For our specific problem, the cost function takes the form

J(0) = Epc[Lo(b, 0)], ()

RR n°® 9593
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Layer PyTorch name  Arguments #params Output size

Conve,,,cous,kpys Conv2d in_channels = ciy (k®cin + Deouws o= (i +2p—k)/s+1]
out_channels = cout
kernel_size = k
padding = p
stride = s

ConvTe, cout,kp,s ConvIranspose2d  in_channels = ¢, (k%cin + Dcouws 0=s(i—1) —2p+k
out_channels = cout
kernel_size =k
padding = p
stride =s

BN, BatchNorm2d num_features = ¢ 2c 0o=1

PreLU. PReLU num_parameters =c ¢ 0o=1

Table 2: Description and PyTorch name of the NN layers used in the U-Net architecture described
in Figure 2 and Table 1, along with their arguments, and the induced number of parameters and
output size.

where b and c are the inputs of the network, Ly is a loss function and E; . denotes the expectation
operator with respect to b and c¢. In this work, we consider the loss function defined by

. 2 . ISP 72
Lofbe) = 0= AN, _ 10— Alc)ally _ 10— bolly “
LB LB LE

where g := Ny (b, ¢) = Ny(c)(b) denotes the prediction of the neural network, and by = A(c)&g. The
neural network is thus trained to be a good approximation of A~!, i.e., roughly speaking, so that
No(c) = A~1(c) for any c. The training process can here be interpreted as unsupervised, in the sense
that the prediction & are not (directly) compared to reference values z* in the loss function. We
remark that the residual of the linear system for a given prediction £9 = Ny(c)(b), namely b— A(c)Zg,
which is at the core of the loss definition, corresponds to an algebraic (discretized) version of the
residual of the PDE, including the boundary conditions. As such, the loss may be interpreted as
being physics-informed. In terms of numerical linear algebra, we further note that for any given
c € R™, Lq(b,c) = np(2g)?, where 1,(Z) denotes the backward error with respect to b of ¥ as an
approximate solution to the linear system A(c)z = b [5, 13]. An alternative interpretation that can
be drawn from the last representation of the loss function (6) is that the neural network is trained
so that A(c)Np(c) is a good approximation of the identity operator, similar to an autoencoder [3].
The neural network Ny can then be interpreted as an encoder, trained such that it is decoded by
A. The training process is summarized in Figure 3.

_A 2
No | — g = Ny(b,c) —{ A() — by = () ‘9:%
2

| T

Figure 3: Schematic representation of the training framework.
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Parameter Value
Optimizer Adam [3]
Mini-batch size B 32
Number of epochs 500
Size of data set K 16,000
Training/validation data set split 96%,/4%
Learning rate (LR) 1073
Gradient clipping (norm) 1
LR scheduler (LRS) ReduceLROnPlateau
LRS factor 0.5
LRS patience 10
LRS min LR 107°

Table 3: Parameters of the training process.

Numerically, the solution of the optimization problem (4) is approximated using the Adam
algorithm [8] over 500 epochs, from a data set of K = 16,000 synthetic pairs of inputs X =
{(®®) )} which are cheaply generated from the (prescribed) probability distribution of (b, c)
(see below). The data set is split into a training data set Xypain C X of size 15,360 (96% of the data
set), on which the training is performed, and a validation data set Xya := X \ Xirain Of size 640
(4% of the data set), on which the model is validated at the end of each epoch. The parameters of
the optimizer are summarized in Table 3. At each iteration (gradient step) of the Adam algorithm,
the cost function is approximated from a mini-batch B C Xj;ai, of size B = 32 as

. 1
I s =5 > Lo(b,o). (7)
(b,c)eB

For the experiments presented subsequently in this paper, the network was trained using training
and validation data generated with N = 64, L = 20 and ¢ = 4. Furthermore, the distribution
of (b,c) is defined component-wise and independently for b and c¢ such that the entries of b are
independent and normally distributed with zero mean and unit variance (we denote b YN (0,1)),
the ones of ¢ are independent and uniformly distributed between 1 and 2 (i.e., ¢ B u ([1,2])). We
note that the latter implies that the wavelength A := 27 /k = 2mc/w lies within the range [2m, 47],
so that there are between 10 and 20 discretization points per wavelength, since 2L/N = 5/8.

