
HAL Id: tel-03967557
https://theses.hal.science/tel-03967557v1

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solution of large linear systems with a massive number
of right-hand sides and machine learning

Yan-Fei Xiang

To cite this version:
Yan-Fei Xiang. Solution of large linear systems with a massive number of right-hand sides and machine
learning. Data Structures and Algorithms [cs.DS]. Université de Bordeaux, 2022. English. �NNT :
2022BORD0383�. �tel-03967557�

https://theses.hal.science/tel-03967557v1
https://hal.archives-ouvertes.fr


THÈSE PRÉSENTÉE
POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

MATHÉMATIQUES APPLIQUÉES ET CALCUL SCIENTIFIQUE

Par Yanfei Xiang

Résolution de systèmes linéaires de grande
taille avec un nombre massif de

second-membres et apprentissage
Sous la direction de : Luc Giraud et Paul Mycek

Soutenue le 7 décembre 2022
Membres du jury :

M. Eric de Sturler Professor Virginia Tech Président
M. Andreas Frommer Professor Bergische Universität Wuppertal Rapporteur
M. Stéphane Lanteri Directeur de Recherche Inria Examinateur
M. Michael Bauerheim Associate Professor ISAE-SUPAERO Examinateur
M. Jayant Sengupta Leader dept data-science/AI Airbus C R & T Examinateur
Mme. Carola Kruse Senior Scientist Cerfacs Examinatrice
M. Luc Giraud Directeur de Recherche Inria Directeur de thèse
M. Paul Mycek Senior Scientist Cerfacs Directeur de thèse





Résolution de systèmes linéaires de grande taille avec un nombre massif de second-membres
et apprentissage

Résumé : Ce travail se concentre sur la résolution itérative de grands systèmes linéaires avec des second-
membres multiples qui apparaissent dans diverses applications scientifiques. Lorsque de multiples second-
membres doivent être résolus, les variantes par blocs des méthodes du sous-espace de Krylov sont les méthodes
de choix. La mise en œuvre de l’algorithme des blocs permettant l’utilisation de noyaux de calcul efficaces de
type BLAS-3, le temps de résolution devrait être réduit. Malheureusement, ces avantages potentiels se font
au prix de difficultés numériques induites par l’éventuelle différence de vitesse de convergence des second-
membres. Cette caractéristique numérique est appelée convergence partielle. Pour les séquences de systèmes
linéaires non symétriques, dans le chapitre 2, nous développons une nouvelle approche de résidu de norme
minimale par bloc qui combine deux ingrédients principaux. Le premier composant exploite les idées de la
méthode GCRO-DR, ce qui nous permet de recycler les informations spectrales d’un système linéaire à un
autre. Le deuxième composant est le mécanisme numérique de gestion de la convergence partielle desecond-
membres appelé mécanisme de détection breakdown incomplet dans la méthode IB-BGMRES. Étant donné
que le problème de la convergence partielle se pose dans tous les types de solveurs de Krylov par blocs, dans
le chapitre 3, nous étendons ce mécanisme à la variante par blocs de la méthode du résidu conjugué, une
approche de résidu de norme minimale à récurrence courte pour des systèmes symétrique indéfini. Ensuite,
inspirés par l’idée de réutiliser l’information spectrale afin d’accélérer la convergence, nous concevons au
chapitre 4 une stratégie de recyclage du sous-espace correspondant. Plus précisément, nous appliquons les
idées de “thick-restart’, introduites dans la méthode de Lanczos pour le calcul des paires propres, dans
l’algorithme du gradient conjugué par blocs (BCG) pour les systèmes linéaires symétriques définis positifs.
Nous étudions également la possibilité d’utiliser la détection de convergence partielle dans BCG. Enfin,
ces stratégies de détection de convergence partielle et de recyclage du sous-espace peuvent être combinées
efficacement pour concevoir un algorithme de gradient conjugué par blocs déflatés pour les séquences de
systèmes linéaires définis positifs symétriques.

Une voie alternative aux approches traditionnelles d’algèbre linéaire numérique mentionnées ci-dessus
consiste à envisager l’utilisation des techniques d’apprentissage automatique. Dans le chapitre 5, nous
présentons quelques façons d’hybrider les nouveaux solveurs d’apprentissage profond et les techniques
d’algèbre linéaire numérique plus traditionnelles afin qu’ils puissent bénéficier les uns des autres. Dans
le contexte de la résolution d’une équation de Helmholtz hétérogène, nous nous concentrons d’abord
sur l’introduction de certains ingrédients mathématiques d’un solveur itératif classique dans la phase
d’apprentissage d’un solveur de réseau profond de neurones récemment proposé. Le principal avantage est
une amélioration significative de la phase d’apprentissage, plus robuste et plus rapide, qui s’avère également
applicable au processus de test. En outre, une fois que les réseaux ont été correctement entrainés, leurs
inférences peuvent être appliquées comme préconditionneur non linéaire dans les méthodes GMRES et FOM
flexibles traditionnelle. Cette partie démontre que ces variantes hybrides présentent des avantages évidents
par rapport à la fois à l’approche récemment introduite et au solveurs itératifs classiques de sous-espaces,
tant en termes de coût de calcul que de précision des résultats.
Mots-clés : Méthode du sous-espace de Krylov, algèbre linéaire numérique, apprentissage automatique,
apprentissage profond, Méthodes de sous-espace par bloc, Recyclage de sous-espace, Détection de convergence
partielle, Critère d’arrêt d’erreur inverse, Calcul arithmétique mixte.



Solution of large linear systems with a massive number of right-hand sides and machine
learning

Abstract: This work focuses on the iterative solution of large linear systems with multiple right-hand
sides that appear in various scientific applications. When multiple right-hand sides have to be solved, block
variants of Krylov subspace methods are the methods of choice. Because the block algorithm implementation
enables the use of efficient BLAS-3 like computational kernels, the time for solution is expected to reduce.
Unfortunately these potential advantages come at the price of numerical difficulties induced by the possible
different convergence rate of the right-hand sides or linear combination of some of them. This numerical
feature is referred to as partial convergence. For sequences of unsymmetric linear systems in Chapter 2,
we develop novel block minimum norm residual approach that combines two main ingredients. The first
component exploits ideas from GCRO-DR [80], enabling us to recycle spectral information from one linear
system to the next. The second component is the numerical mechanism for managing partial convergence of
the right-hand sides, referred to as the inexact breakdown detecting mechanism in IB-BGMRES [88], that
enables the monitoring of the rank deficiency in the residual space basis expanded blockwise. Next, for the
class of block minimum norm residual approaches, that relies on a block Arnoldi-like equality between the
search space and residual space, we introduce new search space expansion policies defined on novel criteria
to detect partial convergence. These novel detection criteria are tuned to the targeted stopping criterion and
convergence threshold. This enables us to monitor the computational effort while ensuring the final accuracy
of each individual solution. Because the partial convergence issue appears in any type of block Krylov solvers,
in Chapter 3, we extend the partial convergence detecting mechanism to the block variant of the conjugate
residual method [66], a minimum residual norm approach with short term recurrence scheme, for symmetric
but not necessary positive definite linear systems. Then, inspired by the idea of reusing generated information
to approximate spectral information for accelerating convergence, in Chapter 4, we devise a corresponding
subspace recycling strategy. More precisely, we apply the thick-restart ideas [125] introduced in the Lanczos
method for eigenpair calculation in the block conjugate gradient algorithm (BCG) [77] for the symmetric
positive definite linear systems. We also investigate the possibility to use the partial convergence detection
to the BCG algorithm as a heuristic. Finally, these partial convergence detection and subspace recycling
strategies can be efficiently combined to design a deflated block conjugate gradient algorithm for sequences
of symmetric positive definite linear systems.

An alternative path to the above mentioned traditional numerical linear algebra approaches is to consider
using the scientific machine learning techniques [64,75]. In Chapter 5, we presents some ways of hybridizing
the newly emerging deep learning solvers and the more traditional numerical linear algebra techniques to let
them benefit from each other. In the context of solving a heterogeneous Helmholtz equation, we first focus on
introducing some mathematical ingredients from classical iterative solver into the training phase of a recently
proposed deep neural network solver. The main benefit is a significant improvement in the training phase that
is more robust and faster, which turns out to be applicable to the testing process as well. Furthermore, once
the network solvers have been properly trained, their inferences can be applied as a nonlinear preconditioner
in the traditional flexible GMRES and flexible FOM methods. This part demonstrates that these hybrid
variants have clear advantages over both the newly emerging deep neural network approach and the classical
iterative Krylov solver in terms of both computational cost and accuracy of the computed solution.

Keywords: Krylov subspace method, Numerical linear algebra, Machine learning, Deep learning,
Scientific machine learning, Block subspace methods, Subspace recycling, Partial convergence detection,
Backward error stopping criterion, Mixed arithmetic calculation.

Inria, CONCACE
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Résumé étendu

Le cadre de recherche de cette thèse est la conception de techniques numériques
efficaces pour des simulations frontières dans des applications académiques et industrielles
complexes à grande échelle. Dans ce travail, nous nous concentrons principalement sur
la résolution itérative de grands systèmes linéaires avec des second-membres multiples
qui apparaissent dans diverses applications scientifiques telles que la chromodynamique
quantique, la mécanique de la rupture, certaines études paramétriques, et certaines
formulations de problèmes inverses, pour n’en citer que quelques-unes.

Les schémas itératifs modernes sont basés sur des méthodes de projection et font
très souvent appel aux sous-espaces de Krylov. Lorsque un système linéaire avec second-
membres multiples doit être résolu, les variantes par blocs des méthodes classiques de
sous-espaces de Krylov sont les méthodes de choix. Les méthodes par blocs définissent
l’espace de recherche comme la somme des sous-espaces de Krylov associés à chacun
des p second-membres, de sorte qu’à chaque itération bloc, l’espace de recherche est
élargi de p directions supplémentaires. D’un point de vue numérique, comme l’espace
de recherche est la somme des espaces de Krylov individuels, la convergence devrait
être au moins aussi rapide que la résolution indépendante de chaque second-membre.
L’implémentation d’algorithmes par blocs permettant l’utilisation de noyaux de calcul
efficaces de type BLAS-3, le temps de résolution devrait être réduit. Malheureusement,
ces avantages potentiels se font au prix de nouvelles difficultés numériques induites
par les taux de convergence éventuellement différents des second-membres ou de la
combinaison linéaire de certains second-membres. Cette caractéristique numérique est
appelée convergence partielle. Cette convergence partielle se traduit par une perte de
rang dans le bloc de directions p à utiliser pour élargir l’espace de recherche. Des remèdes
numériques appropriés doivent être conçus pour détecter et traiter cette éventuelle perte
de rang ; d’abord pour éviter la mise en défaut du solveur itératif, ensuite pour réduire
éventuellement l’effort de calcul dans les itérations suivantes en ajustant correctement la
taille du bloc.

Une voie alternative aux approches traditionnelles d’algèbre linéaire numérique
mentionnées ci-dessus consiste à considérer l’hybridation de méthddes classiques d’algèbre
linéaire numérique avec des techniques d’apprentissage automatique [64,75].

La première partie de ce manuscrit, composée de trois chapitres (chapitre 2-4), se
concentre sur la résolution des problèmes de calcul associés aux méthodes itératives
par blocs pour les séquences de systèmes linéaires à second-membres multiples. Dans le
chapitre 2, pour les séquences de systèmes linéaires non symétriques, nous développons une
nouvelle approche bloc basée sur la minimisation du résidu de norme minimale qui combine
deux ingrédients principaux. Le premier composant exploite les idées de GCRO-DR [80],
nous permettant de recycler l’information spectrale d’un système linéaire à l’autre. La
deuxième composante est le mécanisme numérique de gestion de la convergence partielle,
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appelé inexact breakdown dans IB-BGMRES [88]. Ce mécanisme permet de contrôler la
déficience de rang dans la base de l’espace des résidus étendue par blocs. Ensuite, pour
la classe des approches résiduelles à norme minimale par blocs, qui repose sur une égalité
de type Arnoldi par blocs entre l’espace de recherche et l’espace résiduel (par ex. Ensuite,
pour la classe des approches par blocs basées sur la minimisation du résidu de norme
minimale, qui repose sur une égalité de type Arnoldi qui lie l’espace de recherche des
solutions et l’espace des résidus associés (par exemple, toute variante GMRES ou GCRO
par blocs), nous introduisons de nouvelles méthodes d’expansion de l’espace de recherche
qui exploitent de nouveaux critères pour détecter la convergence partielle. Ces nouveaux
critères de détection sont adaptés au critère d’arrêt choisi et au seuil de convergence
ciblé pour garantir la qualité de la solution en termes d’erreur inverse. Cela nous permet
de contrôler l’effort de calcul tout en assurant la précision finale de chaque solution
individuelle. Puisque le problème de convergence partielle apparaît dans tous les types
de méthodes de sous-espaces, dans le chapitre 3, nous étendons le mécanisme de détection
de convergence partielle à la variante en bloc de la méthode des résidus conjugués [66], une
approche de norme minimale des résidus basée sur un schéma de récurrence courte, pour
les systèmes linéaires symétriques mais pas nécessairement définis positifs. Ensuite, inspiré
par l’idée de réutiliser l’information générée pour approximer l’information spectrale afin
d’accélérer la convergence, dans le chapitre 4, nous concevons une stratégie de recyclage de
sous-espace. Plus précisément, nous appliquons les idées de “thick restart” [125] introduites
dans la méthode de Lanczos pour le calcul des paires propres dans l’algorithme du
gradient conjugué par blocs (BCG) [77] pour les systèmes linéaires symétriques définis
positifs. Cette nouvelle variante raffine périodiquement l’information spectrale sur une
petite fenêtre définie lors de la résolution des systèmes linéaires, ce qui fournit un
moyen pratique d’approximer l’information spectrale avec un effort de calcul modéré.
Nous étudions également la possibilité d’utiliser la détection de la convergence partielle,
présentée dans le contexte de méthodes de norme minimale des résidus, pour l’algorithme
BCG. Ce mécanisme numérique n’est qu’une heuristique car la stratégie d’expansion de
l’espace de recherche qui en résulte, repose toujours sur la minimisation de la norme
des résidus, alors qu’idéalement elle devrait être basée sur un principe de minimisation
de l’erreur en norme A. Malheureusement, ces directions d’erreur en norme A ne sont
pas un sous-produit du BCG comme les résidus pour les méthodes par blocs considérées
dans les chapitres précédents. Enfin, ces stratégies de détection de convergence partielle
et de recyclage du sous-espace peuvent être combinées efficacement pour concevoir un
algorithme de gradient conjugué par blocs déflatés pour des séquences de systèmes linéaires
symétriques définis positifs. Des expériences numériques sont présentées pour illustrer les
caractéristiques numériques et informatiques de tous ces nouveaux solveurs de Krylov par
blocs.

La deuxième partie, composée du chapitre 5, présente certaines manières d’hybrider
les solveurs par apprentissage profond nouvellement émergents et des techniques d’algèbre
linéaire numérique plus traditionnelles afin de les faire bénéficier les uns des autres. Les
techniques d’apprentissage profond ont deux ingrédients principaux. Le premier est la
phase d’entrainement, qui est essentiellement une procédure d’optimisation permettant
de réduire une fonction coût en ajustant les paramètres internes des couches du réseau
de neurones. La deuxième phase, où le réseau entraîné, est utilisé pour prédire la
solution d’un ensemble de données d’entrée, qui n’a jamais été vue lors de sa phase
d’apprentissage. Dans le contexte de la résolution d’équations de Helmholtz 2D hétérogène,



nous nous concentrons d’abord sur l’introduction de nouveaux ingrédients mathématiques
des solveurs itératifs classiques dans la phase d’entraînement d’un solveur récemment
proposé, qui est basé sur un réseau profond de neurones . Le principal avantage est
une amélioration significative de la phase d’entraînement , plus robuste et plus rapide,
qui s’avère également applicable aux processus de validation. En outre, une fois que ces
réseaux ont été correctement entraînés, leurs inférences peuvent être appliquées comme
des préconditionnements non linéaires dans les méthodes traditionnelles GMRES et FOM
flexibles. Ce chapitre démontre que ces variantes hybrides présentent de nets avantages
par rapport à l’approche nouvellement émergente des réseaux neuronaux profonds et au
solveur itératif classique de Krylov, tant en termes de coût de calcul que de précision de
la solution calculée.

Enfin, nous tirons quelques conclusions de ces travaux de thèse et énumérons quelques
piste de perspectives supplémentaires.

La partie I développe des nouvelles variantes des méthodes de sous-espace de Krylov
par blocs pour les systèmes linéaires à second-membres multiples. Pour le chapitre 2,
lsuivant les idées de [78], je proposerais d’analyser la stabilité des techniques de norme
minimale des résidus par blocs dans un contexte d’analyse inverse des erreurs Pour les
algorithmes à récurrence courte tels que BCR et BCG décrits dans le chapitre 3-4, certains
écarts résiduels existent parfois empêchant la convergence de l’erreur inverse réelle, c’est-
à-dire basée sur la norme des vrais résidus, alors que celle basée sur la norme des résidus
itérés indique la convergence. Un remède possible pourrait être d’étendre l’analyse de
l’erreur d’arrondi de [120] au cas des méthodes blocs pour estimer l’écart des résidus et
éventuellement concevoir des techniques de remplacement correspondantes [16, 25]. En
outre, lorsque l’on considère la stratégie de recyclage ou de déflation du sous-espace, une
autre direction intéressante consiste à trouver des informations générales pour guider le
choix de certains paramètres d’ajustement, comme la longueur maximale d’un cycle de
raffinage, la dimension de l’espace de déflation et le nombre de second-membres. Les
techniques de minimisation des normes des résidus par blocs pour les cas non symétriques
décrites dans le chapitre 2 ont été intégrées dans une pile logicielle de notre équipe, à
savoir Fabulous 1, grâce à une collaboration étroite avec un ingénieur responsable de cette
bibliothèque. Fabulous est une bibliothèque C++ complète qui implémente divers solveurs
de Krylov par bloc pour la résolution de systèmes linéaires. Cette intégration permet
l’utilisation du solveur proposé dans le chapitre 2 dans diverses applications telles que
le calcul de QCD dans le cadre du projet H2020 PRACE-6IP. Afin d’évaluer pleinement
les performances de calcul des solveurs blocs présentés dans les chapitres 3 et 4, il serait
intéressant de mener un tel effort d’ingénierie pour favoriser le transfert des connaissances
de l’algèbre linéaire numérique vers les applications à grande échelle.

La partie II discute de deux améliorations principales dans l’hybridation des
techniques d’apprentissage automatique et des solveurs d’algèbre linéaire numérique pour
la résolution de systèmes linéaires avec un seul second-membre. Une direction future
directe de la partie II est d’explorer l’équilibre entre la garantie d’une meilleure précision
atteignable et la bonne généralisation du réseau entraîné. D’autres travaux connexes
tentent d’éclairer les boîtes noires lors du développement de solveurs SciML (scientific
machine learning) [3,65,118], comme le choix de l’architecture du réseau neuronal profond
pour un problème physique spécifique (comme les opérateurs neuronaux de Fourier [41]),

1https ://gitlab.inria.fr/solverstack/fabulous/



la définition de la fonction coût basée sur un contexte physique pratique (comme les
travaux récents [129]), la définition (automatique) du taux d’apprentissage qui décroît
exponentiellement avec l’indice d’époque, le réglage et le test d’autres hyperparamètres
(comme le choix d’un autre optimiseur, le nombre de couches cachées et de neurones
par couche cachée), les moyens possibles pour résoudre le problème du gradient
évanescent [9, 37, 43], le pré-traitement des ensembles de données, la conception d’autres
stratégies d’hybridation et l’étude de leurs effets, etc. Pour avoir une bonne compréhension
de ces options, j’envisage d’essayer d’autres modèles d’apprentissage automatique pour
diverses applications. Je veux découvrir les relations composition-structure-propriété pour
différents problèmes de calcul et solveurs SciML, puis les utiliser pour déterminer quels
sont les modèles SciML optimaux (en termes de précision, de vitesse de convergence,
d’architecture de réseau neuronal, de coût de calcul, etc. Avec des descripteurs plus
rapides, j’espère créer un système théorique catégorisé pour différents problèmes de
calcul SciML. Un autre problème qui m’intéresse est de trouver un moyen de réduire
les coûts de l’entraînement. L’un des moyens d’y parvenir pourrait être de pré-traiter les
ensembles de données ou d’introduire des informations mathématiques et physiques lors
de la conception d’un solveur de réseau neuronal avec un schéma de solution cible. Un
autre moyen pourrait consister à se concentrer sur le développement de nouveaux modèles
d’apprentissage automatique creux à grande échelle en utilisant les connaissances d’un
cadre multidisciplinaire, tel que la théorie des graphes et l’informatique, ce qui pourrait
également aider les régions d’apprentissage automatique pour d’autres applications hors
du champ d’application de SciML, mais qui peuvent également être assez difficiles.



Extended summary

The research framework of this thesis is the design of numerical techniques useful
for performing efficiently frontier simulations arising from academic and industrial large
scale, challenging, applications. In this work, we mostly focus on the iterative solution
of large linear systems with multiple right-hand sides that appear in various scientific
applications such as quantum chromodynamics, finite element fracture mechanics, some
parametric studies, and some formulations of inverse problems, to name a few.

Modern iterative schemes are based on projection methods and very often involve
Krylov subpaces. When p multiple right-hand sides have to be solved, block variants of
classical Krylov subspace methods are the methods of choice. The block methods define
the search space as the sum of the Krylov subspaces associated with each individual right-
hand side, so that at each iteration the search space is enlarged by p additional directions.
From a numerical point of view, because the search space contains the individual Krylov
spaces the convergence should be at least as fast as solving independently each right-hand
side. Because the block algorithm implementation enables the use of efficient BLAS-3 like
computational kernels, the time to the solution is expected to be reduced. Unfortunately,
these potential advantages come at the price of novel numerical difficulties induced by
the possibly different convergence rates of the right-hand sides or linear combination of
some right-hand sides. This numerical feature is referred to as partial convergence. This
partial convergence translates in rank deficiency within the block of p directions to be
used to enlarge the search space. Appropriate numerical remedies should be designed to
detect and treat this possible rank deficiency; first to avoid a possible breakdown of the
iterative solver, second to possibly reduce the computational effort in the next iterations
by properly adjusting the block size.

An alternative path to the above mentioned traditional numerical linear algebra
approaches is to consider hybridizing numerical linear algebra with scientific machine
learning techniques [64, 75].

The first main part, composed of three chapters (i.e., Chapter 2-4), focuses on
addressing computational challenges associated with the block iterative Krylov subspace
methods for sequences of linear systems with multiple right-hand sides. In Chapter 2,
for sequences of unsymmetric linear systems, we develop a new block minimum norm
residual approach that combines two main ingredients. The first component exploits
ideas from GCRO-DR [80], enabling us to recycle spectral information from one linear
system to the next. The second component is the numerical mechanism for managing the
partial convergence of the right-hand sides, referred to as the inexact breakdown detection
mechanism in IB-BGMRES [88], that enables the monitoring of the rank deficiency in
the residual space basis expanded blockwise. Next, for the class of block minimum
norm residual approaches, that relies on a block Arnoldi-like equality between the search
space and the residual space (e.g., any block GMRES or block GCRO variants), we
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introduce new search space expansion policies defined on novel criteria to detect the
partial convergence. These novel detection criteria are tuned to the selected stopping
criterion and targeted convergence threshold to best cope with the selected normwise
backward error. This enables us to monitor the computational effort while ensuring the
final accuracy of each individual solution. Because the partial convergence issue appears
in any type of block Krylov solvers, in Chapter 3, we extend the partial convergence
detecting mechanism to the block variant of the conjugate residual method [66], a
minimum residual norm approach with short term recurrence scheme, for symmetric but
not necessary positive definite linear systems. Then, inspired by the idea of reusing
generated information to approximate spectral information for accelerating convergence,
in Chapter 4, we devise a corresponding subspace recycling strategy. More precisely,
we apply the thick-restart ideas [125] introduced in the Lanczos method for eigenpair
calculation in the block conjugate gradient algorithm (BCG) [77] for the symmetric
positive definite linear systems. This new variant periodically refines the spectral
information on a small window defined when solving the linear systems, which provides a
practical way to approximate spectral information with a moderate computational effort.
We also investigate the possibility to use the partial convergence detection presented in
the minimum residual norm context to the BCG algorithm as a heuristic. This numerical
mechanism is only a heuristic because the resulting search space expansion policy still
relies on residual norm minimization, while ideally it should be based on an A-norm error
minimization principle. Unfortunately, this A-norm error directions are not a by-product
of BCG as the residuals for the numerical block methods considered in the previous
chapters. Finally, these partial convergence detection and subspace recycling strategies
can be efficiently combined to design a deflated block conjugate gradient algorithm for
sequences of symmetric positive definite linear systems. Numerical experiments are
reported to illustrate the numerical and computational features of all these new block
Krylov solvers.

The second part that is composed by Chapter 5, presents some ways of hybridizing the
newly emerging deep learning solvers and the more traditional numerical linear algebra
techniques to let them benefit from each other. Deep learning techniques have two
main ingredients. The first one is the training phase, that is essentially an optimization
procedure enabling to reduce a loss function by adjusting the internal parameters of the
neural network layers. The second phase, where the trained network is used to infer the
solution for a given input data set, which is never seen during its previous training phase.
In the context of the solution of a heterogeneous 2D Helmholtz equation, we first focus on
introducing some mathematical ingredients from classical iterative solvers into the training
phase of a recently proposed deep neural network solver. The main benefit is a significant
improvement in the training phase that is more robust and faster, which turns out to be
applicable to the testing processes as well. Furthermore, once these network solvers have
been properly trained, their inferences can be applied as a nonlinear preconditioner in
the traditional flexible GMRES and flexible FOM methods. This chapter demonstrates
that these hybrid variants have clear advantages over both the newly emerging deep neural
network approach and the classical iterative Krylov solver in terms of both computational
cost and accuracy of the computed solution.
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Part I

Block Krylov solvers for the solution of
sequences of linear systems with

multiple right-hand sides
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Chapter 1

Context and notations

Many scientific and industrial simulations require the solution of a sequence of linear
systems with multiple right-hand sides and possibly slowly changing left-hand sides. In
that context, one has to solve a series of linear systems of the form

A(`)X(`) = B(`), ` = 1, 2, . . . , (1.1)

where, associated with the `th family, A(`) ∈ Cn×n is a square nonsingular matrix of
large dimension n along the family index `, B(`) = [b(`,1), b(`,2), . . . , b(`,p

(`))] ∈ Cn×p(`)

are simultaneously given right-hand sides of full rank with p(`) � n, and X(`) =
[x(`,1), x(`,2), . . . , x(`,p

(`))] ∈ Cn×p(`) are the solutions to be computed. Both the coefficient
matrix A(`) and right-hand sides B(`) change from one family to the next, and the families
of linear systems are typically available in sequence.

The symbol || · || denotes the Euclidean norm default for both vectors and matrices,
and the Frobenius norm is denoted with the subscript F . The superscript H denotes the
transpose conjugate and T stands for transpose. The notation C and R respectively refer
to the complex and real number field. Because much notation is involved, we make certain
choices to improve the readability of the chapter. The vectors are denoted by lowercase
letters; matrices with multiple columns are described by uppercase letters; calligraphic
uppercase letters, e.g., V represent matrices whose columns are augmented by multiple
columns at each iteration (as commonly appearing in the block Krylov context); and
uppercase blackboard bold letters, e.g., V refer to the block Krylov basis generated at
each iteration. The superscript † refers to the Moore-Penrose inverse. For convenience of
the algorithm illustration and presentation, some MATLAB notation is used. Without
special note, a subscript j for a vector (in the single right-hand case) or a matrix (in the
block case) is used to indicate that the vector or matrix is obtained at iteration j, and
a positive subscript integer m represents the maximal iteration number of each (block)
Krylov cycle. All the involved recycling subspaces of dimension k are described as a
matrix with the subscript k, whose columns form a basis. A matrix C ∈ Cm×` consisting
of m rows and ` columns sometimes is denoted as Cm×` explicitly. The identity and null
matrices of dimension m are denoted, respectively, by Im and 0m or by just I and 0 when
the dimension is evident from the context. For a matrix C ∈ Cm×`, the singular values of
C are denoted by σ1(C) ≥ . . . ≥ σmin(m,`)(C) in descending order; furthermore, we denote
by span(C) the space spanned by the columns of C.
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Chapter 2

The unsymmetric case with minimum
residual norm techniques

2.1 Introduction

When solving sequences of linear systems such as Equation (1.1), attractive approaches
are those that can exploit information generated during the solution of a given system
to accelerate the convergence for the next systems. Deflated restarting implements a
similar idea between the cycles in the generalized minimum residual (GMRES) norm
method [86, 93, 114]; it is realized by using a deflation subspace containing a few
approximate eigenvectors deemed to hamper the convergence of the Krylov subspace
methods [71–73]. An alternative technique is the subspace recycling strategy proposed
in the generalized conjugate residual with inner orthogonalization (GCRO) method and
deflated restarting (GCRO-DR) method [80]. This latter method can reuse information
accumulated in previous cycles as well as that accumulated during the solution of the
previous families. We refer to [104] for a recent survey of subspace recycling methods.
Because the multiple right-hand sides of Equation (1.1) are simultaneously available, block
Krylov subspace methods are often considered as suitable candidates because of their
capability of sharing search subspaces that can be generated using basic linear algebra
subprograms, such as level 3 BLAS-like implementation [42] that is expected to reduce
the time for solution. Unfortunately these potential advantages come at the price of a
common issue in block Krylov subspace methods, the rank deficiency that might appear
during the expansion of the residual spaces, which is caused by the convergence of some
individual solution or a linear combination of solution vectors. Such a rank deficiency
problem could cause the block Arnoldi process to break down before the solutions for all
the right-hand sides are found. For the sake of balancing robustness and convergence rate,
Robbé and Sadkane proposed an inexact breakdown detection mechanism for the block
GMRES algorithm (denoted by IB-BGMRES) [88], which could keep and reintroduce
directions associated with the almost converged parts in next iteration if necessary. We
refer the reader to [6, 15, 88] for relevant works on inexact breakdown detection, as well
as to [34, 110–113, 126] for related variants of block Krylov subspace methods for solving
linear systems with multiple right-hand sides.
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The contribution of this chapter is twofold. We first show how to combine subspace
recycling techniques of GCRO-DR [80], for recycling spectral information at a new
cycle/family, with the inexact breakdown detection introduced by Robbé and Sadkane
in IB-BGMRES [88], for handling almost rank deficient blocks generated by the block
Arnoldi procedure, to develop the IB-BGCRO-DR algorithm, a new recycling block
GCRO-DR variant with partial convergence detection. This is a natural extension of
a previous work on IB-BGMRES-DR [6], that enables the deflated restarting strategy
proposed by Morgan [73] to be applied only at restart but not when solving a sequence
of linear systems. The IB-BGCRO-DR method can reuse spectral information from
solutions in both the previous cycles and families thus showing obvious advantages
when solving sequences of linear systems like Equation (1.1). In addition, we propose
a flexible counterpart of the new algorithm, which allows the use of a mixed arithmetic
computation where all steps are computed with a selected working precision except for the
preconditioner which is performed with a reduced precision. The second contribution is
related to the block search space expansion policies that can be further developed based on
the partial convergence detection. In particular, we introduce new search space expansion
policies defined on novel criteria to detect the partial convergence. These novel detection
criteria are tuned to the selected stopping criterion and targeted convergence threshold
to best cope with the selected normwise backward error. This enables us to monitor the
computational effort while ensuring the final accuracy of each individual solution.

