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Abstract

This work exclusively focuses on utilizing convolution neural operator learning to accelerate the
solution of some heterogenous PDEs (including Poisson equations, Darcy flow, Convection-Diffusion
equations) via the non-linear preconditioning applied to the flexible GMRES method. Convolutional
neural networks with U-Net architecture is employed for learning this neural operator preconditioning.
For the sake of learning general information, the neural operator is trained with randomly generated
datasets using an unsupervised approach. The neural operator is trained with 2 V100 GPUs and the
training time is around 1 hour. The trained neural operator exhibits significant generalization features with
respect to different aspects. That includes the ability to address varying source terms, permeability terms,
diffusivity terms, velocity field for convection, and varying boundary conditions for these heterogeneous
fluid equations. Furthermore, it demonstrates promising results in addressing Convection-Diffusion
equations under challenging conditions, such as convection-dominant cases and scenarios with a wider
range of convection and diffusion terms. Overall, this work demonstrates the efficiency of applying
the neural operator learning as non-linear flexible preconditioner for subspace iterative linear solver for
addressing heterogeneous fluid equations with varying parameters and varying boundary conditions.

Keywords — Scientific Machine Learning; Convolutional Neural Networks; Unsupervised Neural
Operator Learning; Heterogeneous fluid equations; Poisson equations; Heterogeneous Darcy flow;
Heterogeneous Convection-Diffusion equations; Subspace iterative methods on CPUs and/or on GPUs;
Flexible Preconditioning; Mixed-Precision calculation.

1 Introduction

1.1 Scientific background and major challenges
Fluid simulation modeled by heterogeneous Partial Differential Equations (PDEs) has numerous

applications across various engineering fields, including Computational Fluid Dynamics (CFD), plasma
physics, parametric studies, and the formulation of inverse problems, to name a few. Numerical solutions
are indispensable in practical applications, as analytic solutions for PDEs are rarely available. Numerous
general-purpose numerical methods have been developed to address this need, with iterative solvers [94]
among the most commonly used approaches for obtaining numerical solutions to PDEs. While iterative
methods are theoretically well-founded, they often struggle with slow convergence and lack robustness,
particularly when applied to complex problems from industrial applications, such as fluid simulations.
These issues can be mitigated through preconditioning [94, Chapter 9-10], a technique that transforms
the original system into an equivalent one with the same solution. And the transformed system is likely
to be easier to solve with iterative solvers. However, constructing an effective numerical preconditioner
can be as challenging as directly solving the original system. Moreover, a preconditioner tailored to one
specific problem often lacks generalizability to other similar systems, which limits its applicability for
heterogeneous systems. In recent decades, machine learning techniques, particularly deep learning [22]
with deep neural networks (DNNs) and convolutional neural networks (CNNs), have gained widespread
application in scientific computing, especially for problems related to PDEs [60, 20, 62, 47, 38, 66, 28, 105].
This emerging field, often called Scientific Machine Learning (SciML) [77], encompasses the application of
machine learning techniques for scientific computing. Two common trends in this field involve: (1) training
neural networks (NNs) as a solver, like Physics-Informed Neural Networks (PINNs) [69] and its related
DeepXDE library [68]; and (2) training NNs for general function approximation through neural operator
learning [59, 14]. In recent years, these approaches have gained significant attention, leading to extensive
research. For a comprehensive overview of developments in PINNs, we refer readers to the review in [24].
For more details on neural operator learning, including various neural network architectures, techniques
and physical applications, further references include [67, 86, 48, 65, 64, 39, 34]. These recent methods
show considerable promise, particularly when trained effectively. This promise largely stems from their
ability to approximate complex functions in diverse scientific contexts, such as non-linear PDEs [2, 85] and
high-dimensional PDEs [99], which are often challenging for traditional iterative methods. However, these
promising SciML approaches still face unconquered challenges, including limited rigorous mathematical
analysis, lack of guarantees for correctness or convergence, limited attainable accuracy, and limitations in
handling unseen scenarios.
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1.2 Motivation and methods overview
Given the challenges faced by both traditional iterative methods and recent SciML approaches, this

work focuses on combining the strengths of these two categories to leverage their respective advantages
to enhance performance in heterogeneous fluid simulations. From iterative methods side, it is know
that effective preconditioning can accelerate convergence and improve robustness. Within category of
preconditioned iterative methods, the flexible GMRES method (FGMRES) [93] can be preconditioned by
preconditioner with non-linear property, and the NNs also owns highly non-linear property. From SciML
approaches side, there are impressive applications of CNNs with U-Net [90] architecture (characterized by
its “U” shape, formed by encoding and decoding layers) for the fluid [21, 34] and wave [102, 4] simulations.
Based on these prior works, we explore an integration through CNNs preconditioning, leveraging the
learning capability of CNNs with U-Net architecture to develop a generalized non-linear preconditioner
for the FGMRES method. This preconditioner, while not intended to achieve high attainable accuracy (a
typical limitation of many SciML approaches), is instead optimized for robustness and adaptability across
various scenarios. The trained CNNs inference is utilized as a non-linear flexible preconditioner that
takes the Krylov basis as input to improve the effectiveness of the FGMRES method. This integrated
approach is designed to tackle heterogeneous linear PDEs from fluid physics, including Poisson equations,
heterogeneous Darcy flows, and heterogeneous Convection-Diffusion equations with non-uniform source
terms. These types of equations typically present challenges for traditional numerical preconditioners,
especially when dealing with complex boundary conditions and varying parameters within the equations.
To enable the CNN-based preconditioner to generalize effectively across different problem instances, we
use unsupervised learning on datasets generated from random realizations of these heterogeneous PDEs.
This approach demonstrates the potential efficiency of training CNNs preconditioner without requiring
pre-existing physical dataset. It also enables the CNNs preconditioner to capture broadly applicable patterns
and characteristics of each fluid equations, improving its adaptability and performance across a range
of diverse conditions. In short, this work aims to establish an unsupervised convolution neural operator
preconditioning technique that improves the efficiency of traditional iterative solvers in addressing complex
fluid simulations.

1.3 Key contributions
The core contribution of this work lies in proposing a novel integrated approach through

CNNs preconditioning to bridge the numerical iterative methods and the unsupervised SciML approaches
to let them benefit from each other. The integrated approach is designed for accelerating the simulations
for some linear heterogeneous fluid equations with varying parameters and boundary conditions (BCs).
This integrated approach has four main attractive properties: (1) New hybrid point. We introduce a
novel hybrid point through flexible preconditioning to glue the traditional iterative methods and recent
SciML approaches to leverage their respective advantages. With mathematical backbones of the iterative
methods, we can utilize the black-box-like SciML approach is a relatively reliable way. With learning
ability of the SciML methods, we can extend the application of numerical methods to even wider range of
complex problems. (2) Greedy application scope. This CNNs preconditioning is capable of learning general
functions across an entire class of heterogeneous fluid PDEs, with random parameters generated according
to specified distributions. Importantly, this CNN-based preconditioner requires only a single training phase
and can then be applied to different problems within this class without needing to be retrained. This
feature is particularly advantageous given that the training process is typically resource-intensive [103].
(3) New loss metric. Inspired by the common stopping criterion used in the iterative methods, we define
the loss function as the relative residual of the discrete PDEs. This relative residual is computed directly
from the PDE information and the algebraic properties of the network output, which approximates the PDE
solution. As a result, the network is trained in an unsupervised manner with randomly generated fluid
parameters and the local sparsity structure of the discrete PDEs. This training approach does not require a
ground-truth solution—often unavailable in practical scenarios—nor does it rely on the numerical solutions
(like generated from a finite element method) to the PDEs, which are typically costly to obtain. By focusing
on minimizing the relative residual with random parameters, this way allows for a more flexible and efficient
training process, enabling the network to learn generalizable function without dependence on precomputed
or exact solutions. (4) Generalization. While this method is designed for learning CNNs preconditioning
for fluid equations with varying BCs, it is suffice to train the networks on small problems with the simplest
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zero-Dirichlet BCs. Generalizability of the trained CNNs preconditioning is tested from diverse aspects.
That includes the ability to address varying BCs, source terms, permeability terms, diffusivity terms,
velocity field for convection, and the domain size of these heterogeneous fluid equations. Furthermore,
it also shows promising results for addressing wider range of the convection dominant situations, which
is the challenging case for the Convection-Diffusion equations. Extensive experiments and comprehensive
evaluations have verified the significant generalization ability of this unsupervised CNNs preconditioning
for various heterogeneous fluid equations.

1.4 Previous efforts in integrating machine learning and iterative methods
Vast amount of researches have focused on integrating recent machine learning (ML) techniques with

traditional iterative methods to enhance their combined effectiveness for PDEs simulations. Key efforts to
accelerate linear iterative methods (both subspace-like method and multilevel solver) and non-linear iterative
solvers, as well as to simplify their usability can be summarized as follows (though not exhaustively).

• Preconditioning learning. Staring from efforts to enhance a neural networks (NNs) solver in [102],
[109, Chapter 5] initially demonstrated that the trained NNs inferences of NNs solver can also serve
as an effective non-linear preconditioner for Krylov subspace methods, including the FGMRES and
the flexible FOM (FFOM) methods [94]. With similar idea, [92] illustrated using neural operator
as non-linear preconditioner for the flexible conjugate gradient method [80]. More recently, [30]
introduced greedy learning to optimize the linear parametrization used as preconditioning, capable
of functioning in various forms—ranging from scalar and vector to full linear operator. In the
context of multilevel preconditioning, [4] applied deep learning to multigrid method to accelerate the
convergence for solving Helmholtz equations. Within multilevel domain decomposition framework,
[76] proposed a conjugate gradient method [45] preconditioned with a multilevel Graph Neural
Networks (GNNs) [5] preconditioner for solving Poisson equation with irregular meshes. Another
ML-based multiscale preconditioner can be found at [63] for elliptic equations in porous structure. If
view recycling subspace methods [74, 81] as a type of preconditioning realized by projection, [107]
explored learning-based recycling subspaces applied to the GMRES method [95] for accelerating
electromagnetic simulations. Refer to [1, 96, 35] for some other ML-based preconditioners.

• Initial guess learning. Except for preconditioning, initial guess also effects convergence rate of the
iterative methods. For the linear solver side, [70] introduced the use of deep learning to learn effective
initial guesses aimed at accelerating the restarted GMRES method [94]. For the non-linear solver
side, [2] explored learning optimal initial guesses with neural operator to accelerate the performance
of Newton’s method when applied to non-linear PDEs.

• Optimal parameters learning. [55] demonstrated that a bandit online ML algorithm can effectively
select optimal parameters ϖ from a given interval (like ϖ ∈ (0, 2)) to speed up the iterative
Successive Over-Relaxation solver (SOR) [111] when applied to solve sequences of linear systems.

• Alternative algorithms. Based on Tompson et. al.’s pioneering work on novel NNs method for fluid
simulations [106], [50] proposed an alternative strategy that applies the NNs method or the Jacobi
algorithm for simulating incompressible flows with a large Richardson number. Also, [87] proposed
to intersperse Krylov iterations and NNs correction to accelerate wave simulation.