RR n°® 9593
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4 Numerical experiments

4.1 Numerical quality and robustness of the trained network as a stan-
dalone solver /surrogate

We first investigate the numerical robustness of the trained network used as a surrogate model that
serves as stand alone solver. For that purpose we select two sets of trained parameters that have
comparable value of the loss function; they are referred to as Training #1 and Training #2. We
study their quality and robustness both for problems similar to those used during the training, that

is, linear systems arising from the discretization on a 64 x 64 grid and ¢ 5 U ([1,2]) as well as for
other distributions for ¢ and larger grid sizes.

4.1.1 Generalization capabilities with respect to the parameter ¢

1.2 1.2
8
1.0 A 1.0
0.8 1 0.8
o
2 0.6 1 2 0.6
0.4 4 0.4
0.0 0.0
' nil2)  m125,175) ¢M[075,225) 100.5,2.5) T WL2) n0125,175) ;0075,225)  UA[0.5,2.5))
distribution of the components of ¢ distribution of the components of ¢
(a) Training #1 (b) Training #2

Figure 4: Direct prediction from the neural network on problems with ¢ having different distribu-
tions, where the neural network has been trained with a = 1 and ¢ < U ([1,2]). Boxplots of
based on 1,000 experiments.

For the set of trained parameters, we display in Figure 4 the boxplots of n,(Zg) for different

distributions of ¢. These include the distribution used during training (i.e., ¢ u ([1,2]); leftmost
boxplot), a distribution strictly contained within the training interval [1, 2], namely [1.25,1.75], and
two intervals that progressively extend beyond the training range, namely [0.75,2.25] and [0.5, 2.5].
We note that the latter range implies that A € [m, 57|, so that there are still between 5 and 25
discretization points per wavelength. The two figures reveal quasi identical behaviors and trends.
The best performance is observed when the network is used to solve systems involving matrices
in the training domain, and the performance deteriorates as we move further away. However,
for all problem sets, the numerical quality of the predicted solutions by the surrogate model is
extremely poor, with a backward error 7,(%y) that varies between 0.1 and 0.8. Furthermore, the
trend and performances are similar for the trained network; the results are not sensitive to the
selected network.
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4.1.2 Generalization capabilities with respect to the domain size

We conduct similar experiments with both trained networks while varying the domain size, keeping
¢ within the same interval as used for training. As discussed in Section 3.2, the network is trained
on a N x N Cartesian grid, with N = 64, discretizing the square domain [—L, L]?, with L = 20 and
a PML size £ = 4. We scale both N and L by a factor o € {2,4,8}, so that L/N = 5/16 remains

fixed, while keeping the PML size £ = 4 and the distribution of ¢ * ¢/ ([1,2]) fixed. This results in
larger discretization matrices A(c) € C™*™ with n = N2, whose size thus grows quadratically with
a: n = 16,384 for a = 2, n = 65,536 for « = 4, and n = 262,144 for a = 8; while n = 4,096 for
the reference (o« = 1). As evidenced by Figure 5, the trends and performance remain similar. The
predicted solution exhibits extremely poor numerical quality. At first glance, one might notice an
improvement in quality as the domain size increases. However, the differences are not significant,
and the overall quality remains very poor. More notably, the variance appears to decrease with
larger domain sizes, though we currently have no explanation for this behavior.

0.40 0.40
0.35 0.35 1
0.30 0.30 1

0.25 %: 0.25 1 %,

& 0201 === € 0201 ===

0.15 1 0.15 1
0.10 0.101
0.05 == 0.05 1 &
0.00 : : . : 0.00 . . . :
1 2 4 8 1 2 4 8
a a
(a) Training #1 (b) Training #2

Figure 5: Direct prediction from the neural network on problems with o € {1,2,4, 8}, where the
neural network has been trained with N = 64 and ¢ ~ U ([1,2]). Boxplots of 7, based on 1,000
experiments.