The remainder of this chapter is organized as follows. Section 2.2 is devoted to the
development of the new algorithm and contains some background that enables us to
introduce the various numerical ingredients and notation required to design our algorithm.
In Section 2.2.1 we first recall the governing ideas of the minimum norm residual Krylov
method GCRO in a single right-hand side setting, and in Section 2.2.2 we briefly present
its block variant. Next, in Section 2.2.3 we present how the original inexact breakdown
detection mechanism [88] introduced for block GMRES can be applied to block GCRO as
well. These two main ingredients are combined to develop the new algorithm IB-BGCRO-
DR in Section 2.2.4 and its flexible preconditioning variant referred to as IB-BFGCRO-DR
in Section 2.2.6. In Section 2.3, we describe how to extend the original inexact breakdown
detection mechanism to best adapt the computational effort and reach the targeted
accuracy prescribed by the stopping criterion defined in terms of normwise backward
errors for the individual solutions. In particular, we derive strategies for managing the
situation where the different right-hand sides need to be solved with different convergence
thresholds. We also present policies adapted to a stopping criterion based on normwise
backward error on the right-hand side only (i.e., classical residual norm scaled by the
norm of the right-hand side) or the more general one used to establish the backward
stability of GMRES [78]. Section 2.4 presents some detailed remarks on computational
and algorithmic aspects; the associated pseudocode of the IB-BGCRO-DR algorithm
is presented as well. In Section 2.5, we extend the previous flexible preconditioning
techniques to IB-BGMRES-DR, which resulting new algorithm named IB-BFGMRES-
DR. In Section 2.6 we present numerical experiments that illustrate the benefits of the new
algorithm with both constant and slowly varying successive linear systems with multiple
right-hand sides, and we introduce as well the numerical capabilities of the novel search
space expansion policies. Finally, we conclude with some detailed remarks in Section 2.7.

For simplicity and notational convenience, in the rest of this chapter we drop the
superscript (`) in B(`) and X(`) whenever we consider solving the current `th family of
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linear systems in the entire sequence of families. We indicate the superscript for a family
order explicitly when necessary. That is, suppose that the current `th family of linear
systems to be solved is

AX = B, (2.1)

where, A ∈ Cn×n is the current square nonsingular matrix of dimension n, B =
[b(1), b(2), . . . , b(p)] ∈ Cn×p are the right-hand sides given simultaneously, and X =
[x(1), x(2), . . . , x(p)] ∈ Cn×p are the solutions to be computed.

2.2 Block GCRO-DR with partial convergence
detection

For the sake of completeness, this section contains some (possibly well-known)
background which enables us to introduce the notation required to describe the new
algorithm and detail its properties. In that respect, we first recall the main ingredients
of the subspace recycling techniques existing in the minimum residual Krylov methods
GCRO [28] and GCRO-DR [80] that are presented in the single right-hand side context.
Next, we introduce the straightforward extension to the multiple right-hand sides
framework, that is the block formulation of GCRO-DR (BGCRO-DR) [79,81]. Then the
driving ideas of partial convergence detection [88], along with the corresponding block
Arnoldi-like recurrence equation, are derived in the block GCRO-DR context, leading to
the new IB-BGCRO-DR algorithm.

2.2.1 GCRO

The background of GCRO [28] is briefly reviewed first in the case of a single right-hand
side and then extended to the block case. The GCRO method relies on a given full-rank
matrix Uk ∈ Cn×k, and on a matrix Ck as the image of Uk by A satisfying the relations

AUk = Ck, (2.2)
CH
k Ck = Ik. (2.3)

For the solution of a single right-hand side linear system Ax = b and a given initial guess
x0, the governing idea is to first define x1 ∈ x0 + Range(Uk) that minimizes the residual
norm. From x1 and its associated residual r1, Arnoldi iterations are performed to enlarge
the nested orthonormal basis of the residual spaces. The vector

x1 = argmin
x∈x0+Range(Uk)

||b− Ax||,

is defined by

x1 = x0 + UkC
H
k r0, and r1 = (I − CkCH

k )r0 such that r1 ∈ C⊥k . (2.4)

Starting from the unit vector v1 = r1/‖r1‖, the Arnoldi procedure enables us to form
an orthonormal basis Vm = [v1, . . . , vm] of the Krylov space Km((I − CkC

H
k )A, v1) =

span(v1, (I − CkC
H
k )Av1, . . . , ((I − CkC

H
k )A)m−1v1) yielding an Arnoldi-like relation in
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the matrix form as
(I − CkCH

k )AVm = Vm+1Hm, (2.5)

where the top square part of Hm ∈ C(m+1)×m is upper Hessenberg, and only the last entry
of its last row is nonzero. Combining (2.2) and (2.5) into one matrix form allows us to
write a relation quite similar to an Arnoldi equality that reads

AŴm = V̂m+1Gm,

where the columns of Ŵm = [Uk, Vm] define a basis of the search space, columns of
V̂m+1 = [Ck, Vm+1] make up an orthonormal basis of the residual space and Gm =[

Ik Bm

0(m+1)×k Hm

]
∈ C(k+m+1)×(k+m), with V̂ H

m+1V̂m+1 = Im+1 and Bm = CH
k AVm. The

minimum residual norm solution in the affine space x1 + Range(Ŵm) can be written as
xm = x1 + Ŵmym, where

ym = argmin
y∈Ck+m

‖c−Gmy‖

and c = V̂ H
m+1r1 = (0k, ‖r1‖, 0m)T ∈ Ck+m+1 are the components of the residual associated

with x1 in the residual space spanned by the columns of V̂m+1.
GCRO and GMRES [93] both belong to the family of residual norm minimization

approaches and rely on an orthonormal basis of the residual space. In addition to sharing
the Arnoldi procedure to form part or all of this basis, they also share the property
of “happy breakdown”; that is, if the search space cannot be enlarged because the new
direction computed by the Arnoldi process is the null vector, and if the r1 in (2.4) satisfies
r1/‖r1‖ ∈ Range((I −CkCH

k )AVm), then the solution is exactly found in the search space
[28, Definition 2.4]. This sharing of features extends to the block context for the solution
of linear systems with multiple right-hand sides; in particular, the inexact breakdown
principle introduced in [88] in the context of block GMRES can be extended to block
GCRO, as discussed in what follows. The purpose of the partial convergence detection is
to prevent, in an elegant and effective way, the loss of numerical rank of the search space
basis; this turns out to be also a way to monitor the search space expansion according to
the final target accuracy.

2.2.2 Block GCRO

The straightforward extension of the GCRO method in the block context is briefly
described below. To facilitate reading, we do not use the calligraphic form in the notation
but keep the same letters to denote the block counterparts of the quantities involved in
the method. Starting from the block initial guess X0 = [x

(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] ∈ Cn×p and

associated initial residual block R0 = B − AX0, one can define

X1 = argmin
X∈X0+Range(Uk)

||B − AX||F ,

given by

X1 = X0 + UkC
H
k R0, and R1 = (I − CkCH

k )R0 such that R1 ∈ C⊥k . (2.6)
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For the sake of simplicity, we first assume that R1 is of full rank and denote R1 = V1Λ1 as
its reduced QR-factorization. The orthonormal block V1 is then used to build the search
space via m steps of the block Arnoldi procedure depicted in Algorithm 1, to generate
Vm = [V1, . . . ,Vm], whose columns form an orthonormal basis of Km((I−CkCH

k )A,V1) =⊕p
t=1Km((I−CkCH

k )A, v
(t)
1 ). The block Arnoldi procedure leads to the matrix equality

Algorithm 1 Block Arnoldi procedure with deflation of the Ck space
1: Given a nonsingular coefficient matrix A ∈ Cn×n, choose a matrix V1 ∈ Cn×p with

orthonormal columns
2: for j = 1, 2, . . . ,m do
3: Compute Wj = (I − CkCH

k )AVj

4: for i = 1, 2, . . . , j do
5: Hi,j = VH

i Wj

6: Wj = Wj − ViHi,j

7: end for
8: Wj = Vj+1Hj+1,j (reduced QR-factorization of Wj)
9: end for

(I − CkCH
k )AVm = Vm+1H m, (2.7)

where H m is a block Hessenberg matrix with (i, j) block defined by Hi,j. Similarly to
the single right-hand side case, (2.2) and (2.7) can be gathered into matrix form

AŴm = V̂m+1Gm, (2.8)

where Ŵm = [Uk,Vm] ∈ Cn×(k+mp), V̂m+1 = [Ck,Vm+1] ∈ Cn×(k+(m+1)p), and

G
m

=

[
Ik Bm

0(m+1)p×k H m

]
=

[
Gm

0p×(k+(m−1)p) Hm+1,m

]
∈ C(k+(m+1)p)×(k+mp) with

V̂ H
m+1V̂m+1 = Ik+(m+1)p and Bm = CH

k AVm ∈ Ck×mp; here mp = m × p. The minimum
residual norm solution in the affine space X1 + Range(Ŵm) can be written as Xm =

X1 + ŴmYm, where
Ym = argmin

Y ∈C(k+mp)×p

‖C − G
m
Y ‖F ,

C = V̂ H
m+1R1 = (0p×k,Λ

T
1 , 0p×mp)

T ∈ C(k+(m+1)p)×p, and the columns of C are the
components of the initial residual block R1 in the residual space V̂m+1.

2.2.3 Block GCRO with partial convergence detection

When one solution or a linear combination of solutions has converged, the block
Arnoldi procedure implemented to build an orthonormal basis of Kj((I − CkCH

k )A,V1)
needs to be modified to account for this partial convergence. This partial convergence
is characterized by a numerical rank deficiency in the new p directions that are usually
introduced for enlarging the search space at the next iteration. In [88], the authors
present an elegant numerical variant that enables the detection of what is referred to as
inexact breakdowns. In that approach the directions that have a low contribution to the
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residual block are discarded from the candidate set of vectors used to expand the search
space at the next iteration, but these directions are reintroduced in iterations afterward
if necessary. In this section, we try to give an insight and the main equality required to
derive the IB-BGCRO-DR algorithm. We refer the reader to the original paper [88] for a
detailed and complete description. For the sake of simplicity and easy cross reference, we
adopt most of the notation from [6,88].

When a partial convergence occurs, not all the space spanned by Wj is considered to
build Vj+1 in order to expand the search space. For the sake of simplicity, we assume
that p1 = p and we denote by pj+1 the number of columns of the block orthonormal basis
vector Vj+1. Then Vj+1 ∈ Cn×pj+1 ,Wj ∈ Cn×pj and Hj+1,j ∈ Cpj+1×pj . As a consequence
the dimension of the search space Kj((I −CkCH

k )A,V1) considered at the jth iteration is
no longer necessarily equal to j × p but is equal to nj =

∑j
i=1 pi, that is, the sum of the

column rank of the matrices Vi (i = 1, . . . , j).

When no partial convergence has occurred, that is, pj+1 = pj = · · · = p1 = p, the range
of Wj has always been used to enlarge the search space and we obtain the block relation
given by (2.8). To account for a numerical deficiency in the residual block Rj = B−AXj,
Robbé and Sadkane [88] proposed splitting

Wj = Vj+1Hj+1,j +Qj (2.9)

such that the columns of Qj and Vj+1 are orthogonal to each other and only Vj+1 is used
to enlarge Vj to form Vj+1. We can then extend (2.8) into

AŴj = V̂jGj + [0n×k, Qj−1, Wj], (2.10)

where Gj ∈ C(k+nj)×(k+nj) is the first k + nj rows of G
j
∈ C(k+nj+p)×(k+nj), Qj−1 =

[Q1, . . . , Qj−1] ∈ Cn×nj−1 accounts for all the discarded directions. The matrix Qj−1
is rank deficient, and it reduces to the zero matrix of Cn×nj−1 as long as no partial
convergence has occurred.

In order to characterize a minimum norm solution in the space spanned by Ŵj

using (2.10) we need to form an orthonormal basis of the space spanned by [V̂j,Qj−1,Wj].
This is performed by first orthogonalizingQj−1 against V̂j, that is Q̃j−1 = (I−V̂jV̂ H

j )Qj−1.
Because Qj−1 is of rank deficiency, so is Q̃j−1, which can be written as

Q̃j−1 = Pj−1Gj−1 with
{
Pj−1 ∈ Cn×qj has orthonormal columns with V̂ H

j Pj−1 = 0,
Gj−1 ∈ Cqj×nj−1 is of full rank with qj = p− pj.

(2.11)
Next, Wj that is already orthogonal to V̂j is made to be orthogonal to Pj−1 with Wj −
Pj−1Ej where Ej = PH

j−1Wj; then one computes W̃jDj with W̃j ∈ Cn×pj and Dj ∈ Cpj×pj

by carrying out the reduced QR-factorization of the tall and skinny matrix Wj −Pj−1Ej.
Eventually, the columns of the matrix [V̂j, Pj−1, W̃j] form an orthonormal basis of the
residual space spanned by [V̂j,Qj−1,Wj].
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With this new basis, (2.10) reads

A[Uk,Vj] = [Ck,Vj]

[
I Bj
0 Lj

]
+

[
0k, Pj−1Gj−1,

[
Pj−1, W̃j

] [ Ej
Dj

]]

=
[
Ck,Vj, [Pj−1, W̃j]

]
Ik Bj

0(nj+p)×k

Lj

Gj−1 Ej
0 Dj

 , (2.12)

where Lj =


H1,1 H1,2 H1,3 · · · H1,j

H2,1 H2,2 H2,3 · · · H2,j

VH
3 Q1 H3,2 H3,3 · · · H3,j
...

...
... . . . ...

VH
j Q1 · · · VH

j Qj−2 Hj,j−1 Hj,j

 ∈ Cnj×nj is no longer upper

Hessenberg as soon as one partial convergence occurs, i.e., ∃`, s.t., Q` 6= 0.
Equation (2.12) can be rewritten in a more compact form as

A[Uk,Vj] =
[
Ck,Vj, [Pj−1, W̃j]

]
F j,

so that the least squares problem to be solved to compute the minimum residual norm
solution associated with the generalized Arnoldi relation (2.12) becomes

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, (2.13)

with

F j =


Ik Bj

0(nj+p)×k

Lj

Gj−1 Ej
0 Dj

 =

[
Fj

Hj

]
∈ C(k+nj+p)×(k+nj) (2.14)

and Λj =

 0k×p
Λ1

0nj×p

 ∈ C(k+nj+p)×p, where Fj =

[
Ik Bj

0nj×k Lj

]
∈ C(k+nj)×(k+nj)

and Hj =

[
0p×k

Gj−1 Ej
0 Dj

]
∈ Cp×(k+nj).

The numerical mechanism for selecting Vj+1 out of
[
Pj−1, W̃j

]
follows the same ideas as

discussed in [6,88] in the context of block GMRES. The governing idea consists of building
an orthonormal basis for the directions that contribute the most to the individual residual
norms and make them larger than a prescribed threshold τ .

Specifically, the singular value decomposition (SVD) is applied to the least squares
residuals

Λj −F jYj = U1,LΣ1UH
1,R + U2,LΣ2UH

2,R, (2.15)

where Σ1 contains the pj+1 singular values greater than or equal to the prescribed

threshold τ . Then we decompose U1,L =

(
U(1)
1

U(2)
1

)
in accordance with

[
[Ck,Vj] , [Pj−1, W̃j]

]
,
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that is, U(1)
1 ∈ C(k+nj)×pj+1 and U(2)

1 ∈ Cp×pj+1 . Because the objective is to construct
an orthonormal basis, we consider a unitary matrix [W1,W2] such that Range(W1) =

Range(U(2)
1 ). The new set of orthonormal candidate vectors used to expand the search

space
Vj+1 =

[
Pj−1, W̃j

]
W1 (2.16)

is the set that contributes the most to the residual norms, while

Pj =
[
Pj−1, W̃j

]
W2,

is the new set of discarded directions with orthonormal columns. Through this mechanism,
directions that have been discarded at a given iteration can be reintroduced if the residual
block has a large component along them. Furthermore, this selection strategy ensures that
all the solutions have converged when p partial convergence has been detected. We do
not give details of the calculation but instead refer the reader to Section 2.3 of [88] for
a complete description; we only state that via this decomposition, the main terms that
appear in Equation (2.12) can be computed incrementally.

2.2.4 Subspace recycling policies along with partial convergence
detection

So far, we have not made any specific assumption about the definition of the recycling
space Uk except that it has full column rank. In the context of subspace recycling, one
key point is to specify what subspace is to be recycled at restart. At the cost of the extra
storage of k vectors, block GCRO offers more flexibility than block GMRES in the choice
of the recycling space. This extra storage, which enables us to remove the constraint that
the search space is included in the residual space, allows us to consider any subspace to
be deflated at restart. In particular, either of the two classical alternatives, the Rayleigh-
Ritz procedure or the harmonic-Ritz procedure, can be considered to compute the targeted
approximate eigenvectors to define Uk and Ck at restart.

Definition 1. harmonic-Ritz projection.
Consider a subspace W of Cn. Given a general nonsingular matrix A ∈ Cn×n, λ ∈ C, and
g ∈ W, we see that (λ, g) is a harmonic-Ritz pair of A with respect to the space W if and
only if

Ag − λ g ⊥ AW

or equivalently,
∀w ∈ Range(AW), wH (Ag − λ g) = 0.

The vector g is a harmonic-Ritz vector associated with the harmonic-Ritz value λ.

Definition 2. Rayleigh-Ritz projection.
Consider a subspace W of Cn. Given a general nonsingular matrix A ∈ Cn×n, λ ∈ C, and
g ∈ W, we see that (λ, g) is a Rayleigh-Ritz pair of A with respect to the space W if and
only if

Ag − λ g ⊥ W

or equivalently,
∀w ∈ Range(W) wH (Ag − λ g) = 0.
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The vector g is a Rayleigh-Ritz vector associated with the Rayleigh-Ritz value λ.

Once the maximum size of the search space has been reached, we have

AŴm = V̂m+1Fm =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm, (2.17)

Xm = X1 + ŴmYm, (2.18)

Rm = B − AXm =
[
Ck,Vm, [Pm−1, W̃m]

]
(Λm −FmYm), (2.19)

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F , Λm = [0p×k,Λ
T
1 , 0p×nm ]T . (2.20)

Then, a restart procedure has to be implemented to possibly refine the spectral
information to be recycled during the next cycle. Based on these equalities we will
compute the approximated eigen-information as shown in Proposition 1 and then use it
to define the new deflation basis Unew

k and its orthonormal image Cnew
k by A as described

in Theorem 1.

Proposition 1. At restart of IB-BGCRO-DR, the update of the recycling subspace for
the next cycle relies on the computation of harmonic-Ritz vectors Ŵmg

(HR)
i ∈ span(Ŵm),

or Rayleigh-Ritz vectors Ŵmg
(RR)
i ∈ span(Ŵm), of A with respect to Ŵm = [Uk,Vm] ∈

Cn×(k+nm).

• The harmonic-Ritz pairs (θi, Ŵmg
(HR)
i ) to be possibly used for the next restart satisfy

FH
mFmg

(HR)
i = θiF

H
mV̂ H

m+1Ŵmg
(HR)
i , for 1 ≤ i ≤ k + nm, (2.21)

where V̂ H
m+1Ŵm =


CH
k Uk 0k×nm

V H
m Uk Inm

PH
m−1Uk
W̃H
mUk

0p×nm

 ∈ C(k+nm+p)×(k+nm).

• The Rayleigh-Ritz pairs (θi, Ŵmg
(RR)
i ) to be possibly used for the next restart satisfy

Ŵ H
m V̂m+1Fmg

(RR)
i = θiŴ

H
m Ŵmg

(RR)
i , for 1 ≤ i ≤ k + nm

where Ŵ H
m V̂m+1 =

[
UH
k Ck UH

k Vm UH
k Pm−1 UH

k W̃m

0nm×k Inm 0nm×p

]
∈ C(k+nm)×(k+nm+p) and

Ŵ H
m Ŵm =

[
UH
k Uk UH

k Vm
V H
m Uk Inm

]
∈ C(k+nm)×(k+nm).

Proof. The proofs basically rely on some matrix computations as shortly described below.

• According to Definition 1, each harmonic-Ritz pair (θi, Ŵmg
(HR)
i ) satisfies

∀w ∈ Range(AŴm) wH (AŴmg
(HR)
i − θi Ŵmg

(HR)
i ) = 0,

which is equivalent to

(AŴm)H (AŴmg
(HR)
i − θi Ŵmg

(HR)
i ) = 0.
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Substituting Equation (2.17) into the above leads to(
V̂m+1Fm

)H (
V̂m+1Fmg

(HR)
i − θi Ŵmg

(HR)
i

)
= 0. (2.22)

Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of each cycle is
orthonormal, Equation (2.22) becomes

FH
m Fmg

(HR)
i − θiFH

mV̂ H
m+1Ŵmg

(HR)
i = 0,

which gives the formulation (2.21).

• Rayleigh-Ritz pairs: using Definition 2 and similar arguments and matrix
computation enable to derive the proof.

Depending on the region of the spectrum that is intended to be deflated (e.g., subspace
associated with the smallest and/or largest eigenvalues in magnitude), a subset of k
approximated eigenvectors is chosen from among the k + nm ones to define a space that
will be used to span Unew

k . Then, we describe in Theorem 1 the update of Unew
k and its

image Cnew
k with respect to A at restart of IB-BGCRO-DR.

Theorem 1. At restart of IB-BGCRO-DR, if we intend to deflate the space
span([Uk,Vm]G

(∗)
k ), where G(∗)

k =
[
g
(∗)
1 , . . . , g

(∗)
k

]
with G

(∗)
k = G

(HR)
k or G(∗)

k = G
(RR)
k is

the set of vectors associated with the targeted eigenvalues, then the matrices Unew
k and

Cnew
k to be used for the next cycle are defined by

Unew
k = ŴmG

(∗)
k R−1 = [Uk,Vm]G

(∗)
k R−1, (2.23)

Cnew
k = V̂m+1Q =

[
Ck,Vm, [Pm−1, W̃m]

]
Q, (2.24)

where Q and R are the factors of the reduced QR-factorization of the tall and skinny
matrix FmG

(∗)
k , which AUnew

k = Cnew
k and (Cnew

k )H Cnew
k = Ik.

Proof. Let Q and R be the factors of the reduced QR-factorization of the tall and
skinny matrix FmG

(∗)
k . Right multiplying G

(∗)
k on both sides of Equation (2.17)

leads to AŴmG
(∗)
k = V̂m+1FmG

(∗)
k = V̂m+1QR, that is equivalent to AŴmG

(∗)
k R−1 =

V̂m+1FmG
(∗)
k R−1 = V̂m+1Q concluding the proof as span(ŴmG

(∗)
k R−1) = span(ŴmG

(∗)
k ),

and as V̂m+1Q is the product of two matrices with orthonormal columns, so are its
columns.

Corollary 1. The residual block at restart, Rnew
1 = Rold

m = B−AXnew
1 with Xnew

1 = Xold
m

is orthogonal to Cnew
k .

Proof. Xold
m = X1 + ŴmYm where Ym solves the least squares problem (2.20) so that

(Λm−FmYm) ∈ (Range(Fm))⊥ = Null(FH
m). We also have Rold

m = V̂m+1 (Λm −FmYm),
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consequently

(Cnew
k )HRold

m =
(
V̂m+1Q

)H (
V̂m+1 (Λm −FmYm)

)
=

(
V̂m+1FmG

(∗)
k R−1

)H (
V̂m+1 (Λm −FmYm)

)
= R−HG

(∗)H
k FH

m (Λm −FmYm)︸ ︷︷ ︸
= 0 because of (2.20)

= 0.

2.2.5 Comparison with IB-BGMRES-DR in terms of reusing
information

IB-BGMRES-DR [6] is a block GMRES method that enables the deflated restarting
strategy proposed by Morgan [73] for recycling spectral information at a new cycle and
the partial convergence detection mechanism introduced by Robbé and Sadkane [88]
for handling the issue of almost rank deficient block generated by the block Arnoldi
procedure. Assume the way of approximating the spectral information is the same
for the IB-BGCRO-DR and IB-BGMRES-DR methods, the major difference between
these two IB variants arise from their way of reusing the generated spectral information
as described in Figure 2.1, in which the content in rectangle refers to the algorithm
adopted in corresponding cycle and the directed arrow illustrates generating target
spectral information at the end of the jth (j = 1, 2, . . .) cycle (or family) and then
reusing it in the subsequent (j + 1)th cycle for convergence acceleration. Figure 2.1
illustrates that unlike IB-BGCRO-DR which could reuse spectral information from the
solutions of previous family and cycle, IB-BGMRES-DR can only reuse information from
the previous cycle, which means IB-BGMRES-DR could solely solve each individual
family of linear systems (1.1) separately without benefiting from information generated
when solving the previous family. Note that when solving single family in (1.1) and
when no subspace is augmented at the beginning, IB-BGCRO-DR and IB-BGMRES-
DR can be mathematically equivalent to each other under some conditions (like the way
to approximate eigen-information) as the relationship between (block) GCRO-DR and
(block) GMRES-DR, while the performance of the former GCRO one overs the later
GMRES one when solving subsequent related-sequence families thanks to its ability of
recycling spectral information between families as described in the directed arrows of the
upper pink parts of Figure 2.1, and which has been verified by the numerical results shown
in Section 2.6.3.

2.2.6 A variant suited for flexible preconditioning

All the descriptions in the previous sections are naturally extended to the right
preconditioning case with a fixed preconditioner M , and the central equality reads

A[Uk,MVm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm. (2.25)

28



CHAPTER 2. THE UNSYMMETRIC CASE Yanfei Xiang

IB-BGMRES

A(1)X(1) = B(1)

1st cycle

IB-BGCRO-DR2nd cycle

......j-th cycle

IB-BGCRO-DRlast cycle

IB-BGCRO-DR

A(2)X(2) = B(2)

IB-BGCRO-DR

......

IB-BGCRO-DR

......

IB-BGCRO-DR

A(l)X(l) = B(l)

IB-BGCRO-DR

......

IB-BGCRO-DR

IB-BGMRES1st cycle

IB-BGMRES-DR2nd cycle

......j-th cycle

IB-BGMRES-DRlast cycle

IB-BGMRES

IB-BGMRES-DR

......

IB-BGMRES-DR

......

IB-BGMRES

IB-BGMRES-DR

......

IB-BGMRES-DR

Figure 2.1 – Flowchart of reusing spectral information in the IB-BGCRO-DR (upper) and
IB-BGMRES-DR (bottom) algorithms.

The least squares problem to be solved to compute the minimum norm solution becomes

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F ,

and the solution is
Xm = X1 + [Uk,MVm]Ym.

If we denote by Mj a (possibly nonlinear) nonsingular preconditioning operator at
iteration j and by Mj(Vj) the action of Mj on a block vector Vj, (2.25) translates into

A[Uk,Zm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm with Zm = [M1(V1), . . . ,Mm(Vm)] ,

which can be written in a more compact form as

AẐm = V̂m+1Fm with Ẑm = [Uk,Zm] and V̂m+1 =
[
Ck,Vm, [Pm−1, W̃m]

]
. (2.26)
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The solution update is Xm = X1 + [Uk,Zm]Ym. For the sake of simplicity, we choose to
keep the notation for quantities that have the same meaning as in the nonflexible case
but of course they will have different values.

In the context of flexible preconditioning, many strategies for defining harmonic-Ritz
vectors can be envisioned for GCRO-DR. Among those considered in [18], we follow
the one with a lower computational cost required in solving the generalized eigenvalue
problem, referred to as strategy C in [18]. Furthermore, it also allows us to obtain
companion properties in the flexible preconditioning case that are quite similar to the
ones we have shown in the nonpreconditioned case in Section 2.2.4. We refer the reader
to Appendix A.1 for two other strategies for approximating targeted eigen-information.
Proposition 2 indicates that with an appropriate definition of the harmonic-Ritz vectors,
all the properties of IB-BGCRO-DR extend to the flexible preconditioning variant denoted
as IB-BFGCRO-DR.

Proposition 2. At the end of a cycle of the IB-BFGCRO-DR algorithm, if the deflation
space is built on the harmonic-Ritz vectors Wmgi ∈ span(Wm) of AẐmW†m with respect
to Wm = [Wk, Vm] ∈ Cn×(k+nm), the following hold:

1. The harmonic-Ritz pairs (θi,Wmgi) for all restarts satisfy

FH
mFmgi = θiF

H
mV̂ H

m+1Wmgi, for 1 ≤ i ≤ k + nm, (2.27)

where V̂ H
m+1Wm =


CH
k Wk 0k×nm

V H
m Wk Inm

PH
m−1Wk

W̃H
mWk

0p×nm

 ∈ C(k+nm+p)×(k+nm).

2. At restart, if Gk = [g1, . . . , gk] is associated with the k targeted eigenvalues, the
matrices Wnew

k , Unew
k and Cnew

k to be used for the next cycle are updated by

Wnew
k = WmGkR

−1 = [Wk,Vm]GkR
−1, (2.28)

Unew
k = ẐmGkR

−1 = [Uk,Zm]GkR
−1, (2.29)

Cnew
k = V̂m+1Q =

[
Ck,Vm, [Pm−1, W̃m]

]
Q,

where Q and R are the factors of the reduced QR-factorization of the tall and skinny
matrix FmGk, ensuring AUnew

k = Cnew
k with (Cnew

k )H Cnew
k = Ik.

3. The residual at restart Rnew
1 = Rold

m = B − AXnew
1 with Xnew

1 = Xold
m is orthogonal

to Cnew
k .

Proof. The proofs basically rely on some matrix computations as shortly described below:

• According to Definition 1, each harmonic-Ritz pair (θi,Wmgi) satisfies

∀w ∈ Range(AẐmW†mWm) wH (AẐmW†mWmgi − θiWmgi) = 0. (2.30)

Because Wm is initially set to be equal to Vm and then is updated by (2.28), which
has full column rank, taking a left inverse for the Moore-Penrose inverse of Wm
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makes W†mWm = I. Therefore, the second formula of (2.30) equivalently becomes

(AẐm)H (AẐmgi − θiWmgi) = 0. (2.31)

Substituting (2.26) into the above leads to(
V̂m+1Fm

)H (
V̂m+1Fmgi − θiWmgi

)
= 0. (2.32)

Because V̂m+1 =
[
Ck,Vm, [Pm−1, W̃m]

]
generated at the end of each cycle is

orthonormal, (2.32) becomes

FH
m Fmgi − θiFH

mV̂ H
m+1Wmgi = 0,

which gives the formulation (2.27).

• Let Q and R be the factors of the reduced QR-factorization of the tall and skinny
matrix FmGk. Right multiplying Gk on both sides of (2.26) leads to AẐmGk =

V̂m+1FmGk = V̂m+1QR, that is equivalent to AẐmGkR
−1 = V̂m+1FmGkR

−1 =

V̂m+1Q, concluding the proof as span(ẐmGkR
−1) = span(ẐmGk), and as V̂m+1Q is

the product of two matrices with orthonormal columns, so are its columns.

• The same process for proving Corollary 1.

A closely related numerical technique that extends IB-BGMRES-DR in the flexible
preconditioning context can be derived similarly in the following Section 2.5, in which
the resulting new algorithm named IB-BFGMRES-DR is detailed and its properties are
described.

2.3 Search space expansion policies governed by the
stopping criterion

In this section we describe a few novel policies for expanding the search space that
generalize the original one considered for inexact breakdown detection [88]. In particular
we first show how numerical criteria for detecting the partial convergence and expanding
the search space can be tuned to ensure that a targeted threshold for a prescribed
stopping criterion based on the individual backward error solution will be eventually
satisfied. Second, we present how computational constraints can be taken into account and
combined with any of the previous numerical criteria to best cope with the performance
of the underlying computer architecture.

The partial convergence detection briefly described in Section 2.2.3 ensures that if all
the singular values of the least squares residual are smaller than the threshold τ , then all
the linear system residual norms are also smaller than τ (i.e., p partial convergences have
occurred). This is due to the inequality

∀i ‖b(i) − Ax(i)j ‖ ≤ ‖B − AXj‖ = ‖Λj −F jYj‖ = σmax(Λj −F jYj) < τ, (2.33)
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which follows from the facts that the 2-norm of a matrix is an upper bound of the 2-norm
of its individual columns and that V̂j+1 has orthonormal columns.