• Multigrid and algebraic multigrid. Multigrid (MG) techniques [15] exploit discretizations with
different mesh sizes (like hierarchical meshes) of PDE to obtain optimal convergence from relaxation
techniques. Its general version with coarser and finer levels is termed as algebraic multigrid (AMG).
From NN for MG side, follow the prior work [47] on integrating the structure of multigrid V-cycles
and U-Net, [40] proposed a new neural multigrid solver. Besides a merging PINN-MG method was
proposed at [27], where the high- and low-frequency components are respectively solved by iterative
methods and PINNs. On the MG for NN side, based on the connections between NN and MG, [41]
devised modified NN models with fewer weights and hyperparameters. Prolongation defined in MG
relates different scales, [37] proposed to train NN to map discrete PDEs to prolongation operators,
which is then extended to AMG on irregular meshes via GNNs at [71]. For other NN-enhanced AMG
works, refer to [17, 3] for learning optimal parameter constructed in AMG by NN for acceleration.
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• Domain decomposition methods. Domain decomposition methods (DDMs) [94, Chapter 14]
represent a class of techniques based on the principle of divide-and-conquer. From ML for DDMs
side, refer to [43] for an example of ML-enhanced DDMs approach. From DDM for ML side, refer to
FBPINNs [75] and its further extensions [26, 42] for improving the performance of PINNs by DDMs’
divide-and-conquer idea. Except for these DDMs-enhanced PINNs, refer to [46, 108, 57] for other
novel neural network architectures improved by DDMs. For more comprehensive information, we
refer the reader to [44, 58], which provide detailed surveys on the integration of ML and DDMs.

• Recommendation system. This direction focuses on learning ML-based recommendation system
to optimize selection of iterative subspace-like method, preconditioner, and parameter for specific
PDEs, reducing the need for extensive manual tuning. Examples include SALSA and Lighthouse
projects [10, 101, 53, 100]. Refer to [19] for auto-select best solvers, among three available solvers,
for transport problems. Refer to [82] for using reinforcement learning [104] to select optimal
restarting parameter, among a group of predefined values, for accelerating restarted GMRES method.
Refer to [110] for selecting properly iterative algorithms and preconditioners based on features of the
sparse matrix.

On the other hand, the integration of machine learning with non-iterative numerical linear algebra
methods has also been explored in various contexts, as outlined below.

• Randomization. Random feature [61, 84] has been applied to [78] for developing operator learning
with some convergence guarantees. It has also been used at [18] for combining the advantages
of numerical approaches and ML-based methods. On the other hand, randomized singular value
decomposition [72] has been applied to data-driven methods in [13, 12] for acceleration.

• Reduced order models. Reduced-order models (ROMs) have achieved a lot of successes in reducing
the computational cost of traditional numerical methods across many disciplines, like [29, 83]. For
their interaction with ML approaches, refer to [11] for introducing ROMs into data-driven methods for
wave simulations. Additionally, refer to GAROM [23], POD-LSTM ROM [9], NNsPOD-ROM [36]
and other related works by G. Rozza and his colleagues 1 [52, 51, 54, 98, 33, 89, 25, 88], for more
further explorations of ROMs-enhanced ML approaches.

1.5 Structure and notations
The remainder of this paper is organized as follows. We begin by recalling the general mathematical

preliminaries for addressing PDEs using numerical approaches in Section 2. This section outlines the
problem formulations of PDEs, including boundary conditions (BCs), their discretization, and the iterative
methods used for solving the resulting discrete systems. Based on previous discussions about the PDEs
and the iterative methods for discrete PDEs, Section 3 details the development of a new convolutional
neural network (CNN) based operator preconditioning framework. This framework introduces a general
and effective CNN-based preconditioner designed to enhance the performance of traditional iterative
methods for solving sequences of discrete heterogeneous fluid PDEs. In Section 4, we demonstrate that
the advantages of integrating these ideas through various examples featuring novel physical parameters
and PDE properties, such as diverse BCs. It turns out the proposed CNN-based preconditioner exhibits
significant network generalizability across wider range of applications. Finally, we present concluding
remarks in Section 5, summarizing the findings, implications and some further perspectives of this work.

Key notations used in this paper are summarized below. The symbol || · || denotes the Euclidean norm by
default for both vectors and matrices. The superscript H denotes the transpose conjugate and T stands for
transpose. The notation C and R respectively refer to the complex and real number field. For convenience
of the algorithm illustration and presentation, some Python notations and functions are used. Because
much notation is involved, we make certain choices to improve the readability of the chapter. The scales
are denoted by lowercase letters; matrices with multiple columns are described by uppercase letters, like
matrix C; lowercase blackboard bold letters, e.g., x represent (column) vectors. Without special note, a
subscript j for a vector or a matrix is used to indicate that the vector or matrix is obtained at iteration j,
and a positive subscript integer m represents the maximal iteration number of each Krylov cycle. The inner
product between two vectors x and y is formed as ⟨x,y⟩. Furthermore, the space spanned by the vectors
x1, . . . , xj is denoted as span{x1, . . . , xj}.

1https://people.sissa.it/ grozza/
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2 Mathematical preliminaries
For mathematical completeness, this section provides a brief overview of the heterogeneous fluid PDEs

defined on a two-dimensional (simplified as 2D) domain and the numerical concepts addressed in this paper.
It include descriptions of their corresponding boundary conditions (BCs), discretization techniques, and the
iterative methods used to solve the resulting discrete systems. To simplify the presentation for 2D domain,
we perform the following derivations in two dimensions, denoted as the x and y directions, respectively.

2.1 Problem formulation
We consider three common heterogeneous fluid PDEs shown in Section 2.1.1-2.1.3, incorporating

varying classical BCs, such as Dirichlet, Neumann, Cauchy, and their combinations across different
boundary segments.

2.1.1 Poisson equations

One of the most common PDEs encountered in various areas of engineering is the Poisson equation:

∇2u(x, y) = ρ(x, y), (1)

where x, y ∈ R is a point in the 2-dimensional domain Ω ⊂ R2, ρ(x, y) is the given source function, and
u(x, y) is the solution to be computed. Here, we consider addressing heterogeneous Poisson equation, that
is Equation (1) with non-uniform source term ρ(x, y) ̸= 0 that varies from point to point.

2.1.2 Heterogeneous Darcy flow

Divergence form of elliptic equations [31] appear in various applications, notably in modeling
groundwater flow through porous media as described by Darcy’s law [7]. For simplicity and brevity, reusing
the notations from Equation (1), this linear elliptic problem is expressed as:

−∇
(
p(x, y)∇u(x, y)

)
= ρ(x, y), (2)

where p(x, y) represents the permeability of the porous medium, and p(x, y) is strictly positive almost
everywhere within the domain Ω (i.e., p(x, y) : R2 → R+). The heterogeneous Darcy flow considered in
this work refers to Equation (2), characterized by both non-uniform permeability p(x, y) and non-uniform
source term ρ(x, y) over domain Ω.

2.1.3 Heterogeneous Convection-Diffusion equations

The Convection-Diffusion equation is a parabolic PDE that captures the interplay between
convective (advection) and diffusive effects. Reusing the notations from Equation (1), we consider the
linear heterogeneous Convection-Diffusion equation of the following form:

−∇
(
d(x, y)∇u(x, y)

)
+ c(x, y)∇u(x, y) = ρ(x, y), (3)

where c(x, y) : R2 → R+ represents the heterogeneous velocity or force field responsible for convection,
and d(x, y) : R2 → R+ denotes the heterogeneous diffusivity or viscosity field associated with diffusion.
Within Equation (3), the d(x, y), c(x, y), ρ(x, y) are given functions satisfying non-uniform distributions
over domain Ω.

Additionally, the behavior of Equation (3) varies based on the ratio between the convection term c(x, y)

and the diffusion term d(x, y). It includes the balanced case where d(x,y)
c(x,y) ≈ 1 (means convection and

diffusion effects are balanced), the diffusion-dominant case where d(x,y)
c(x,y) ≫ 1 (means diffusion significantly

outweighs convection), and the convection-dominant case where d(x,y)
c(x,y) ≪ 1 (means convection dominates

diffusion). Among these, the convection-dominant case is the most challenging to address. In this work,
we tackle all these three cases with CNN-based preconditioning. For further insights into this equation,
including its analysis and numerical methods, we refer readers to [91].
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2.1.4 Boundary conditions

For the three 2D heterogeneous fluid PDEs described in Equation (1)-(3), we consider three classical
boundary conditions (BCs): Dirichlet, Neumann, and Cauchy described at

Dirichlet BCs: u(x, y) = ϕ(x, y) (like ϕ(x, y) = 0);

Neumann BCs:
∂u

∂n⃗
(x, y) = C (like C = 0);

Cauchy BCs:
∂u

∂n⃗
(x, y) + α(x, y)u(x, y) = γ(x, y) (like α(x, y) = 1, γ(x, y) = 0).

(4)

Specifically, we consider applying these three classical BCs on a regular 2D square domain Ω with its
boundary side Γ illustrated in Figure 1. Furthermore, their mixtures (i.e., their combinations across different

(a). Dirichlet BCs (b). Neumann BCs (c). Cauchy BCs

Figure 1: Illustration of the three type of classical BCs shown in Equation (4).

boundary sides) shown in Figure 2 are also respectively applied to these three types of fluid equations.

(a). mix DC BCs (b). mix DN BCs (c). mix DCN BCs

Figure 2: Illustration of the three type of mixed classical BCs based on Equation (4).

As a summary, this work focuses on training CNN-based preconditioners to address Equation (1)-(3)
under six different BCs, including the three classical BCs shown in Figure 1 and their three mixtures shown
in Figure 2. Although the NNs approach is designed to handle these heterogeneous fluid equations with
varying BCs, it is sufficient to train the NNs on small-scale problems with the simplest zero-Dirichlet BCs,
where the Dirichlet BCs is specified as ϕ(x, y) = 0 in Equation (4) or in Figure 1 (a). with ϕ(x, y) = 0.

2.2 Discretization
Addressing the discrete fluid equations (1)-(3) on a regular 2D square domain involves employing

numerical differentiation methods such as the fast Fourier transform (FFT) and its discrete variant [49, 32],
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or the Finite Difference Method (FDM) [94, Chapter 2] [73] with regular uniform meshes in both the x
and y directions. In this work, the differentiation operation for training the CNN-based preconditioner
is carried out using FFT. Assume Ω is a 2D domain defined over the square region

[
[lx0 , l

x
1 ], [l

y
0 , l

y
1 ]
]

for
both the x and y directions. To discretize this 2D domain Ω, consider N -discretisation points such that
x = [x1, x2, . . . , xN ] ∈ RN , where N = n2 and n represents the number of discretisation points along
each direction. Specially for this section, the subscript i for a scale refers to the i-th discretisation point
over the 2D domain Ω. Note that the setting of N is problem-depending. Generally, for a fixed domain
region, a smaller value of N refers to a coarser discretization sufficient for simpler problems, while a lager
value of N corresponds to finer discretization for more complex problems. Let’s F and F−1 respectively
refers to the direct and inverse Fourier transform, the way to approximate the differentiation parts shown in
Equation (1)-(3) can be described as the following Proposition 1.