The results presented in the last two subsections indicate that the network cannot be used as a
stand alone solver, as it lacks the robustness needed for accurate solutions. In the next section, we
will explore its use as a preconditioner within a subspace linear solver (here, FGMRES), where an
approximate inverse may be sufficient to accelerate convergence to an accurate solution.

4.2 Numerical quality of the trained network as nonlinear preconditioner

In this section, we report on the numerical effectiveness of the trained networks when used as a
nonlinear preconditioner to speed-up the convergence of a subspace method, namely FGMRES. We
first compare its performance with respect to an algebraic preconditioner in Section 4.2.1. Then,
in the following sections, we investigate the generalization capability with respect to the velocity
field parameter ¢ and with respect to the domain size.
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4.2.1 Comparison with an algebraic preconditioner

For the sake of comparison, we also report on the numerical performance of a purely algebraic
implicit! preconditioner built as the LU factorization of an approximation A(c) of A(c) that consists
in keeping only the largest entries. More precisely, for a given threshold ¢ we proceed as follows:

a(c)ii = a(c)q,
a(c)ij = alc)ij, if la(c)iz| > ela(c)il, (8)
0 otherwise.

We display in Table 4 the ratio of kept entries in the preconditioner and relative distance between the
matrix and the implicit preconditioner. We should mention that, due to the chosen discretization
technique, the matrix A(c) is quite populated with many nonzero entries but usually does not need
to be explicitly formed to solve the associated linear system by a subspace method. Among the
large number of nonzero entries, many are of small magnitude which explain the very low nonzero
ratio for a moderate distance between the two matrices. As expected the lower the threshold e, the
closer to the original matrix and the denser the preconditioner. Since the experiments are run on
100 examples, the quantities reported in Table 4 are the mean values, along with the associated
standard deviations indicated between parentheses.

€ mnz(A(c))/mnz(A(c))  [[A(e) = A(e)lle /[ A(0)]|e
0.1 3.4-1073 (3.1-1079) 1.8-1071 (6.3-1079)
0.05  6.5-1073 (2.2-1079) 1.2- 10 L (2.7 0*5)
002 15-107% (6.8-1079) 7.7-1072 (1.3 —5)
0.01  3.2-1072 (8.7 ) 3.8-1072 (1.0 )
0.005 4.9-107% (8.9 ) 1.8-1072 (7.3 )

Table 4: Sparsity of A in terms of proportion of non-zero (denoted as nnz) entries kept compared to
A and relative distance of A to A in terms of Frobenius norm, for different values of . The average
value over 100 experiments is reported, along with the standard deviation between parentheses.
Note that nnz(A(c)) = 7,547,926, and ||A(c)||r = 1.1-10% (1.8-1071).

Although the trained network performs poorly as a standalone solver, we highlight its potential
to accelerate the convergence of subspace methods like FGMRES. In Figure 6, we present the

convergence history of n;, for the solution of 100 linear systems derived from the discretization of

the Helmholtz problem with a random velocity field ¢ Bu ([1,2]), using FGMRES without restart.

We display the convergence histories for the 100 linear systems, as well as the median for each
system and for all preconditioners built using various sparsification thresholds e. For the sake of
completeness, we also display the convergence history of GMRES without a preconditioner, that
does not succeed to reach 1071° in 1024 iterations while all the others do. It can be observed that
the algebraic implicit preconditioner becomes increasingly effective as € decreases. It is noticeable
that Ny outperforms all of them, including the best individual algebraic preconditioner built with
€ = 0.005, which retains nearly 5% of the nonzero entries of each matrix, as can be seen in the zoom
display in Figure 6b. We stress that the algebraic preconditioners require an LU factorization for

Limplicit in contrast to explicit preconditioners based on approximate inverse techniques
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every linear system as ¢ changes, whereas Ay remains the same for all linear systems. Furthermore,
all convergence histories using Ay (in orange) are closely aligned and convergence to 10710 is
achieved in fewer than 20 iterations. These results illustrate the performance and the robustness of
the trained network when used as preconditioner. The next question is what are its capabilities in
terms of generalization with respect to the parameter ¢ and with respect to the domain sizes. We
investigate these two questions in the next sections.