2.3.1 Search space expansion policy governed by ηb

A classical stopping criterion for the solution of a linear system Ax = b is based on
backward error analysis and consists of stopping the iteration when

ηb(xj) =
‖b− Axj‖
‖b‖

≤ ε. (2.34)

This criterion was considered in [6] where it was consequently proposed to define τ =
ε min
i=1,...,p

‖b(i)‖. With this choice, when the iteration complies with (2.33), we have

ηb(x
(i)
j ) ≤

‖b(i) − Ax(i)j ‖
min
i=1,...,p

‖b(i)‖
≤ ε. (2.35)

When the different right-hand sides have very different norms in magnitude, the
subspace expansion associated with this criterion might not be effective because the upper
bound in (2.35) will not be tight. This leads to enlarging the search space with directions
that are not relevant (generating useless computation). In that context a better choice
would be to focus on the space expansion to reduce the residual associated with the right-
hand side of the large norm. For that purpose, the idea is to perform the SVD not directly
on the least squares residual but on its scaled least squares residual.

Proposition 3. Performing the SVD of the scaled least squares residuals (Λj−F jYj)Db,ε

with threshold τ = 1 and Db,ε = ε−1diag(‖b(1)‖−1, . . . , ‖b(p)‖−1) ensures that when p partial
convergences have occurred, so that the search space cannot be enlarged, each of the current
individual iterates complies with the stopping criterion (2.34).

Proof. This is a direct consequence of the following inequalities

max
i=1,..,p

‖b(i) − Ax(i)j ‖
ε‖b(i)‖

≤ ‖(B − AXj)Db,ε‖ = ‖(Λj −F jYj)Db,ε‖ ≤ 1

and implies ∀i ηb(x(i)j ) ≤ ε.

In some applications all the solutions associated with a block of right-hand sides do
not need to be solved with the same accuracy. That is, we may have to solve a family
of right-hand sides B = [b(1), . . . , b(p)] with individual convergence thresholds ε(i) for the
solution associated with each right-hand side b(i) (i = 1, . . . , p); thus we have a more
general version of (2.34),

ηb(i)(x
(i)
j ) =

‖b(i) − Ax(i)j ‖
‖b(i)‖

≤ ε(i). (2.36)

In that context, the subspace expansion policy can be easily adapted to ensure the
convergence for each individual accuracy.

32



CHAPTER 2. THE UNSYMMETRIC CASE Yanfei Xiang

Corollary 2. Performing the SVD of the scaled least squares residuals (Λj −F jYj)Db,εi

with threshold τ = 1 and Db,εi = diag((ε1‖b(1)‖)−1, . . . , (εp‖b(p)‖)−1) ensures that when
p partial convergences have occurred each of the current individual iterates complies with
the stopping criterion (2.36).

2.3.2 Search space expansion policy governed by ηA,b

One can also adapt the expansion policy described in the previous section to the
situation where the stopping criterion is based on the normwise backward error on A and
b, defined by

ηA,b(xj) =
‖b− Axj‖

‖b‖+ ‖A‖ ‖xj‖
≤ ε. (2.37)

It suffices to define accordingly the scaled least squares residuals in the SVD that is
involved in the search space expansion. We notice that this type of stopping criterion
will have a computational penalty as the iterates of all individual iterations have to be
computed to calculate their norm.

Corollary 3. Performing the SVD of the scaled least squares residual (Λj−F jYj)DA,b,ε

with threshold τ = 1 and DA,b,ε = ε−1diag((‖A‖‖x(1)j ‖ + ‖b(1)‖)−1, . . . , (‖A‖‖x(p)j ‖ +

‖b(p)‖)−1) ensures that when p partial convergences have occurred, each of the current
individual iterates complies with the stopping criterion (2.37).

We do not develop further these ideas but similarly we could define expansion policies
where for each solution we can select either ηb or ηA,b as stopping criterion with individual
threshold setting.

The occurrence of p partial convergences is a sufficient condition that ensures the
convergence of the p solution vectors, but the convergence might occur earlier, and a more
classical stopping criterion can be accommodated at a low computational cost. Given that
the norms of true residuals are very close to those of the least squares residuals when the
loss of orthogonality of the generated block Krylov basis is not too serious, one can also
check the convergence by looking at the norm of the least squares residual, which is easy
to compute. Let QLS

j RLS
j be a full QR-factorization of F j (i.e., QLS

j is unitary); then

Λj −F jYj = QLS
j

(
0(nj+k)×p

R`s
j

)
, (2.38)

where R`s
j ∈ Cp×p are the last p rows of (QLS

j )HΛj so that ‖b(i) − Ax
(i)
j ‖ = ‖R`s

j (:, i)‖.
Those residual norm calculations are part of the stopping criterion based on ηb or ηA,b

2.3.3 Search space expansion policy governed by computational
performance

Based on any of these expansion policies, the discarded directions at a given iteration
might be reintroduced in a subsequent one; thereby we can trade on the considered
numerical policy and select for the subspace expansion only a subset of those eligible. In
particular, it might be relevant to choose a prescribed block size pCB (here the superscript
CB stands for computational blocking) that is best suited to cope with the computational
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features on a given platform rather than selecting the numerical block size pj+1 defined as
the number of singular values greater than or equal to the prescribed threshold τ = 1. In
that respect, we consider a subspace expansion policy so that the block size at the end of
step j is defined as pCBj+1 = min(pCB, pj+1). We refer to this variant as inexact breakdown
block GCRO-DR with computational blocking (denoted by IB-BGCRO-DR-CB).

Note that all the subspace expansion policies discussed in Section 2.3 could be applied
to any other block minimum residual norm methods equipped with the partial convergence
detection such as the IB-BGMRES [88] and IB-BGMRES-DR [6] algorithms.

2.4 Computational and algorithmic remarks

The mathematical description in the previous section assumes exact calculation. In
practice, the numerical behavior of the algorithms depends on the numerical algorithms
selected to perform the computation in finite precision arithmetic. In particular, all the
above descriptions assume the orthonormality of the residual basis; the orthonomality
ensures the norm equality of the true linear system residual and their least squares
counterpart which governs the numerical search space expansion policies described in
the previous section. In our implementation, for the block Arnoldi procedure (See
Algorithm 1), we consider the block modified Gram-Schmidt (BMGS) algorithm with
reduced QR-factorization based on Householder reflections of the final tall and skinny
block (referred to as (BMGS ◦ HouseQR) in [17]). In addition, at restart the re-
orthogonalization of the recycling space Ck and of the initial block residual vector [V1, P0]
in Equation (2.40) is performed a vector at a time using modified Gram-Schmidt.

2.4.1 Inexact breakdown and re-orthogonalization at restart

For the sake of simplicity, in the previous sections we made the assumption that
the initial residual block was of full rank. In practice, this constraint can be removed
by applying the partial convergence detection to the initial residual block. In that case,
only a subspace of the space spanned by the columns of the initial residual block will be
selected to define the first search space, and the discarded directions are kept in the basis
of the residual space. This has the following two main consequences:

1. The first iteration needs some extra attention to set up the initial basis V1 and
discarded directions P0 defined in (2.11).

2. A consequence of having discarded directions in the first search space is that the
projection of the initial residual block in the residual space that defines the right-
hand side of the least squares residual solved at each block iteration will no longer
have the nested block structure that is expanded by a p×p zero block at each block
iteration as presented in (2.20).

Without loss of generality, let us present the partial convergence detection and
re-orthogonalization at restart where the recycling subspaces Unew

k and Cnew
k are

defined by (2.23) and (2.24), respectively, so that mathematically AUnew
k = Cnew

k and
(Cnew

k )H Cnew
k = Ik, and the initial residual block Rnew

1 = R1 in Corollary 1 is orthogonal
to Cnew

k . For a prescribed stopping criterion and convergence threshold, let us denote by
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Dε the diagonal matrix used to select the space expansion described in the Section 2.3.
Let

R1Dε = [Vnew
1 , P new

0 ]

[
Σp1

Σq1

]
VH
R1

= [Vnew
1 , P new

0 ]Λ̂
′

1, (2.39)

where Vnew
1 ∈ Cn×p1 , P new

0 ∈ Cn×q1 with p1 + q1 = p, and Σp1 contains the p1 singular
values of R1Dε greater than or equal to the prescribed τ , and Σq1 contains the ones smaller
than τ .

We first perform an MGS re-orthogonalization of the columns of [Cnew
k , [Vnew

1 , P new
0 ]]

that reads
[Cnew

k , [Vnew
1 , P new

0 ]] = [Ck, [V1, P0]]

[
R11 R12

R22

]
, (2.40)

where all the columns of [Ck, [V1, P0]] are orthogonal to one another, and
[
R11 R12

R22

]
∈

C(k+p)×(k+p) is an upper triangular matrix with R11 ∈ Ck×k and R22 ∈ Cp×p. Next, we
update Uk = Unew

k R−111 to satisfy (2.2), and V1 = V1 will serve to span the first search
space and P0 will be abandoned for this first block iteration that will be run as follows.

1. Form W1 = AV1 and orthogonalize it (using BMGS ◦ HouseQR) against the set of
orthonormal vectors that are part of the residual space [Ck,V1, P0] which enables
the computation of the entries of B1 = CH

k W1, L1,1 = VH
1 W1 and E1 = PH

0 W1.

2. The resulting block W̄1 formally reads W̄1 = W1 − CkB1 − V1L1,1 − P0E1 with
W̄1 = W̃1D1 being its reduced QR-factorization.

3. In matrix form the above relations also reads

W1 = AV1 =
[
Ck,V1, [P0, W̃1]

]
B1

L1,1

E1

D1

 ,
so that we have the first Arnoldi-like relation

A[Uk,V1] =
[
Ck,V1, [P0, W̃1]

]
F 1 (2.41)

with

F 1 =

 Ik B1

0(p1+p)×k
L1,1

H̃1

 ∈ C(k+p1+p)×(k+p1) and H̃1 =

[
E1

D1

]
∈ Cp×p1 .

4. Next, define the minimum norm solution X2 = X1 + [Uk,V1]Y, and note that R1

belongs to the space [Ck,V1, P0, W̃1] where its components in this orthogonal basis
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are given by [Ck,V1, P0, W̃1]
HR1. From Equation (2.41) we have

‖B − AX2‖F = ‖R1 − A [Uk,V1]Y ‖F = ‖R1 − [Ck,V1, P0, W̃1]F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]

HR1 −F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]

H [Vnew
1 , P new

0 ]Λ̂1 −F 1Y ‖F ,

and then from Equation (2.39), we have

R1 = [Vnew
1 , P new

0 ]Λ̂
′

1D
−1
ε = [Vnew

1 , P new
0 ]Λ̂1 with Λ̂1 = Λ̂

′

1D
−1
ε , (2.42)

so that from Equation (2.40), the right-hand side of the above least squares residual
reads

Λ1 = [Ck,V1, P0, W̃1]
H [Vnew

1 , P new
0 ]Λ̂1 = [Ck,V1, P0, W̃1]

H [CkR12 + [V1, P0]R22]Λ̂1

=
(

[Ck,V1, P0, W̃1]
HCkR12 + [Ck,V1, P0, W̃1]

H [V1, P0]R22

)
Λ̂1

=

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1 0p1×q1

R22Λ̂1 ∈ C(k+p1+p)×p. (2.43)

5. Compute Y1 the solution of the first new least squares problem

Y1 = argmin
Y ∈C(k+p1)×p

‖Λ1 −F 1Y ‖F .

6. Execute the search space expansion policy following the IB principles

(a) Compute the SVD of the scaled least squares residual

(Λ1 −F 1Y1)Dε = U1,LΣ1VH
1,R + U2,LΣ2VH

2,R, where σmin(Σ1) ≥ 1 > σmax(Σ2).

(b) Compute W1 and W2 such that Range(W1) = Range(U(2)
1 ) ∈

Cp×p2 with U1,L =

(
U(1)
1

U(2)
1

)
∈ C(k+p1+p)×p2 , [W1, W2] is unitary and

W2 ∈ Cp×q2 with p2 + q2 = p.

(c) Compute the new orthonormal matrices V2 and P1 as

V2 = [P0, W̃1]W1 ∈ Cn×p2 , P1 = [P0, W̃1]W2 ∈ Cn×q2 ,

and compute as well the last block row matrix L2,: of L 1 and G1 as

L2,: = WH
1 H̃1 ∈ Cp2×p1 , G1 = WH

2 H̃1 ∈ Cq2×p1 .

7. Set L 1 =
(

L1

L2,:

)
∈ C(p1+p2)×p1 = Cn2×p1 .

Whenever a partial convergence is detected in R1, some of its components (along

36



CHAPTER 2. THE UNSYMMETRIC CASE Yanfei Xiang

P new
0 ) are first discarded but could be reintroduced in some subsequent iterations. One

of the consequences of this is that the last q1 columns of the least squares right-hand
side problem evolve from one iteration to the next, depending on how some of the P new

0

directions are reintroduced in the search space along the iterations. There is a way to
incrementally update the least squares right-hand side, and this is discussed in the next
proposition.

Proposition 4. At each iteration of IB-BGCRO-DR, the new least squares problem reads

Yj+1 = argmin
Y ∈C(k+nj+1)×p

∥∥Λj+1 −F j+1Y
∥∥
F
, Λj+1 ∈ C(k+nj+1+p)×p, j = 0, 1, 2, . . . , (2.44)

with the updated right-hand sides being

Λj+1 =

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1 0pj+1×q1

R22 Λ̂1, (2.45)

where Φj+1 =

 Φj(1 : nj, :)

[W1,W2]
H

[
Φj(nj + 1 : nj + qj, :)

0pj×q1

]  ∈ C(nj+p)×q1 for j = 0, 1, 2, . . . ,

with Φ1 =

[
0p1×q1
Iq1

]
∈ Cp×q1 and qj = p−pj(j > 0); [W1,W2] is unitary as defined in the

search space expansion algorithm based on IB principles; and R12 ∈ Ck×p and R22 ∈ Cp×p

are two block components of the upper triangular matrix as shown in the right-hand side
of Equation (2.40).

Proof. From (2.39), (2.40), and (2.42), the initial residual block R1 with partial
convergence detection at restart could be described as

R1 = [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]
HR1

= [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]
H [Vnew

1 , P new
0 ]Λ̂1

= [Ck,V1, P0, W̃1]
(

[Ck,V1, P0, W̃1]
HCkR12 + [Ck,V1, P0, W̃1]

H [V1, P0]R22

)
Λ̂1

= [Ck,V1, P0, W̃1]Λ1 with Λ1 =

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1 0p1×q1

R22Λ̂1,

by [Vnew
1 , P new

0 ] = CkR12 + [V1, P0]R22 obtained from Equation (2.40). That can also be
written as

Λ1 =

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1 0k×q1
Ip1

0q1×p1
Φ1

0p1×p1 0p1×q1

R22Λ̂1,

where Φ1 =

[
0p1×q1
Iq1

]
∈ Cp×q1 and q1 + p1 = p.
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The right-hand sides of the least squares problem at iteration (j + 1) for j = 1, 2, . . .,
are defined by

Λj+1 = [Ck,Vj+1, [Pj, W̃j+1]]
HR1

= [Ck,Vj, Vj+1, [Pj, W̃j+1]]
HR1

=
[
Ck,Vj, [Pj−1, W̃j]W1, [Pj−1, W̃j]W2, W̃j+1

]H
R1

=
[
Ck,Vj, [Pj−1, W̃j][W1,W2], W̃j+1

]H
[Vnew

1 , P new
0 ]Λ̂1

=
[
Ck,Vj, [Pj−1, W̃j][W1,W2], W̃j+1

]H
CkR12Λ̂1 +[

Ck,Vj, [Pj−1, W̃j][W1,W2], W̃j+1

]H
[V1, P0]R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


CH
k V1 CH

k P0

V H
j V1 V H

j P0

[Vj+1, Pj]
H V1 [W1,W2]

H
[
Pj−1, W̃j

]H
P0

W̃H
j+1V1 W̃H

j+1P0

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +



0k×p1 0k×q1[
Ip1

0(nj−p1)×p1

]
Φj(1 : nj, :)

0p×p1 [W1,W2]
H

[
PH
j−1
W̃H
j

]
P0

0pj+1×p1 0pj+1×q1

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj−p1)×p1

]
Φj(1 : nj, :)

0p×p1 [W1,W2]
H

[
Φj(nj + 1 : nj + qj, :)

0pj×q1

]
0pj+1×p1 0pj+1×q1

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1 0pj+1×q1

R22Λ̂1

where Φj+1 ∈ C(nj+p)×q1 for j = 1, 2, . . . .

Based on the above discussions, the IB-BGCRO-DR algorithm with partial
convergence detection in the initial residual block and updated right-hand sides of the
least squares residual is presented as Algorithm 2 for solving a series of linear systems
with slowly changing left-hand sides.
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Algorithm 2 IB-BGCRO-DR for slowly changing left-hand sides and massive number of
right-hand sides
Require: A ∈ Cn×n left-hand side of current family (not vary much compared to previous one)
Require: B ∈ Cn×p the block of right-hand-sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of Arnoldi steps within a cycle
Require: pCB a given constant number satisfying 1 ≤ pCB ≤ p for computational blocking
Require: Dε ∈ Cp×p a diagonal matrix used to select the space expansion described in the Section 2.3
Require: Uk, Ck ∈ Cn×k the recycling subspaces assumed to be empty for the first family and obtained

after solving previous slow-changing family of linear systems
1: Compute R0 = B −AX0

/* Some families have already been solved ? */
2: if the recycling space is not empty, Uk 6= 0 then
3: Apply the reduced QR-factorization to AUk for updating Uk and Ck for the current family such

that the Uk and Ck satisfy (2.2) and (2.3). Compute R1 and X1 as described in (2.6)
4: else
5: Set R1 = R0, X1 = X0, Uk = 0, Ck = 0
6: end if

/* Loop over the restarts */
7: while the stopping criterion based on Section 2.3.1 or 2.3.2 is not met do
8: Apply partial convergence detection in the scaled (least squares) residual block following

Section 2.4.1
/* Arnoldi loop */

9: for j = 2, 3, . . . ,m do
10: Orthogonalize AVj against Ck as Wj = (I − CkC

H
k )AVj . Then orthogonalize Wj against

previous block orthonormal vectors Vj = [V1, . . . ,Vj ] as

Wj = AVj−CkC
H
k AVj−VjL1,1:j , where L1,1:j = V H

j (Wj) = V H
j (AVj) is a block column matrix

11: Set Lj =
[
L j−1, L1,1:j

]
∈ Cnj×nj , Bj =

[
Bj−1, CH

k AVj

]
∈ Ck×nj

12: Orthogonalize Wj against Pj−1 and carry out its reduced QR-factorization as
W̃jDj = Wj − Pj−1Ej , where Ej = PH

j−1Wj

13: Compute Yj by solving the least squares problem described in (2.13) (or (2.44)) with F j shown
in (2.14) composed by Fj and Hj but with the updated right-hand side Λj as shown in (2.45)
instead

14: if the stopping criterion is met then
15: return Xj = X1 + [Uk,Vj ]Yj , Uk and Ck

16: end if
17: Singular value decomposition of the residuals scaled by Dε

(Λj −F jY )Dε = U1,LΣ1VH
1,R + U2,lΣ2VH

2,R with σmin(Σ1) ≥ 1 > σmax(Σ2)

18: if Computational blocking of Section 2.3.3 is activated then
19: U1,L = U1,L(:, 1 : pCB

j ) with pCB
j = min(pCB , nlΣ1), nlΣ1 refers to column number of Σ1

20: end if
21: Following item 6 described in Section 2.4.1 for computing W1 and W2

22: Compute orthonormal matrices Vj+1 and Pj , the last block row matrix Lj+1,: of L j , and Gj

as

Vj+1 =
[
Pj−1, W̃j

]
W1, Pj =

[
Pj−1, W̃j

]
W2,Lj+1,: = WH

1 Hj ,Gj = WH
2 Hj ,L j =

(
Lj

Lj+1,:

)
23: end for

/* Restart procedure */
24: Compute the solution Xm as described in (2.18) and residual Rm according to (2.19)
25: Compute the targeted harmonic-Ritz vectorsGk = [g1, . . . , gk] by solving the generalized eigenvalue

problem (2.21) described in Proposition 1
26: Update the values of Uk and Ck, respectively, by (2.23) and (2.24) described in Theorem 1
27: Restart with X1 = Xm, V̂m+1, R

LS
1 = Λm −FmYm (R1 = Rm = V̂m+1R

LS
1 )

28: end while
29: return Xj for approximation of the current family; Uk, Ck for the next family to be solved
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2.4.2 Solution of the least squares problem and cheap SVD
calculation of the scaled least squares residual

The partial convergence detection mechanism allows us to extract from the residual
spaces new directions to expand the search space at the next iteration of the block method.
The selection consists of extracting the directions that contribute the most to the scaled
residual block and is based on the SVD of the scaled least squares residual. In this section,
we detail how the solution of the least squares problem (2.13) enables to compute easily
and cheaply the SVD of the associated scaled (least squares) residual block. The least
squares problem

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, with F j ∈ C(k+nj+p)×(k+nj) (2.46)

is solved by using a fullQR-factorization of F j = QLS
j RLS

j , where the superscript LS comes
from least squares, QLS

j = [Q
LS(1)
j , Q

LS(2)
j ] with Q

LS(1)
j ∈ C(k+nj+p)×(k+nj) and Q

LS(2)
j ∈

C(k+nj+p)×p, and RLS
j =

[
R

LS(1)
j

0p×(k+nj)

]
∈ C(k+nj+p)×(k+nj) with RLS(1)

j ∈ C(k+nj)×(k+nj) is an

upper triangular matrix, from which the reduced QR-factorization of F j is formulated as
F j = Q

LS(1)
j R

LS(1)
j if QLS(1)

j is considered as an orthogonal basis of F j. Thus, we could
still formulate Yj in a relatively economic way as

Yj = (R
LS(1)
j )−1((Q

LS(1)
j )HΛj) ∈ C(k+nj)×p, (2.47)

from which we could deduce the residual of the least squares problem described in (2.38)
as follows:

Λj −F jYj = Λj −QLS
j RLS

j Yj = QLS
j

(
(QLS

j )HΛj −RLS
j Yj

)
,

= QLS
j

([
(Q

LS(1)
j )H

(Q
LS(2)
j )H

]
Λj −

[
R
LS(1)
j

0p×(k+nj)

]
Yj

)
,

= QLS
j

([
0(k+nj)×(k+nj+p)

(Q
LS(2)
j )H

]
Λj

)
,

= QLS
j

(
0(k+nj)×p

R`s
j

)
,

where R`s
j = (Q

LS(2)
j )HΛj ∈ Cp×p are corresponds to the last p rows of (QLS

j )HΛj. The
SVD of the scaled residual R`s

j Dε can be written as

R`s
j Dε = U`sΣV

H
`s ,

so that the SVD of the scaled least squares residual is

(
Λj −F jYj

)
Dε = QLS

j

(
0(nj+k)×p Inj+k

U`s 0p×(nj+k)

)
︸ ︷︷ ︸

Unitary

(
Σ

0(nj+k)×p

)
V H
`s .
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In conclusion, the idea is that computing the full QR-factorization of the matrices
involved in the least squares problems allows us to reuse its Q factor to compute the
SVD of the least squares residual using a QR-SVD algorithm such that the actual SVD
decomposition is performed on a p × p block R`s

j Dε, where R`s
j appears as in the right-

hand side of (2.38), at each iteration. Note that this observation applies naturally to the
IB-BGMRES [88] and IB-BGMRES-DR [6] algorithms as well.

2.5 Block flexible GMRES with partial convergence
detection and deflated restarting

2.5.1 Block flexible Arnoldi with partial convergence detection

Starting from an orthonormal block vector V1 obtained from the reduced QR-
factorization of the initial residual block (denoted as R0 in this section)1 R0 = B −
AX0 = V1Λ1, Algorithm 3 describes details about the block flexible Arnoldi process
used to construct a pair of orthonormal basis. When no inexact breakdown occurs, i.e.,
pj+1 = pj = . . . = p1 = p, the whole columns of Wj in step 10 of Algorithm 3 have been
used to enlarge the search space, and then the block Arnoldi relation at the jth iteration
is obtained as

AZj = VjHj + [0n×nj−1
, Wj] = Vj+1H j, (2.48)

in which Zj = [M1(V1), . . . ,Mm(Vj)], Vj = [V1, . . . ,Vj] ∈ Cn×nj (nj = j × p) contains
orthonormal columns and H j =

[
Hj

0...0 Hj+1,j

]
∈ Cnj+1×nj composed by square matrices

Hj+1,j ∈ Cpj×pj (pj = p) is a block upper Hessenberg matrix. The minimum residual
norm solution in the affine space X0 + Range(Zj) can be written as Xj = X0 + ZjYj
where

Yj = argmin
Y ∈Cnj×p

‖Λ̃j −H jY ‖F

and Λ̃j = V H
j+1R0 = (Λ1, 0nj×p)

T , the columns of Λ̃j are the components of the individual
initial residual in the residual space Vj+1.

When a partial convergence occurs up to iteration j in Algorithm 3, the dimension of
the approximation space Range(Zj) generated at the jth iteration is no longer equal
to j × p but equal to nj =

∑j
i=1 pi with nj < j × p. According to the partial

convergence detection mechanism in IB-BGMRES [88], the block flexible Arnoldi with
partial convergence detection 2 and Equation (2.9) developed by Robbé and Sadkane [88],

1Out of simplicity, the initial residual block in here is assumed to be of full column rank, while such
assumption could be removed by introducing partial convergence detection in the initial residual block
as the contents described in Section 2.4.1.

2The block flexible Arnoldi with partial convergence detection is obtained by changing the content
in step 10 of Algorithm 2 into: Orthogonalize AMj(Vj) against previous block orthonormal vector
Vj = [V1, . . . ,Vj ] as

Wj = AMj(Vj)− VjL1,1:j , where L1,1:j = V H
j (AMj(Vj)) is a block column matrix.
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Algorithm 3 Block flexible Arnoldi procedure with blockwise modified Gram-Schmidt
orthogonalization:
1: Given a nonsingular coefficient matrix A ∈ Cn×n, choose a unitary matrix V1 ∈ Cn×p

with orthonormal columns
2: for j = 1, 2, . . . ,m do
3: Choose a (possibly nonlinear) preconditioning operator Mj

4: Zj = Mj(Vj)
5: Compute Wj = AZj
6: for i = 1, 2, . . . , j do
7: Hi,j = VH

i Wj

8: Wj = Wj − ViHi,j

9: end for
10: Wj = Vj+1Hj+1,j (reduced QR-factorization)
11: end for

the Equation (2.48) could be extended into

AZj = VjHj + [Qj−1, Wj], (2.49)

where Qj−1 = [Q1, . . . , Qj−1] ∈ Cn×nj−1 is rank deficient and accounts for all the
abandoned directions.

In order to characterize a minimum norm solution in the space spanned by Zj

with Equation (2.49) we need to form an orthonormal basis of the space spanned by
[Vj,Qj−1,Wj]. This is performed by first orthogonalizing Qj−1 against Vj, that is
Q̃j−1 = (I − VjV H

j )Qj−1. Because Qj−1 is of low rank so is Q̃j−1 that can be written
as formula (2.11). Next Wj, that is already orthogonal to Vj, is made to be orthogonal
to Pj−1 with Wj − Pj−1Ej where Ej = PH

j−1Wj; then one computes W̃jDj the reduced
QR-factorization of Wj − Pj−1Ej. Eventually, the columns of the matrix [Vj, Pj−1, W̃j]
form an orthonormal basis of the space spanned by [Vj,Qj−1,Wj].

With this new basis, Equation (2.49) writes

AZj =
[
Vj, [Pj−1, W̃j]

]
F̃ j, (2.50)

where F̃ j =

[
Lj

Ĥj

]
∈ C(nj+p)×nj with Ĥj =

[
Gj−1 Ej

0 Dj

]
∈ Cp×nj (here the notation Hj

with the wide-hat form is used for distinguishing from that already used in IB-BGCRO-
DR case as appeared in Equation (2.14) and (2.41)) and Lj ∈ Cnj×nj owns the same
details as described in formula (2.12), which is no longer a block upper Hessenberg as
shown in the right-hand sides of Equation (2.48) as soon as a partial convergence occurs,
i.e., ∃` Q` 6= 0.

The numerical mechanism to select Vj+1 out of
[
Pj−1, W̃j

]
follows the same ideas as

discussed in [6, 88] within the context of block GMRES. The governing idea consists in
building the orthonormal basis for the directions that contribute the most to the individual
residual norms and make them larger than the target threshold τ . Based on the SVD of
the coordinate vector of the scaled least squares residual (Λ̃j − F̃ jYj)Dε = U1,LΣ1VH

1,R +
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U2,LΣ2VH
2,R where Dε is a diagonal matrix used to select the space expansion described in

the Section 2.3, Σ1 contains the singular values larger than the prescribed IB-threshold τ ,

they decompose U1,L =

(
U(1)
1

U(2)
1

)
in accordance with

[
Vj, [Pj−1, W̃j]

]
, that is U(1)

1 ∈ Cnj×pj+1

and U(2)
1 ∈ Cp×pj+1 . Because, the objective is to construct an orthonormal basis we

consider [W1,W2] unitary so that Range(W1) = Range(U(2)
1 ). The new set of orthonormal

vectors selected to expand the search space as formula (2.16), which contributes the most
to the residual. We do not give the detailed calculation and refer to [88] for a complete
description, but only state that via this decomposition the main terms that appear in
Equation (2.50) can be computed incrementally by an alternative formulation:

AZj = Vj+1L j + Q̃j, (2.51)

with L j =

[
Lj

Vj+1Qj−1 Hj+1,j

]
, where Lj =

L j−1

H1,j
...

Hj,j

 , the last block row of L j

at next iteration (j + 1) is given by L j+1,: = WH
1 Ĥj. The last block column of Lj+1

results from the block flexible Arnoldi orthogonalization. The new compressed form of
the abandoned direction Q̃j is given by the new orthonomal set of vectors

Pj =
[
Pj−1, W̃j

]
W2, (2.52)

and the complementary part of Vj+1 and their components in the space spanned by Pj
are Gj = WH

2 Ĥj.
Consequently, in one cycle of IB-BFGMRES-DR, once the maximum size of the space

has been reached, we have

AZm =
[
Vm, [Pm−1, W̃m]

]
F̃m, (2.53)

AZm = Vm+1L m + Q̃m, (2.54)
Xm = X0 + ZmYm, (2.55)

Rm =
[
Vm, [Pm−1, W̃m]

] (
Λ̃m − F̃mYm

)
, (2.56)

Ym = argmin
Y ∈Cnm×p

∥∥∥Λ̃m − F̃mY
∥∥∥
F
, Λ̃m = [ΛT

1 , 0p×nm ]T .

2.5.2 Harmonic-Ritz vectors and residuals

We first illustrate how to compute the harmonic-Ritz vectors used for deflation
as described in Proposition 5, and then discuss the relation between the linear system
residuals and the residuals of harmonic-Ritz vectors at the restart of IB-BFGMRES-DR.

Proposition 5. At the end of a cycle of IB-BFGMRES-DR, the updating of deflated
restarting used in next cycle relies on the computation of k harmonic-Ritz vectors Yk =
VmGk of AZmV H

m with respect to Range(Vm), where each harmonic-Ritz pair (θi,Vmgi)
computed at the end of cycle satisfies

(Lm + L −H
m ĤH

mĤm)gi = θi gi for 1 ≤ i ≤ nm, (2.57)
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where Lm ∈ Cnm×nm and Ĥm ∈ Cp×nm.

Proof. According to Definition 1, each harmonic-Ritz pair (θi,Vmgi) satisfies

∀w ∈ Range(AZmV H
m Vm) wH (AZmV H

m Vmgi − θi Vmgi) = 0,

which is equivalent to
(AZm)H (AZmgi − θi Vmgi) = 0,

by the orthonormality of Vm. Substituting (2.53) into the above one yields

(
[
Vm, [Pm−1, W̃m]

]
F̃m)H (

[
Vi, [Pm−1, W̃m]

]
F̃m gi − θi Vm gi) = 0. (2.58)

Because of the structure of F̃m and the orthonormality of [Vm, Pm−1, W̃m], (2.58) becomes

(L H
m Lm + ĤH

mĤm)gi = θi L
H
m gi, (2.59)

which completes the proof since Lm is assumed to be nonsingular.