Proposition 1 ([97, Proposition 2]) Let f = {f1, . . . , fN} be a discretisation of a differentiable function
f(t) on t ∈ [0, T ] such that f(t) and f ′(t) are absolutely integrable, where fk = f(k T

N ) for k ∈
{1, . . . , N}. Let f ′ = {f ′

1, . . . , f
′
N} be a discretisation of the derivative f ′(t), where f ′

k = f ′(k T
N ). Then

we can approximate f ′ by the direct and inverse Fourier Transform on f as

f ′ ≈ F−1{iωF{f}}, (5)

where ω = {ω1, . . . , ωN} is the discrete Fourier domain with ωn = 2πN
T .

Note that, as indicated by the original PINNs [69] framework, derivatives can also be computed by the
automatic differentiation algorithm (autograd) [6] [79, Section 8.2], which operates with respect to the
trainable NNs parameters θ (i.e., the trainable weights and biases of the NNs). However, given the number
of parameters θ is typically much larger than the grid point N, the autograd algorithm is generally
slower and memory-consuming. Consequently, in our approach, we opt for numerical differentiation with
FFT to approximate the derivatives. Refer to [65, Section 3.3] for more discussions in the comparison of
the available derivatives used for the NNs learning.

Discretization with FFT and given BCs discussed in Section 2.1.4, the analytical expression of
Equation (1)-(3) with fixed heterogeneous terms, including the permeability p(x, y), the diffusion d(x, y)
or the convection c(x, y), or the source ρ(x, y), can be respectively transformed into the following discrete
fluid linear systems:

Poisson eqs.: Au = b , (6)
Darcy flow: A(p)u = b , (7)

Convection-Diffusion eqs.: A(d, c)u = b . (8)

Here A ∈ CN×N in Equation (6) is a Hermitian matrix 2, if applying the Dirichlet BCs, corresponds to
the discrete Laplace operator ∇2 with ∇2 :=

∑N
j=1

∂2

∂x2
j
, here the differentiation term ∂

∂xj
is computed by

formulation (5). Following the same differentiation, A(p) ∈ CN×N in Equation (7) and A(d, c) ∈ CN×N

in Equation (8) are two general matrices respectively correspond to the discrete heterogeneous
Darcy flow operator −∇

(
p(x, y)∇

)
and Convection-Diffusion operator −∇

(
d(x, y)∇

)
+ c(x, y)∇ with

∇ :=
∑N

j=1
∂

∂xj
. Within these two general matrices, the p ∈ RN

+ , d ∈ RN
+ and c ∈ RN

+ are three real
vectors obtained from the discrete permeability p(x, y), diffusion d(x, y) and convection c(x, y) terms. The
b = [ρ(x1), . . . , ρ(xN )]T ∈ RN is a vector refers to the right-hand side constructed from the discrete
source term ρ(x, y), and vector u = [u(x1), . . . , u(xN )]H ∈ CN is the discrete solution to be computed.

The elements of fluid permeability p, diffusivity d or velocity c can be the same over the whole domain
if it is composed by a single material. While for a domain composed by many different materials or for
an unknown region, their values become variable or random. Similarly, in some practical applications,
the source term b can also be variable, like the flow starts from a single source location or from multiple
locations. In summary, these non-uniform permeability p, diffusivity d, velocity c and source term b over
the whole domain represent to the diverse heterogeneous cases. Additionally, under the context of dynamic
systems, these heterogeneous fluid terms can further change their non-uniform distributions over time. On
the other hand, the domain size of the considered fluid equations, such as the value of N with a given

2The discrete Laplace operator with Dirichlet BCs leads to a Hermitian or symmetric matrix. While this is not true when applying
with other type of classical BCs illustrated in Section 2.1.4. Refer to Figure 18 in Appendix A for an example of the illustration.
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discrete step size, may not be fixed as well. Under these dynamic heterogeneous case (further with varying
discretisation points N ), Equation (6)-(8) can be further extended to a series of linear systems of the form

Au(ℓ) = b(ℓ), with A := ∇2 ∈ CN×N , ℓ = 1, 2, ....L, (9)
A(p(ℓ))u(ℓ) = b(ℓ), with A(p(ℓ)) := −∇

(
p(ℓ)∇

)
, (10)

A(d(ℓ), c(ℓ))u(ℓ) = b(ℓ), with A(d(ℓ), c(ℓ)) := −∇
(
d(ℓ)∇

)
+ c(ℓ)∇ ∈ CN×N , (11)

where, associated with the ℓ-th family from each discrete fluid heterogeneous equations, the value of
N,L ∈ R+ can be problem-depending. Using Equation (11), an extension of Equation (8), we illustrate
the notations meaning. Here, A(d(ℓ), c(ℓ)) ∈ CN×N is a general matrix of the ℓ-th system, d(ℓ) ∈ RN

+ ,

c(ℓ) ∈ RN
+ and b(ℓ) ∈ RN are three given vectors. The corresponding solution vector to be computed is

u(ℓ) ∈ CN . Under dynamic cases, both the coefficient matrix A(d(ℓ), c(ℓ)) and right-hand side b(ℓ) change
from one family to the next.

For simplicity and notational convenience, in the rest of this paper we drop heterogeneous permeability
parameter p in Equation (10) and other two heterogeneous parameters d, c in Equation (11). Additionally,
we drop the superscript (ℓ) in b(ℓ) and u(ℓ) whenever we consider solving the current ℓ-th family of linear
systems in the entire sequence of families from given fluid equations. We indicate the heterogeneous
parameter(s) of fluid equations and the superscript for a family order explicitly when necessary. That is,
suppose that the current ℓ-th family of linear systems from given discrete fluid equations to be solved is

Au = b, (12)

where, A ∈ CN×N is the current square nonsingular matrix, b ∈ RN is the right-hand side, and u ∈ CN is
the solution to be computed.

For a straightforward illustration, we refer readers to Figure 18 in Appendix A for the visualization
of small-sale discrete fluid equations with different BCs performed by FFT. Corresponding visualizations
realized by FDM are also shown in Figure 19-21 in Appendix A. By comparing Figure 18 to Figure 19-21,
it can be observed that discrete PDE performed by FFT exhibit a less sparsity structure. For example, in
the case of Dirichlet BCs, the matrix row obtained by FDM has at most 5 non-zero elements, while the
matrix row obtained by FFT contains more non-zero elements. Note that the CNN-based preconditioning
not only leverages the statistical properties of fluid data but also captures the local sparsity structure of
the discrete fluid equations. To enhance the effectiveness of this preconditioning, it is suggested to train
with discrete fluid equations realized through FFT, which preserves more data information over the whole
domain. This approach allows the NNs to learn more richer information across whole domain, improving
its generalization and effectiveness.

2.3 Subspace iterative methods
When solving large linear system such as Equation (12), attractive approaches often involve Krylov

subpaces methods [94], like the generalized minimum residual (GMRES) norm method [95]. Krylov
subspace methods can achieve fast convergence when working with an effective preconditioner, which can
transform the spectra of the original system into another well-conditioned system whose spectra clustered
around 1. Generally, the preconditioning is an approximation of the inverse of the original coefficient matrix.
Let A and M respectively refers to the coefficient matrix of a given fluid equation and the corresponding
preconditioner. Then an effective preconditioner satisfying M ∼ A−1. The psesudocode of the flexible
GMRES (FGMRES) method [93] preconditioned by a non-linear flexible preconditioner in each iteration
step is recalled at Algorithm 1. The psesudocode of GMRES can be simply obtained by removing Step 4
and zj of the Algorithm 1, and changing its Step 5 into wj := Avj (j refers to the iteration step). Here
the flexible Arnoldi procedure is realized by the modified Gram-Schmidt (MGS) orthogonalization process.
The Krylov basis span{v1, . . . ,vj} is orthonormal to each other. For the preconditioned Krylov basis
span{z1, . . . , zj} computed from Step 4, its condition number is depended on the preconditioning quality.

3 Convolution neural operator preconditioning approach
To construct a powerful preconditioner that approximates A−1 is as challenging as solving the linear

system directly. Besides, for the parametric linear systems such as Equation (10) or Equation (11), a new
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Algorithm 1 Flexible GMRES (FGMRES) [93, Algorithm 9.6]:
1: Compute r0 = b−Au0, β = ∥r0∥2, and v1 = r0/β

/* Flexible Arnoldi procedure */
2: for j = 1, . . . ,m do
3: Choose a (possibly non-linear) preconditioning operator Mj (Mj is an approximation of A−1)
4: Compute zj := Mj(vj)
5: Compute wj := Azj

/* Modified Gram-Schmidt procedure */
6: for i = 1, . . . , j do
7: hi,j := ⟨wj ,vi⟩
8: wj := wj − hi,jvi

9: end for
10: Compute hj+1,j = ∥wj∥2 and vj+1 = wj/hj+1,j

11: Save Vj+1 := [v1, . . . ,vj+1], Zj := [z1, . . . , zj ], and an upper Hessenberg matrix
Hj = {hi,j}1≤i≤j+1;1≤j≤m

12: end for
13: Compute ym = argminy ∥βe1 −Hmy∥, and um = u0 + Zmym

14: if the stopping criterion is met then
15: Return um for approximation of the solution, and stop the algorithm
16: else
17: Restart with u0 = um and go to Step 1
18: end if

algebra preconditioner is necessary when the involved heterogeneous parameter(s) changes, like the change
in permeability p, diffusion d, or convection c and/or the discretisation points N . This let its numerical
simulations with purely algebra preconditioning becomes even more challenging. Instead of constructing
an algebra preconditioner, this work aims to learning a general convolutional neural networks (CNNs)
preconditioning operator. This preconditioning operator is intended to function as a non-linear flexible
preconditioner in FGMRES for accelerating the solution of Equation (12) which represents three types of
discrete fluid equations. The goal of this CNN-based preconditioning aligns with the motivation behind
neural operator learning [59, 14]. It focus on learning a general function that captures the relationships
within PDEs, rather than directly solving the PDEs with neural networks (NNs) like PINNs [69] do. To
achieve this goal, we investigate the use of CNNs with the U-Net architecture [90], which has been widely
applied for the fluid [21, 34] and wave [102, 4] simulations. This study aims to evaluate whether the trained
inference from the networks can serve as an effective preconditioner for the considered heterogeneous fluid
equations with varying BCs, even when all associated physical and numerical parameters vary.