10° 4 — GMRES 100
— PGMRES, £=0.1
— PGMRES, £ =0.05
1072 A — PGMRES, € =0.02 102 A B
PGMRES, £ =0.01
104 — PGMRES, ¢ = 0.005 104 ]
o — NN-FGMRES o
< < — GMRES
10-5 10-6 | = PGMRES, £=0.1
s — PGMRES, € = 0.05
— PGMRES, ¢ = 0.02
10-8 4 \ 10-8 4 PGMRES, € = 0.01
— PGMRES, & = 0.005
— NN-FGMRES
10710 . : . 10710 . . :
0 256 512 768 1024 0 5 10 15 20
# iter # iter
(a) (b) Zoom on the first 20 iterations.

Figure 6: Convergence in terms of 7, of unpreconditioned GMRES, preconditioned GMRES (PGM-
RES) with the algebraic preconditioners described in Table 4 and FGMRES preconditioned with
the trained neural network (NN-FGMRES) corresponding to Training #1, on problems with oo = 1
and ¢ U([1,2]) (same as for the neural network training). The iteration-wise median of the
convergence history over 100 experiments is displayed as a thick line, while the individual 100 re-

alizations are plotted as thinner, lighter lines.

4.2.2 Generalization capability with respect to the parameter ¢

As described in Section 3.2, the neural network is trained on a dataset built with ¢ € U4([1,2]) and
demonstrates excellent performance as a preconditioner for solving linear systems whose matrices
arise from the discretization of problems where ¢ falls within the same range. A natural question
arises: how does Ny perform on matrices constructed with ¢ varying within an interval that is either
entirely contained within or only partially overlaps the training interval [1,2]? To address this, we
consider three sets of 100 linear systems each, with ¢ varying in the following intervals: [1.25,1.75],
which is fully contained within the training range; [0.75,2.25], where the training interval covers
two thirds of the range; and finally [0.5,2.5], where the training interval represents only one third
of the values involved in the matrices preconditioned by Nj.

The convergence history for these four sets of ranges (including the original range [1, 2]) is shown
in Figure 7 for the two trained networks. The first key observation is that both trained networks
exhibit very similar efficiency, indicating that the choice of the network does not significantly
impact performance as long as they achieve comparable validation loss during training. The second
observation is that when solving problems where ¢ belongs to the training range or a subset of it, the
convergence histories are nearly identical, as evidenced by the complete overlap of the curves (e.g.,
the red curves are entirely covered by the blue ones). Regarding generalization to values outside
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the training range, two insights emerge. First, the smaller the overlap with the training range, the
greater the degradation in preconditioner performance—ANjy converges more slowly for ¢ € [0.5,2.5]
than for ¢ € [0.75,2.25]. Second, as the overlap decreases, the variability in the preconditioner’s
effectiveness increases. Nonetheless, it is worth noting that despite the performance degradation, the
preconditioned solver still achieves significant improvements compared to using no preconditioner
at all.

10° 4 — [1,2] 100 — [1,2]
- [1.25,1.75] - [1.25,1.75]
— [0.75,2.25] — [0.75,2.25]
10-2 4 — [0.5,2.5] 1072 4 - [0.5,2.5]

1074 107
2 s
< <

1076 107

10-¢ 1078

10710 . . . . ; . . 10710 \ . : . ; ; .

0 20 40 60 80 100 120 140 160 0O 20 40 60 8 100 120 140 160
# iter # iter
(a) Training #1 (b) Training #2

Figure 7: Convergence in terms of n, of NN-FGMRES on problems with a« = 1 and ¢ Cu ([a,b])

with varying ranges [a,b] as reported, where the neural network has been trained with a = 1

and ¢ < U ([1,2]). The iteration-wise median of the convergence history over 100 experiments is
displayed as a thick line, while the individual 100 realizations are plotted as thinner, lighter lines.