Assume RLS
m =

(
Λ̃m − F̃mYm

)
∈ C(nm+p)×p, the residual of linear system presented

in Equation (2.56) could be simplified as

Rm =
[
Vm, [Pm−1, W̃m]

]
RLS
m ∈ Cn×p. (2.60)

Denote the corresponding residual of harmonic-Ritz vectors as R(HR)
m similarly, which

owns form as

R(HR)
m = AZmGk − VmGk diag(θ1, . . . , θk) ∈ Cn×k. (2.61)

Given that both Rm and R(HR)
m are resided in the subspace Range(

[
Vm, [Pm−1, W̃m]

]
) ∈

Cn×(nm+p) and are orthogonal to the same subspace Range(AZm) ∈ Cn×nm . Therefore,
the residuals of linear system Rm and the residuals of harmonic-Ritz vectors R(HR)

m are
in the same p-dimensional space denoted as Range(AZm)⊥ ∩ Range(

[
Vm, [Pm−1, W̃m]

]
),

which means there exists a matrix βp×k ∈ Cp×k such that R(HR)
m = Rmβp×k. According

to (2.60) and (2.61), such collinear relationship between the linear system residuals and
residuals of harmonic-Ritz vectors could be further described as the following formula

AZmGk =
[
Vm, [Pm−1, W̃m]

]
G

[
diag(θ1, · · · , θk)

βp×k

]
, (2.62)

where Gk = [g1, . . . , gk] ∈ Cnm×k, G =

[
Gk

0p×k
RLS
m

]
∈ C(nm+p)×(k+p), βp×k =

(β1, · · · , βk) ∈ Cp×k and βi ∈ Cp (1 ≤ i ≤ k). Based on Equation (2.50) and the
orthonormality of

[
Vm, [Pm−1, W̃m]

]
, Equation (2.62) can be also expressed as

F̃mGk = G

[
diag(θ1, · · · , θk)

βp×k

]
, (2.63)
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which is the block form of (3.4) shown in [6, Lemma3.3].

2.5.3 Block flexible GMRES with partial convergence detection
at restart

In this section, the forthcoming Theorem 2 will be presented to illustrate the flexible
Arnoldi relation with partial convergence detection described in Equation (2.50) and (2.51)
(or in Equation (2.53) and (2.54)) still hold at restart of IB-BFGMRES-DR. Firstly, let
us denote G = QGRG the reduced QR-factorization of G shown in Equation (2.63) and
the reduced factors could be partitioned as

QG =

[
Γ1

0p×k
Γ2

]
∈ C(nm+p)×(k+p), (2.64)

RG =

[
Θ1

0p×k
Θ2

]
∈ C(k+p)×(k+p), (2.65)

with Γ1 = QG(1 : nm, 1 : k), Γ2 = QG(:, k + 1 : k + p), Θ1 = RG(1 : k, 1 : k), Θ2 = RG(:
, k + 1 : k + p) and

Gk = Γ1Θ1, (2.66)
RLS
m = QGΘ2. (2.67)

Theorem 2. At each restart of IB-BFGMRES-DR, the initial block-flexible-Arnoldi-like
relation (2.50) and (2.51) still hold in exact arithmetic as

AZ new
1 =

[
V new
1 , [P0, W̃1]

new
]
F̃

new

1 , (2.68)

AZ new
1 = V new

2 L new
1 + Q̃new1 , (2.69)

Rnew
0 = Rm =

[
V new
1 , [P0, W̃1]

new
]

Λ̃new
1 and Λ̃new

1 = Θ2, (2.70)

with

Z new
1 = ZmΓ1,

[
V new
1 , [P0, W̃1]

new
]

=
[
Vm, [Pm−1, W̃m]

]
QG,

V new
1 = VmΓ1, [P0, W̃1]

new =
[
Vm, [Pm−1, W̃m]

]
Γ2,

F̃
new

1 =

[
L new

1

Ĥnew
1

]
and L new

1 = ΓH1 LmΓ1, Ĥnew
1 = ΓH2 F̃mΓ1,

Vnew
2 = [P0, W̃1]

newW1, V new
2 = [V new

1 ,Vnew
2 ],

L new
2,: = WH

1 Ĥnew
1 , L new

1 =

[
L new

1

L new
2,:

]
,

P new
1 = [P0, W̃1]

newW2, Gnew
1 = WH

2 Ĥnew
1 , Q̃new1 = P new

1 Gnew
1 ,
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where W1 and W2 satisfy

Range(W1) = Range(Unew(2)
1 ) with Unew

1,L =

[
Unew(1)

1

Unew(2)
1

]
and [W1W2] is unitary

with
(Λ̃new

1 − F̃
new

1 Y new
1 )Dε = Unew

1,L Σnew
1 VnewH

1,R + Unew
2,L Σnew

2 VnewH
2,R ,

where σmin(Σnew
1 ) ≥ 1 ≥ σmax(Σ

new
2 ), the SVD to detect partial convergence in the

restarting scaled least squares residual block where

Y new
1 = argmin

Y ∈Cn1×p

∥∥∥Λ̃new
1 − F̃

new

1 Y
∥∥∥
F
.

Proof. Starting from the relationship between residual and harmonic-Ritz vectors
as shown in Equation (2.62), let’s substitute G by these reduced factors QG in
Equation (2.64) and RG in Equation (2.65) obtained by its reduced QR-factorization
and change Gk by relation (2.66), then we have

AZmΓ1 =
[
Vm, [Pm−1, W̃m]

]
QGRG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11

by the nonsingularity of Θ1, which could be rewritten as

AZmΓ1 =
[
VmΓ1, [Vm, [Pm−1, W̃m]]Γ2

]
RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 (2.71)

because of the partition of QG shown in (2.64). Then, repeating the same processes
described above, the corresponding formula (2.63) could also be reformed as

F̃mΓ1 = QGRG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 ,

from which, we have

RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 = QH

GF̃mΓ1.

According to the structure of QG and Fm as shown in Equation (2.64) and (2.50), we
obtain

RG

[
diag(θ1, · · · , θk)

βp×k

]
Θ−11 =

[
ΓH
1 LmΓ1

ΓH2 F̃mΓ1

]
. (2.72)

If we denote

Z new
1 = ZmΓ1, V new

1 = VmΓ1, [P0, W̃1]
new =

[
Vm, [Pm−1, W̃m]

]
Γ2,

L new
1 = ΓH1 LmΓ1, Ĥnew

1 = ΓH2 F̃mΓ1, F̃
new

1 =

[
L new

1

Ĥnew
1

]
,
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and substitute Equation (2.72) into (2.71), then Equation (2.68) is proven.
Next, show that equality (2.69) holds. Given [W1W2] is unitary, we have

[P0, W̃1]
new = [P0, W̃1]

new[W1WH
1 + W2WH

2 ],

and substituting this into Equation (2.68) gives

AZ new
1 =

[
V new
1 , [P0, W̃1]

new[W1WH
1 + W2WH

2 ]
] [ L new

1

Ĥnew
1

]
,

= V new
1 L new

1 + [P0, W̃1]
new[W1WH

1 + W2WH
2 ]Ĥnew

1 ,

= V new
1 L new

1 + [P0, W̃1]
newW1WH

1 Ĥnew
1 + [P0, W̃1]

newW2WH
2 Ĥnew

1 ,

= V new
1 L new

1 + Vnew
2 L new

2,: + P new
1 Gnew

1 ,

= [V new
1 V new

2 ]

[
L new

1

L new
2,:

]
+ P new

1 Gnew
1 ,

which is relation (2.69).
From Equation (2.60) and (2.67), at restart we have

Rnew
0 = Rm =

[
Vm, [Pm−1, W̃m]

]
RLS
m

=
[
Vm, [Pm−1, W̃m]

]
QGΘ2 =

[
V new
1 , [P0, W̃1]

new
]

Λ̃new
1 .

This completes the proof.

2.6 Numerical experiments

In the following sections we illustrate different numerical features of the novel
algorithm introduced above. For the sake of comparison, in some of the experiments we
also display results of closely related block methods such as BGCRO-DR [81,103,127] or
IB-BGMRES-DR [6]. All the numerical experiments have been run using a MATLAB
prototype, so that the respective performances of the algorithms are evaluated in
terms of the number of matrix-vector products, denoted as #mvps (and preconditioner
applications in the preconditioned case) required to converge.

For each set of blocks of right-hand sides, referred to as a family, the block initial guess
is equal to 0 ∈ Cn×p, where p is the number of right-hand sides. The block right-hand side
B = [b(1), b(2), . . . , b(p)] ∈ Cn×p is composed of p linearly independent vectors generated
randomly (using the same random seed when block methods are compared). While any
part of the spectrum could be considered to define the recycling space we consider for all
the experiments the approximate eigenvectors associated with the k smallest approximate
eigenvalues in magnitude. The maximum dimension of the search space in each cycle is set
to be md = 15× p. To illustrate the potential benefit of IB-BGCRO-DR when compared
to another block solver, we consider the overall potential gain when solving a sequence of
` families defined as

Gain (`) =

∑`
s=1 #mvps (method)(s)∑`

s=1 #mvps (IB-BGCRO-DR)(s)
. (2.73)

47



2.6. NUMERICAL EXPERIMENTS Yanfei Xiang

2.6.1 Rayleigh-Ritz and harmonic-Ritz approaches for recycling
subspace

To illustrate the flexibility of subspace recycling in IB-BGCRO-DR as discussed
in Section 2.2.4, both the harmonic-Ritz (HR) and Rayleigh-Ritz (RR) projections are
considered to construct the recycling subspace; the correspond algorithms are referred
to as IB-BGCRO-DR(HR) and IB-BGCRO-DR(RR). Following the spirit of the test
examples considered in [72] we consider bidiagonal matrices of size 5000 with upper
diagonal unit so that their spectrum is defined by their diagonal entries; we denote them
Matrix 1 and Matrix 2. Matrix 1 has diagonal entries 0.1, 1, 2, 3, . . . , 4999 and Matrix 2
has diagonal entries 10.1, 10.2, . . . , 20, 21, . . . , 4920. We consider experiments with a series
of linear systems and each one with p = 20 given right-hand sides, the size of the recycled
space k = 30, and the maximal dimension of the search space md = 300. In the left
plots of Figure 2.2 we display the convergence histories of the p backward errors as a
function of the number of matrix-vector products (#mvps) for the first three consecutive
families. On the right two plots of Figure 2.2 we depict #mvps for each of the 30 families.
For Matrix 1, one can observe that the HR-projection captures a space that slows down
the initial convergence rate once the first family has been solved; that is, for families 2
and 3 the converge histories do not exhibit anymore any plateau. On that example the
RR-projection does not capture a recycling space that helps much the convergence as
the three convergence histories exhibit very similar pattern. For Matrix 2, both RR and
HR projections work pretty much the same. In Table 2.1, we report the total required
#mvps for the two matrix examples for 3 and 30 families. Those results do not attempt
to highlight that one projection is superior to the other one, but simply illustrate the
flexibility of the GCRO approach to accommodate both. The selection or discussion of
the best suited projection method is out of the scope of this manuscript.

#
families

Matrix Method #mvps

3 Matrix 1
IB-BGCRO-DR(HR) 7182
IB-BGCRO-DR(RR) 7583

30 Matrix 1
IB-BGCRO-DR(HR) 68262
IB-BGCRO-DR(RR) 71709

3 Matrix 2
IB-BGCRO-DR(HR) 13981
IB-BGCRO-DR(RR) 13430

30 Matrix 2
IB-BGCRO-DR(HR) 138247
IB-BGCRO-DR(RR) 136812

Table 2.1 – Numerical results of IB-BGCRO-DR with recycling subspace generated by RR or
HR-projection for Matrix 1 and Matrix 2 (p = 20, md = 300 and k = 30).

In the rest of this chapter, only the HR projection is considered to build recycling
subspace used in the GCRO-DR like methods. Besides, the bidiagonal Matrix 1 is chosen
as the constant left-hand sides in the following Section 2.6.2-2.6.6, in which the related
parameters are likewise set to be p = 20, k = 30 and md = 300 defaultly.
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Figure 2.2 – Comparison behavior of IB-BGCRO-DR with recycling subspace developed by RR
or HR-projection on bidiagonal Matrix 1 and Matrix 2 (p = 20, md = 300 and k =

30) as described in Section 2.6.1. Left: convergence histories of the largest/smallest
backward errors ηb(i) at each #mvps for 3 consecutive families. Right: consumed
#mvps versus family index.

2.6.2 Comparison of two different partial convergence detection
thresholds

According to the inequality (2.35) in Section 2.3.1, the partial convergence threshold
we adopted in this work satisfy τ = 1. Specifically, assume that the solutions
corresponding to each single right-hand side ηb(x

(i)
j ) as described in left-hand side of (2.35)

converge to the same convergence threshold ε, when p partial convergences have occurred,
we have,

||b(i) − Ax(i)j ||
||b(i)|| × ε

≤ ||B − AXj||
||b(i)|| × ε

≤
∥∥(Λ1 −F jYj

)
Dε

∥∥ ≤ τ for ∀i ∈ {1, . . . , p}, (2.74)

where Dε = ε−1 diag (||b(1)||−1, · · · , ||b(p)||−1) ∈ Cp×p with τ = 1. Comparing τ = 1
appeared in the right-hand sides of (2.74) with the original version of IB-threshold τ =
ε min
i=1,...,p

||b(i)|| described in the right-most part of inequality (3.17) of [6, Section 3.3] (which

is specially denoted as min-IB-threshold in here for distinguishing it from τ = 1), we
conclude that the IB-variants (like IB-BGCRO-DR or IB-BGMRES-DR) with the IB-
threshold τ = 1 show clear benefit especially when the norm of each single right-hand
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side ||b(i)|| is of very different magnitude, which may let the min
i=1,...,p

||b(i)|| be quite different
from some others that with larger norms thus further leads to the min-IB-threshold fails
to detect IB of these columns effectively. This is illustrated by the results shown in
Figure 2.3, in which the min-IB-BGCRO-DR refers to the IB-BGCRO-DR algorithm
with the min-IB-threshold τ = ε min

i=1,...,p
||b(i)||, and IB-BGCRO-DR is the one with the

IB-threshold τ = 1 proposed and adopted in this chapter.
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Figure 2.3 – Convergence histories of the largest/smallest backward errors ηb(i) at each #mvps

for Section 2.6.2 with different scaling size of the columns of the right-hand sides.
Comparison the two IB-variants with two different form of IB-threshold by solving
Matrix 1 (p = 20, md = 300, ε = 10−8 and k = 30). Left: B = rand(n, p). Middle:
B = rand(n, p) and then multiply 20 to the first p/2 columns of B. Right: the
same as the Middle case except for multiplying by 50 instead.

2.6.3 Benefits of recycling between the families

To illustrate the benefits of recycling spectral information from one family to the next
as well as the computational savings due to the partial convergence detection mechanism,
we first report on experiments with BGCRO-DR, IB-BGCRO-DR and IB-BGMRES-DR
on a series of linear systems with constant left-hand side. We consider experiments with
a family size p = 20 and a recycled space size k = 30, and where the maximal dimension
of the search space is md = 300.

In the left plot of Figure 2.4 we display the convergence histories for solving two
consecutive families with the ηb-based stopping criterion. Several observations can be
made. Because IB-BGMRES-DR, IB-BGCRO-DR and BGCRO-DR do not have a
deflation space to start with for the first family, the convergence histories of these three
solvers overlap as long as no partial convergence is detected. After this first partial
convergence, the convergence rate of IB-BGCRO-DR and IB-BGMRES-DR becomes
faster (in terms of #mvps) than that of BGCRO-DR, and the former two convergence
histories mostly overlap as the two IB solvers remain mathematically equivalent. For
the second and subsequent families, the capability to start with a deflation space shows
its benefit for BGCRO-DR and IB-BGCRO-DR. It is because IB-BGMRES-DR needs a
few restarts to capture this spectral information again and to refine it in its subsequent
search spaces construction process; eventually it exhibits a convergence rate similar to the
BGCRO-DR counterpart. For the sake of comparison and to illustrate the benefit of the
partial convergence detection we also display the convergence histories of BGCRO-DR
which always requires more #mvps compared to its IB counterpart. Those extra #mvps

50



CHAPTER 2. THE UNSYMMETRIC CASE Yanfei Xiang

0 1000 2000 3000 4000 5000 6000 7000

mvps

10 -8

10 -6

10 -4

10 -2

10 0
b
(m

in
,m

a
x
)

Convergence for 2 consecutive families

IB-BGCRO-DR

IB-BGMRES-DR

BGCRO-DR

0 50 100 150 200 250 300 350

iterations

0

2

4

6

8

10

12

14

16

18

20

b
lo

c
k
s
iz

e

Blocksize along iterations for 2 consecutive families

IB-BGCRO-DR

IB-BGMRES-DR

BGCRO-DR

Figure 2.4 – Comparison history for Section 2.6.3. IB-BGCRO-DR with BGCRO-DR and IB-
BGMRES-DR by solving Matrix 1 (p = 20, md = 300 and k = 30). Left:
convergence histories of the largest/smallest backward errors ηb(i) at each #mvps

for 2 consecutive families. Right: varying blocksize (i.e., pj) along the iterations.

mostly enable us to improve the solution quality for some right-hand sides beyond the
targeted accuracy.

To visualize the effect of the partial convergence detection, we report in the right plot
of Figure 2.4 the size of search space expansion pj as a function of the iterations. Because
BGCRO-DR does not implement the partial convergence detection, its search space is
increased by p = 20 at each iteration. For the other two block IB-solvers, the block size
monotonically decreases to 1. Note that the partial convergence detection is implemented
in the initial (least squares) residual block in IB-BGCRO-DR, and thus its block size does
not jump back to the original block size p at restart. By construction, IB-BGMRES-
DR implements the partial convergence detection at restart so that the same observation
applies.

#
families

Method #mvps #iter

2
BGCRO-DR 6640 332
IB-BGMRES-DR 5404 343
IB-BGCRO-DR 4928 299

20
BGCRO-DR 56940 2847
IB-BGMRES-DR 53772 3454
IB-BGCRO-DR 45652 2637

Table 2.2 – Numerical results in both terms of #mvps and #iter for Section 2.6.3 with Matrix
1 (p = 20, md = 300 and k = 30).

A summary of the #mvps and the number of block iterations (referred to as #iter)
is given in Table 2.2 that shows the benefit of using IB-BGCRO-DR.

Note that we introduced partial convergence detection in the initial residual block for
the proposed solver as described in Section 2.4.1. However, what would happen if we
skip it for the first initial residual block? Let’s denote the solver with partial convergence
detection after the initial residual block as IBa-BGCRO-DR, where IBa stands for carrying
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out inexact breakdown after the initial iteration (or without partial convergence detection
in the initial residual block), for contrasting with IB-BGCRO-DR with partial convergence
detection in the initial residual block, which with updating right-hand sides of the least
squares problem as shown in Equation (2.44). From the pseudocode of IB-BGCRO-DR
described in Algorithm 2, the corresponding pseudocode for IBa-BGCRO-DR could be
deduced similarly by letting all the columns of the initial residual block be the initial
Arnoldi basis Vnew

1 with p columns thus P new
0 is empty in this case, and by replacing the

varying right-hand sides Λj shown in Proposition 4 into the one that with simple version
as Λj =

[
0p×k,Λ

T
1 , 0p×nj

]T
. Figure 2.5 displays the results of adding the performance of

IBa-BGCRO-DR to Figure 2.4 to illustrate the benefit of introducing partial convergence
detection in the initial residual block, i.e., reduce #mvps by avoiding the block size of
search space jumps back to the original block size p at restart.
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Figure 2.5 – Comparison of IB-BGCRO-DR with IBa-BGCRO-DR, BGCRO-DR and IB-
BGMRES-DR by solving bidiagonal Matrix 1 (p = 20, md = 300 and k = 30).
Left: convergence histories of the largest/smallest backward errors ηb(i) at each
#mvps for 2 consecutive families. Right: varying blocksize along iterations.

2.6.4 Subspace expansion governed by convergence criterion ηA,b

In this section we show the capability of the novel subspace expansion policy to drive
the individual backward errors ηA,b down to different accuracies and its benefit with respect
to the original BGCRO-DR method. In Figure 2.6, we display the convergence histories
of the IB and IB-free methods for three different convergence thresholds, from the less
stringent on the left to the most stringent on the right. We can first observe that the first
iteration, where the partial convergence detection starts to act, depends on the targeted
accuracy as can be expected from the corresponds threshold on the singular values of the
least squares residual. The second interesting observation is that IB-BGCRO-DR is able
to decrease ηA,b to a very low value close to the machine epsilon, that is O(10−16). This
latter result mostly reveals the orthogonality quality of the residual space basis computed
by (BMGS ◦ HouseQR) in the block Arnoldi implementation and the re-orthogonalization
using MGS between all the columns of the recycling subspace Ck and the initial block
Arnoldi basis at restart. This ensures that the least squares residual norms are quite
close to the linear system residual ones. This latter fact ensures the relevance of the space
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Figure 2.6 – Convergence histories of the largest/smallest ηA,b(i)(x
(i)
j ) at each #mvps for

2 consecutive families for Section 2.6.4 with different convergence thresholds.
Comparison of IB-BGCRO-DR with BGCRO-DR by solving Matrix 1 (p = 20,

md = 300 and k = 30).

expansion policy that monitors the linear system residual norms through the least squares
residual ones. To illustrate the orthonormal quality of the basis V̂j+1 =

[
Ck,Vj, [Pj−1, W̃j]

]
, we display in Figure 2.7 the loss of orthogonality along #mvps that is defined by

Loss-Orth =
∥∥∥V̂ H

j+1V̂j+1 − Ij+1

∥∥∥ . (2.75)

In a quite similar manner to MGS-GMRES that is backward-stable [78], it can be observed
that the loss of orthogonality mostly appears when the solutions of the linear systems
converge. Note that without the re-orthogonalization at restart, the loss of orthogonality
tends to accumulate along with restart which prevents the value of Loss-Orth to be close
to the machine epsilon. We refer the reader to Figure 2.8 for the corresponding results
without applying re-orthogonalization to all the columns of [Ck, [V1, P0]] at restart.
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Figure 2.7 – Loss-Orth defined in Equation (2.75) of GCRO-variants with stopping criterion
based on ηA,b(i)(x

(i)
j ) at each #mvps for 2 consecutive families for Section 2.6.4 with

different convergence thresholds. Comparison of IB-BGCRO-DR with BGCRO-DR
for solving Matrix 1 (p = 20, md = 300 and k = 30).

2.6.5 Subspace expansion policy for individual convergence
thresholds for ηb

To illustrate this feature, we consider a family of p right-hand sides and a convergence
threshold 10−4 for the first p/2 right-hand sides and 10−8 for the last p/2 ones. To estimate
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Figure 2.8 – Similar case to the left plot of Figure 2.7 but with/without re-orthogonalizing Ck
to V1 by MGS at restart of BGCRO-DR and IB-BGCRO-DR.
*Note that the above mentioned re-orthogonalizing of Ck to V1 described in the
right plot cannot ensure the re-orthogonality of all the columns of Ck (or V1) thus
cannot obtain the results as shown in left plot of Figure 2.7 that with applying
re-orthogonalization to all the columns of [Ck, [V1, P0]] at restart.

of the computational benefit of this feature, we also compare with calculations where all
the right-hand sides are solved with the most stringent threshold, that is 10−8. In the
left part of Figure 2.9, we display the convergence histories for 3 successive families. The
variant that controls the individual threshold is denoted as IB-BGCRO-DR-VA, where
VA stands for variable accuracy. It can be seen that the numerical feature works well and
that the envelope of the backward errors has the expected shape, that is, the minimum
backward error decrease to 10−8 while the maximum one (associated with the first p/2
solutions) only decrease to 10−4. If we compare the convergence histories of IB-BGCRO-
DR and IB-BGCRO-DR-VA, it can be seen that the slope of IB-BGCRO-DR-VA is deeper
than that of IB-BGCRO-DR once the first p/2 solutions have converged; after this point
IB-BGCRO-DR-VA somehow focuses on the new directions (produced by #mvps given
for the x-axis) to reduce the residual norms of the remaining p/2 solutions that have not
yet converged. The right plot of Figure 2.9 shows the computational gain induced by
the individual control of the accuracy compared to the situation where all the right-hand
sides would have been solved to the most stringent stopping criterion threshold if this
feature were not designed. In this case the individual monitoring of the convergence saves
around 45% of #mvps in this example. Those results are summarized in Table 2.3.

#
families

Method #mvps #iter

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-VA 5119 395

30
IB-BGCRO-DR 68263 3932
IB-BGCRO-DR-VA 47143 3566

Table 2.3 – Numerical results of IB-BGCRO-DR with fixed/varying accuracy for each right-
hand side in terms of #mvps and #iter for Section 2.6.5, where the coefficient
matrix is Matrix 1 (p = 20, md = 300 and k = 30).
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Figure 2.9 – Comparison of IB-BGCRO-DR to IB-BGCRO-DR-VA for Section 2.6.5 with
Matrix 1 (p = 20, md = 300 and k = 30). Left: convergence histories of the
largest/smallest backward errors ηb(i) at each #mvps for 3 consecutive families.
Right: gain (`) defined in (2.73) of IB-BGCRO-DR-VA to IB-BGCRO-DR versus
family index.

We refer the reader to Figure 2.10 and Table 2.4 for an illustration of extending such
individual control to the block solver IB-BGMRES-DR that can also accommodate this
feature.
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Figure 2.10 – Comparison of IB-BGMRES-DR to IB-BGMRES-DR-VA for Section 2.6.5 with
Matrix 1 (p = 20, md = 300 and k = 30). Left: convergence histories of
largest/smallest backward errors ηb(i) at each #mvps for 3 consecutive families.
Right: gain (`) defined in (2.73) of IB-BGMRES-DR-VA to IB-BGMRES-DR
versus family index.

2.6.6 Expansion policy governed by computational performance

As discussed in Section 2.3.3, only a subset of the candidate directions exhibited by
the partial convergence detection mechanism can be eventually selected to expand the
search space at the next block iteration; we denote this maximum size as pCB and refer
to this variant as IB-BGCRO-DR-CB, where CB stands for computational blocking. In
Table 2.5 we show the effect of this algorithmic parameter on #mvps and #iter for the
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#
families

Method #mvps #iter

3
IB-BGMRES-DR 8066 515
IB-BGMRES-DR-VA 5903 490

30
IB-BGMRES-DR 80717 5191
IB-BGMRES-DR-VA 59069 4957

Table 2.4 – Numerical results of IB-BGMRES-DR with fixed/varying accuracy for each right-
hand side in terms of #mvps and #iter for Section 2.6.5, where the coefficient
matrix is Matrix 1 (p = 20, md = 300 and k = 30)

solutions of 3 and 30 families with Matrix 1 when pCB varies from 1 to 15 for a number of
right-hand sides p = 20. Generally, the smaller pCB is, the smaller #mvps, but the larger
#iter. Although reported only on one example this trend has been observed in all our
numerical experiments. Depending on the computational efficiency or cost of the #mvps
with respect to the computational weight of the least squares problem and SVD of the
scaled least squares residual, this gives opportunities to monitor the overall computational
effort needed to complete the solution.

#
families

Method #mvps #iter

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-CB (pCB = 15) 6934 467
IB-BGCRO-DR-CB (pCB = 10) 6941 668
IB-BGCRO-DR-CB (pCB = 5) 6968 1312
IB-BGCRO-DR-CB (pCB = 1) 6966 6444

30
IB-BGCRO-DR 68262 3932
IB-BGCRO-DR-CB (pCB = 15) 65364 4303
IB-BGCRO-DR-CB (pCB = 1) 65823 60836

Table 2.5 – Numerical results of IB-BGCRO-DR and IB-BGCRO-DR-CB for pCB = 1, 5, 10, 15

in terms of #mvps and #iter for Section 2.6.6, where the coefficient matrix is
Matrix 1 with p = 20, md = 300 and k = 30.

As in previous subsections, we note that this subspace expansion policy is also
applicable to IB-BGMRES-DR. We refer the reader to Figure 2.11 and Table 2.6 for
an illustration.

2.6.7 Behavior on sequences of slowly-varying left-hand side
problems

The example used in this section is from a finite element fracture mechanics problem
in the field of fatigue and fracture of engineering components (denoted as the FFEC
collection), which is fully documented in [80, Section 4.1]. Over 2000 linear systems of
size 3988 × 3988 from the FFEC collection need to be solved in order to capture the
fracture progression, and among them 151 (linear systems 400-550) representing a typical
subset of the fracture progression in which many cohesive elements break are examined
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Figure 2.11 – Comparison of IB-BGMRES-DR to IB-BGMRES-DR-CB on families constructed
by Matrix 1 with parameters setting as pCB = 1, p = 20, md = 300 and k =

30. Left: convergence histories of largest/smallest backward errors ηb(i) at each
#mvps for 3 consecutive families. Right: number of #mvps versus family index.

#
families

Method #mvps #iter

3
IB-BGMRES-DR 8069 515
IB-BGMRES-DR-CB (pCB = 15) 7844 561
IB-BGMRES-DR-CB (pCB = 1) 7820 7250

30
IB-BGMRES-DR 80861 5198
IB-BGMRES-DR-CB (pCB = 1) 78308 72608

Table 2.6 – Numerical results of IB-BGMRES-DR and IB-BGMRES-DR-CB for pCB = 1, 15 in
terms of #mvps and #iter for Section 2.6.6, where the coefficient matrix is Matrix 1
with p = 20, md = 300 and k = 30.

in [80]. The solutions of these linear systems have been investigated using both GCRO-
DR and GCROT (generalized conjugate residual with inner orthogonalization and outer
truncation). We refer the reader to [29] for a comprehensive experimental analysis. For
our numerical experiments we borrow the 10 linear systems numbered from 400 to 409
from the FFEC collection. For each set of linear systems we select the matrix and the
corresponding right-hand sides that we expand to form a block of p = 20 by appending
random linearly independent vectors.

We display the convergence histories for solving the first 3 consecutive families of such
linear systems in the left plot of Figure 2.12. For the solution of the first linear system,
the observations on the IB and DR mechanisms discussed in Section 2.6.3 apply. Even
though the coefficient matrix has changed, the recycling spectral information computed
for the previous family still enables a faster convergence at the beginning of the solution
of the next one. Specifically, for the solution of the first family the convergence histories
of the two methods fully overlap until the first partial convergence occurs, as until this
step the two methods are identical. From the initial slope of the subsequent families, it
can be seen that the sequence of matrices are close enough to ensure that the recycled
space from one system to the next is still beneficial to the convergence. The benefit of the
partial convegence detection is also illustrated on that example since IB-BGCRO-DR still
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outperforms BGCRO-DR. The overall benefit in term of #mvps savings is illustrated in
the right plot on a sequence of 10 linear systems, where the savings are more than 65%
with respect to BGCRO-DR. Corresponding results are summarized in Table 2.7.
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Figure 2.12 – Convergence results of IB-BGCRO-DR and BGCRO-DR on a sequence of slowly
changing left-hand sides described in Section 2.6.7, where the coefficient matrices
are built on the FFEC with p = 20, md = 300 and k = 15.

#
families

Method #mvps #iter

3
BGCRO-DR 13050 651
IB-BGCRO-DR 7489 540

10
BGCRO-DR 39935 1990
IB-BGCRO-DR 24200 1658

Table 2.7 – Numerical results in terms of #mvps and #iter for Section 2.6.7 with p = 20,

md = 300 and k = 15.

2.6.8 A variant suited for flexible preconditioning

In this section, we illustrate the numerical behavior of the flexible variant IB-
BFGCRO-DR that we have derived in Section 2.2.6 and make comparison with closely
related variants namely BFGCRO-DR (a straightforward block extension of FGCRO-
DR [19]).