Assume the CNN-based preconditioning operator is denoted as Fθ with trainable parameters θ (i.e., the
trainable weights and biases of the NNs). We focus on learning an operator Fθ

Fθ : P −→ U , (13)

with input b(ℓ) ∈ P, ℓ = 1, . . . , L (here L denotes the size of the training datasets, similar to the meaning
shown in Equation (9)-(11)) and output solution u

(ℓ)
θ ∈ U returned from CNNs with θ. Our target is to find

the learning operator such that

Fθ(b
(ℓ)) ∼ u

(ℓ)
θ , with i = 1, . . . , L, (14)

which means the learned operator Fθ approximates to the inverse of the coefficient matrix A−1 since we
have u = A−1(b) from Equation (12). Because of this, the learned operator Fθ can be used as a non-linear
preconditioner in the FGMRES method, that is to change the Mj in Step 4 of Algorithm 1 into the learned
operator Fθ (i.e., Mj(vj) → Fθ(vj)). Since there is no information about the data structure of the Krylov
basis vj , the neural operator is trained with randomly generated datasets, and the value of L is set by
ourself. Refer to [112, 21] for more examples of using the random dataset for the SciML training. Given
our purpose is to learn an operator to be used as preconditioner rather than to learn a NNs solver, the
required approximation accuracy in formula (14) is not high. This reduce the training cost and also naturally
circumvents the well-known limited attainable accuracy issue of SciML. In short, the trained CNN-based
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preconditioning operator shown in formula (14) may not act as an effective CNNs solver but can be used an
effective preconditioner for accelerating the solution of the discrete heterogeneous fluid Equation (12).

Note that in the training phases for various heterogeneous fluid equations, it is necessary to deal with
networks with multiple non-zero inputs associated with different physical parameter(s). For example, except
for the source term b(ℓ), the diffusion term d(ℓ) and the convection term c(ℓ) are also necessary as the inputs
for training an effective operator preconditioner for the discrete Convection-Diffusion equations (11). To
deal with multiple inputs, we apply the concatenation to them at the input neural network layer. Besides,
given each point of the domain corresponds to an element of the Krylov basis, we suggest the neural network
should see data over the whole domain for learning an effective preconditioner. Moreover, except for
applying the trained operator as a flexible preconditioner to the FGMRES method considered in this paper,
it can also be applied to other iterative methods. For example, refer to [109, Chapter 5] for using a trained
U-Net inference as the non-liner preconditioner for the FGMRES and the FFOM methods.

3.1 U-Net architecture
The neural network architecture considered in this work is depicted in Figure 3, which is based on the

U-Net architecture [90]. It is named for its distinctive U-shaped architecture, consisting of a contracting
path and a more or less symmetric expanding path. The U-Net is a type of convolutional neural network
(CNN) specifically developed for biomedical image segmentation tasks in computer vision. It excels in
applications requiring the segmentation of images to identify specific objects or regions. Furthermore, due
to its convolutional nature, the architecture supports multiple input channels, allowing for the integration
of diverse input data. Since its publication, it has been widely used by the SciML-wave [4, 102] and
SciML-CFD [21, 34] communities. Similar to [90, Section 2], the U-Net architecture depicted in Figure 3
consists of 23 convolutional layers in total, and it is composed of the following key components:

1. Input Layer: The input layer of the network typically consists of a convolutional layer that produces
the segmentation map. This map mirrors the full context available in the input images (selected
information used for learning) to the seamless segmentation of arbitrarily large images, which is then
passed to the subsequent convolutional encoder-decoder network. This ensures both the input images
and their corresponding segmentation maps are used to train the network.

2. Contracting Path (Encoder): The left top-to-bottom parts of the U-shape is called the contracting
path or encoder. It’s made up of a series of convolution and pooling layers. These layers reduce the
spatial dimensions of the input image while increasing the number of feature channels. This helps the
network to capture different levels of information and extract features at different scales.

3. Bottleneck: At the bottom of the U-shape there’s a bottleneck layer. This is where the network
captures the most abstract and consolidated features from the input image.

4. Expanding Path (Decoder): The right bottom-to-top parts of the U-shape is called the expanding
path or decoder. It’s responsible for gradually upsampling the features back to the original image
size. Each step in the decoder involves upsampling the feature map and combining it with the feature
map from the corresponding layer in the contracting path through a process called skip connections.

5. Skip Connections: Skip connections are a critical feature of the U-Net architecture, setting it apart
from a standard encoder-decoder network. They connect the feature maps from the contracting path
to the corresponding layers in the expansive path. These connections help to preserve fine-grained
spatial information that can be lost in the downsampling process. By fusing information from multiple
scales, the network can better localize objects and produce more accurate segmentation results.

6. Final Layer: The final layer of the network typically consists of a convolutional layer that produces
the segmentation map. This map assigns a label to each pixel in the image, indicating which object or
category it belongs to, while resizing arbitrarily large images back to the original dimensions of the
input images.

The strength of the U-Net architecture lies in its ability to handle both contextual information (via the
contraction path) and precise localization (via the expansion path). The skip connections play an important
role in achieving this balance. U-Net has been widely used in medical image analysis, where tasks such as
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Figure 3: U-Net architecture with 4 depth (example for 4 × 4 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box.
The x-y-size is provided at the lower left edge of the box. White boxes represent feature maps copied from
the contracting path, which are then cropped and concatenated with the feature maps obtained from the
expanding path. The arrows denote the different convolutional operations.

segmenting organs or tumors from medical scans are critical. Its flexibility and effectiveness in handling
segmentation tasks has made it a popular choice for various image analysis applications outside the medical
field. Since a matrix or vector can also be viewed as a type of image, this architecture can also be used to
learn a highly non-linear preconditioner for the matrix or PDE operator.

3.2 Loss-function
Within a discrete 2D domain Ω defined for Equation (12), the Loss-function of the CNN-based

preconditioning operator is defined as the following relative mean squared error (RMSE) that related to
the relative residual of the linear system:

min
θ

∥Auθ − b∥22
∥b∥22

(15)

where A relates to the coefficient matrix of the discrete fluid equations we considering for training. For
example, A relates to both the heterogeneous diffusion term d and the convection term c if we consider
training a CNN-based preconditioning operator for the Convection-Diffusion equations (11). Thus the
training dataset, in this case, include the heterogeneous d, c terms as well as the heterogeneous source
term b. Given no true solution: u = A(c)−1b is required in the Loss-function (15), the training process
is under the context of unsupervised learning. With this definition, the training dataset is trained without
data-normalization that commonly used in the training process of NNs.

3.3 Training neural operator preconditioners for heterogeneous fluid PDEs
This section aims to train three types of general neural operator preconditioners, Fθ, to accelerate

the solution of a series of heterogeneous or parametric fluid equations described in Equation (9)-(11).
To be specific, Section 3.3.1-3.3.3 respectively details the training of these three type of neural operator
preconditioners for the discrete fluid equations defined on a 2D domain [[−20, 20], [−20, 20]], discretized
into a 64× 64 grid, resulting in N = n2 = 642 = 4096 discretisation points. Note that although our neural
operator preconditioners are designed to handle these heterogeneous fluid equations with varying BCs
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illustrated in Section (2.1.4), it is sufficient to train these preconditioners on small-scale problems with
the simplest zero-Dirichlet BCs, where the Dirichlet BCs is specified as ϕ(x, y) = 0 in Equation (4).

These preconditioners are also designed to exhibit strong generalizability by effectively addressing
novel testing cases that the neural operators have not encountered during the training process. To
train these preconditioning operators, we employ the CNNs with U-Net architecture. Based on its
architecture described in Figure 3 of Section 3.1, we construct a 2D U-Net operator with 4 depth blocks
training with the PReLU activation as well as batch normalization. These blocks are paired with
2-d convolution and de-convolution networks respectively realized by torch.nn.Conv2d and
torch.nn.ConvTranspose2d with the size of the convolving kernel equals to 8. The effective

preconditioning operator, Fθ, is designed to approximate A−1. After training, its inputs include the Krylov
basis that without relying on any special data structure. Based on this and the purpose to learn general
information, we train the U-Net operator Fθ with randomly generated datasets. For instance, for the
source term considered in these three fluid equations, we generate random datasets for the source term
b = x+ yj ∈ Cn2

, where both x ∼ N (0, 1) and y ∼ N (0, 1), following a standard normal distribution.

3.3.1 Poisson operator

Building on earlier discussions, we demonstrate the process of training the U-Net preconditioning
operator for a series of parametric Poisson equations (9). As depicted in Figure 4, the training process
begins with the input, which consists of a randomly generated heterogeneous source term b ∈ Cn2

sampled
from a standard normal distribution N (0, 1). The U-Net architecture applied to Poisson equations is shown
in Figure 3. Whereas in this case, the input layer of Figure 3 has two input channels, corresponding to both
the real and image components of the complex source term b. The output is the approximated solution
uθ ∈ Cn2

obtained in lower attainable precision. These input and output, along with the discrete Poisson
operator A, are combined into the Loss-function. Then, the optimization techniques such as Stochastic
Gradient Descent (SGD) are applied to minimize the Loss-function, recursively updating the trainable
parameters θ.

Figure 4: U-Net with Dirichlet BCs concept applied to the Poisson operator on 2D.

Describe Figure 4 in a mathematical way as the operator map shown in formula (13), we have

Fθ : (b) −→ uθ, (16)

where Fθ is the trained U-Net operator to accelerate the solution of the 2D parametric Poisson equations (9).

3.3.2 Darcy flow operator

According to the discrete heterogeneous Darcy flows described in Equation (10) and the
framework discussed in Section 2.1.2, Figure 5 illustrates the training process for developing a
CNN-based preconditioning operator specific to Darcy flows. Compared to Figure 4, which is tailored
to Poisson equations, an additional input channel is introduced in Figure 5 to incorporate the heterogeneous
permeability term p ∈ Rn2

+ . This additional input allows the neural network to learn from the spatially
varying properties of permeability, crucial for modeling heterogeneous Darcy flows. The U-Net architecture
depicted in Figure 3 is also applied to Darcy flows. While in this setup, the input layer in Figure 3 is



14

configured with three input channels, corresponding to the components of the complex source b and the
real permeability p. Follow the random setting for generating the training dataset, the permeability term p
is randomly sampled from an uniform distribution over the interval [1, 2], denoted as U(1, 2).

Figure 5: U-Net with Dirichlet BCs concept applied to the heterogeneous Darcy flow operator on 2D.

Similarly, describe Figure 5 in a mathematical way, we have the preconditioning operator

Fθ : ([b, p]) −→ uθ (17)

to accelerate the solution of the 2D parametric Darcy flows described in Equation (10). Here, the notation
[∗, . . . , ∗] represents concatenates the multiple inputs before passing them through the input layer of the
convolutional neural network.

3.3.3 Convection-Diffusion operator

According to the discrete heterogeneous Convection-Diffusion equations illustrated in Equation (11) and
the discussions shown in earlier sections, we describe the processes for training CNN-based preconditioning
operator for the Convection-Diffusion equations in Figure 6. In contrast to Figure 4, which involves only
a single input, two additional variables are introduced in Figure 6. These extra inputs correspond to the
heterogeneous diffusion term d ∈ Rn2

+ and the convection term c ∈ Rn2

+ . Incorporating these extra
terms allows the CNN-based preconditioning operator to adapt to the varying physical properties of the
heterogeneous Convection-Diffusion equations. The U-Net architecture depicted in Figure 3 is directly
applied to this Convection-Diffusion case without any modification. For training the operator, both d and c
are generated randomly, each sampled from an uniform distribution U(1, 2).