4.2.3 Generalization capability with respect to the domain size

In this section, we analyze the generalization capabilities of the preconditioner concerning the
size of the physical domain, which translates into solving larger linear systems. Following the same
approach as in previous experiments, we solve 100 linear systems for each system size using Ny with
both trained networks. Figure 8 displays the convergence history for all 100 solutions, along with
the median convergence history. The results show that as the problem size increases, the number
of iterations required for convergence also grows, though the dispersion around the median remains
relatively stable. Additionally, the choice of trained network has little impact, as the trends for
Training #1 (left graph) and Training #2 (right graph) are very similar. Notably, when increasing
the scaling factor from o = 4 to a = 8, the number of iterations approximately doubles, even
though the problem size is quadrupled. This highlights some robustness of the Ny preconditioner
with respect to problem size.

5 Further discussion
We have presented results only with U-Net in this work, but preliminary results [18] on 1D ex-

amples suggest that using other neural network architectures, trained with the same loss function
leads to similar outcomes with different preconditioner efficiency. The objective of this work is to
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10°
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10 . . : . : : : . 10 . : : : : : : :
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Figure 8: Convergence in terms of 7, of NN-FGMRES on problems with o € {1,2,4,8}, where
the neural network has been trained with a = 1 and ¢ U ([1,2]). The iteration-wise median of
the convergence history over 100 experiments is displayed as a thick line, while the individual 100

realizations are plotted as thinner, lighter lines.

demonstrate that machine learning methods, which often struggle with precision issues, can be ef-
fectively combined with classical linear algebra techniques—such as suitable subspace methods—to
leverage the best of both worlds. This approach ensures solution quality through traditional numer-
ical techniques while benefiting from the acceleration provided by neural networks. It is a highly
generic strategy that can be applied in various contexts [20]. Identifying the optimal architecture
is beyond the scope of this paper. However, certain machine learning architectures may lack the
necessary properties to function effectively as nonlinear preconditioners. For example, as noted
in [11], DeepONet constructs surrogates that reside in a low-dimensional space of dimension the
output dimension of the trunk net branch. If this space has a lower dimension than that of the
linear system to be solved, the resulting nonlinear preconditioner will be “low-rank”, potentially
leading to a breakdown of FGMRES. Therefore, careful consideration is required when designing
the neural network architecture within the DeepONet framework to mitigate this issue. For an
illustration of this potential limitation, we refer to [18].
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6 Concluding remarks

In this study, we illustrate the potential of using neural networks as nonlinear preconditioners to
solve parametric Helmholtz equations using subspace methods. While the accuracy and robustness
of trained neural networks as standalone solvers is limited, integrating them as nonlinear precon-
ditioners within the FGMRES algorithm significantly accelerates convergence, even for problems
that are far beyond the training distribution. This hybrid approach combines the generalisation
capabilities and computational speed of neural networks with the numerical reliability of classical
iterative methods.

We would like to emphasise that the proposed strategy is not tied to a specific neural network
architecture. Although we opted for a U-Net-based model due to its convolutional structure and
efficient use of parameters, other architectures could also produce effective preconditioners, provided
they retain sufficient representational capacity. The generic framework can be extended to other
classes of linear systems beyond the Helmholtz equation, offering a promising approach to machine
learning in scientific computing.

Several promising avenues for future research have emerged. Firstly, incorporating models that
are independent of discretisation, such as PINNs or neural operators, which are trained across
multiple resolutions, could improve the ability to generalise to arbitrary domain sizes and mesh
structures. Secondly, extending the methodology to three-dimensional problems and other PDEs.

The intersection of numerical linear algebra and machine learning continues to pave the way for
solving complex, high-dimensional scientific problems. The methodology presented here builds on
this growing body of work by demonstrating that approximate learned inverses can be effectively
integrated into established numerical schemes.
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