We consider a representative quantum chromodynamics (QCD) matrix from the
University of Florida sparse matrix collection [27]. It is the conf5.4-00l8x8-0500 matrix
denoted as BQCD of size 49152 × 49152 with the critical parameter κc = 0.17865 as a
model problem. Thirty families of linear systems are constructed that are defined as
A(`) = I − κc(`)BQCD with 0 ≤ κc(`) < κc and ` = 1, 2, . . . , 30. We use the MATLAB
function linspace(0.1780, 0.1786, 30) to generate the parameters κc(`) for a sequence of
matrices and observe that those matrices have the same eigenvectors associated with
shifted eigenvalues. A sequence of p = 12 successive canonical basis vectors are chosen to
be the block of right-hand sides for a given left-hand side matrix following [80, Section 4.3]
so that the complete set of the right-hand sides for the ` linear systems reduces to the
first p× ` columns of the identity matrix. This choice could be supported by the fact that
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the problem of numerical simulations of QCD on a four-dimensional space-time lattice
for solving QCD ab initio (cf. [80, Section 4.3]) has a 12× 12 block structure, and that a
system with 12 right-hand sides related to a single lattice site is often of interest to solve.

The flexible preconditioner is defined by a 32-bit ILU(0) factorization of the matrix
involved in the linear system. In a 64-bit calculation framework, the preconditioning
consists of casting the set of directions to be preconditioned in 32-bit format, performing
the forward/backward substitution in 32-bit calculation and casting back the solutions in
64-bit arithmetic. The rounding applied to the vectors, cast from 64- to 32-bit format, has
a nonlinear effect that makes the preconditioner nonlinear. We refer the reader to [5,46] for
more examples about the flexible preconditioner developed by mixed precision calculation
and also to [91] for that developed by iterative solver itself.
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Figure 2.13 – Behavior of the BGCRO-DR-solvers with flexible preconditioner on families of
QCD matrices described in Section 2.6.8 with p = 12, md = 180 and k = 90.
Left: convergence histories of the largest/smallest backward errors ηb(i) at each
#mvps for 3 consecutive families. Right: gain (`) of the block methods with
respect to IB-BFGCRO-DR along the family index.

#
families

Method #mvps #iter

3
BFGCRO-DR 1944 147
IB-BFGCRO-DR 1838 148

30
BFGCRO-DR 18774 1347
IB-BFGCRO-DR 18054 1350

Table 2.8 – Numerical results in terms of #mvps and #iter for Section 2.6.8 with p = 12,

md = 15× p = 180 and k = 90.

For those experiments, we attempt to favor the recycling of the space, because the
matrices share the same invariant space, so that we choose a relatively large value for k
that is k = md/2. We report in the left plot of Figure 2.13, the convergence histories of the
two flexible block variants. Similarly to what has already been observed the convergences
are very similar on the first family and only differ when the partial convergence detection
becomes active mostly in the last restart. For the second and third families, one can
see that IB-BFGCRO-DR and BFGCRO-DR have identical convergence speeds. One can
observe a shift in the convergence histories between the end of the solution of one family
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and the beginning of the next for both IB-BFGCRO-DR and BFGCRO-DR. This shift is
due to the extra k #mvps that have to be performed when the matrix changes in order
to adapt the recycling space as follows

1. Compute A(`+1)U
(`)
k = C̃k

2. Compute the reduced QR-factorization of C̃k = C
(`+1)
k R

3. Update the basis of the deflation space U (`+1)
k = U

(`)
k R−1 so that A(`+1)U

(`+1)
k =

C
(`+1)
k .

Because k is large, we can clearly see this shift in the left plot of Figure 2.13. For this
parameter selection in this section, it can be seen that the dominating effect on the
convergence improvement is due to the space recycling and not the partial convergence
detection. This observation is highlighted in the right plot of Figure 2.13, where the
benefit of using IB-BFGCRO-DR rather than BFGCRO-DR diminishes when compared
to previous experiments and is only about 4%. Numerical details are summarized in
Table 2.8.

2.7 Concluding remarks
In this chapter, we develop a new variant of the block GCRO-DR method, denoted

as IB-BGCRO-DR, that inherits the appealing genes of its two parents [80, 88]. First,
it inherits the capability of speeding up the convergence rate when solving sequences of
linear systems by recycling spectral information from one family to the next. Second,
the extended search space expansion policy enabled by the so-called partial convergence
detection allows us to focus on the convergence by considering only the most important
directions. Along this line, we introduce stopping-criterion driven search space expansion
polices that enable us to ensure that a prescribed threshold used for the partial
convergence detection will eventually lead to reaching a prescribed threshold for a
backward error based stopping criterion. While introduced in the block GCRO context,
those policies apply to any block minimum residual norm approach that relies on an
Arnoldi-like relation and includes both block GMRES and GCRO variants. In exact
arithmetic, these policies exploit the close link between the least squares residuals and
the linear system residuals, which is guaranteed by the orthonormal basis of the residual
space. Through numerical experiments, we show that the MGS re-orthogonalization
between the columns of recycling space and initial block Arnoldi basis at restart combined
with (BMGS ◦ HouseQR) in the block Arnoldi algorithm seems to generate a good
enough orthonormal basis to ensure that such a property also holds in finite precision
calculation. Following ideas from [78], future research could theoretically establish that
this class of subspace augmentation algorithms is backward stable. To comply with mixed-
precision calculation, the flexible preconditioning variant is also proposed, which would
be of interest for emerging computing platforms where mixed-precision calculation could
be a way to reduce data movement, which is foreseen as one of the major bottlenecks to
reaching high performance.
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Chapter 3

The symmetric case with minimum
residual norm techniques

3.1 Introduction
In this chapter we present the block counterpart of the conjugate residual (CR)

method introduced in [66] for matrices that are symmetric but not necessarily positive
definite. The CR method is mathematically equivalent to the minimal residual (MINRES)
method [92] and the generalized minimum residual (GMRES) norm method [93] as it
minimizes the 2-norm of the residual on the same subspaces. It is based on ideas closely
related to the conjugate gradient (CG) method [45] so that their implementations are
very similar. In this chapter, we address the question of breakdown as it appears in the
block conjugate gradient (BCG) method [52,77], we describe how the partial convergence
detection mechanisms of the previous chapter can be extended to the block CR (BCR)
context and compare its performance with a more naive but cost-free alternative. For the
sake of simplicity and easy cross reference, we adopt the same notations as in Chapter 1.

The remainder of this chapter is organized as follows. We first introduce the BCR
algorithm and its properties in Section 3.2. In Section 3.2.1, we respectively review the
breakdown [52, 77] problem caused by rank deficiency for the BCG method that does
also appear in the BCR context. Then, in Section 3.2.2, we briefly present and comment
how the various policies, presented in Section 2.3, to manage the partial convergence
can be applied to BCR. In particular, to alleviate their computational cost, we also
present a simpler alternative to manage the partial/individual convergence. Two novel
BCR variants with breakdown detecting and partial convergence mechanism are proposed.
Finally, in Section 3.3, we illustrate various features of the numerical behavior of the
proposed methods and we make some concluding remarks in Section 3.4.

3.2 Block conjugate residual method with partial
convergence detection

For the solution of linear systems where the matrix is symmetric but not necessarily
positive definite, the CR algorithm can be regarded as one general form of the CG methods
as discussed by Hestenes [44]. For a single right-hand side solution, the CR method is
based on the Lanczos process to generate the orthogonal basis for the Krylov subspace
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Kn(A, r0) = span{r0, Ar0, · · · , An−1r0}, in which r0 denotes the residual associated with
the initial guess. In the CR method, the residual vectors are A-conjugate and the vectors
Apj’s are orthogonal to each other [92, Section 6.8] that is the opposite of CG. We refer
the reader to [92, Algorithm 6.20] for the implementation of CR and to [98, Algorithm
3.1], [99, Algorithm 2] for its preconditioned variant depicted in Algorithm 4. We notice
that in the preconditioned case the preconditioned residuals are A-conjugate and the Apj’s
are M -orthogonal (refer to [60, Algorithm 3] and [82, Section 6] for more discussions)
assuming that the preconditioner is symmetric positive definite as for MINRES.

Algorithm 4 Preconditioned conjugate residual method for Ax = b

Require: A ∈ Cn×n, the left-hand side of the linear systems, and a preconditioner
M ∈ Cn×n, an approximation of the inverse of A

Require: b ∈ Cn, the right-hand side, and x0 ∈ Cn, the initial guess
Require: m maximum number of the iteration step
1: Compute r0 = b− Ax0, z0 = Mr0, p0 = z0
2: for j = 0, 1, 2, . . . ,m do
3: αj = zHj Azj/(MApj)

HApj
4: xj+1 = xj + αjpj
5: rj+1 = rj − αj(Apj)
6: zj+1 = Mrj+1

7: βj = zHj+1Azj+1/z
H
j Azj

8: pj+1 = zj+1 + βjpj
9: end for
10: return xj+1, the computed solution

In the context of multiple right-hand sides, the original ideas introduced by O’Leary
in [77] for the BCG method immediately apply to define the BCR algorithm for solving
AX = B. Starting from a block initial guess X0 = [x

(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] ∈ Cn×p and the

associated block initial residual R0 = B − AX0, the core loop of preconditioned BCR
algorithm essentially reads

Xj+1 = Xj + Pjαj,

Rj+1 = Rj −Qjαj,

Zj+1 = MRj+1,

Pj+1 = Zj+1 + Pjβj,

Qj+1 = APj+1,

where αj and βj are the parameter matrices to be determined such that ZH
j+1AZj = 0 and

QH
j+1MQj = 0. Specifically, these parameter matrices are defined by

αj = (QH
j MQj)

−1(QH
j Zj) ∈ Cpj×p, (3.1)

and
βj = −(QH

j MQj)
−1((MQj)

HAZj+1) ∈ Cpj×p, (3.2)

in which some matrix-multiplications related to a p× p nonsingular matrix may
be involved during the practical implementation to improve the stability [52,
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77]. This leads to the fact that BCR generates the jth approximate solution
Xj such that the Euclidean norm of the corresponding block residual Rj is
minimized over the increasing subspaces X0 + Kj(MA,MR0) with Kj(MA,MR0) =
span{MR0, (MA)MR0, · · · , (MA)j−1MR0}, i.e.,

‖ Rj ‖ = min
Xj∈X0+Kj(MA,MR0)

‖ B − AXj ‖ ,

which is the same as the case for the block minimum residual method (Block MINRES) [77,
Section 3].

3.2.1 Breakdown in the block conjugate residual method

The BCR method might face similar difficulties as BCG due to the loss of rank in the
block of vectors involved in the definition of the parameter matrices that become singular,
i.e., the block inverse part shown in Equations (3.1)–(3.2). Hopefully, the breakdown-free
remedies proposed for BCG in [52] can easily be extended to the BCR case. The main
purpose of the remedies is to ensure that the columns in the block search direction Pj
remains full rank so that the matrices αj and βj are uniquely defined. Whenever some
rank deficiency appears in Pj, Pj is replaced in the algorithm by P̃j so that P̃j has
orthonormal columns and spans the same space as Pj. This is denoted by P̃j = orth(Pj)
in Algorithm 5 that depicts the BCR with breakdown-free option, where a tilde notation
is used to indicate that the dimensions of these matrices may reduce in case of rank
deficiency. This orth function can be implemented by computing the reduced singular
value decomposition (SVD) of Pj and replacing it by the computed right singular vectors
associated with nonzero singular values.

3.2.2 Partial convergence detection policies

Because BCR is a minimum residual norm method, the partial convergence policies
described in Section 2.3 in the context of block GMRES and GCRO can be considered.
However, two main differences exist. First, from a numerical point of view, as BCR is
a short term recurrence, the directions that are abandoned at a given iteration cannot
be reintroduced later since there is no way to keep them without destroying the short
term recurrence feature of the method. Second, from a computational point of view,
the algorithm does not compute a QR-factorization of the residual block, contrarily to
block GMRES and GCRO where it is a byproduct of the least squares problem solution.
Consequently, the partial convergence policies will require the reduced SVD calculation
of a tall and skinny matrix, namely of the residual block Rj scaled by a certain diagonal
matrix Dε that depends on the selected stopping criterion and convergence threshold ε,
which could be described as the following form:

RjDε = U1,LΣ1VH
1,R + U2,LΣ2VH

2,R with σmin(Σ1) ≥ τ > σmax(Σ2).

where Dε = ε−1 diag (‖b(1)‖−1, · · · , ‖b(p)‖−1) ∈ Rp×p, with τ = 1 the prescribed IB-
threshold. The vectors (U1,L,U2,L) and (V1,R,V2,R) are the left and right singular vectors
of RjDε, respectively. Once a partial convergence is detected, all the calculations but
the update of the solution and residual blocks are performed on blocks of lower column
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Algorithm 5 Block preconditioned Conjugate Residual method with breakdown-free idea
— BCR
Require: A ∈ Cn×n the left-hand side of the linear systems and a preconditioner

M ∈ Cn×n be an approximation of the inverse of A
Require: B ∈ Cn×p the block of right-hand sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of the block iteration step and the maximum number of

matrix-vector products is set to be maxMvps ∈ N+

Require: ε > 0 a threshold for the selected backward error used in stopping criterion
1: R0 = B − AX0 and Z0 = MR0

2: P̃0 = orth(Z0)
3: for j = 0, 1, 2, . . . ,m do
4: Q̃j = AP̃j
5: α̃j = (Q̃H

j MQ̃j)
−1(Q̃H

j Zj)

6: Xj+1 = Xj + P̃jα̃j
7: Rj+1 = Rj − Q̃jα̃j
8: if the stopping criterion related to ε or maxMvps is met then
9: return Xj+1

10: else
11: Zj+1 = MRj+1

12: β̃j = −(Q̃H
j MQ̃j)

−1((MQ̃j)
HAZj+1)

13: P̃j+1 = orth(Zj+1 + P̃jβ̃j)
14: end if
15: end for
16: return Xj+1

dimension, which lowers the number of matrix-vector and preconditioning applications.
Let us denote [UL

j ,Wj] = SpaceExpansion(Rj, ε), where UL
j ∈ Cn×pj are the pj left

singular vectors computed by the selected partial convergence detection mechanism and
Wj = (UL

j )HRj ∈ Cpj×p the components of the residuals in the space spanned by UL
j ,

that are the new directions to be added to the search space. The algorithm is depicted
in Algorithm 6, where a bar notation is used to indicate that the dimensions of these
matrices may reduce in case of partial convergence detection.

We notice that Algorithm 6 can be accommodated to implement a crude search space
expansion that simply discards the columns of the block that correspond to individual
solutions that have converged. In that case, UL

j consists of the columns of the residual
that have not yet converged, and Wj ∈ Rp×p is a diagonal matrix with entry equal to 0
when the corresponding right-hand side has converged. This somewhat naive alternative
algorithm will be referred to as IC-BCR, for Individually Converged BCR.

3.3 Numerical experiments

Numerical experiments are carried out on a set of symmetric positive definite (SPD)
and symmetric indefinite matrices from the University of Florida Sparse Matrix
Collection [27]. The main features of these SPD and symmetric matrices are respectively
described in Table 3.1 and Table 3.2.
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Algorithm 6 Block preconditioned Conjugate Residual method with partial convergence
detection (or Inexact-Breakdown) mechanism — IB-BCR

Require: A ∈ Cn×n the left-hand side of the linear systems and a preconditioner
M ∈ Cn×n be an approximation of the inverse of A

Require: B ∈ Cn×p the block of right-hand sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of the block iteration step and the maximum number of

matrix-vector products is set to be maxMvps ∈ N+

Require: ε > 0 a threshold for the selected backward error used in stopping criterion
1: UL

0 ,W0 = SpaceExpansion(B − AX0, ε) and Z0 = MUL
0

2: P 0 = Z0

3: for j = 0, 1, 2, . . . ,m do
4: Qj = AP j

5: αj = (Q
H

j MQj)
−1(Q

H

j Zj)

6: Xj+1 = Xj + P jαjWj

7: Rj+1 = Rj −QjαjWj

8: if the stopping criterion related to ε or maxMvps is met then
9: return Xj+1

10: else
11: [UL

j+1,Wj+1] = SpaceExpansion(Rj+1, ε)

12: Zj+1 = MUL
j+1

13: βj = −(Q
H

j MQj)
−1((MQj)

HAZj+1)

14: P j+1 = Zj+1 + P jβj
15: end if
16: end for
17: return Xj+1

In the default setting of the experiments, the block initial guess is set to be 0 ∈ Cn×p,
where p is the number of the right-hand sides. The multiple right-hand sides B =
randn(n, p) = [b(1), b(2), . . . , b(p)] ∈ Cn×p are composed of p linearly independent vectors
containing pseudo-random values drawn from the standard normal distribution (using
the same seed when comparing these block methods). The search space expansion policy
used in conjunction with the partial convergence detecting is based on the backward
error ηb described in Section 2.3.1. Without special notes, the maxMvps is set to
be 5000 × p for each solver run, the convergence threshold is ε = 10−8. For all the
experiments involving SPD matrices, we consider the preconditioned BCR variants, where
an incomplete Cholesky factorization is employed by default as the preconditioner. For the
symmetric but not positive definite ones, no preconditioner is considered. The experiments
have been carried out in personal Linux (double precision floating point arithmetic) system
by MATLAB (R2019a) with hardware setting as PC-Intel (R) Core (TM) i7-8665U CPU
a○ 1.90 GHz, 8 GB RAM. In order to evaluate the robustness and efficiency of the newly
proposed BCR variants, we first investigate in Section 3.3.1 their numerical behavior when
the set of right-hand sides is not full rank. Next we investigate their behavior when the
convergence threshold ε varies in Section 3.3.2 and when the number p of right-hand sides
varies in Section 3.3.3. In Section 3.3.4, we consider examples where all the solutions do
not need to be computed using the same convergence threshold. Finally, we report on
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symmetric but not positive definite examples in Section 3.3.5.

Name n Nonzero Origin* Cond. number

apache1 80,800 542,184 Stru. Prob.
bcsstk15 3,948 117,816 Stru. Prob. 6.53e+09
bcsstk16 4,884 290,378 Stru. Prob. 4.94e+09
bcsstk17 10,974 428,650 Stru. Prob. 1.29e+10
bcsstk18 11,948 149,090 Stru. Prob. 3.45e+11
bundle1 10,581 770,811 Comp. Grap./Vis. Prob. 1.00e+03
cbuckle 13,681 676,515 Stru. Prob. 3.29e+07
crankseg_1 52,804 10,614,210 Stru. Prob.
crankseg_2 63,838 14,148,858 Stru. Prob.
gridgena 48,962 512,084 Opti. Prob.
gyro 17,361 1,021,159 Model Redu. Prob. 1.09e+09
Kuu 7,102 340,200 Stru. Prob. 1.57e+04
s1rmq4m1 5,489 262,411 Stru. Prob. 1.81e+06
s1rmt3m1 5,489 217,651 Stru. Prob. 2.54e+06
s2rmq4m1 5,489 263,351 Stru. Prob. 1.77e+08
s2rmt3m1 5,489 217,681 Stru. Prob. 2.49e+08
s3rmq4m1 5,489 262,943 Stru. Prob. 1.76e+10
s3rmt3m1 5,489 217,669 Stru. Prob. 2.48e+10
shallow_water1 81,920 327,680 CFD Prob.
shallow_water2 81,920 327,680 CFD Prob.
ted_B_unscaled 10,605 144,579 Ther. Prob. 1.27e+11
*Structural Problem, Computer Graphics/Vision Problem, Optimization Problem, Model
Reduction Problem, Computational Fluid Dynamics Problem and Thermal Problem are

simplified as Stru. Prob., Comp. Grap./Vis. Prob., Opti. Prob., Model Redu. Prob., CFD
Prob. and Ther. Prob., respectively.

Table 3.1 – Main characteristics of the symmetric positive definite matrices

Name n Nonzero Origin Cond. number

benzene 8,219 242,669 T/QC Prob. 1.45e+03
rail_5177 5,177 35,185 Model Redu. Prob. 5.33e+04
saylr4 3,564 22,316 CFD Prob. 6.86e+06

Table 3.2 – Main characteristics of the symmetric but not positive definite matrices (The T/QC
Prob. abbreviation refers to Theoretical/Quantum Chemistry Problem).

3.3.1 Partial convergence with full rank and rank deficient set of
right-hand sides

In order to illustrate the benefit of using partial convergence detection, we consider
the case where the right-hand sides are not full rank. For those experiments we select the
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matrix Kuu with full rank right-hand sides B = randn(n, p) or rank deficient one B =
[Bpre, Bpre randn(p/2, p/2)] with Bpre = randn(n, p/2) and p = 20. The convergence
histories for full rank right-hand sides are displayed in the left graph of Figure 3.1. The
shape of the convergence envelop of IB-BCR is very similar to what we have observed
in the previous chapters, that is the largest and smallest backward errors smoothly and
simultaneously decreases to the target threshold. The more naive, but cost-free, variant
IC-BCR exhibits a plateau for the largest backward error when the first right-hand side
has converged, then followed by a super fast convergence. Finally, the breakdown-free
BCR variant illustrates the drawback of a block solver without any partial or individual
convergence detection, that is, many directions are introduced in the search space that
enables some backward errors to go below the convergence threshold without special
attention to the right-hand sides that converge the slowest. If we look at the block
size along the iterations, displayed in the right graph of Figure 3.1, the one of BCR
obviously remains equal to p, the partial convergence IB-BCR variant that monitors all
the right-hand sides at once starts reducing the block size before any individual solution
has converged contrary to the IC variant.
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Figure 3.1 – Full rank right-hand sides with p = 20. Left: convergence histories of the
largest/smallest backward errors ηb(i) as a function of the number of matrix-vector
products (#mvps). Right: block size pj along the iterations.

We illustrate in Figure 3.2 the robustness introduced by the partial convergence
detection mechanism in a fake and somehow extreme case where the rank of the p right-
hand sides is p/2. As it can be seen in the right graph of Figure 3.2, the rank deficiency
is immediately detected by the IB variant that reduces to p/2 block size at the very first
iteration. Although no real breakdown is encountered by the other two variants, their
convergence is very slow due to fact that the block size remains equal to p despite the rank
deficiency (except for the very last iterations in the IC variant), which also reveals some
lack of robustness. The displayed backward errors (left plot of Figure 3.2) are computed
using the norm of the iterative residual, the true residual being computed only when the
iterative one meets the convergence criterion. Corresponding numerical performance in
terms of the number of matrix-vector products (#mvps) and block iterations (#iter) of
these three block variants are summarized in Table 3.3.

In order to be more exhaustive, we report in Table 3.4 the numerical performances
of these three variants in terms of #mvps and #iter for all matrices listed in Table 3.1.

67



3.3. NUMERICAL EXPERIMENTS Yanfei Xiang

500 1000 1500 2000 2500 3000 3500 4000 4500

mvps (with rank deficiency in B)

10 -8

10 -6

10 -4

10 -2

10 0
b

(m
in

,m
a
x
)

 Convergence history for Kuu

IC-BCR
IB-BCR

BCR

0 50 100 150 200

iterations (with rank deficiency in B)

0

2

4

6

8

10

12

14

16

18

20

b
lo

c
k
s
iz

e

 Blocksize along iterations for Kuu

IC-BCR
IB-BCR

BCR

Figure 3.2 – Same case as Figure 3.1 but the right-hand sides are linearly dependent. The
B = [Bpre, Bpre randn(p/2, p/2)] with Bpre = randn(n, p/2).

Columns in the RHSs B Method #mvps #iter

linearly independent
BCR 3200 160
IB-BCR 2944 166
IC-BCR 3121 160

linearly dependent
BCR 4540 227
IB-BCR 2121 231
IC-BCR 4442 227

Table 3.3 – Numerical results of BCR variants in terms of both #mvps and #iter for matrices
Kuu with full rank and rank deficient set of right-hand sides.

Because some gaps may exist between the true and iterated residual norm, it is possible
that some right-hand sides might not converge with respect to the backward error
computed with the true residual norm, while the stopping criterion is met with the
iterated residual norm. The "∗" notation indicates that the convergence based on the
iterated residual norm was obtained but not with respect to the true residual one.

3.3.2 Influence of the value of the convergence threshold

In this section, we investigate how the value of convergence threshold affects the
performance and robustness of the proposed BCR variants with partial convergence
detecting. The convergence thresholds for ηb are set to be ε = 10−1, 10−2, 10−5, 10−12

and the number of right-hand sides is set to p = 20. With these numerical setting, for
illustration purpose, the convergence histories for the solution involving the matrix Kuu
are depicted in Figure 3.3. The general trends are very similar for the various convergence
thresholds. We observe that, for IB, all the right-hand sides converge simultaneously to
the required accuracy, unlike IC. Although the IB variant is more effective in terms of
reducing the number of matrix-vector products (#mvps), both lead to the same solution
quality for all the right-hand sides, while BCR compute solutions with much smaller
backward error than required.

A more exhaustive set of numerical results are reported in Table 3.5 in terms of
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Matrix #mvps
BCR / IB-BCR / IC-BCR

#iter
BCR / IB-BCR / IC-BCR

apache1 15160 / 13938 / 14758 758 / 870 / 772
bcsstk15 2700 / 2611 / 2668 135 / 155 / 135
bcsstk16 1060∗ / 989∗ / 1042∗ 53 / 54 / 53
bcsstk17 13080∗ / 11689∗ / 12879∗ 654 / 745 / 659
bcsstk18 6440∗ / 6209∗ / 6365∗ 322 / 342 / 323
bundle1 700 / 669 / 685 35 / 37 / 35
cbuckle 14460/ 13999 / 14248 723 / 749 / 727
crankseg_1 6200 / 5535 / 5949 310 / 333 / 314
crankseg_2 6980 / 6480 / 6821 349 / 370 / 351
gridgena 9140 / 8798 / 9067 457 / 463 / 457
gyro 31960∗ / 21221∗ / 32498∗ 1598 / 8075 / 9619
s1rmq4m1 2760 / 2445 / 2689 138 / 157 / 139
s1rmt3m1 2800 / 2512 / 2739 140 / 157 / 141
s1rmq4m1 2760 / 2445 / 2689 138 / 157 / 139
s1rmt3m1 2800 / 2512 / 2739 140 / 157 / 141
s2rmq4m1 4440∗ / 3935∗ / 4354∗ 222 / 244 / 223
s2rmt3m1 5660∗ / 5119∗ / 5577∗ 283 / 326 / 284
s3rmq4m1 10380∗ / 9199∗ / 10207∗ 519 / 711 / 533
s3rmt3m1 11620∗ / 10590∗ / 11469∗ 581 / 799 / 594
shallow_water1 300 / 300 / 300 15 / 15 / 16
shallow_water2 560 / 560 / 560 28 / 28 / 29
ted_B_unscaled 540∗ / 540∗ / 540∗ 27 / 27 / 28

Table 3.4 – Numerical results of BCR variants in terms of both #mvps and #iter for all tested
matrices listed in Table 3.1 with the right-hand sides B = randn(n, p), p = 20 and
ε = 10−8. The "∗" indicates that the convergence based on the iterated residual
norm was obtained but not with respect to the true residual one.
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Figure 3.3 – Convergence history for solving linear systems built by Kuu (B = randn(n, p), p =

20 and maxMvps = 5000× p) with different values of the convergence threshold.

#mvps and #iter for other examples. As previously indicated the "∗" indicates that the
convergence based on the iterated residual norm was obtained but not with respect to the
true residual norm. This illustrates that the short term recurrence induces some residual
gaps that cause trouble for stringent convergence thresholds like 10−12. The general trend
is that the IB and IC variants minimize #mvps while the classical BCR one minimizes
#iter.

3.3.3 Influence of the number of right-hand sides

In this section, we illustrate how the number of the right-hand sides interplays with the
performance of the BCR variants; we vary p = 5, 10, 30, 40. The numerical experiments are
displayed in Table 3.6, where as previously the "∗" indicates that the convergence based
on the iterated residual norm was obtained but not with respect to the true residual norm.
No significant impact on the ranking of the variants can be observed. When solving for a
large number of right-hand sides, it can be seen that it is preferable (when it is affordable
from a memory view point) to solve all at once rather than dividing them in chunks of
smaller number to be solved in sequence. For instance solving for p = 40 right-hand
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Matrix
ε 10−1 10−2 10−5 10−12

Method #mvps #iter #mvps #iter #mvps #iter #mvps #iter
apache1 BCR 740 37 7740 387 12080 604 18960∗ 948

IB-BCR 725 38 5619 887 10544 740 17630∗ 1021
IC-BCR 726 37 6082 670 11530 624 18575∗ 959

bcsstk18 BCR 3160 158 4500 225 5780 289 7140∗ 357
IB-BCR 2025 212 3986 317 5562 343 6903∗ 367
IC-BCR 2501 156 4183 235 5672 290 7078∗ 357

cbuckle BCR 3580 179 6960 348 11640 582 17760∗ 888
IB-BCR 3167 205 6262 384 11036 606 17231∗ 905
IC-BCR 3362 180 6655 349 11429 585 17608∗ 890

crankseg_2 BCR 2180 109 2880 144 4960 248 9480∗ 474
IB-BCR 1063 520 2197 204 4468 270 9004∗ 496
IC-BCR 1143 131 2642 148 4816 251 9344∗ 476

gridgena BCR 220 11 5880 294 8500 425 9940∗ 497
IB-BCR 193 11 5821 366 8846 803 9595∗ 502
IC-BCR 195 11 5582 303 8411 425 9849∗ 497

Kuu BCR 300 15 1640 82 2560 128 3840 192
IB-BCR 279 17 1225 107 2280 136 3631 197
IC-BCR 278 15 1425 85 2467 128 3785 192

Table 3.5 – Numerical results of BCR variants in terms of #mvps and #iter for parts of matrices
listed in Table 3.1 with the right-hand sides B = randn(n, p), p = 20, maxMvps =

5000× p, and various convergence thresholds ε = 10−1, 10−2, 10−5, 10−12.
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sides with the matrix apache1 by IB-BCR does not require 4 times more matrix-vector
products (#mvps) but 2.8 compared with solving a sequence of 4 block systems with
p = 10.

Matrix
p 5 10 30 40
Method #mvps #iter #mvps #iter #mvps #iter #mvps #iter

apache1 BCR 7590 1518 10800 1080 19080 636 22200 555
IB-BCR 7082 1641 9920 1191 17022 752 19784 717
IC-BCR 7532 1520 10538 1091 18435 653 21416 569

bcsstk18 BCR 4200∗ 840 5370∗ 537 7140∗ 238 7760∗ 194
IB-BCR 3963∗ 871 5213∗ 569 6813∗ 251 7344∗ 206
IC-BCR 4070∗ 846 5297∗ 540 7053∗ 240 7647∗ 195

cbuckle BCR 6055 1211 10010 1001 17640 588 20080 502
IB-BCR 5892 1236 9573 1019 16924 618 19255 531
IC-BCR 6000 1212 9808 1003 17491 590 19857 506

crankseg_2 BCR 2765 553 4160 416 9390 313 11760 294
IB-BCR 2581 579 3961 431 8737 337 10856 323
IC-BCR 2674 559 4060 417 9195 316 11538 297

gridgena BCR 7130 1426 8150 815 10080 336 10880 272
IB-BCR 7213 1548 8023 879 9525 342 10203 279
IC-BCR 7104 1427 8118 815 9967 336 10752 272

Kuu BCR 1600 320 2260 226 3900 130 4440 111
IB-BCR 1476 329 2097 235 3572 136 4075 118
IC-BCR 1582 320 2224 226 3822 131 4323 111

s2rmt3m1 BCR 3910∗ 782 4690∗ 469 6240∗ 208 6800∗ 170
IB-BCR 3785∗ 868 4435∗ 554 5620∗ 248 5987∗ 209
IC-BCR 3863∗ 784 4634∗ 471 6137∗ 209 6688∗ 172

ted_B_unscaled BCR 135∗ 27 270∗ 27 870∗ 29 1120∗ 28
IB-BCR 135∗ 27 270∗ 27 851∗ 29 1144∗ 29
IC-BCR 135∗ 28 270∗ 28 840∗ 29 1120∗ 29

Table 3.6 – Numerical results of BCR variants with different number of right-hand sides (p =

5, 10, 30, 40) in terms of #mvps and #iter for parts of matrices listed in Table 3.1
with B = randn(n, p), maxMvps = 5000× p and ε = 10−8.