Figure 6: U-Net with Dirichlet BCs concept applied to the heterogeneous Convection-Diffusion operator on 2D.

Similarly, describe Figure 6 in a mathematical way, we have the preconditioning operator

Fθ : ([b, d, c]) −→ uθ (18)

to accelerate the solution of the 2D parametric Convection-Diffusion equations (11).
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3.4 Training details and some remarks
To train the 2D CNN-based preconditioning operators described in formulas (16)-(18), 10000 random

samples are generated for each training dataset(s), including b, p, or d and c, resulting in L = 10000
in operator learning formula (14). The training is conducted using the Adam optimizer [56], with the
maximum number of epochs (denoted as max epoch) set to 500, i.e., max epoch = 500. The
learning rate is initialized at 0.001 and gradually decreases to a minimum value of 10−5. Refer to
Table 1-3 for more details about the fluid operator parameters, the model and training hyper-parameters
of U-Net model designed for fluid operators on a 2D domain with zero-Dirichlet BCs. This U-Net
preconditioning model, configured with a depth of 4, is trained under the single precision (i.e., float32
and complex64) on 2 NVIDIA V100 GPUs located a Sirocco node of the PlaFRIM cluster 3. This node
also includes 2x 16-core Intel Skylake CPUs and 384 GB of memory. With these training settings, the
U-Net model, comprising 831 K trainable parameters, is efficiently trained with these training resources.
The network architecture and the fluid operator training utilities are implemented using the Pytorch and

Pytorch lightning libraries. The training time required for this U-Net preconditioning model for
the three types of discrete fluid equations is summarized in Table 4.

Table 1: Fluid Operator in 2D and Fast Fourier Transforms (FFT) parameters

Parameter Value

Limits of the Domain [[−20, 20], [−20, 20]]
Discretisation points n in Domain [64, 64]
Axes for which FFT is applied [−2,−1]

Table 2: U-Net Model Hyper-parameters

Parameter Value

Input Channels 2 or 3 or 4
Output Channels 2
Activation Function PReLU
Depth 4
Channels per Layer 32
Channels per State 32
Convolving kernel size, Stride, Padding 8, 2, 3
Batch normalization True
Bias in concolutional layers True

Table 3: Training Hyper-parameters

Parameter Value

Optimizer Adam
Batch Size 32
Gradient Clipping value 1
Learning Rate (LR) 10−3

Minimal LR 10−5

Seed for Random Number 42

Table 4: Training time for learning the three Fluid operators

Fluid operator Trainable time

Poisson equations 1.28 hr
Darcy flows 1.33 hr
Convection-Diffusion equations 1.44 hr

Since each point in the computational domain corresponds to an element of the Krylov basis, it is
essential for the neural network to be exposed to data spanning the entire domain to learn an effective
preconditioner. Although random datasets are used for training, it is recommended to select training datasets
with a broader range of values to increase the diversity of the training data. For instance, datasets following a
standard normal distribution, i.e., N (0, 1), capture a broader range of data compared to those adhering to an
uniform distribution over the interval [−1, 1], i.e., U(−1, 1). Training with diverse datasets not only enriches
the learning process but also significantly improves the network’s generalizability to unseen scenarios.

3https://www.plafrim.fr
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3.5 FGMRES preconditioned by the trained convolution neural operator
Based on previous discussions in Section 3, we have trained three general CNN-based preconditioning

operators, Fθ, as detailed in formulas (16)-(18), tailored for solving three types of discrete fluid equations.
This section elaborates on how these trained preconditioning operators are incorporated into the FGMRES
framework to accelerate the solution process. Using the pseudocode of the original FGMRES shown in
Algorithm 1 as a foundation, the CNN-based FGMRES algorithm preconditioned with the trained operators
modifies Step 4 as follows:

• For the discrete Poisson equations (9), Step 4 becomes:

zj := Fθ(vj), (19)

where Fθ approximate A−1 is the preconditioning operator trained with formula (16), vj is the Krylov
basis and zj is the preconditioned Krylov basis.

• For the discrete Darcy flows (10), Step 4 becomes:

zj := Fθ(vj ,p), (20)

where Fθ is the preconditioning operator trained with formula (17), p represents the heterogeneous
permeability term.

• For the discrete Convection-Diffusion equations (11), Step 4 becomes:

zj := Fθ(vj ,d, c), (21)

where Fθ is the preconditioning operator trained with formula (18), d and c are the heterogeneous
diffusion and convection terms.

Compare to original FGMRES, the CNN-based preconditioning steps shown in Equation (19)-(21) are
performed in float32, consistent with the precision used during the training processes. The other
remaining operations in the FGMRES algorithm with CNN-based preconditioning are conducted in
float64. Thus this CNN-based FGMRES algorithm is realized under the mixed-precision calculations.

4 Numerical results
Section 3 detailed the training process for CNN-based preconditioning operators using an U-Net

architecture with 4 depth. It also demonstrated the utility of the trained network inferences
for non-linear preconditioning within the FGMRES framework. The training was conducted on a
2D domain [[−20, 20], [−20, 20]], discretized with N = n2 = 64 × 64 = 4096 points. In this section, we
focus on illustrating different numerical features of these trained U-Net preconditioners, including testing
similar but unseen scenarios and checking network generalizability from various aspects. Specifically, in
these testing phases, numerical experiments are carried out with different parametric fluid Equation (9)-(11)
that the neural operators never seen before. Without special notes, zero-Dirichlet boundary conditions (BCs)
is applied to these fluid equations, and the fluid systems used in these processes own the same N size as used
in the training process. We display results of FGMRES (i.e., GMRES preconditioned by this trained U-Net
preconditioner with 4 depth). The relevant results of GMRES is presented as well for the comparison. A
classical stopping criterion for the numerical linear algebra solvers is based on backward error analysis and
consists of stopping the iteration when

ηb =
∥Au− b∥

∥b∥
≤ ε. (22)

Here we set ε = 10−12 by default for the solution of the parametric Poisson equations (9), and ε = 10−8

for the heterogeneous Darcy flows (10) and the heterogeneous Convection-Diffusion equations (11).
Besides during this testing section, the source term is defined as a real vector, represented in the form
b = x+ 0j ∈ C642 with x ∈ R642 . The performances of the involved algorithms are evaluated in terms
of the number of iterations, denoted as its, as well as the execution time, denoted as ET , required to
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converge. Given the full GMRES without restart could be quite time-consuming for solving larger problem,
we consider GMRES (also FGMRES) with restarts. Without special notes, the number of restarts is set to
be 10, and the maximum dimension of the Krylov search space m shown in Algorithm 1 within each of the
restarts is 512. Thus the whole maximum iteration (denoted as maxIts) is 5120. We stop the algorithm
when satisfying formula (22) or when its = maxIts. The symbol ∗ denotes the algorithm diverges or it is
unable to reach target accuracy within maxIts. Besides, instead of showing results up to maxIts, we may
cut off our figures at some early iterations to have a clear viewer for the better comparison.

Recall that this 2D U-Net inference was training on GPUs whereas the classical numerical linear algebra
solvers have been historically implemented on CPUs. In the following subsections, the GMRES and
FGMRES solvers are implemented in Python prototype, supporting both CPU and GPU backends for
computations with numpy and cupy Python libraries. Without special notes, those two involved solvers
in each of the subsections are running on the same GPUs devices for a fair comparison.

4.1 Testing results of U-Net with parameters saved at different epoch
In this section, we check the effect of using varying parameters (i.e., the trainable weights and biases

saved in different epoch) for the 2D U-Net trained with max epoch = 500. Within this testing phases, we
test the fluid equations (9)-(11) with the source term in form b = x+ 0j ∈ C642 with x ∈ R642 satisfying
a standard normal distribution N (0, 1) on the domain size 64 × 64. The numerical results of GMRES and
FGMRES are presented in Table 5 and Figure 7. Comparing the results of these two solvers, it is evident that
FGMRES, with the aid of the trained CNN-based preconditioning operators, achieves the stopping criteria
with significantly fewer iterations its and reduced elapsed time ET compared to standard GMRES.
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Figure 7: Compare the relative residual history of GMRES and FGMRES (preconditioned by the trained 2D U-Net
with 4 depth) of different fluid equations with zero-Dirichlet boundary condition.

For the following sections, we exclusively evaluate the trained CNN-based preconditioning operators
using the parameter configurations saved at the epoch highlighted in bold, indicating the lowest value of
the validation loss (denoted as val loss), for each type of fluid equation presented in Table 5.

4.2 Network generalizability
The following sections delve into the generalization capabilities of the trained

CNN-based preconditioning operators from different aspects. To evaluate the network’s generalizability,
we test its performance under various heterogeneous parameters present in the fluid equations (9)-(11),
extending beyond the conditions used during training. This involves varying the source terms and boundary
conditions (BCs) for the three types of fluid equations as detailed in Section 4.2.1 and Section 4.2.2,
respectively. Additionally, we examine changes in permeability for Darcy flows and diffusion for
Convection-Diffusion equations as discussed in Section 4.2.3, as well as variations in the heterogeneous
convection term for Convection-Diffusion equations, covered in Section 4.2.4. Finally, we assess the effect
of altering the domain size for these fluid equations in Section 4.2.5.
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Table 5: Results of solving different fluid equations (simplified as eqs.) with Dirichlet boundary condition solved by
FGMRES preconditioned by the trained U-Net with different parameters saved different epoch.

#
fluid eqs.

epoch val loss L (itsmax, itsmin) ET

Poisson eqs.:
(ε = 10−12) FGMRES:

496 0.05109 100 (123, 119) 198.4347s
1000 (126, 119) 2857.8662s

476 0.05105 100 (328, 118) 312.3358s
1000 (334, 118) 3863.7267s

467 0.05100 100 (122, 118) 193.3075s
1000 (198, 118) 2715.7512s

GMRES: 100 (382, 374) 3518.5219s

Darcy flow
(ε = 10−8) FGMRES:

449 0.15024 100 (89, 81) 116.4421s
1000 (91, 79) 1644.4513s

434 0.15047 100 (84, 80) 106.9640s
1000 (90, 79) 1477.5602s

401 0.15009 100 (84, 80) 106.6865s
1000 (88, 80) 1493.3070s

GMRES: 100 (338, 314) 2149.1766s

Convection-Diffusion eqs.
(ε = 10−8) FGMRES:

484 0.09791 100 (100, 97) 141.7242s
1000 (101, 96) 2027.8065s

483 0.09784 100 (100, 96) 150.8635s
1000 (101, 96) 2046.7538s

471 0.09801 100 (100, 96) 140.9959s
1000 (102, 96) 2001.6087s

GMRES: 100 (481, 425) 4021.3439s

4.2.1 In terms of varying the source term

During the training process, the random source term b = x + yj ∈ C642 with x ̸= 0, y ̸= 0 and
satisfy standard normal distribution N (0, 1) on domain 64 × 64. In this section, we study the network
generalizability of the trained CNN-based preconditioning operators by varying source term b = x + 0j
with different settings for x. Specifically, we consider testing b satisfying an uniform distribution over
the interval [−1, 1], denoted as U(−1,−1); 1 dirac distr. 4; 4 dirac distr. 5; and other
normal distribution, such as N (1, 1) with a mean and variance of 1, and N (0, 2) with a mean of 0 and
a variance of 2. Furthermore, based on the control variables method, the setting for the BCs, permeability
p ∈ Rn2

, diffusion d ∈ Rn2

and convection c ∈ Rn2

and domain Ω are the same as the ones used in
the training process. With these different settings for b on domain 64 × 64, Figure 8 (a)-(c) presents
the convergence histories of solving the three types of fluid equations (9)-(11) with L = 1, 5, or 100.
Corresponding numerical results of GMRES and FGMRES are reported in Table 6, from which we have
similar observations discussed in Section 4.1. That is thanks to the applying of CNN-based operator
preconditioners, the FGMRES can significant reducing the its and ET when compared to GMRES.
Additionally, these results also show that changing the setting of the source term does not effect the
performance of these trained CNN-based preconditioners. The real part of the solutions u for the three
types of fluid equations, as solved by FGMRES under 1 dirac distr. and 4 dirac distr. settings
for the source terms b, are respectively visualized in the upper and lower plots of Figure 9, which also
exhibits the location of the source terms.

4.2.2 In terms of varying the boundary conditions

This section evaluates the generalizability of the trained CNN-based preconditioners by changing
boundary conditions (BCs) applied to the three types of fluid equations (9)-(11). Recall that these
CNN-based preconditioners were trained under zero-Dirichlet BCs context. Here, we test these fluid

4one element of b equals to 1 in the grid position (32, 32) and others equal to zeros elsewhere
5four elements of b equal to 1 in the grid position (20, 20), (20, 44), (44, 20), (44, 44) and others equal to zeros elsewhere
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Table 6: Numerical results of in terms of its or (itsmax, itsmin) and ET for Section 4.2.1 for solving a series of
fluid equations (9)-(11) with zero-Dirichlet BCs and with L = 1, L = 5, L = 100, or L = 1000.

#
fluid eqs.

#
b ∈ C642 Method L

its or
(itsmax, itsmin)

ET

GMRES 1 344 10.2736s
FGMRES 1 110 1.7600s
GMRES 1 342 9.5586s
FGMRES 1 109 1.6670s
GMRES 5 (382, 374) 130.6876s
FGMRES 5 (120, 118) 11.4340s
FGMRES 100 / 1000 (122, 118) / (198, 118) 193.3075s / 2715.7512s
GMRES 5 (532, 517) 241.6918s
FGMRES 5 (116, 116) 10.8798s
FGMRES 100 / 1000 (117, 116) / (117, 115) 190.9784s / 2626.5332s
GMRES 5 (380, 379) 128.9121s
FGMRES 5 (120, 118) 11.2273s
FGMRES 100 / 1000 (123, 118) / (198, 118) 192.7416s / 2770.7412s
GMRES 5 (381, 378) 134.2098s
FGMRES 5 (120, 119) 11.9112s
FGMRES 100 / 1000 (196, 118) / (198, 118) 213.5582s / 2746.9780s

GMRES 5 (325, 304) 102.7121s
FGMRES 5 (76, 74) 6.6270s
FGMRES 100 / 1000 (79, 71) / (81, 71) 89.8052s / 1339.9521s
GMRES 5 (323, 303) 202.9047s
FGMRES 5 (76, 72) 7.7406s
FGMRES 100 / 1000 (77, 72) / (84, 71) 101.8716s / 882.2990s
GMRES 5 (331, 323) 106.5965s
FGMRES 5 (84, 81) 7.2482s
FGMRES 100 / 1000 (84, 80) / (88, 80) 106.6865s / 1493.3070s
GMRES 5 (339, 335) 255.4367s
FGMRES 5 (81, 79) 8.3139s
FGMRES 100 / 1000 (82, 79) / (83, 78) 147.5519s / 973.8013s
GMRES 5 (335, 322) 116.6252s
FGMRES 5 (82, 81) 7.3133s
FGMRES 100 / 1000 (85, 80) / (92, 79) 110.1259s / 1579.4930s
GMRES 5 (327, 322) 105.6639s
FGMRES 5 (83, 81) 7.2214s
FGMRES 100 / 1000 (85, 80) / (88, 80) 151.4606s / 1560.9539s

GMRES 5 (444, 410) 171.3612s
FGMRES 5 (85, 83) 7.3855s
FGMRES 100 / 1000 (86, 83) / (87, 82) 106.8275s / 1672.3916s
GMRES 5 (428, 403) 161.7185s
FGMRES 5 (83, 82) 7.1995s
FGMRES 100 / 1000 (85, 81) / (86, 81) 104.0529s / 1223.1725s
GMRES 5 (460, 444) 187.2677s
FGMRES 5 (99, 98) 9.2856s
FGMRES 100 / 1000 (100, 96) / (102, 96) 140.9959s / 2001.6087s
GMRES 5 (479, 455) 203.9701s
FGMRES 5 (98, 96) 8.8070s
FGMRES 100 / 1000 (99, 94) / (99, 94) 134.8118s / 1314.6095s
GMRES 5 (459, 431) 186.6549s
FGMRES 5 (99, 97) 8.9579s
FGMRES 100 / 1000 (100, 96) / (101, 96) 137.0601s / 1581.9260s
GMRES 5 (473, 442) 195.1171s
FGMRES 5 (98, 97) 8.8451s
FGMRES 100 / 1000 (100, 96) / (101, 96) 140.4030s / 1382.0640s

Poisson eqs.
with ε = 10−12

epoch=467
val loss=0.05100

1 dirac

4 dirac

N (0, 1)

N (1, 1)

N (0, 2)

U(−1,−1)

Darcy flow
with ε = 10−8

epoch=484
val loss=0.17501

1 dirac

4 dirac

N (0, 1)

N (1, 1)

N (0, 2)

U(−1,−1)

Convection-Diffusion
eqs. with ε = 10−8

epoch=483
val loss=0.09784

1 dirac

4 dirac

N (0, 1)

N (1, 1)

N (0, 2)

U(−1,−1)
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(a). Results of Poisson eqs.:
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(b). Results of Darcy flows:
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(c). Results of Convection-Diffusion eqs.:

0 100 200 300 400
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

b

GMRES convergence for Diffusion-Advection exps. with varying setting of b

normal N(0, 1) distr. b
1 dirac distr. b
4 dirac distr. b
uniform [-1, 1] distr. b
normal N(1, 1) distr. b
normal N(0, 2) distr. b

0 20 40 60 80 100
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

b

FGMRES convergence for Diffusion-Advection exps. with varying setting of b

normal N(0, 1) distr. b
1 dirac distr. b
4 dirac distr. b
uniform [-1, 1] distr. b
normal N(1, 1) distr. b
normal N(0, 2) distr. b

0 20 40 60 80 100
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

b

FGMRES convergence for 100 Diffusion-Advection exps. with varying setting of b

normal N(0, 1) distr. b
uniform [-1, 1] distr. b
normal N(1, 1) distr. b
normal N(0, 2) distr. b

5 GMRES results 5 FGMRES results 100 FGMRES results

Figure 8: Check network generalizability in terms of varying source term b (for Section 4.2.1) by using FGMRES for
the three types of fluid examples (simplified as exps.) (9)-(11) with zero-Dirichlet BCs and with L = 1, 5, or 100.

equations with other kinds of classical BCs, including Neumann BCs and Cachy BCs shown in
Figure 1 (b) − (c), as well as their three types of mixtures shown in Figure 2. For simplicity, we test
these fluid equations with b satisfying 1 dirac distr. setting shown in Section 4.2.1, and use the
same other heterogeneous parameters, such as p,d, c ∈ Rn2

satisfying the same uniform distribution
U(1, 2) as used in the training process. The discrete Poisson equation with Neumann BCs is well-known
to produce a linear system with singular coefficient matrix. For this reason, we exclude this singular
case from our tests. The numerical results of remaining cases are presented in Figure 10 and Table 7.
From these results, we observed similarly significant testing and generalizability performance of these
trained CNN-based preconditioners as highlighted in Section 4.1-4.2.1. Notably, we found that while
GMRES struggles to converge under most BCs aside from the simplest zero-Dirichlet BCs, FGMRES,
enhanced by the trained general CNN-based preconditioners, successfully converges in all cases except for
the mix DN case. Figure 11 provides visualizations of the solutions obtained for the three types of fluid
equations under various BCs. These visualizations clearly highlight the significant variations in solutions
arising from the different applied BCs. It is well established that the choice of BCs profoundly influences
the properties of the resulting discrete systems. This section underscores the potential of training a general
neural network preconditioner using simple BCs, such as zero-Dirichlet BCs, to effectively address more
complex cases involving diverse BCs.

It is important to note that, following the control variable method, only zero-Dirichlet BCs will be
considered in the remainder of this work. These sections are specifically dedicated to evaluating the network
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Table 7: Numerical results in terms of its for Section 4.2.2 for solving three fluid examples with varying BCs, and
with b ∈ C642 satisfying 1 dirac distr. setting and with the same other parameters p,d, c ∈ Rn2

+ .

#
fluid eqs.

#
BCs

Method its ET

GMRES 344 29.8149s
FGMRES 110 8.9809s

GMRES 5120∗ 734.4874s
FGMRES 405 51.1992s

GMRES 4582 542.4576s
FGMRES 344 38.3996s

GMRES 5120∗ 633.1670s
FGMRES 5120∗ 691.7072s

GMRES 5120∗ 667.4544s
FGMRES 428 50.0176s

GMRES 319 21.5340s
FGMRES 74 3.2535s

GMRES 5120∗ 508.6574s
FGMRES 436 40.8165s

GMRES 5120∗ 1013.8389s
FGMRES 500 101.6460s

GMRES 5120∗ 495.3070s
FGMRES 388 33.8340s

GMRES 5120∗ 557.6320s
FGMRES 5120∗ 556.9307s

GMRES 5120∗ 518.2221s
FGMRES 510 56.9348s

GMRES 394 37.6104s
FGMRES 83 3.6068s

GMRES 5120∗ 553.2043s
FGMRES 436 46.7377s

GMRES 5120∗ 662.6147s
FGMRES 509 72.9558s

GMRES 5120∗ 556.2829s
FGMRES 374 34.7866s

GMRES 5120∗ 547.6752s
FGMRES 5120∗ 580.0284s

GMRES 5120∗ 571.4277s
FGMRES 489 51.3269s

Poisson eqs.
with ε = 10−12

epoch=467
val loss=0.05100

Dirichlet BCs

Cauchy BCs

mixDC BCs

mixDN BCs

mixDCN BCs

Darcy flow
with ε = 10−8

epoch=484
val loss=0.17501

Dirichlet BCs

Neumann BCs

Cauchy BCs

mixDC BCs

mixDN BCs

mixDCN BCs

Convection-Diffusion eqs.
with ε = 10−8

epoch=483
val loss=0.09784

Dirichlet BCs

Neumann BCs

Cauchy BCs

mixDC BCs

mixDN BCs

mixDCN BCs

*Note that symbol ∗ denotes the algorithm diverges or it is unable to reach target accuracy within maxIts = 5120.
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Figure 9: Visualize the FGMRES solution u for three different heterogeneous fluid equations with zero-Dirichlet BCs
and with the source term b satisfying 1 dirac distr. or 4 dirac distr. setting for Section 4.2.1.
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Figure 10: Check network generalizability of FGMRES in terms of varying BCs for Section 4.2.2.

generalizability of the trained preconditioners across other aspects.