3.3.4 Experiments with individual convergence threshold

As indicated in Corollary 2 in Section 2.3.1 the partial convergence mechanism
can be adapted to cope with different individual convergence thresholds refer to as
“variable accuracy” in the VA variant. In the BCR context, it implies to change
the SpaceExpansion function described in Section 3.2.2. We illustrate this feature in
Figure 3.4 where we consider the solution for p = 20 and set the convergence threshold
to be ε = 10−4 for the first p/2 right-hand sides and ε = 10−8 for the last p/2 ones. It
can be seen that it numerically works, but the computational benefit is not significant
for that example. This is confirmed by other numerical experiments that are reported in
Table 3.7, which exhibits a moderate positive benefit of this VA variant that was very
effective in the block GCRO context presented in Section 2.6.5.

72



CHAPTER 3. THE SYMMETRIC CASE Yanfei Xiang

1000 2000 3000 4000 5000 6000

mvps

10 -8

10 -6

10 -4

10 -2

10 0

b
(m

in
,m

a
x
)

 Convergence history for crankseg
1

IB-BCR-VA
IB-BCR

BCR

Figure 3.4 – Histories of the largest/smallest backward errors ηb(i) at each #mvps for matrix
crankseg_1 with convergence threshold equals to 10−4 for the first p/2 right-hand
sides and 10−8 for the last p/2 ones (p = 20).

Matrix #mvps
BCR / IB-BCR / IB-BCR-VA

#iter
BCR / IB-BCR / IB-BCR-VA

cbuckle 14460 / 14018 / 14049 723 / 749 / 1069
crankseg_1 6200 / 5554 / 5344 310 / 333 / 482
crankseg_2 6980 / 6499 / 6943 349 / 369 / 845
Kuu 3200 / 2963 / 3609 160 /166 / 423
shallow_water2 560 / 560 / 430 28 / 28 / 28
ted_B_unscaled 540∗ / 540∗ / 415∗ 27 / 27 / 27

Table 3.7 – Numerical results of Section 3.3.4 in terms of #mvps and #iter with B =

randn(n, p), p = 20 and maxMvps = 5000× p.

3.3.5 Experiments with symmetric matrices

In this section, we consider testing three symmetric but not positive definite matrices,
described in Table 3.2, with linearly independent right-hand sides defined as B =
randn(n, p) with p = 20, md = 5000 × p, ε = 10−8 and no preconditioner is applied.
The corresponding convergence history and numerical results are respectively reported in
Figure 3.5 and Table 3.8. The observations are very similar to what we have seen for
symmetric positive definite matrices in the previous sections, that is IB-BCR is often the
best in minimizing the number of matrix-vector products (#mvps) at a possible extra
cost of a few more block iterations (#iter).

3.4 Concluding remarks

In this chapter, we propose new variants of the block conjugate residual method
with breakdown-free and then with partial convergence detecting mechanism, which are
respectively denoted as BCR, and IB-BCR as well as a cost-free alternative IC-BCR.
Specifically, we extend the partial convergence detection idea to the BCR method by
carrying out an extra reduced singular value decomposition (SVD) on a scaled block
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Figure 3.5 – Comparison convergence history of the largest/smallest backward errors ηb(i) at
each #mvps of the BCR variants by solving symmetry but not positive definite
matrices listed in Table 3.2 with the right-hand sides B = randn(n, p), p = 20,
maxMvps = 5000× p and ε = 10−8.

residual (a tall and skinny matrix) for each block iteration to determine the directions to
be kept and the ones to be abandoned. We point out that the breakdown free variant
also requires similar SVD calculation to implement the MATLAB orth() function. The
general observed trend is that IB-BCR performs best in terms of number of matrix-vector
products, while BCR is best in terms of block iterations. Because all the variants require
the reduced SVD of a tall and skinny matrix to detect the rank deficiency of the search
space for the IC-BCR and BCR variants, or to detect the partial convergence through the
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Matrix Method #mvps #iter

benzene
BCR 1380 69
IB-BCR 1231 70
IC-BCR 1325 69

rail_5177
BCR 2040 102
IB-BCR 1815 107
IC-BCR 1988 102

saylr4
BCR 380 19
IB-BCR 325 19
IC-BCR 371 19

Table 3.8 – Numerical results of the BCR variants in terms of #mvps and #iter for matrices
listed in Table 3.2 with B = randn(n, p), p = 20 and maxMvps = 5000× p.

scaled block residual for the IB-BCR, the best variant in terms of time to the solution
will depend on the relative cost of this reduced SVD with respect to the calculation of
the preconditioning and matrix applications for a given number of right-hand sides.

Note that for the block minimum residual norm subspace solvers based on the Arnoldi
basis presented in Chapter 2, a good enough orthonormal basis could be generated and
thus ensuring that the true residual norm and the least squares one are close enough
to monitor the convergence of the former through the latter. For short term recurrence
algorithm such as BCR, some residual gaps exist, sometimes preventing the convergence
of the true backward error, i.e., based on the true residual norm, even though the one
based on the iterated residual norm indicates convergence. A possible remedy could be to
extend the rounding error analysis from [120] to block case to estimate the block residual
gap and possibly design corresponding replacement techniques [16, 25].
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Chapter 4

The Hermitian positive definite case
with conjugate gradient variants

4.1 Introduction

In this chapter, we consider developing new variants of the block conjugate gradient
(BCG) [77] method for the solution of sequences of linear systems with multiple right-hand
sides for Hermitian positive definite coefficient matrices. In that framework, we mainly
study two complementary techniques to take advantage of the opportunities offered by this
situation. Firstly, we investigate the possibility to use the partial convergence detection
presented in the previous chapter for the BCR method as a heuristic to reduce the block
size when the convergence, evaluated by a backward error criterion, takes place. In the
context of BCG, this numerical mechanism is only heuristic because the associated search
space expansion in BCR relies on residual norm minimization, while for BCG it would
be alternatively based on A-norm error minimization, which is the quantity minimized
by this numerical method. Secondly, we consider subspace recycling strategy between
the successive linear systems with multiple right-hand sides to accelerate convergence
rate of BCG by approximating and reusing some spectral information. More precisely,
we introduce and study a Deflated Block Conjugate Gradient (D-BCG) method that
periodically refines the recycling subspace along the block iterations. One of our variants
reduces to the natural block counterpart of the deflated conjugate gradient method
introduced in [94] if the recycling space only updates once for each linear system.

The structure of this chapter is organized as follows. In Section 4.2 we describe the
design of the partial convergence idea in the framework of BCG after a short overview
of its breakdown-free variant [52]. Next in Section 4.3, we present various options to
extract spectral information from the D-BCG iterations to be used for the subsequent
linear systems. In Section 4.4 we report on intensive numerical experiments to illustrate
the numerical features of the studied algorithms. Finally, we conclude with some detailed
remarks of these proposed BCG variants in Section 4.5.
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4.2 Block conjugate gradient method with partial
convergence detection

In this section, we first review the breakdown [52,77] issue that existed in the BCG [77]
method. Then, by exploiting the algorithmic resemblance between BCG and BCR, we
shortly describe the partial convergence detection mechanisms that can be designed for
BCG.

4.2.1 Breakdown in the block conjugate gradient method

The block conjugate gradient (BCG) method was proposed by O’Leary in [77] for
solving linear systems with a Hermitian positive definite (HPD) linear matrix with
multiple right-hand sides given simultaneously. Its preconditioned version is depicted
in Algorithm 7.

Algorithm 7 Block preconditioned conjugate gradient method for AX = B

Require: A ∈ Cn×n the left-hand side of the linear systems and a preconditioner
M ∈ Cn×n be an approximation of the inverse of A

Require: B ∈ Cn×p the of right-hand-sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of the block iteration step
1: Compute R0 = B − AX0, Z0 = MR0, P0 = Z0

2: for j = 0, 1, 2, . . . ,m do
3: αj = (PH

j APj)
−1(ZH

j Rj)
4: Xj+1 = Xj + Pjαj
5: Rj+1 = Rj − APjαj
6: Zj+1 = MRj+1

7: βj = (ZH
j Rj)

−1(ZH
j+1Rj+1)

8: Pj+1 = Zj+1 + Pjβj
9: end for
10: return Xj+1 computed solution

As mentioned in [77], in the implementation of BCG, the block parameter matrices αj
and βj involved in the jth iteration of BCG are respectively formulated as

αj = (PH
j APj)

−1(RH
j Zj) ∈ Cp×p,

and
βj = (RH

j Zj)
−1(RH

j+1Zj+1) ∈ Cp×p, with Zj+1 = MRj+1,

in which the inverse part of these two parameter matrices may become singular, which
results in the so-called breakdown [52, 77] problem. That is, the algorithm terminates
early without finding a satisfactory approximate solution. Based on the potential rank
deficiency in the block search direction, Ji and Li proposed the breakdown-free block
conjugate gradient method [52], where the block search directions Pj are replaced by P̃j,
an orthonormal basis of the space spanned by Pj, which can be computed by considering
the left singular vectors of Pj associated with non-zero singular values. In addition,
the new variant proposed in [52] chooses two parameter matrices with an alternatively
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formulation as
αj = (P̃H

j AP̃j)
−1(P̃H

j Rj) ∈ Cpj×p,

and
βj = −(P̃H

j AP̃j)
−1(P̃H

j AZj+1) ∈ Cpj×p,

in which the two parameter matrices are always well defined because the possible
singularity due to the rank deficiency of Pj (replaced by P̃j) is discarded. The resulting
algorithm is detailed in Algorithm 8, where a tilde notation is used to indicate that the
dimensions of these matrices may reduce in case of rank deficiency.

Algorithm 8 Block preconditioned Conjugate Gradient method with breakdown-free
idea — BCG
Require: A ∈ Cn×n the left-hand side of the linear systems and a preconditioner

M ∈ Cn×n that is an approximation of the inverse of A
Require: B ∈ Cn×p the of right-hand-sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of block iteration steps
1: Compute R0 = B − AX0, Z0 = MR0, P0 = orth(Z0)
2: for j = 0, 1, 2, . . . ,m do
3: Q̃j = AP̃j
4: α̃j = (P̃H

j Q̃j)
−1(P̃H

j Rj)

5: Xj+1 = Xj + P̃jα̃j
6: Rj+1 = Rj − Q̃jαj
7: Zj+1 = MRj+1

8: β̃j = −(P̃H
j Q̃j)

−1(Q̃H
j Zj+1)

9: P̃j+1 = orth(Zj+1 + P̃jβ̃j)
10: end for
11: return Xj+1 computed solution

4.2.2 Partial convergence detection policies

Although the conjugate gradient (CG) [44] and BCG [77] methods minimize the
A-norm of the forward error, the most commonly used stopping criterion relies on a
backward error that is mostly based on the residual norm. This observation motivates
us to adapt the partial convergence mechanism presented in the previous chapter in
the context of the BCR method. Because the two algorithms are built on the same
computational kernels, the development of corresponding IB-BCG counterpart is fairly
straightforward and depicted in Algorithm 9. We notice that this algorithm might lack
robustness for two main reasons. As in the BCR case, the abandoned directions cannot
be introduced in later iterations, contrary to the minimum residual norm algorithms
presented in Chapter 2, because it would destroy the short term recurrence nature of
the conjugate gradient algorithms. Secondly, BCG minimizes the A-norm of the errors
so that controlling the search space expansion through heuristic on the residuals does
not perfectly comply with this nice numerical feature. Finally, the corresponding IC
(Individually Converged) variant can also be considered; of does not suffer from the two
previously possible flaws of IB-BCG as it mostly consists in stopping iterating on the
iterates that have converged.
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Algorithm 9 Block preconditioned Conjugate Gradient method with partial convergence
(or Inexact-Breakdown detection) mechanism — IB-BCG

Require: A ∈ Cn×n the left-hand side of the linear systems and a preconditioner
M ∈ Cn×n that is an approximation of the inverse of A

Require: B ∈ Cn×p the block of right-hand-sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of the block iteration step and the maximum number of

matrix-vector products (#mvps) is set to be maxMvps ∈ N+

Require: ε > 0 a threshold for the selected backward error used in stopping criterion
1: UL

0 ,W0 = SpaceExpansion(B − AX0, ε) and Z0 = MUL
0

2: P 0 = (Z0)
3: for j = 0, 1, 2, . . . ,m do
4: Qj = AP j

5: αj = (P
H

j Qj)
−1(P

H

j Rj)

6: Xj+1 = Xj + P jαjWj

7: Rj+1 = Rj −QjαjWj

8: if the stopping criterion related to ε or maxMvps is met then
9: return Xj+1

10: else
11: [UL

j+1,Wj+1] = SpaceExpansion(Rj+1, ε)

12: Zj+1 = MUL
j+1

13: βj = −(P
H

j Qj)
−1(Q

H

j Zj+1)

14: P j+1 = orth(Zj+1 + P jβj)
15: end if
16: end for
17: return Xj+1 for approximation of the linear systems

We illustrate the numerical performance of the BCG variants with partial convergence
detection and individual convergence detection in Section 4.4 and will describe in the
next sections complementary methodological tools that might be adopted to speed-up the
convergence of the subsequent linear systems when a sequences of them have to be solved.

4.3 Deflated block conjugate gradient variants

One of the guiding ideas of the GCRO [28] method, the block variants were presented
in Chapter 2, is to first compute the approximated solution in a low-dimensional subspace
and then to force the remaining iterations to work in the complementary orthogonal
space where the solution is more amenable for iterative scheme. Similar ideas have been
developed in the HPD case that led to various variants of the CG algorithm [32,36,94,108].
In this chapter, we will focus on the deflated CG variant [94] with an alternative projection
way introduced in [126] for realizing deflation. We will present its block counterpart with
a periodically refining deflation subspace, denoted as D-BCG, suited for the solution of
multiple right-hand sides. We will also consider various alternatives for extracting spectral
information along the D-BCG iterations that is used as the deflation space for the solution
of the next right-hand side block.
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4.3.1 The deflated block conjugate gradient algorithm

The implementation of projected variant of the deflated block conjugate gradient
algorithm [126] (denoted as D-BCG in this manuscript) is given in Algorithm 10. Notice
that the A-orthogonal projector is applied to the block search direction Pj rather than
the block residual Rj which is generally used in the standard deflated BCG algorithm [20]
to mitigate the gradually vanishing orthogonality between the block residual vectors and
the deflation space. In Algorithm 10, Wk ∈ Cn×k(k < n) is a nonsingular tall and skinny
matrix, whose columns span the deflation space. The parameter matrices, i.e., αj and βj,
used in [52] are adopted to generate an orthonormal search basis per iteration to handle
the possible breakdown issue caused by rank deficiency. The number of columns of Pj
is denoted as pj which may become smaller than the original block size p, i.e., (pj ≤ p),
when the columns of Pj become rank deficient.

Algorithm 10 Projected variant of the Deflated Block Conjugate Gradient algorithm —
D-BCG
Require: A ∈ Cn×n the left-hand side of the linear systems and a preconditioner M ∈

Cn×n

Require: B ∈ Cn×p the block of right-hand-sides and X−1 ∈ Cn×p the block initial guess
Require: ε > 0 a targeted backward error used in stopping criteria
Require: Wk = [w1, · · · , wk] a possibly initial tall and skinny matrix with k linearly

independent columns
Require: m the maximum number of block iteration step, and the maximum number of

matrix-vector products is set to be maxMvps ∈ N+

1: Compute R−1 = B − AX−1
2: X0 = X−1 +Wk(W

H
k AWk)

−1WH
k R−1

3: R0 = R−1 − AWk(W
H
k AWk)

−1WH
k R−1

4: Z0 = MR0

5: P̂0 = orth(Z0) ∈ Cp×p0

6: for j = 0, 1, 2, . . . ,m do
7: Pj =

(
I −Wk(W

H
k AWk)

−1(AWk)
H
)
P̂j

8: Qj = APj
9: αj = (PH

j Qj)
−1(P T

j Rj)
10: Xj+1 = Xj + Pjαj
11: Rj+1 = Rj −Qjαj
12: if the stopping criterion related to ε or maxMvps is met then
13: return Xj+1

14: else
15: Zj+1 = MRj+1

16: βj = −(PH
j Qj)

−1(QT
j Zj+1)

17: P̂j+1 = orth(Zj+1 + Pjβj) ∈ Cn×pj+1

18: end if
19: end for
20: return Xj+1 for approximation of the linear systems

In order to reduce the condition number of the projected linear system eventually
solved by D-BCG, one often tries to use good approximations of a few eigenvectors
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associated with external eigenvalues in order to define the deflation basisWk. In a practical
implementation, this spectral information is computed by exploiting the relationship
between the conjugate gradient and the Lanczos method for the calculation of eigenpairs.
We present a few algorithms that compute eigenvalues and eigenvectors of an HPD matrix
while solving a linear system of equations with the BCG variants. There are many values,
all the CG iteration vectors could be saved and recombined using the eigenvectors of
the tridiagonal projection matrix; this is theoretically equivalent to unrestarted Lanczos.
Our algorithms attempt to capitalize on the iteration vectors produced by BCG to update
only a small window of vectors that approximates the eigenvectors. While this window is
restarted using various ways, the BCG algorithm for the linear system is unaffected. The
base line approach is the so called thick-restart approach introduced in [125].

4.3.2 Eigenvector computation from D-BCG iterations

4.3.2.1 The Lanczos thick-restart strategy for eigencalculation

In a classical Lanczos context for the solution of eigenproblems, various techniques
have been introduced to limit the memory footprint of the Krylov subspace basis while
maintaining good convergence. Among the possible policies, we consider in this work the
so called thick-restart method introduced in [125]. The governing idea of the thick-restart
method is to expand the search eigenspace up to a maximum dimension and then to
somehow compress the interesting information into a fixed size k-dimensional subspace
before restarting and expand the search space again. Let us briefly describe the governing
ideas. Let

AVm = VmTm + βmvm+1e
T
m

denote the Lanczos equality when a first search space of size m has been built. At this
stage m Ritz pairs (λj, wj) can be computed such that wj = Vmŵj, where Tmŵj = λjŵj.

Their residuals are:
Awi = λiwi + βme

T
mŵivm+1.

Denote (w1, · · ·wk), the target set of vectors to be improved/refined, the residual equations
can be written in matrix form as follows

A[w1, · · ·wk] = [w1, · · ·wk, vm+1]


λ1

. . .
λk

βme
T
mŵ1 · · · βme

T
mŵk

 .

The Lanczos iterations can be continued from this point, denoting vnew1 = vm+1, until a
new search space of dimension m+ k is obtained and the new Lanczos equality becomes:

A[Wk, V
new
m ] = [Wk, V

new
m+1]

 T11 T12
TH12 T22
βm+ke

T
m+k

 = [Wk, V
new
m+1]G, (4.1)

where T11 = diag(λ1, · · · , λk) ∈ Rk×k, T22 is a regular tridiagonal Lanczos matrix, and
TH12 is zero everywhere except its first row that is given by (βme

T
mŵ1 · · · βeTmŵk). Notice

that the V new
m vectors correspond to the directions that would have been generated by
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the “full” Lanczos method so that [Wk, Vm] span a subspace of the Krylov subspace that
would have been spanned by the unrestarted Lanczos method. A Raleigh-Ritz procedure
with respect to the space spanned by [Wk, V

new
m ] to compute new k eigenpairs that will

serve to update Wk and the Lanczos algorithm is continued with restart every other m
steps until convergence.

Exploiting the relationship between the Lanczos and the CG method, it appears that
all the quantities involved in the thick-restart procedure are a byproduct of the CG
iterations. Consequently, spectral information can be extracted using this thick-restart
technique if it is embedded in the CG iterations. Notice that the CG convergence is
not affected, only extra storage and computation are allocated for the embedded spectral
computation. In the short presentation above, at each cycle of the thick-restart, the
spectral information is computed using a Raleigh-Ritz procedure. This elegantly induces a
nice structure in the Gmatrix in Equation (4.1), that is essentially tridiagonal with a spike
on its (k+1)th row and column. Furthermore all the entries of G are essentially byproducts
of the CG iterations and Raleigh-Ritz procedure. At a cost of extra computation and
storage, the Raleigh-Ritz procedure can be replaced by other alternative techniques
using different spaces for the projection. In particular, following [94] we will consider
a projection space built using the pj descent directions from CG.

All the ideas briefly presented above in the context of CG for a single right-hand side
naturally extend to BCG. In the sequel the thick-restart will be performed every m block
iterations using the space spanned by

Z = [Wk,Pm] (4.2)

whereWk the space spanned by the previously selected k eigenvector approximations, and
the columns of Pm are the last m block descent directions Pj. In that context, the size
of the search space is md = k + m × p. In the sequel, we will refer to this as a spectral
thick-restart, the update of the spectral information every m BCG iterations. These m
BCG iterations will also be called a refining cycle.

4.3.2.2 Rayleigh-Ritz projection for thick-restart spectral update strategy

According to the Definition 2 of the Rayleigh-Ritz (RR) projection with respect to the
space defined by Equation (4.2), computing the Ritz pairs reduces to solve the following
generalized eigenvalue problem:

G(RR)yi − θiF (RR)yi = 0, compute for i = 1, · · · , k,

where θ1, · · · , θk are the k target eigenvalues (could be smallest and/or largest ones [26,
36]), computed at the thick-restart,

G(RR) = Z HAZ =

[
WH
k AWk WH

k APm

(APm)HWk Dm

]
∈ Cmd×md , (4.3)

where Dm = diag{PH
1 AP1, · · · , PH

mAPm} with Pm = [P1, · · · , Pm] the last m block
descents directions computed by BCG for solving the first linear system. Note that the
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Equation (4.3) can be reduced to

G(RR) =

[
WH
k AWk 0

0 Dm

]
∈ Cmd×md , (4.4)

when solving subsequent linear systems by D-BCG with the orthogonal property
WH
k APm = 0. Furthermore,

F (RR) = Z HZ =

[
WH
k Wk WH

k Pm

PH
mWk PH

mPm

]
∈ Cmd×md .

Then the new deflation space to be used for next refining cycle is updated by

W new
k = [Wk,Pm]Y ∈ Cn×md , Y = [y1, · · · , yk] ∈ Cmd×k. (4.5)

4.3.2.3 Harmonic-Ritz projection for thick-restart spectral update strategy

In this section, the Harmonic-Ritz (HR) projection technique is used to approximate
eigenvectors at the thick-restart. According to Definition 1 and the search space described
in Equation (4.2), the harmonic Ritz method leads to the solution of the generalized
eigenproblem:

G(HR)yi − θiF (HR)yi = 0, compute for i = 1, · · · , k,

where θ1, · · · , θk are the corresponding k target (smallest and/or largest) eigenvalues,

G(HR) = (AZ )HAZ =

[
(AWk)

HAWk (AWk)
HAPm

(APm)HAWk (APm)HAPm

]
∈ Cmd×md

and
F (HR) = Z HAZ =

[
WH
k AWk WH

k APm

(APm)HWk Dm

]
∈ Cmd×md ,

which will similarly reduce to the form described in the right-hand side of Equation (4.4)
in the D-BCG case. Then the new deflation space to be used for next refining cycle is
updated by Equation (4.5) as well.

4.3.2.4 Locally optimal thick-restart spectral update strategy

Locally optimal thick-restart (LO-TR) of the eigen-search space [122, Algorithm 3.2]
is a special case of the thick-restart technique discussed in Section 4.3.2.1. Numerical
experiments shown in [121, 122] indicate that the LO-TR outperforms the thick-restart
Lanczos procedures for eigenvalue approximation in the single right-hand side context. Its
extension to the block case is straightforward. Assuming that k is even, k/2 eigenvectors
are computed using either RR or HR projection with respect to the space Z = [Wk,Pm],
they are defined by Yk/2 = [y1, · · · , yk/2] ∈ Cmd×k/2. Other k/2 eigenvectors are computed
using either RR or HR projection with respect to the space Z̄ = [Wk,Pm−1], they
are denoted Ȳk/2 = [ȳ1, · · · , ȳk/2] ∈ Cmd×k/2. If we form, Y = orth([Yk/2, Ỹk/2]) where

Ỹk/2 =

[
Ȳk/2

0p×k/2

]
, the LO-TR procedure computes k eigenpairs using RR or HR with
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respect to the space [Wk,Pm]Y .
Note that applying such refining strategy to the Init-CG [32, Algorithm 2] algorithm

with RR projection is equivalent to the idea described in eigCG [108]. We refer the
reader to [54, 55, 106, 107, 109] for more applications of LO-TR technique to the restart
Lanczos-type methods.

According to Section 4.3.2.3-4.3.2.4, the implementation of recycling D-BCG with
periodically refining deflation space computed by the Rayleigh-Ritz (RR) projection with
LO-TR of the eigen-search space is denoted as D-BCG (RR) and presented in Algorithm 13
of Appendix A.2, its harmonic-Ritz (HR) counterpart is denotes as D-BCG (HR) and
presented in Algorithm 14. Finally, the corresponding IB-D-BCG(RR/HR) variants
with IB-mechanism [88] for partial convergence detecting are respectively described in
Algorithm 15 and Algorithm 16.

4.4 Numerical experiments

In this section we report on numerical experiments carried out to illustrate the
numerical behavior of the various techniques introduced in the previous sections. The
default setting of the experiments is as follows: the block initial guess is set to be
0 ∈ Cn×p, where p is the number of the right-hand sides. The right-hand sides
B = randn(n, p) = [b(1), b(2), . . . , b(p)] ∈ Cn×p are composed of p linearly independent
vectors containing pseudo-random values drawn from the standard normal distribution
(using the same seed when comparing these block methods). Unless otherwise indicated,
the search space expansion policy used in conjunction with the partial convergence is
based on the backward error ηb described in Section 2.3.1, the convergence threshold
is set to be ε = 10−8. Regarding the programming environment, in Section 4.4.1-4.4.4
MATLAB (R2019a) has been used, while in Section 4.4.5 it was Python 3.8. All the
experiments were run on a personal Linux (double precision (Digits = 64) floating point
arithmetic) PC-Intel (R) Core (TM) i7-8665U CPU a○ 1.90 GHz, 8 GB RAM.

4.4.1 Partial convergence with full rank and rank deficient set of
right-hand sides

In Figure 4.1, we display on the left graph the convergence histories for the three
variants of block CG, namely BCG, IB-BCG and IC-BCG, for solving single linear system
built by the Kuu matrix. Similar observations as those made for BCR in Section 3.3, that
is, IB-BCG converges the fastest in terms of number of matrix-vector products (#mvps)
and all the right-hand sides converge at the target accuracy at the same time. The BCG
method converges for some right-hand sides to an accuracy below the target one at the
price of additional #mvps. The IC-BCG convergence exhibits a small plateau once the
first right-hand side followed by a very fast converge. The size of the block pj along the
block iterations j are displayed in the right graph. As expected, the block size remains
constant for BCG, while it reduces progressively for IB-BCG and more abruptly for IC-
BCG as most of the right-hand sides converge at the same iterations for that example. In
Table 4.1, we report the number of iterations (#iter) and associated #mvps for all the
matrices considered in this study. Similar comments can be made on those examples as
what have been mentioned above for the Kuu matrix.
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Matrix #mvps
BCG / IB-BCG / IC-BCG

#iter
BCG / IB-BCG / IC-BCG

apache1 15420 / 13969 / 15017 771 / 837 / 791
bcsstk15 2740 / 2614 / 2693 137 / 153 / 137
bcsstk16 1080 / 993 / 1047 54 / 55 / 54
bcsstk17 13540 / 12085 / 13284 677 / 740 / 683
bcsstk18 6540 / 6303 / 6481 327 / 343 / 329
bundle1 720 / 682 / 691 36 / 39 / 36
cbuckle 15080 / 14681 / 14920 754 / 785 / 758
crankseg_1 6380 / 5714 / 6117 319 / 337 / 324
crankseg_2 7200 / 6696 / 7055 360 / 377 / 363
gridgena 9180 / 8846 / 9115 459 / 462 / 459
gyro 8600∗ / 7424∗ / 8013 430 / 475 / 452
s1rmq4m1 2800 / 2462 / 2720 140 / 153 / 140
s1rmt3m1 2840 / 2522 / 2764 142 / 150 / 142
s2rmq4m1 4480 / 3964 / 4399 224 / 240 / 225
s2rmt3m1 5760 / 5190 / 5671 288 / 318 / 289
s3rmq4m1 15660∗ / 9796∗ / 11237∗ 783 / 791 / 680
s3rmt3m1 19100∗ / 16325∗ / 40424∗ 956 / 5979 / 3470
shallow_water1 300 / 300 / 300 15 / 15 / 15
shallow_water2 560 / 560 / 560 28 / 28 / 28
ted_B_unscaled 560 / 543 / 541 28 / 28 / 28

Table 4.1 – Number of matrix-vector product (#mvps) and block iterations (#iter) for all
matrices listed in Table 3.1 for full rank right-hand sides, p = 20 and ε = 10−8.
The "∗" indicates that the convergence based on the iterated residual norm was
obtained but not with respect to the true residual norm.
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Figure 4.1 – Full rank right-hand sides with B = randn(n, p) and p = 20. Left: convergence
histories of the largest/smallest backward errors ηb(i) as a function of the number
of matrix-vector products #mvps. Right: block size pj along iterations.

We now investigate the situation where the set of right-hand sides is rank deficient. For
that purpose, we define B = [Bpre, Bpre randn(p/2, p/2)] with Bpre = randn(n, p/2),
so that the rank is p/2. We display in the left graph of Figure 4.2 the convergence history
of the three BCG variants. The first observation is that they are all robust to this rank
deficiency; that they all detect if by reducing the block size to p/2 at the initial block
iteration as it can be seen in the right graph. However a surprising behavior appears
for the block size that suddenly increases for BCG and IC-BCG. This growth is actually
caused by the internal threshold set in the MATLAB orth function that essentially return
the left singular vectors of the truncated singular value decomposition (SVD) where the
threshold is set to the unit round off of the working precision (≈ 10−16 in our calculation).
Because of the finite precision, some perturbations are gradually introduced to the residual
blocks and their 10−16 numerical rank increases leading to the observed increase of the
block size pj. If the threshold of this orth function is changed into ε = 10−8 with norm
of B, we get a strictly decreasing behavior for the pj as it can be seen in the right
graph of Figure 4.3. These numerical results indicate that the breakdown-free mechanism
proposed in [52] to prevent the rank deficiency base on a 10−16 numerical rank is too
stringent and can be relaxed to reduce the computational cost, which is similar to the
idea of previous discussed IB variants. In the rest of this chapter, we kept the default
setup of the orth function unchanged and do not apply the tuning of the truncated SVD
to the target accuracy; our objective is to make a comparison of the IB variants with the
state-of-the-art of breakdown-free BCG.

4.4.2 Influence of the value of the convergence threshold

In this section, we illustrate how the value of the convergence threshold effects the
performance and robustness of the BCG variants. The convergence thresholds are set as
ε = 10−1, 10−2, 10−5, 10−12 and the number of right-hand sides is kept to p = 20. With
these numerical settings, the convergence histories of solving matrix Kuu are depicted in
Figure 4.4. A more exhaustive set of numerical results are reported in Table 4.2 in terms
of #mvps and #iter for other test examples. We will not elaborate much on these results
as the observations are essentially the same as those discussed in Section 3.3.2 for the
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Figure 4.2 – Rank deficient set of right-hand sides. B = [Bpre, Bpre randn(p/2, p/2)] with
Bpre = randn(n, p/2), p = 20. Left: convergence histories of the largest/smallest
backward errors ηb(i) as a function of #mvps. Right: block size pj along iterations..
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Figure 4.3 – Same case as Figure 4.2 but using ε = 10−8 as internal threshold for the truncated
SVD of the MATLAB function orth.

BCR variants. That is, the IB-BCG performs generally the best in terms of number of
#mvps and BCG in terms of block #iter.