4.2.3 In terms of varying the permeability or diffusion term

In this section, we test the network generalizability of the trained CNN-based preconditioners by
varying the range of the heterogeneous permeability p ∈ R642 and diffusion d ∈ R642 , which are
uniformly distributed over the interval [1, 2] during the training process, denoted as p,d ∈ R642 ∼ U(1, 2).
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Figure 11: Visualize FGMRES solution u ∈ C642 for Section 4.2.2 with 1 dirac distr. b and varying BCs.

To be specific, this section tests the trained CNN-based preconditioners with p,d satisfying different
uniform distribution. For example, p,d ∈ [1, 2] ∼ U(1, 2), p,d ∈ [1.25, 1.75] ∼ U(1.25, 1.75),
p,d ∈ [1, 2.5] ∼ U(1, 2.5), p,d ∈ [0.5, 2] ∼ U(0.5, 2), p,d ∈ [0.5, 2.5] ∼ U(0.5, 2.5), p,d ∈ [2, 2.5] ∼
U(2, 2.5), p,d ∈ [0.5, 1] ∼ U(0.5, 1), p,d ∈ [0.5, 5] ∼ U(0.5, 5), and p,d ∈ [0.1, 2] ∼ U(0.1, 2).
Besides, we also test a structured p with a square shape in the center of the domain 64 × 64. That is
part of its elements satisfying p[20 : 44, 20 : 44] = 2 and others p = 1 elsewhere. The same square setting
applies to d as well. For these different settings of p and d, similarly based on the control variable method,
we apply the same fixed source term b ∈ R642 , satisfying 1 dirac distr. setting as mentioned in
Section 4.2.1.

The convergence histories of the Darcy flows with varying permeability terms p and the
Convection-Diffusion equations with varying diffusion terms d are shown in Figure 12 and Figure 13,
respectively. The corresponding numerical results are detailed in Tables 8-9. Comparing these
results of FGMRES with GMRES highlights the remarkable network generalizability of the trained
CNN-based preconditioners in terms of handling variations in the permeability of Darcy flows and the
diffusion term of Convection-Diffusion equations. Specially, from the left plot of Figure 12, it is evident
that GMRES struggles to solve discrete Darcy flows when the permeability parameter p takes on smaller
values, such as those over the interval [0.1, 2], or when p spans a broader range like [0.5, 5]. In contrast,
FGMRES successfully addresses all these challenging cases, even though the neural networks were not
exposed to such values in training, including those in the intervals [0.1, 1] and [2, 5]. Same observations
apply to the left plot of Figure 13 for the Convection-Diffusion equations with varying diffusion terms d.

Furthermore, Figure 14 provides a visualization of the FGMRES solutions u for Darcy flows under
different permeability terms p. The figure reveals that the solution field becomes less smooth when the
permeability term p corresponds to the more challenging cases, such as those defined over the intervals
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Table 8: Numerical results of in terms of its or (itsmax, itsmin) and ET for Section 4.2.3 for solving L (L = 1,

L = 100 or L = 1000) Darcy flow equations (7) with varying permeability p.

#
fluid eqs.

#
p ∈ R642 on

Method L
its or

(itsmax, itsmin)
ET

GMRES 1 326 21.6160s
FGMRES 1 72 3.1138s
FGMRES 100 (78, 72) 88.3086s
FGMRES 1000 (82, 70) 1325.9235s

GMRES 1 303 18.1218s
FGMRES 1 69 2.9415s
FGMRES 100 (74, 68) 83.3381s
FGMRES 1000 (74, 67) 1156.8312s

GMRES 1 332 38.6903s
FGMRES 1 83 2.9369s
FGMRES 100 (94, 81) 153.8347s
FGMRES 1000 (94, 80) 1670.6245s

GMRES 1 379 28.2535s
FGMRES 1 81 3.2983s
FGMRES 100 (102, 80) 112.1254s
FGMRES 1000 (102, 79) 1645.0857s

GMRES 1 433 37.5742s
FGMRES 1 95 3.5771s
FGMRES 100 (135, 99) 200.5330s
FGMRES 1000 (146, 94) 2647.4697s

GMRES 1 292 17.5402s
FGMRES 1 88 3.3292s
FGMRES 100 (92, 86) 169.8228s
FGMRES 1000 (95, 85) 1743.9364s

GMRES 1 320 23.4513s
FGMRES 1 72 3.0770s
FGMRES 100 (75, 70) 84.4250s
FGMRES 1000 (75, 69) 1197.2716s

GMRES 1 4566 890.0464s
FGMRES 1 322 47.0591s
FGMRES 100 (376, 265) 4574.4856s

GMRES 1 5120∗ 532.7237s
FGMRES 1 455 45.2398s
FGMRES 100 (990, 390) 4368.7206s

GMRES 1 335 21.5060s
FGMRES 1 62 2.8410s

Darcy flow
with ε = 10−8

epoch=484
val loss=0.17501

U(1, 2)

U(1.25, 1.75)

U(1, 2.5)

U(0.5, 2)

U(0.5, 2.5)

U(2, 2.5)

U(0.5, 1)

U(0.5, 5)

U(0.1, 2)

square shape
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Table 9: Numerical results of in terms of its or (itsmax, itsmin) and ET for Section 4.2.3 for solving a series of
Convection-Diffusion equations (8) with L = 1, L = 100 or L = 1000 and with varying diffusion term d.

#
fluid eqs.

#
d ∈ R642 on

Method L
its or

(itsmax, itsmin)
ET

GMRES 1 410 34.3245s
FGMRES 1 85 3.3083s
FGMRES 100 (86, 82) 117.3535s
FGMRES 1000 (86, 82) 1060.2771s

GMRES 1 402 35.4889s
FGMRES 1 80 3.2790s
FGMRES 100 (81, 78) 96.5203s
FGMRES 1000 (81, 78) 990.5940s

GMRES 1 401 30.2844s
FGMRES 1 94 3.5878s
FGMRES 100 (97, 92) 139.8715s
FGMRES 1000 (99, 91) 1447.3728s

GMRES 1 483 46.9776s
FGMRES 1 96 3.5172s
FGMRES 100 (105, 92) 178.2433s
FGMRES 1000 (107, 91) 1516.0654s

GMRES 1 501 58.2023s
FGMRES 1 113 4.0818s
FGMRES 100 (132, 103) 217.5746s
FGMRES 1000 (138, 103) 1801.6917s

GMRES 1 370 25.7981s
FGMRES 1 98 3.5404s
FGMRES 100 (101, 95) 156.7992s
FGMRES 1000 (103, 95) 2062.0618s

GMRES 1 592 52.6816s
FGMRES 1 95 3.5800s
FGMRES 100 (97, 90) 128.7326s
FGMRES 1000 (98, 89) 1946.0813s

GMRES 1 1438 131.4927s
FGMRES 1 294 18.7631s
FGMRES 100 (364, 227) 2198.2898s

GMRES 1 3072 414.1471s
FGMRES 1 270 26.5968s
FGMRES 100 (360, 203) 1337.9980s

GMRES 1 562 53.5004s
FGMRES 1 82 3.2674s
FGMRES 100 (84, 81) 103.6888s
FGMRES 1000 (84, 80) 1185.3164s

Convection-Diffusion eqs.
with ε = 10−8

epoch=483
val loss=0.09784

U(1, 2)

U(1.25, 1.75)

U(1, 2.5)

U(0.5, 2)

U(0.5, 2.5)

U(2, 2.5)

U(0.5, 1)

U(0.5, 5)

U(0.1, 2)

square shape
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Figure 12: Check network generalizability of FGMRES in terms of varying the permeability term p for a series of
discrete Darcy flows (L = 1 or L = 100) with zero-Dirichlet BCs for Section 4.2.3.
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Figure 13: Check network generalizability of FGMRES in terms of varying the diffusion term d for a series of discrete
Convection-Diffusion eqs. (L = 1 or L = 100) with zero-Dirichlet BCs for Section 4.2.3.

[0.5, 5] and [0.1, 2]. This reduced smoothness further reflects the increased complexity introduced by these
parameter ranges, and smaller values, which pose significant challenges to traditional GMRES solver but
are effectively addressed by this general CNN-based preconditioners.
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Figure 14: Visualize the FGMRES solution u for the Darcy flow with different permeability p, with zero-Dirichlet
BCs and with the source term b satisfying 1 dirac distr. for Section 4.2.3.
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4.2.4 In terms of varying the convection term

This section tests the network generalizability of the trained CNN-based preconditioner for
the Convection-Diffusion equations by varying the range of the heterogeneous convection term
c ∈ R642 ∼ U(1, 2), which is uniformly distributed over the range [1, 2] during the training process. To
be specific, we test the trained CNN-based preconditioner with c satisfying different uniform distribution.
For example, c ∈ [1, 2] ∼ U(1, 2), c ∈ [1.25, 1.75] ∼ U(1.25, 1.75), c ∈ [1, 2.5] ∼ U(1, 2.5),
c ∈ [0.5, 2] ∼ U(0.5, 2), c ∈ [0.5, 2.5] ∼ U(0.5, 2.5), c ∈ [2, 2.5] ∼ U(2, 2.5), c ∈ [0.5, 1] ∼ U(0.5, 1),
c ∈ [0.5, 5] ∼ U(0.5, 5), and c ∈ [0.1, 2] ∼ U(0.1, 2). Besides, we also test a structured c with a square
shape as described in precious Section 4.2.3, i.e., c[20 : 44, 20 : 44] = 2 and others c = 1 elsewhere.
For these different settings of c, we also apply the same fixed source term b ∈ C642 , satisfying the
1 dirac distr. setting, and the same diffusion term d satisfying U(1, 2). Convergence histories and
numerical results are reported in Figure 15 and Table 10, respectively. These results illustrate the significant
generalizability of the trained CNN-based preconditioner in addressing varying convection terms.
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Figure 15: Check network generalizability of FGMRES in terms of varying the convection term c (for Section 4.2.4)
for heterogeneous Convection-Diffusion equations (8) with L = 1 or L = 100 and with zero-Dirichlet BCs.