4.4.3 Influence of the number of right-hand sides

In this section, we illustrate the impact of the number of the right-hand sides on
the performance of the BCG variants by varying p = 5, 10, 30, 40. The performances in
terms of #mvps and #iter are reported in Table 4.3 that shows the benefit of the IB
variant. The convergence histories for solving matrix apache1 with p = 5 and p = 40 are
respectively described in the left and right graph of Figure 4.5, from which it is easy to
notice that the larger p, the clearer the gap between the smallest and largest backward
errors.
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Matrix
ε 10−1 10−2 10−5 10−12

Method #mvps #iter #mvps #iter #mvps #iter #mvps #iter
apache1 BCG 7000 350 8520 426 12340 617 19040∗ 952

IB-BCG 3072 685 6670 739 10752 718 17997∗ 1036
IC-BCG 1742 123 7727 454 11788 632 18706∗ 965

bcsstk18 BCG 4160 208 4860 243 5940 297 7660∗ 383
IB-BCG 3720 304 4396 297 5728 329 7029∗ 372
IC-BCG 3962 219 4728 248 5850 299 7307∗ 378

cbuckle BCG 7220 361 8860 443 12580 629 18380∗ 919
IB-BCG 6541 372 8253 456 12024 646 17857∗ 928
IC-BCG 6994 363 8683 448 12325 634 18190∗ 921

crankseg_2 BCG 2040 102 3040 152 5220 261 9700∗ 485
IB-BCG 1257 133 2503 180 4707 281 9225∗ 499
IC-BCG 1659 110 2830 156 5057 265 9567∗ 487

gridgena BCG 6620 331 7740 387 8540 427 10100∗ 505
IB-BCG 5112 354 7799 643 8182 433 9690∗ 525
IC-BCG 5761 316 7535 387 8469 427 9964∗ 506

Kuu BCG 1360 68 1780 89 2620 131 3860 193
IB-BCG 846 84 1414 102 2345 138 3662 197
IC-BCG 1087 72 1639 90 2535 132 3810 194

Table 4.2 – Numerical results of BCG variants in terms of both #mvps and #iter for a
selection of the of testing matrices listed in Table 3.1 with the right-hand sides
B = randn(n, p), p = 20 and maxMvps = 5000 × p and various convergence
thresholds ε.
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Matrix
p 5 10 30 40
Method #mvps #iter #mvps #iter #mvps #iter #mvps #iter

apache1 BCG 7730 1546 10900 1090 19440 648 22320 558
IB-BCG 7175 1639 10030 1168 17277 756 20001 666
IC-BCG 7667 1547 10667 1103 18694 667 21695 577

bcsstk18 BCG 4395 879 5510 551 7260 242 7880 197
IB-BCG 4130 895 5345 582 6959 254 7473 209
IC-BCG 4260 883 5449 553 7178 243 7773 199

cbuckle BCG 6525 1305 10570 1057 18450 615 20920 523
IB-BCG 6376 1312 10209 1073 17755 633 20130 547
IC-BCG 6469 1299 10423 1060 18305 617 20683 525

crankseg_2 BCG 2845 569 4290 429 9780 326 12160 304
IB-BCG 2642 586 4088 437 9053 341 11242 321
IC-BCG 2755 576 4188 431 9521 328 11943 308

gridgena BCG 7395 1479 8180 818 10110 337 10960 274
IB-BCG 7222 1493 7997 820 9593 341 10266 278
IC-BCG 7358 1478 8151 818 10023 338 10820 274

Kuu BCG 1625 325 2290 229 3960 132 4480 112
IB-BCG 1517 335 2136 234 3622 137 4115 117
IC-BCG 1614 326 2262 230 3860 132 4363 113

s2rmt3m1 BCG 3955 791 4750 475 6360 212 6960 174
IB-BCG 3772 821 4434 511 5696 241 6092 201
IC-BCG 3909 793 4693 477 6259 213 6837 177

ted_B BCG 135 27 270 27 870 29 1160 29
IB-BCG 135 27 270 27 864 33 1134 30
IC-BCG 135 27 270 27 844 29 1128 29

Table 4.3 – Numerical results of BCG variants with different number of right-hand sides (p =

5, 10, 30, 40) in both terms of #mvps and #iter for parts of testing matrices listed
in Table 3.1 with B = randn(n, p), maxMvps = 5000× p and ε = 10−8.
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Figure 4.4 – Convergence history for solving linear systems built by Kuu (B = randn(n, p),
p = 20 andmaxMvps = 5000×p) with different value of the convergence threshold.
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Figure 4.5 – Histories of the largest/smallest backward errors ηb(i) at each #mvps of for
matrix apache1 with different number of right-hand sides p under the setting as
B = randn(n, p), maxMvps = 5000× p and ε = 10−8.
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4.4.4 Experiments with individual convergence threshold

In this section, we illustrate that the partial convergence mechanism can also be
adapted to cope with different individual convergence thresholds in the BCG context. We
illustrate this feature in Figure 4.6 where we consider the solution for matrix crankseg_1
with p = 20 right-hand sides and set the convergence threshold to ε = 10−4 for the first
p/2 right-hand sides and ε = 10−8 for the last p/2 ones. It can be seen that numerically
it works and enables some saving in terms of #mvps. More numerical results in terms of
#mvps and block #iter are summarized in Table 4.4.
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Figure 4.6 – Histories of the largest/smallest backward errors ηb(i) at each #mvps for matrix
crankseg_1 with convergence threshold equal to 10−4 for the first p/2 right-hand
sides and 10−8 for the last p/2 ones (p = 20).

Matrix #mvps
BCG / IB-BCG / IB-BCG-VA

#iter
BCG / IB-BCG / IB-BCG-VA

cbuckle 15080 / 14681 / 14145 754 / 785 / 980
crankseg_1 6380 / 5714 / 5124 319 / 337 / 482
crankseg_2 7200 / 6696 / 6183 360 / 377 / 548
Kuu 3240 / 2987 / 3100 162 / 166 / 326
shallow_water2 560 / 560 / 420 28 / 28 / 28
ted_B_unscaled 560 / 543 / 411 28 / 28 / 28

Table 4.4 – Numerical performances in terms of #mvps and #iter with B = randn(n, p), p = 20

and maxMvps = 5000× p.

Before moving to results for deflation techniques, we briefly report on a numerical
observation on the A-norm of the error that we did not expect nor can we clearly explain
it. Its monotonically decreasing trend is not affected by the selection of the directions
used to expand the search space as long as the A-conjugacy is retained, as can be observed
in Figure 4.7. What was not expected is to have a similar behavior as the one observed
for the minimum norm residual methods, that is, all the convergence history eventually
converge to the same (or very close) value.

91



4.4. NUMERICAL EXPERIMENTS Yanfei Xiang

0 500 1000 1500 2000 2500 3000 3500

mvps

10
-8

10
-6

10
-4

10
-2

10
0

A
-n

o
rm

 e
rr

o
r

 Convergence history for Kuu

IB-BCG

BCG

0 2000 4000 6000 8000 10000 12000

mvps

10
-8

10
-6

10
-4

10
-2

10
0

A
-n

o
rm

 e
rr

o
r

 Convergence history for cbuckle

IB-BCG

BCG

Figure 4.7 – Envelop of the A-norm of the error along the iterations, p = 20 for the matrices
Kuu and cbuckle.

4.4.5 Benefits of refining the deflation space between the families

In this section, we report on numerical experiments where the LO-TR policy described
in Section 4.3.2.4 is used and combined with the partial convergence management. While
the LO-TR spectral calculation can be performed as long as the block iterations have
not converged, it might not pay off since the spectral quality might not be significantly
improved. Many options exist and we only consider very few in this section. We
distinguish the first family solution where we start without deflation space from the
subsequent ones. We denote by (RR, `1, `2) and (HR, `1, `2) the option where LO-
TR is used based on the RR projection and the HR projection, respectively, where `1
denotes the number of thick-restarts that are performed when solving the first family
and `2 the number thick-restarts for the subsequent families. For all the experiments, we
target eigenvectors associated with the k smallest approximate eigenvalues in magnitude.
We use as preconditioner either the simple Jacobi preconditioner or a state-of-the-art
Algrebraic Multigrid (AMG) preconditioner implmented in [7]. The number of families is
` = 20, the number of right-hand sides of each family is p = 10, the size of the deflation
space is k = 20, and the length of refining cycle is md = 100.

We report in Table 4.5, the number of matrix-vector products (#mvps) and the
number of block iterations (#iter) for the different variants of BCG using or not the
partial convergence management mechanism. The first comment is that the benefit of
the IB mechanism is less significant compared to what we observed in the non HPD case.
The second observation is that the RR projection is more effective than the HR one,
possibly because the smallest eigenvalues are external for HPD matrices. Although it
would deserve a more exhaustive study, the third comment is that it seems to be more
important capturing good spectral information when solving for the first family rather
than trying to refine it later when solving the subsequent ones. Lastly, the benefit of the
deflation is larger when combined with a simple preconditioner such as Jacobi rather than
when combined with a scalable preconditioner such as AMG that has already clustered all
the eigenvalues around one. Those observations can possibly appear clearer when looking
at the Figure 4.8 and 4.9.
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with IB w/o IB
#

families
Matrix Method #mvps #iter #mvps #iter

3 Kuu BCG 7243 736 7350 735
(Jacobi) D-BCG (HR,4,4) 7034 692 7080 692

D-BCG (RR,1,1) 7170 725 7290 725
D-BCG (RR,4,1) 6812 683 6870 683
D-BCG (RR,4,4) 6721 660 6760 660

20 Kuu BCG 48064 4867 48560 4856
(Jacobi) D-BCG (HR,4,4) 45875 4445 48560 4856

D-BCG (RR,1,1) 44690 4454 44890 4451
D-BCG (RR,4,1) 41540 4126 41620 4124
D-BCG (RR,4,4) 38232 3675 38250 3673

3 Kuu BCG 1153 140 1360 136
(AMG) D-BCG (HR,3,3) 1194 128 1380 126

D-BCG (RR,1,1) 1076 122 1230 119
D-BCG (RR,3,1) 1047 114 1160 112
D-BCG (RR,3,3) 1131 115 1250 113

20 Kuu BCG 7685 930 8990 899
(AMG) D-BCG (HR,3,3) 8089 822 9180 804

D-BCG (RR,1,1) 6741 694 7240 686
D-BCG (RR,3,1) 6699 684 7120 674
D-BCG (RR,3,3) 7475 687 7910 677

3 cbuckle BCG 7860 820 8160 816
(AMG) D-BCG (HR,3,3) 7747 802 8120 800

D-BCG (RR,1,1) 7840 815 8160 812
D-BCG (RR,31) 7665 802 8050 801
D-BCG (RR,3,3) 7672 796 8060 794

3 crankseg BCG 2675 324 3150 315
(AMG) D-BCG (HR,3,3) 2679 308 3110 299

D-BCG (RR,1,1) 2659 310 3050 301
D-BCG (RR,3,1) 2559 291 2870 283
D-BCG (RR,3,3) 2631 294 2970 285

Table 4.5 – Numerical of IB-BCG and IB-D-BCG variants in terms of #mvps and #iter.
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Figure 4.8 – Number of #mvps for a sequence of 20 families using p = 10, k=20,md = 100 for
the Deflated variants without partial convergence management on the Kuu matrix.
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Figure 4.9 – Number of #mvps for a sequence of 20 families using p = 10, k=20,md = 100 for
the Deflated variants with partial convergence management on the Kuu matrix.

4.5 Concluding remarks

In this chapter, we first investigate the possibility to use the partial convergence
detection presented in the minimum residual norm context to the BCG algorithm [77] as
a heuristic for the symmetric positive definite linear systems. This numerical mechanism is
only a heuristic because the resulting search space expansion policy still relies on residual
norm minimization, while ideally it should be based on an A-norm error minimization
principle. Unfortunately, this A-norm error directions are not a by-product of BCG
as the residuals for the numerical block methods considered in the previous chapters.
Then, inspired by the idea of reusing generated information to approximate spectral
information for accelerating convergence, we devise a corresponding subspace recycling
strategy. More precisely, we apply the thick-restart ideas [125] introduced in the Lanczos
method for eigenpair calculation in the BCG algorithm. This new variant periodically
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refines the spectral information on a small window defined when solving the linear systems,
which provides a practical way to approximate spectral information with a moderate
computational effort. Finally, these partial convergence detection and subspace recycling
strategies can be efficiently combined to design a deflated block conjugate gradient
algorithm for sequences of symmetric positive definite linear systems.
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Chapter 5

Learned minimum residual solvers for
the Helmholtz equations

5.1 Introduction
In the past two decades, machine learning techniques, particularly deep learning

techniques based on deep neural networks (DNN) have had great success in applications,
such as image recognition [43], speech recognition [47], computer vision [56,57]. They have
also been successfully applied in simulating equations from diverse fields such as climate
analytics [58], weather forecasting [24, 30], earth system [30] and ocean science [100].
Research on scientific machine learning [64, 75] based on DNN has been furthermore
increasingly applied to scientific computing and computational engineering, particularly
for problems related to partial differential equations (PDEs) [22,31,40,48,59,61,62]. This is
mainly due to their ability to effectively approximate complex functions arising in diverse
scientific disciplines, such as nonlinear PDEs [85] and high-dimensional PDEs [97] that
could be challenging for the traditional iterative methods. One of the earlier directions
focuses on devising recommendation systems based on machine learning algorithms for
classification to assist traditional solvers in the simulation process of specific PDEs, such
as the SALSA and Lighthouse projects [10, 51, 101, 102]. Such approaches mainly rely
on supervised machine learning techniques. Examples include applying random forest
and K-nearest neighbors for auto-selecting the best solvers for transport problems [21],
exploiting reinforcement learning to adaptively choose the best restart parameter from
a range of values to improve the performance of restarted GMRES [83], and suggesting
specific preconditioners for iterative solvers for a target system [2, 39, 95, 128]. A second
direction is devising data-driven DNN approaches to build a solver directly for the
solution of PDEs, such as the recent developments on Poisson solvers [90, 115, 118].
Another important example of this trend is the physics-informed neural networks
(PINNs) [14, 50, 63–65, 70, 74, 96, 123], that are mesh-free, and use mostly unsupervised
training with a physics-based loss function that does not require labeled data, and could
be applied to different types of PDEs for solving inverse and forward problems. Once
trained, those solvers usually exhibit a rather poor accuracy in the inference phase. We
refer the reader to Adcock and Dexter’s recent work [3, 38, 76] for more details about
the challenges and mathematical interpretation of methods based on DNN. The idea of
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hybridizing machine learning and traditional solvers has also been investigated. We may
mention for instance the works in [23, 68, 87, 116, 130]. For example, the authors in [49]
proposed a hybrid fluid solver scheme for the Poisson equation. In that work, the DNN
solver introduced in [118] computes an initial guess for classical Jacobi iterations that
generally converge quickly thanks to the good enough estimate of the solution. Another
example is the data-driven models trained in the reference [119] to predict the deflation
subspaces [71,72] for accelerating the convergence of the GMRES method for the solution
of frequency-domain Maxwell’s equations.

Many research activities have addressed the solution of the Helmholtz equation [8,13,
33,84,117,124], which could be trained with a physics-based loss function by unsupervised
learning because of the practical physics background or be trained by supervised learning
if the true solution is available. In particular, a data-driven learned iterative solver
built using DNN with a modified UNet [89] architecture is presented in [105]. A way of
hybridizing the DNN approach with traditional ones is described in [87], which presents an
idea of interspersing a Krylov subspace iterative solver with NN corrections to improve the
convergence for solving the Helmholtz equation with a fixed frequency and source location.
Except for such straightforward combinations with traditional solvers for the Helmholtz
equations, the idea of using extra physical knowledge to improve the performance of DNN
based approaches could be noticed in [4, 11]. On the other hand, the DNN approach has
been used to improve the performance of traditional solvers, for example, data-driven
models are trained in [119] to predict the deflation subspace [71, 72] to accelerate the
convergence of the traditional GMRES method for the solution of frequency-domain
Maxwell’s equations, and [67] describes a way to accelerate GMRES by deep learning
for the Poisson equation.

In this chapter, we focus on the DNN solver introduced in [105] for the solution of
Helmholtz equations for which we discuss two options for improvement. In Section 5.3.1
we propose to change the numerical scheme used in the training phase. We introduce
a relaxation parameter in the nonlinear fixed point scheme. The major benefit of this
modification is that the training of the DNN becomes more robust and consequently
faster to converge. In Section 5.3.2, we investigate the use of the trained network as a
nonlinear preconditioner for two flexible Krylov subspace solvers [92], namely the flexible
full orthogonalization method (FFOM) and flexible GMRES (FGMRES) [91]. Finally, in
Section 5.5, we summarize our work and discuss possible future directions.

5.2 Summary of related work

Our work follows and extends the study presented in [105] for the solution of the 2D
Helmholtz equation with variable speed-of-sound fields denoted by c. The problem is
given by

∇2u+$(c)u = f (5.1)

with appropriate absorbing conditions to bound the computational domain. After
discretization on a 2D Cartesian grid (96 × 96), the solution of the discrete problem
reduces to the solution of a linear system

A(c)x(c) = b (5.2)
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where A(c) ∈ Cn×n, x(c) and b ∈ Cn, where n denotes the number of degrees of freedom.
We refer the reader to [105] for the numerical details related to the boundary conditions
and the discretization techniques. In the following discussion, we omit the dependence on
c for the sake of simplicity of exposition.

5.2.1 Quick introduction to neural network

Before describing the detailed simulation processes of such neural network (NN) based
iterative solvers for the Helmholtz equation, some machine learning glossaries are briefly
summarized in the following.

• Supervised learning and unsupervised learning: The former machine learning
model requires labeled input and output data during the training phase, while the
later one processes with raw and unlabeled training data.

• Gradient descent: An iterative learning algorithm that uses the training data set
to update a NN model.

• Batch: The batch size is a hyperparameter of gradient descent that controls the
number of training samples to work through before the model’s internal parameters
are updated. The definition of batch size includes three cases:

– Batch Gradient Descent ←→ batch size = size of training dataset,

– Stochastic Gradient Descent (SGD) ←→ batch size = 1,

– Mini-batch Gradient Descent ←→ 1 < batch size < size of training set.

• Epoch: A full training pass over the entire dataset such that each example has
been seen once.

• Gradient update step: One iteration of gradient descent.

• Loss function: An user-defined metric for evaluating how well the NN fits a data
set, i.e., how far the value predicted by the NN is from the true value. The better
the prediction, the lower the output of the loss function, referred to as the loss.

• Training loss: A measure of how well the NN fits the training data set, which is
a subset of the full data set used during training. The gradient descent algorithm
aims at minimizing this loss.

• Validation loss: A measure of how well the NN fits the validation data set, which
is a subset of the full data set that is disjoint from the training data set. The
validation loss is used during training to determine whether the NN needs further
training.

• Testing loss: A measure of how well the NN fits the testing data set, which is a
subset of the full data set that is disjoint from the training and validation data sets.
The testing loss is used to evaluate the prediction capabilities of the trained NN on
inputs that were never seen before by the NN.

100



CHAPTER 5. LEARNED MINIMUM RESIDUAL SOLVERS Yanfei Xiang

5.2.2 The basic nonlinear fixed point iteration scheme

Based on the notations above, the DNN is trained using a reinforced unsupervised
technique, as no knowledge of the true solution is available. The training is based on the
following nonlinear Richardson iteration:

rj = b− Axj, (5.3)
(∆xj, h

NN
j+1) = fθ(xj, rj, h

NN
j ), (5.4)

xj+1 = xj + ∆xj, (5.5)

where fθ is the NN with a modified UNet [89] architecture and learnable internal
parameters θ (i.e., the weights and biases of the DNN), rj is the residual associated with
the current iterate xj, and ∆xj is the nonlinear update. Note that the NN uses recurrent
hidden states hNN that contain information from all preceding actions and observations
to give enough information to the network to specify the next update [69]. For the sake
of simplicity, these will be omitted in the inference equation (5.4), which will simply
be written as ∆xj = fθ(xj, rj). The network is trained using the mini-batch gradient
descent algorithm with batch size equal to 32 for updating the NN internal parameters
using a residual-based loss function. We refer the reader to the original paper [105] for a
detailed and complete description of the NN architecture and its training processes. We
also mention that a similar work is presented in [87], in which the training is performed
using a supervised learning technique thanks to the known/labeled solutions and using
an UNet architecture.

5.3 Improving the training and the inference phase

5.3.1 Accelerating the training phase

The iteration scheme described in Equation (5.3)-(5.5) can be viewed as a fixed point
Richardson iteration [12], with the nonlinear correction that is iteratively learned by the
NN. The inputs of the NN are the current iterate solution, its associated scaled residual,
and a learned hidden state. Based on this information, we denote the NN solver [105] as
the R(R-NN) algorithm, where the term R denotes a Richardson-like iteration scheme,
and R-NN stands for corresponding NN-inference. The resulting algorithm is presented
in Algorithm 11.

A possible weakness of the R-NN scheme is that the update along the direction
computed by the NN might be large in the first initial steps of the training. One possible
remedy is simply to introduce a relaxation parameter, so that the step size is chosen to
minimize the norm of the residual associated with the next iterate. Consequently in each
iteration, we perform the update xj+1 = xj +ωj∆xj where ωj = argminω ‖rj−ω(A∆xj)‖.
This 4D (batch size, 2, 96, 96) optimization has a simple solution that reads

ωj =
(A∆xj)

Hrj
‖A∆xj‖2

.
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Algorithm 11 Learned Richardson iterative solver – R(R-NN)
Require: Nonsingular coefficient matrix A
Require: The NN fθ(x, r)
Require: The zero initial guess x0
Require: The corresponding initial residual r0 = b− Ax0
Require: A scaling factor α = 103 to be used on the input and output of the NN
1: for j = 0, 1, 2, . . . ,m do
2: if normalize the input residual then
3: z = fθ(xj, αrj/‖rj‖)/α
4: else
5: z = fθ(xj, αrj)/α
6: end if

/* Update the iterate and residual */
7: xj+1 = xj + z
8: rj+1 = b− Axj+1

9: end for
10: return xj+1, rj+1

The new iteration can be described in equation form as

rj = b− Axj, (5.6)
∆xj = fθ(xj, rj), (5.7)

ωj = argmin
ω
‖rj − ωA∆xj‖ =

(A∆xj)
Hrj

‖A∆xj‖2
, (5.8)

xj+1 = xj + ωj∆xj. (5.9)

We refer to this new scheme as MRR(MRR-NN), for Minimum Residual Richardson.
Based on Equations (5.6)–(5.9), the pseudocode of MRR(MRR-NN) is described in

Algorithm 12, which is sketched in Figure 5.1 in a similar manner as R(R-NN) in [105].

5.3.2 Subspace solver with flexible neural network preconditioner

The inference of the trained NN presented in the previous section returns the correction
for a pair of vectors being an approximated solution x and associated residual r for a linear
system of the form (5.2) arising from the discretization of any Helmholz problem as (5.1).
The inference can consequently be seen as the approximated inverse of A applied to r
for knowing x. In that respect, it can be used as a nonlinear preconditioner in a flexible
subspace method such as FFOM or FGMRES [91]. These two flexible subspace methods
rely on the following extended Arnoldi relation

AZj = VjHj + hj+1,jvj+1e
T
j = Vj+1Hj

with Vj+1 = [v1, v2 . . . , vj+1], V
H
j+1Vj+1 = Ij+1 and Hj ∈ Cj×j is an upper Hessenberg

matrix. The FGMRES method characterizes the approximate solution xj = Zjyj in the
space spanned by Zj where yj = argminy ‖βe1 − Hjy‖ with β = ‖r0‖. And then the
residual rj = Vj+1(βe1 − Hjyj). Similarly, FFOM computes the approximate solution
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Algorithm 12 Learned minimum residual Richardson iterative solver – MRR(MRR-NN)
Require: Nonsingular coefficient matrix A
Require: The NN fθ(x, r)
Require: The zero initial guess x0 and κω
Require: The corresponding initial residual r0 = b− Ax0
Require: A scaling factor α = 103 or α = 1 to be used in the input and output of the

NN
1: for j = 0, 1, 2, . . . ,m do
2: if normalize the input residual then
3: z = fθ(xj, αrj/‖rj‖)/α
4: else
5: z = fθ(xj, αrj)/α
6: end if
7: /* Update the iterate */

8: ωj = argmin
ω
‖rj − ωAz‖ =

(Az)Hrj
‖Az‖2

9: if 10−8 ≤ |ωj| ≤ 108 then
10: xj+1 = xj + ωjz
11: else
12: xj+1 = xj + z, and κω = κω + 1
13: end if
14: rj+1 = b− Axj+1

15: end for
16: return xj+1, rj+1, κω
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Figure 5.1 – Solution-update architecture of MRR(MRR-NN): xj+1 = xj +ωj∆xj, and fθ
is the NN with a modified Unet architecture.

xj = Zjyj in the space spanned by Zj where Hjyj = βe1 so that

rj = b− Axj = hj+1,j(e
T
j yj)vj+1. (5.10)

The above observations suggest different ways to use the inference of the trained NN as
a nonlinear preconditoner for FFOM and FGMRES, where we explicitly set the scaling
factor α in Algorithm 12 to 1:

Strategy 1: “Krylov driven” zj ≈ A−1vj compute zj = fθ(0, vj).

Strategy 2: “NN driven” compute zj = fθ(xj−1, rj−1/‖rj−1‖). In FFOM, this reduces to
zj = fθ(xj−1, vj) because of equation (5.10), that corresponds also to zj ≈ A−1vj.
In FGMRES, the resulting search space Zj is spanned by the successive corrections
computed by the trained NN for the sequence of FGMRES iterates.

We notice that the first strategy aims at computing zj ≈ A−1vj following the original
spirit of the flexible preconditioners, that is using the Krylov basis vj as input. Strategy 2
uses the trained NN in the same manner as the training NN is exploited in the fixed
point iteration schemes, that is using the current iterate solution and associated residual
as input.

For a fast overview of the proposed improvements, we refer the reader to Figure A.1 in
Appendix A.3 for the skeleton of these two main contributions described in this section.

5.4 Numerical experiments
For the numerical experiments we consider the same data set as in [105, Section 2.3].

The training data set is composed of 9000 matrices corresponding to 9000 speed-of-sound
fields $ (refer to Equation (5.1)) and the validation data set includes 1000 other matrices.
The two NNs, namely R-NN and MRR-NN, have been trained on a machine with 2x20-
core Skylake Intel Xeon Gold 6148 CPUs, 2 NVIDIA Volta V100 GPUs and 1TB memory,
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under single precision (i.e., float-32 (fp32)) with batch size number equal to 32, and have
used the Adam optimizer [53] with constant learning rate equal to 10−3.

This section is organized as follows. In Section 5.4.1 we investigate the impact of
normalizing the residual vector that is an input parameter of the NN. Next, in Section 5.4.2
we study the performance of the trained networks both in terms of convergence speed and
in terms of attainable accuracy when they are used in a fixed point iteration scheme or
as a preconditioner in a subspace solver.

All the numerical experiments presented in this chapter have been obtained using
PyTorch, which does not support complex arithmetic.

5.4.1 Training of NN solvers with different numerical settings

In this section, we illustrate some details exhibited during the training and validation
processes. Specifically, we discuss the effects of normalizing the residuals and setting the
hand-tuned α parameter in Section 5.4.1.1 and Section 5.4.1.2, respectively.

5.4.1.1 Benefit of the normalized residual

We first use the same setting as in [105]. In the top graph of Figure 5.2 (a) we plot
the value of the loss function at each update of the gradient, that is at each iteration of
the training. It can be seen that the training loss tends to converge but exhibits large
variation. In the bottom graph of Figure 5.2 (a), we display the validation loss, that is
the evaluation of the loss function on a data set not seen in the training. The validation
loss is periodically computed to estimate the capability of the network to predict valuable
outputs. It can be seen that many values (94.4%) of the validation loss are missing,
because they were either infinite (i.e., Inf) or not a number (i.e., Nan), which are useless
results. We think that this is due to the fact that the residual might have a large norm
at the beginning of the training phase so that some of its entries become out of range
in 32-bit calculation. Consequently, instead of using a constant scaling factor α to scale
the residual vector in the input of the NN, we used the normalized residual to train the
network. The results for R-NN are displayed in Figure 5.2 (b), where unfortunately no
benefit is made.

We performed the same experiments for training the MRR-NN, that uses a relaxation
parameter. The results are reported in Figure 5.3. Several comments can be made for
the results displayed in the left graphs. The first one is related to the robustness of the
MRR-NN in the validation phase, where most of the validation loss are finite numbers.
The major consequence is that the convergence of the training process is faster and less
computing demanding. The second observation is that the normalization of the input
residual enables to reduce by two orders of magnitude the validation loss at the possible
price of larger variations of the training loss. On the right part of this figure, we display
the values of the relaxation parameter along the training iterations, where we used an
upper and lower thresholds to keep the y-range bounded. These thresholds were set to be
10−8 and 108 and the values out of this range were set to one. We plot below the graphs
reporting the modulus of the ω, the number of values out of range along the iterations
that is denoted kω. The number of out of range values is bounded by the batch size that
is 32 in our case. It can be seen that only a few values are out of range and only early in
the training.
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(a) non-normalized residual as input
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(b) normalized residual as input

Figure 5.2 – Training and validation loss of R-NN with α = 1000 and non-
normalized/normalized residual as input.
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(a) : non-normalized residual as input
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(b) : normalized residual as input

Figure 5.3 – Training of MRR-NN with normalized/non-normalized residual and α = 1000.
(Left): Training and validation loss along the training iterations (Right): Value
of |ω| and kω along the training iterations. The black dashed line shows the
batch size = 32 that is an upper bound of kω.
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5.4.1.2 Influence of the α-scaling parameter

In Figure 5.4, we vary the values of the hand-tuned α parameter for the MRR-NN
training. It can be seen that a regular normalized residual (i.e., α = 1) leads to a
less oscillatory convergence of both the training and validation loss, but with a worse
asymptotic value for the training and validation loss.
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(b) : α = 1 for scaling normalized residual as input

Figure 5.4 – Training of MRR-NN with different α-scaling parameter with normalized residual.
(Left): Training and validation loss along the training iteration. (Right): Value
of |ω| and kω along the training iterations. The black dashed line shows the
batch size = 32 that is an upper bound of kω.

5.4.2 Testing the trained NNs solvers

In this section we investigate the numerical efficiency of the trained NNs used either as
fixed point iteration or as flexible preconditioner for FFOM and FGMRES. The numerical
efficiency is considered both in terms of convergence speed and attainable accuracy with
respect to the backward error ηb defined in formula (2.34). For the sake of comparison
with the results presented in [105] (i.e., with a non-normalized residual as input of the
R-NN and α = 1000 ), we use in this section the hyper parameters (i.e., the inner trained
weights and biases of networks) downloaded from their GitHub project [1].
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5.4.2.1 The trained Minimum Residual Richardson solver: MRR(MRR-NN)

We display in the left graphs of Figure 5.5 the convergence history of the various
fixed point iterations that can be designed using the trained R-NN and MRR-NN. In
order to illustrate the possible impact of the α scaling for MRR-NN we consider two
different values of α. The first observation is that α does not have a significant impact on
the convergence of MRR(MRR-NN), it is slightly faster for α = 1000 but the attainable
accuracy is the same and close to the round-off unit of the working precision. The second
observation is that MRR(MRR-NN) outperforms R(R-NN) both in terms of convergence
speed and in terms of attainable accuracy (possibly more important). Lastly, these graphs
illustrate the lack of robustness of the R(MRR-NN) and MRR(R-NN). On both examples,
R(MRR-NN) does not converge, while MRR(R-NN) converges in one case but not in the
other one. For this reason, we do not discuss of these two combinations further.

On the right part of this figure, we plot the modulus of the relaxation parameter ω
that goes quickly towards small values for the MRR(R-NN) solver.
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(a): α = 1000 for MRR-NN
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Figure 5.5 – Performance of the R and MRR solver with nonlinear correction function R-NN
and MRR for two values of α for MRR-NN. (Left) convergence history. (Right)
modulus of the relaxation parameter. All calculations are performed in 32-bit
arithmetic.

In the following section we investigate the main features of the various possible usages
of the trained NN as a flexible preconditioner for FFOM and FGMRES.
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5.4.2.2 NNs as preconditioner: different strategies and mixed arithmetic

In Figure 5.6 we display the convergence history for the two preconditioning policies
used for FFOM and FGMRES for the solution of the first example of the testing data
set. For those experiments all the calculations are performed in 32-bit arithmetic (fp32).
The first observation is that the two flexible strategies behave the same for FFOM and
FGMRES, and the MRR-NN leads to a faster convergence compared to R-NN; as it was
already the case in a fixed point iteration context. It can be observed that all methods
but R(R-NN) and FOM/GMRES have an attainable accuracy close to the unit round-off
of fp32. As a general comment regarding FFOM versus FGMRES, we can observe that
the classical monotonic decrease trend of the scaled residual of FGMRES and the more
erratic one of FFOM.

200 400 600 800 1000
iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

101

b

Convergence for the first example
R(R-NN)
MRR(MRR-NN)
FOM
FFOM(R-NN)
FFOM(MRR-NN)

(a): Strategy 1

200 400 600 800 1000
iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

101

b

Convergence for the first example
R(R-NN)
MRR(MRR-NN)
FOM
FFOM(R-NN)
FFOM(MRR-NN)

(b): Strategy 2
Experiments with FFOM

200 400 600 800 1000
iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

b

Convergence for the first example
R(R-NN)
MRR(MRR-NN)
GMRES
FGMRES(R-NN)
FGMRES(MRR-NN)

(c): Strategy 1

200 400 600 800 1000
iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

b

Convergence for the first example
R(R-NN)
MRR(MRR-NN)
GMRES
FGMRES(R-NN)
FGMRES(MRR-NN)

(d): Strategy 2
Experiments with FGMRES

Figure 5.6 – The different variants of NN as a flexible preconditioner for FFOM and FGMRES.

In Figure 5.7 we report on similar experiments as in Figure 5.6 but using mixed
arithmetic calculation. It means that the NNs have been trained in fp32 arithmetic and
used in calculations where all computations but the NNs inference are performed in float-
64 (fp64). For the FFOM and FGMRES, it does fit their capabilities as the additional
nonlinear truncation caused by casting fp64 into fp32 is encompassed in the flexible
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Figure 5.7 – The different variants of NN as a flexible preconditioner for FFOM and FGMRES
in mixed arithmetic calculation.

preconditioner framework. For the fixed point iteration, the scheme reduces to classical
iterative refinement in mixed arithmetic calculation where the residual is computed in
fp64 and the correction is computed in fp32.

The first observation is that both FFOM and FGMRES are able to compute solutions
with an accuracy close to the unit round-off error of fp64. The iterative refinement
methods MRR(MRR-NN) and R(R-NN) fail to improve the solution accuracy to the fp64
unit round-off error. The second observation, regarding the different strategies, there is
no real trend as Strategy 2 seems to be more effective for FGMRES than for FFOM,
while Strategy 1 seems to act similarly on the two flexible subspace solvers. Refer to
Table 5.1 for details of the final attainable accuracy and implementation time of solving
the first example by 1000 iterations of the involved solvers in fp32 and mixed arithmetic
calculation.

To clearly show that the faster convergence rate observed for both FFOM and
FGMRES is due to the use of the trained NN as flexible preconditioner, we display in
Figure 5.8 the convergence history of the two types of flexible preconditioning solvers and
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#
example

Method ηb(fp32 / fp32&fp64) #time(s)

1st
R(R-NN) 3.36e-04 / 3.36e-04 7.37 / 9.68
MRR(MRR-NN) 3.27e-06 / 3.27e-06 10.83 / 10.08
GMRES 2.95e-04 / 2.88e-04 18.95 / 23.69
FGMRES(R-NN) 6.05e-06 / 2.16e-10 24.72 / 30.75
FGMRES(MRR-NN) 4.73e-06 / 7.34e-15 25.55 / 29.50

Table 5.1 – Numerical results in terms of ηb and #time(s) for solving the first example by
1000 iterations of NN solvers and FGMRES(R-NN) and FGMRES(MRR-NN) with
Strategy 2 (notice that the R(R-NN) and MRR(MRR-NN) stagnate around 200
iterations in different attainable accuracy).

switch to unpreconditioned FOM (GMRES) at different prescribed iteration numbers. It
can be seen that as soon as we switch off the preconditioner the convergence rate becomes
colinear to one of the regular FOM (respectively GMRES).
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(a): FGMRES with Strategy 2
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Figure 5.8 – Convergence histories of FGMRES and FFOM with R-NN as preconditioner; no
preconditioning is applied after a given number of iterations.

To better see the impact of the mixed arithmetic calculation, we display in the same
graph in Figure 5.9 all the convergence history (in terms of backward error ηA,b defined in
Equation (2.37)) of the FGMRES solve. It can be seen that for a given NN inference, the
curves associated with fp32 and mixed arithmetic calculation overlap up to a value close
to the unit round-off of fp32. After this point the fp32 curves stagnate while the mixed
arithmetic ones go down to values close to the fp64 unit round-off.

In order to further illustrate the numerical behavior of the novel schemes for the
solution of the first example on the one hand, and the hardest one (i.e., the 865th one)
to solve on the other hand, in the testing data set, we report on their performance in
Figure 5.10. Finally, we report on the performance of the novel solvers for the solution of
the first 32 examples of the testing data set as well as the average and median convergence
history for the full testing data set in Figure 5.11. The qualitative observations made
previously on the first example do extend to the average on the full data set.
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Figure 5.9 – Convergence history of FGMRES(R-NN) and FGMRES(MRR-NN) using
Strategy 2 in fp32 and mixed arithmetic calculation for the solution of the first
example.

To conclude the experimental part with a bit of colored science we display in
Figure 5.12 the iterated solution viewed as the wavefield of a Helmholtz problem, but
will not make any particular scientific comments on them.

5.4.2.3 Network generalizability

To mimic the processes discussed in [105, Section 3.3], in this section, we focus
on investigating the generalization capabilities of the proposed MRR-NN inference.
Specifically, the two trained NNs inferences are used to solving the following three
examples that out of the training, validation and test data set. We shortly describe the
information of these three examples as below, and we refer the reader to [105, Section 3.3]
and its references for more details.

• The rectangle example: A rectangular region with a background sound speed
of 2 m/s on the 96 × 96 grid points rather than the idealized skull examples with
circular or elliptic shape with a background sound speed of 1 m/s on the 96 × 96
grid points used during the training phases. This is used for testing the ability of
the trained networks to deal with the region in different geometric shape.

• The large example: A large speed of sound distribution with 480×480 grid points
was created by patching together 24 distributions from the test data set having
96 × 96 grid points. This is used for testing the ability of the trained networks to
generalize to much larger domains.

• The skull example: A large 512×512 speed of sound distribution generated from
a transverse CT slice from an adult skull. The source distribution was defined as a
focused transducer represented by a 1D arc (recall that the network has only seen
single-point sources in a fixed position during training). The transducer aperture
diameter and radius of curvature were set to 60 mm, and the source frequency to
490 kHz. This is used for testing whether the networks still converge to a satisfactory
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Figure 5.10 – Convergence histories of solving the first and 865th example picked from the
testing data set using fp32 and mixed arithmetic calculation. FGMRES nonlinear
preconditioner is based on Strategy 2. Upper two: The first example. Lower two:
The 865th example (the hardest one to be solved in the testing data test).

solution with an arbitrary background sound speed, source distribution, different
geometric shape and different domain sizes.

For the rectangle example, Figure 5.13-5.14 show the reference solution calculated
using the involved solvers with the trained NNs, the details of |ω| in the MRR variants
(i.e., MRR(MRR-NN) and MRR(R-NN)), and the evolution of wavefield for displaying a
satisfactory solution. We note that this example exhibits a moderate positive benefit of
these MRR-NN variants (i.e., MRR(MRR-NN) and FGMRES(MRR-NN)) in reaching
better attainable accuracy that was very effective in previous Section 5.4.2.1-5.4.2.2.
The MRR variants (especially MRR(R-NN)) reach and stagnate at a similar attainable
accuracy as the R(R-NN) one. So do the final accuracy of FGMRES(R-NN) and
FMRES(MRR-NN). This information becomes much more clear when analyzing the
results of the large example and the skull one as described in Figure 5.15-5.16 and
Figure 5.17-5.18, respectively. That is the MRR-NN variants shown in these figures finally
stagnate at a larger attainable accuracy than the R(R-NN) one, while the MRR(R-NN)
and FGMRES(R-NN) exhibit its obvious advantages. This observation illustrates that
the generalization capabilities of the MRR-NN inference is not as good as the R-NN one.
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Figure 5.11 – Convergence histories for the novel solvers in fp32 and mixed arithmetic
calculation. FGMRES nonlinear preconditioner is based on Strategy 2. Upper
two: The first 32 examples (the dashed and solid lines correspond to the mean
and the median backward error ηb of all the 32 examples). Lower two: Present
the mean with dashed line and the median with solid line of the backward errors
for the full testing data set (1000 examples).

Note that here we only consider comparing the optimal R-NN inference from [1] to the
MRR-NN one with the hyper parameters saved in epoch 69 rather than the ones saved
in epoch 255 adopted in Section 5.4.2.1-5.4.2.2. Since the MRR-NN variants with hyper
parameters saved in epoch 225 fail to solve the large and skull examples, even though
they can solve the rectangle example (refer to Appendix A.4 for the numerical details).
This illustrates that the sub-performance of MRR-NN in network generalizability may
be caused by the over-training. While further efforts are definitely required to have a
more satisfying interpretation of this. On the other hand, the trade-off between better
attainable accuracy and good network generalizability is a well-known challenge in the
machine learning region, which is currently beyond the scope of this manuscript. However,
it is worthy to going on further efforts for balancing this two points.
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Figure 5.12 – Simulation process of the 865th example (the hardest one) (the real part of
wavefield/solution is shown) by the involved five solvers with fp32.

5.5 Concluding remarks

The work presented in this chapter is a follow-up of the study described in [105], and
we greatly benefited from the codes and data set made available by the authors on their
GitHub project [1]. We propose two main improvements related to both the training of
the NN and the use of the NN inference once the training has been performed. Regarding
the training, we introduce an optimal relaxation parameter in the fixed iteration scheme
that enables us to minimize the residual norm along the direction provided by the NN.
The use of this relaxation parameter makes the training more robust as it reduces the
number of Inf/Nan in the validation phase. We conjecture that the relaxation parameter
avoids exploring some “random” regions of the NN parameter space that are irrelevant for
learning the solution of Hemholtz linear systems.

The second contribution is the hybridization of machine learning and classical
numerical linear algebra. In that context we propose to use the trained NN, not the
fixed point iteration scheme exploited for the training, as a nonlinear preconditioner for
subspace solvers such as flexible FOM (FFOM) or flexible GMRES (FGMRES). The idea
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Figure 5.13 – Convergence histories of NNs with α = 1000 and FGMRES with Strategy 2 for
the rectangle example (note that the MRR-NN with hyper parameters saved in
epoch 69).

is to view the output of the NN as the inverse of a Helmholtz matrix applied to an input
vector. We propose two practical strategies to implement this idea in order to design
flexible preconditioners for FFOM or FGMRES. Through numerical experiments we show
that those strategies have similar merits and none of the two outperforms the other.

We believe that our proposed hybrid solvers, which combine machine learning
techniques and classical numerical linear algebra, allow us to benefit from two worlds:

1. improvement of the training phase with more robustness and faster convergence,

2. ability of reaching higher attainable accuracy of the NN solver,

3. fast calculation of the preconditioner application through the NN inference,

4. arbitrary precision of the computed solution thanks to the flexible subspace
iterations.

This work is very much a preliminary attempt to hybridizes machine learning and scientific
computing for the solution of linear algebra problem.

From Section 5.4.2.3, a straightforward future work is to explore the balance of
ensuring the better attainable accuracy and the good generalizability of network. Other
possible future directions could be tuning and testing other neural network architectures
(like the Fourier neural operators [41]), the definition of loss function based on a
practical physical background, the (automatically) defining of the learning rate that
decays exponentially with the index of epoch, the tuning and testing of other hyper-
parameters (like choosing of other optimizer, or the number of hidden layers and nodes per
hidden layer), the possible ways to addressing the vanishing gradient issue [9, 37, 43], the
pre-processing of the data sets, and devising other hybridization strategies and studying
their effects, etc.
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Figure 5.14 – Simulation process of the rectangle example by the involved five solvers with fp32.
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Figure 5.15 – Convergence histories of NNs with α = 1000 and FGMRES with Strategy 2 for
the large example.

117



5.5. CONCLUDING REMARKS Yanfei Xiang

0 200 400

0

100

200

300

400

500

Ite
ra

tio
n 

st
ep

 1

GMRES

0 200 400

0

100

200

300

400

500

R(R-NN)

0 200 400

0

100

200

300

400

500

MRR(MRR-NN)

0 200 400

0

100

200

300

400

500

FGMRES(R-NN)

0 200 400

0

100

200

300

400

500

FGMRES(MRR-NN)

0 200 400

0

100

200

300

400

500

Ite
ra

tio
n 

st
ep

 1
1

GMRES

0 200 400

0

100

200

300

400

500

R(R-NN)

0 200 400

0

100

200

300

400

500

MRR(MRR-NN)

0 200 400

0

100

200

300

400

500

FGMRES(R-NN)

0 200 400

0

100

200

300

400

500

FGMRES(MRR-NN)

0 200 400

0

100

200

300

400

500

Ite
ra

tio
n 

st
ep

 2
1

GMRES

0 200 400

0

100

200

300

400

500

R(R-NN)

0 200 400

0

100

200

300

400

500

MRR(MRR-NN)

0 200 400

0

100

200

300

400

500

FGMRES(R-NN)

0 200 400

0

100

200

300

400

500

FGMRES(MRR-NN)

0 200 400

0

100

200

300

400

500

Ite
ra

tio
n 

st
ep

 6
1

GMRES

0 200 400

0

100

200

300

400

500

R(R-NN)

0 200 400

0

100

200

300

400

500

MRR(MRR-NN)

0 200 400

0

100

200

300

400

500

FGMRES(R-NN)

0 200 400

0

100

200

300

400

500

FGMRES(MRR-NN)

0 200 400

0

100

200

300

400

500

Ite
ra

tio
n 

st
ep

 8
1

GMRES

0 200 400

0

100

200

300

400

500

R(R-NN)

0 200 400

0

100

200

300

400

500

MRR(MRR-NN)

0 200 400

0

100

200

300

400

500

FGMRES(R-NN)

0 200 400

0

100

200

300

400

500

FGMRES(MRR-NN)

0 200 400

0

100

200

300

400

500

Ite
ra

tio
n 

st
ep

 2
01

GMRES

0 200 400

0

100

200

300

400

500

R(R-NN)

0 200 400

0

100

200

300

400

500

MRR(MRR-NN)

0 200 400

0

100

200

300

400

500

FGMRES(R-NN)

0 200 400

0

100

200

300

400

500

FGMRES(MRR-NN)

0 200 400

0

100

200

300

400

500

Ite
ra

tio
n 

st
ep

 9
01

GMRES

0 200 400

0

100

200

300

400

500

R(R-NN)

0 200 400

0

100

200

300

400

500

MRR(MRR-NN)

0 200 400

0

100

200

300

400

500

FGMRES(R-NN)

0 200 400

0

100

200

300

400

500

FGMRES(MRR-NN)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 5.16 – Simulation process of the large example by the involved five solvers with fp32.
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Figure 5.17 – Convergence histories of NNs with α = 1000 and FGMRES with Strategy 2 for
the skull example.
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Figure 5.18 – Simulation process of the skull example by the involved five solvers with fp32.
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Develop new potentials for block Krylov subspace methods. Part I develops
some new variants of the block Krylov subspace methods for linear systems with multiple
right-hand sides. For Chapter 2 the block minimum residual norm techniques with long
term recurrence, following ideas from [78], future research could theoretically establish
that this class of subspace augmentation algorithms is backward stable. For the short
term recurrence algorithms such as BCR and BCG described in Chapter 3-4, some residual
gaps exist sometimes preventing the convergence of the true backward error, i.e., based
on the true residual norm, while the one based on the iterated residual norm indicates
convergence. A possible remedy could be to extend the rounding error analysis from [120]
to block case to estimate the block residual gap and possibly design corresponding
replacement techniques [16, 25]. Besides, when considering the subspace recycling or
deflation strategy, an interesting further direction is to find some general information
to guide the choosing of some hand-tuning parameters, like the maximal length of one
refining cycle, the dimension of deflation space, and the number of right-hand sides.

Integration in the solver stack of the Inria team. The block minimum residual
norm techniques for unsymmetric case described in Chapter 2 have been integrated into
one of our team’s solver stack namely Fabulous 1 thanks to a close collaboration with an
engineer (Matthieu Simonin) in charge of this library. Fabulous is a fully featured C++
library that implements various block Krylov solvers for the solutions of linear systems.
This integration enables the use of IB-BGCRO-DR in various applications such as for
QCD computation in the framework of the H2020 project PRACE-6IP. To fully assess
the computational performances of the block solvers presented in Chapter 3 and 4, it
would be worth conducting such an engineering effort to foster the transfer of knowledge
from numerical linear algebra to large scale applications.

Develop new potentials for optimal scientific machine learning models.
Part II discusses two main improvements in hybridizing machine learning techniques
and numerical linear algebra solvers for linear system with single right-hand side. A
straightforward future direction from the details described in Section 5.4.2.3 of Part II
is to explore the balance of ensuring the better attainable accuracy and the good
generalizability of network. Further related work is to try to shed some lights into the
black boxes when developing scientific machine learning (SciML) solvers [3, 65, 118], like
the choosing of deep neural network architecture for specific physical problem (like the
Fourier neural operators [41]), the definition of loss function based on practical physical
background (like the recent work [129]), the (automatically) defining of learning rate that
decays exponentially with the index of epoch, the tuning and testing of other hyper-
parameters (like the choose of other optimizer, the number of hidden layers and nodes in
per hidden layer), the possible ways to addressing the vanishing gradient issue [9, 37,43],
the pre-processing of the the data sets, and devising other hybridization strategies and
studying their effects, etc. To have a clear understanding of these options, I envision
to try other machine learning models for variety of applications. I want to discover the
composition-structure-property relationships for varying computing problems and SciML
solvers, and then use them to figure out what is the optimal SciML models (in terms
of attainable accuracy, convergence speed, lightweight neural network architecture, and
computational cost, etc.) for target simulation. With faster descriptors, I hope to create
a categorized theory system for different SciML computing problems.

1https://gitlab.inria.fr/solverstack/fabulous/
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Devise sparse machine learning models. Based on the efforts described in Part II
as well as its straightforward further directions illustrated in the previous paragraph,
another problem I am interested in is to devise a way to reduce the training costs. One
way for this could be pre-processing data sets or introducing mathematical and physical
information when devising neural network solver with target solution scheme. Another
way could be switching the focus to developing new large-scale sparse machine learning
models using knowledge from a multidisciplinary framework, such as graph theory and
computer science, which in turn can also help the machine learning regions for other
applications out of the SciML scopes, but which can be pretty challenging as well.
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Appendix

A.1 Other two alternative strategies for approximating
the eigen-information

Proposition 6. (Strategy A [18]) At the end of a cycle of the IB-BFGCRO-DR algorithm,
if the deflation space is built on the harmonic-Ritz vectors Ẑmgi ∈ span(Ẑm) of A with
respect to Ẑm = [Uk, Zm] ∈ Cn×(k+nm), the following hold:

1. The harmonic-Ritz pairs (θi, Ẑmgi) for all restarts satisfy

FH
mFmgi = θiF

H
mV̂ H

m+1Ẑmgi, for 1 ≤ i ≤ k + nm, (A.1)

where

V̂ H
m+1Ẑm =


CH
k Uk CH

k Zm

V H
m Uk V H

m Zm

PH
m−1Uk PH

m−1Zm

W̃H
mUk W̃H

mZm

 ∈ C(k+nm+p)×(k+nm). (A.2)

2. At restart, if Gk = [g1, . . . , gk] is associated with the k targeted eigenvalues, the
matrices Unew

k and Cnew
k to be used for the next cycle are updated by

Unew
k = ẐmGkR

−1 = [Uk,Zm]GkR
−1,

Cnew
k = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q,

where Q and R are the factors of the reduced QR-factorization of the tall and skinny
matrix FmGk, ensuring AUnew

k = Cnew
k with (Cnew

k )H Cnew
k = Ik.

3. The residual at restart Rnew
1 = Rold

m = B − AXnew
1 with Xnew

1 = Xold
m is orthogonal

to Cnew
k .

Proof. The proofs basically relay on some matrix computations as shortly described below.

• According to Definition 1, each harmonic-Ritz pair (θi, Ẑmgi) satisfies

∀w ∈ Range(AẐm) wH (AẐmgi − θi Ẑmgi) = 0,
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which equivalently becomes

(AẐm)H (AẐmgi − θi Ẑmgi) = 0.

Substituting (2.26) into the above leads to(
V̂m+1Fm

)H (
V̂m+1Fmgi − θi Ẑmgi

)
= 0. (A.3)

Because V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of cycle is orthonormal,
(A.3) becomes

FH
m Fmgi − θiFH

mV̂ H
m+1Ẑmgi = 0,

which gives the formulation (A.1).

• Let Q and R be the factors of the reduced QR-factorization of the tall and skinny
matrix FmGk. Right multiplying Gk on both sides of (2.26) leads to AẐmGk =

V̂m+1FmGk = V̂m+1QR, that is equivalent to AẐmGkR
−1 = V̂m+1FmGkR

−1 =

V̂m+1Q concluding the proof as span(ẐmGkR
−1) = span(ẐmGk), and V̂m+1Q is the

product of two matrices with orthonormal columns, so are its columns.

• The proof essentially follows the same arguments as the ones developed for
Corollary 1, the details are omitted here.

Proposition 7. (Strategy B [18]) At the end of a cycle of the IB-BFGCRO-DR algorithm,
if the deflation space is built on the harmonic-Ritz vectors V̂mgi ∈ span(V̂m) of AẐmV̂ H

m

with respect to V̂m = [Ck, Vm] ∈ Cn×(k+nm), the following hold:

1. The harmonic-Ritz pairs (θi, V̂mgi) for all restarts satisfy

FH
mFmgi = θi F

H
m gi for 1 ≤ i ≤ k + nm,

2. At restart, if Gk = [gi1 , . . . , gik ] is associated with the k targeted eigenvalues, the
matrices Unew

k and Cnew
k to be used for the next cycle are defined by

Unew
k = ẐmGkR

−1 = [Uk,Zm]GkR
−1,

Cnew
k = V̂m+1Q = [Ck,Vm, Pm−1, W̃m]Q,

where Q and R are the factors of the reduced QR-factorization of the tall and skinny
matrix FmGk, ensuring AUnew

k = Cnew
k with (Cnew

k )H Cnew
k = Ik.

3. The residual at restart Rnew
1 = Rold

m = B − AXnew
1 with Xnew

1 = Xold
m is orthogonal

to Cnew
k .

Proof. Given the proof essentially follows the same arguments as the ones developed for
Proposition 6 or 2, the details are omitted here.
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Although the strategy A depicted in Proposition 6 is the most efficient way among
the possible three strategies described in [18] for approximating the eigen-information of
the coefficient matrix A, the computational cost of the last nm columns of V̂ H

m+1Ẑm as
shown in the right-hand side of (A.2) is too heavy especially with larger nm. Therefore,
another possible alternatives are considered to reduce the computational cost of solving
such general eigen-solving problem. Inspired from the way of computing eigen-information
under the context of flexible GMRES with deflated restarting (FGMRES-DR) as shown
in [35, Proposition 1], strategy B shown in Proposition 7 is described for the IB-BFGCRO-
DR, while which turns out to be not that suitable under the GCRO-DR context by
numerical results shown in Table A.1. Thus, the strategy C is devised and described in
Proposition 2, which has the same sense as strategy A but with a lower computational
cost of solving the general eigen-solving problem as shown in (2.27). From Table A.1,
it is easy to observed that the numerical result of IB-BFGCRO-DR with strategy C is
approximate to that with strategy A even though the later one costs the fewest #mvps
and #iter.

Number of families Method #mvps #iter

3
IB-BFGCRO-DR (strategy A) 1807 144
IB-BFGCRO-DR (strategy B) 2074 177
IB-BFGCRO-DR (strategy C) 1838 148

Table A.1 – Numerical results of IB-BFGCRO-DR with three kinds of strategies in terms of
#mvps and #iter, in which the involving parameters for QCD matrix are set to
be p = 12, md = 15× p = 180 and k = 90.
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A.2 The pseudocode of the D-BCG variants

Algorithm 13 Recycling deflated BCG with refining deflation space computed by
Raleigh-Ritz projection with LO-TR of the eigen-search space — D-BCG (RR)
Require: As the first four requires stated in Algorithm 10 (i.e., D-BCG)
Require: m̂ maximum number of the block iteration step
Require: s ∈ N+ the maximal number of refining cycle, sm ∈ N+ (initialized as sm = 0)

the current index of refining cycle
Require: m the maximal iteration step of a single refining cycle, md = k + m × p the

maximal length of a refining cycle, where k is the dimension of deflation space to be
refined, and let mdpre = k + (m− 1)× p

Require: Dm = [ ],Pm = [ ] initial storage for refining deflation space
1: Step 1-5 of Algorithm 10 (i.e., D-BCG)
2: for j = 0, 1, 2, . . . , m̂ do
3: Step 7-18 of Algorithm 10

/* Refining deflation space */
4: if sm < s then
5: smj = j − sm ×m
6: if smj ≤ m− 1 then
7: Dm(smj × p+ 1 : (smj + 1)× p, smj × p+ 1 : (smj + 1)× p) = PH

j Qj

8: Pm = [Pm, Pj]
9: end if
10: if smj = m− 1 then
11: G(RR)(1 : k, 1 : k) = WH

k AWk, G
(RR)(k + 1 : md, k + 1 : md) = Dm

12: F (RR)(1 : k, 1 : k) = WH
k Wk, F

(RR)(k + 1 : md, k + 1 : md) = PH
mPm

13: F (RR)(1 : k, k + 1 : m) = WH
k Pm

14: F (RR)(k + 1 : m, 1 : k) = F (RR)(1 : k, k + 1 : m)H

15: G
(RR)
pre = G(RR)(1 : mdpre, 1 : mdpre), F

(RR)
pre = F (RR)(1 : mdpre, 1 : mdpre)

16: Carry out the LO-TR [122, Algorithm 3.2] with eigen-search space: [Wk,Pm],
i.e., solve the general eigen-problem G(RR)Yk/2 = Yk/2F

(RR) (Yk/2 ∈ Cmd×k/2)

and G(RR)
pre Ȳk/2 = Ȳk/2F

(RR)
pre (Ȳk/2 ∈ Cmdpre×k/2), a block zero vector is appended

to Ȳk/2 as:
[

Ȳk/2
0p×k/2

]
∈ Cmd×k/2, Q = orth([Yk/2, Ỹk/2]) for returning an

orthogonal basis of Y = [Yk/2, Ỹk/2], then compute W new
k = [Wk,Pm]Q and

its image AW new
k

17: Let Wk = W new
k , AWk = AW new

k , Dm = [ ], Pm = [ ]
18: sm = sm + 1
19: end if
20: end if
21: end for
22: return Xj+1 for approximation of the current family, Wk and AWk for next one
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Algorithm 14 Recycling deflated BCG with refining deflation space computed by
harmonic-Ritz projection with LO-TR of the eigen-search space — D-BCG (HR)
Require: As the first four requires stated in Algorithm 13 (i.e., D-BCG (RR))
Require: Dm = [ ],Pm = [ ],Qm = [ ] initial storage for refining deflation space
1: Step 1-5 of Algorithm 10
2: for j = 0, 1, 2, . . . , m̂ do
3: Step 7-18 of Algorithm 10

/* Refining deflation space */
4: if sm < s then
5: smj = j − sm ×m
6: if smj ≤ m− 1 then
7: Dm(smj × p+ 1 : (smj + 1)× p, smj × p+ 1 : (smj + 1)× p) = PH

j Qj

8: Pm = [Pm, Pj]
9: Qm = [Qm, APj] = [Qm, Qj]
10: end if
11: if smj = m− 1 then
12: G(HR)(1 : k, 1 : k) = (AWk)

HAWk, G
(HR)(k + 1 : md, k + 1 : md) = QH

mQm

13: G(HR)(1 : k, k + 1 : m) = QH
mAWk

14: G(HR)(k + 1 : m, 1 : k) = G(HR)(1 : k, k + 1 : m)H

15: F (HR)(1 : k, 1 : k) = WH
k AWk, F

(HR)(k + 1 : md, k + 1 : md) = Dm

16: G
(HR)
pre = G(HR)(1 : mdpre, 1 : mdpre), F

(HR)
pre = F (HR)(1 : mdpre, 1 : mdpre)

17: Step 16 of Algorithm 13 but with G(HR), F (HR), G
(HR)
pre , F

(HR)
pre

18: Let Wk = W new
k , AWk = AW new

k , Dm = [ ], Pm = [ ], Qm = [ ]
19: sm = sm + 1
20: end if
21: end if
22: end for
23: return Xj+1 for approximation of the current family, Wk and AWk for next one
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Algorithm 15 Recycling IB-Deflated-BCG with partial convergence detection and
refining deflation space computed by RR projection with LO-TR of the eigen-search space
— IB-D-BCG (RR)
Require: As require stated in Algorithm 13 (i.e., D-BCG (RR))
1: Step 1-5 of Algorithm 10 (i.e., D-BCG)
2: for j = 0, 1, 2, . . . , m̂ do
3: Step 7-11 of Algorithm 10
4: if the stopping criterion related to ε or maxMvps is met then
5: stop and return final results, Wk and AWk

6: else
7: Step 11-14 of Algorithm 9 (i.e., IB-BCG)
8: end if

/* Refining deflation space */
9: if sm < s and the column number of βj = the row number of αj = p then
10: Step 5-19 of Algorithm 13
11: end if
12: end for
13: return Xj+1 for approximation of the current family, Wk and AWk for next one

Algorithm 16 Recycling IB-Deflated-BCG with partial convergence detection and
refining deflation space computed by HR projection with LO-TR of the eigen-search space
— IB-D-BCG (HR)
Require: As require stated in Algorithm 14 (i.e., D-BCG (HR))
1: Step 1-5 of Algorithm 10 (i.e., D-BCG)
2: for j = 0, 1, 2, . . . , m̂ do
3: Step 7-11 of Algorithm 10
4: if the stopping criterion related to ε or maxMvps is met then
5: Stop and return final results, Wk and AWk

6: else
7: Step 11-14 of Algorithm 9 (i.e., IB-BCG)
8: end if

/* Refining deflation space */
9: if sm < s and the column number of βj = the row number of αj = p then
10: Step 5-20 of Algorithm 14
11: end if
12: end for
13: return Xj+1 for approximation of the current family, Wk and AWk for next one
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A.3 Skeleton of two main contributions in hybridizing
machine learning and numerical linear algebra

Hybrid solvers:
FGMRES(R-NN);

FFOM(R-NN)

Hybrid solvers:
FGMRES(MRR-NN);

FFOM(MRR-NN)

Traditional solvers:
GMRES and FOM

Strategy 1, 2

Strategy 1, 2

The DNN solver:
R(R-NN)

Novel DNN solver:
MRR(MRR-NN)

(C1): optimal step size

(C2): trained R-NN inference preconditioner

(C2): trained MRR-NN inference preconditioner

Figure A.1 – Two main contributions (simplified as C1 and C2) in hybridizing machine
learning (ML) and numerical linear algebra (NLA) techniques (refer to
Section 5.3.2 for the details of Strategy 1, 2).
*Note that the rectangular shapes indicate the existing traditional/DNN
solver, the ellipses refer to the novel DNN solver and the hybrid variants
proposed in Chapter 5, and the involved solvers are identified by varying
colors that labeled each solver in the experimental Section 5.4.2.
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A.4 Network generalizability: MRR-NN in epoch 255
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(a): fp32 calculation
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Figure A.2 – Convergence histories of NNs with α = 1000 and FGMRES with Strategy 2 for
the rectangle example.
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Figure A.3 – Simulation process of the rectangle example by the involved five solvers with fp32.
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Figure A.4 – Convergence histories of NNs with α = 1000 and FGMRES with Strategy 2 for
the large example.
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Figure A.5 – Simulation process of the large example by the involved five solvers with fp32.
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(a): fp32 calculation
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Figure A.6 – Convergence histories of NNs with α = 1000 and FGMRES with Strategy 2 for
the skull example.
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Figure A.7 – Simulation process of the skull example by the involved five solvers with fp32.
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