Furthermore, as discussed in Section 2.1.3, the behavior of Convection-Diffusion equations varies based
on the ratio between the convection term c and the diffusion term d. It includes the balanced case where d

c ≈
1, the diffusion-dominant where d

c ≫ 1, and the convection-dominant case where d
c ≪ 1. Among these,

the convection-dominant case is the most challenging to address. In this section, we tackle all these three
cases with the trained CNN-based preconditioner, which was trained under the balanced case. Numerical
results and parts of the visualizations are reported in Table 11 and Figure 16, respectively. Similar effective
conclusions apply to the trained CNN-based preconditioner. An intriguing observation from the results
of the balanced case in Table 11 is that the CNN-based preconditioner successfully handles a range 100
times wider, up to [100, 200], despite being trained only on values within the interval [1, 2]. This further
demonstrates the remarkable generalization capability of this general CNN-based preconditioner to operate
effectively well beyond its training range.

4.2.5 In terms of varying the domain size

Given these general CNN-based preconditioners were trained on domain size 64×64, this section tests
the network generalizability of the trained preconditioners by varying the domain size. Specifically, we test
the trained CNN-based preconditioners on domain 64 × 64 (i.e., n2 = 642), 128 × 128 (i.e., n = 1282,
denoted as 22∗), 256 × 256 (i.e., n = 2562, denoted as 42∗), 384 × 384 (i.e., n = 3842, denoted as
62∗), and 512 × 512 (i.e., n = 5122, denoted as 82∗). The distribution of the permeability p ∈ Rn2

, the
diffusion d ∈ Cn2

and the convection c are the same distribution settings as the ones used in the training
process. That means over these different domain size, p,d, c satisfying uniform distribution U(1, 2) over
the interval [1, 2]. While the source b = x + 0j with x satisfying standard normal distribution N (0, 1).
The corresponding numerical results are presented in Figure 17 and Table 12. These results indicate the
effectiveness of the trained CNN-based preconditioners in significantly reducing the iteration steps its
and execution times ET required by GMRES, even when applied them to a 64 times larger domain size,
reaching up to 512 × 512. This improvement is particularly pronounced in the results for Darcy flows and
Convection-Diffusion equations, demonstrating the scalability and robustness of the preconditioners across
varying domain sizes.
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Table 10: Numerical results in terms of its or (itsmax, itsmin) and ET for solving a series of Convection-Diffusion
equations (8) (L = 1, L = 100 and L = 1000) with varying setting for convection c, but with the same diffusion d

satisfying U(1, 2) and the same 1 dirac distr. setting of b for Section 4.2.4.

#
c ∈ R642 on

Method L
its or

(itsmax, itsmin)
ET

U(1, 2)
GMRES 1 408 35.5709s
FGMRES 1 85 3.3399s
FGMRES 100 (86, 82) 114.5619s
FGMRES 1000 (86, 82) 1546.4189s

U(1.25, 1.75)
GMRES 1 413 37.2114s
FGMRES 1 83 3.3286s
FGMRES 100 (86, 82) 107.0795s
FGMRES 1000 (86, 82) 1629.3463s

U(1, 2.5)
GMRES 1 479 3.4219s
FGMRES 1 87 3.4219s
FGMRES 100 (90, 86) 118.8076s
FGMRES 1000 (90, 85) 1785.3667s

U(0.5, 2)
GMRES 1 410 35.6083s
FGMRES 1 84 3.3302s
FGMRES 100 (85, 82) 105.6585s
FGMRES 1000 (87, 81) 1542.7184s

U(0.5, 2.5)
GMRES 1 435 37.1271s
FGMRES 1 85 3.3394s
FGMRES 100 (88, 84) 121.8107s
FGMRES 1000 (88, 83) 1712.9678s

U(2, 2.5)
GMRES 1 493 49.9054s
FGMRES 1 98 3.8491s
FGMRES 100 (101, 95) 138.8298s
FGMRES 1000 (101, 96) 2064.2818s

U(0.5, 1)
GMRES 1 359 25.8455s
FGMRES 1 86 3.3555s
FGMRES 100 (89, 85) 116.5543s
FGMRES 1000 (89, 85) 1666.9948s

U(0.5, 5)
GMRES 1 575 54.4889s
FGMRES 1 130 4.6627s
FGMRES 100 (139, 116) 222.5920s
FGMRES 1000 (149, 115) 3115.4121s

U(0.1, 2)
GMRES 1 377 30.7106s
FGMRES 1 84 3.3652s
FGMRES 100 (87, 83) 113.1981s
FGMRES 1000 (88, 82) 1599.6767s

square shape
GMRES 1 394 31.2774s
FGMRES 1 84 3.3934s
FGMRES 100 (84, 81) 126.8673s
FGMRES 1000 (85, 81) 1541.9930s
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Table 11: Numerical results in terms of its or (itsmax, itsmin) and ET for Section 4.2.4 for solving three cases of
Convection-Diffusion equations (8) with heterogeneous diffusion d and convection c, and with 1 dirac. source b.

#
d, c ∈ R642 on

Method L
its or

(itsmax, itsmin)
ET

Balanced case with d
c
≈ 1:

d, c ∈ U(1, 2)
GMRES 1 408 35.5709s
FGMRES 1 85 3.3399s
FGMRES 100 (86, 82) 114.5619s
FGMRES 1000 (86, 82) 1546.4189s

d, c ∈ U(25, 50)
GMRES 1 420 50.2798s
FGMRES 1 233 17.5740s
FGMRES 100 (249, 222) 2392.9016s

d, c ∈ U(50, 100)
GMRES 1 460 54.7812s
FGMRES 1 250 20.2132s
FGMRES 100 (292, 232) 2592.4430s

d, c ∈ U(100, 200)
GMRES 1 468 57.3766s
FGMRES 1 283 24.2253s
FGMRES 100 (294, 251) 3099.6522s

Diffusion-dominant case with d
c
≫ 1:

d ∈ U(25, 50), c ∈ U(1, 2)
GMRES 1 325 21.8579s
FGMRES 1 276 16.8212s
FGMRES 100 (288, 267) 3612.8073s

d ∈ U(50, 100), c ∈ U(1, 2)
GMRES 1 325 30.7067s
FGMRES 1 302 30.4414s
FGMRES 100 (318, 288) 4053.1707s

Convection-dominant case with d
c
≪ 1:

d ∈ U(1, 2), c ∈ U(25, 50)
GMRES 1 2854 283.7008s
FGMRES 1 1021 107.3359s
FGMRES 10 (1369, 1019) 1365.1770s

d ∈ U(1, 2), c ∈ U(50, 100)
GMRES 1 4436 597.5046s
FGMRES 1 3937 374.7240s
FGMRES 10 (3996, 3371) 3547.3119s



30

Table 12: Numerical results in terms of its or (itsmax, itsmin) and ET for Section 4.2.5 for solving three fluid
equations (9)-(11).

#
fluid eqs.

#
Domain

Method L
its or

(itsmax, itsmin)
ET

GMRES 1 382 26.5632s
FGMRES 1 120 4.0153s
FGMRES 100 (122, 118) 193.3075s

GMRES 1 1012 94.5204s
FGMRES 1 348 24.9729s
FGMRES 100 (616, 228) 4881.7191s

GMRES 1 2999 329.9844s
FGMRES 1 532 57.8837s
FGMRES 100 (711, 535) 6695.4944s

GMRES 1 4815 477.1662s
FGMRES 1 810 79.2054s
FGMRES 100 (865, 570) 14348.0632s

GMRES 1 5120∗ 559.6234s
FGMRES 1 5120∗ 596.2346s
FGMRES 100 (5120∗, 5120∗) 58078.9011s

GMRES 1 329 22.0342s
FGMRES 1 81 3.2237s
FGMRES 100 (84, 80) 106.6865s

GMRES 1 664 104.8114s
FGMRES 1 154 9.6673s
FGMRES 100 (164, 150) 589.8466s

GMRES 1 1681 298.0206s
FGMRES 1 225 17.0054s
FGMRES 100 (240, 224) 1453.7784s

GMRES 1 2987 340.3831s
FGMRES 1 324 25.2482s
FGMRES 100 (345, 316) 2321.4541s

GMRES 1 4367 488.2045s
FGMRES 1 450 59.9249s
FGMRES 100 (460, 430) 4599.2886s

GMRES 1 440 35.0634s
FGMRES 1 99 3.5620s
FGMRES 100 (100, 96) 150.8635s

GMRES 1 1000 105.5346s
FGMRES 1 164 7.1934s
FGMRES 100 (178, 162) 656.0577s

GMRES 1 2380 225.8275s
FGMRES 1 250 14.8938s
FGMRES 100 (265, 241) 1303.9984s

GMRES 1 3632 399.3302s
FGMRES 1 343 29.9250s
FGMRES 100 (359, 328) 3011.5191s

GMRES 1 4642 551.4533s
FGMRES 1 447 64.4661s
FGMRES 100 (470, 427) 5384.0654s

Poisson eqs.
with ε = 10−12

64× 64

128× 128

256× 256

384× 384

512× 512

Darcy flow
with ε = 10−8

64× 64

128× 128

256× 256

384× 384

512× 512

Convection-Diffusion eqs.
with ε = 10−8

64× 64

128× 128

256× 256
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Balanced case with d
c ≈ 1:
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c ≪ 1:
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Figure 16: Visualize the FGMRES solution u for the Convection-Diffusion eqs. with different diffusion term d,
convection term c, zero-Dirichlet BCs and the source term b satisfying 1 dirac distr. for Section 4.2.4.
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Figure 17: Check network generalizability of FGMRES in terms of varying the domain size (for Section 4.2.5) for
different fluid equations (9)-(11) with zero-Dirichlet BCs, and compare it to GMRES.
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5 Concluding remarks
Scientific machine learning has been widely used for scientific computing to solve or to enhance

the simulation of the partial differential equations. In this paper, we focus on using U-Net composed
by convolutional neural networks (CNNs) for accelerating the solution of the different parametric
heterogeneous fluid equations with different parameters and classical boundary conditions. The
learning process is implemented under the unsupervised context, and it aims to approximate the
inverse of the parametric fluid operators. The learned operators are used as a non-linear flexible
preconditioner in the numerical linear algebra methods, such as the flexible GMRES method considered
in this work, to improving its effectiveness. Extensive numerical results demonstrate that the
trained CNN-based preconditioners exhibit exceptional performance during testing phases and showcase
impressive generalizability. These preconditioners effectively adapt to a wider range of heterogeneous fluid
equations with varying parameters and varying BCs, affirming their robustness and versatility. This work
illustrates the promising direction in integrating the traditional numerical iterative methods and the recent
unsupervised scientific machine learning approaches through non-linear preconditioning to let them benefit
from each other.

Future work will aim to extend this CNN-based preconditioning approach to fluid equations on
unstructured and irregular domains. Additionally, it will explore the integration of diverse domain with
the generative geometry techniques, such as Geometry-Informed Neural Networks [8] and geometric deep
learning [16]. These advancements aim to address applications in plasma-fluid and incompressible fluid
simulations. Extension to the time-depended problems should be followed as well.
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[35] M. Götz and H. Anzt. Machine Learning-Aided Numerical Linear Algebra: Convolutional
Neural Networks for the Efficient Preconditioner Generation. In 2018 IEEE/ACM 9th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA). IEEE, 2018.
https://doi.org/10.1109/ScalA.2018.00010.

[36] H. Gowrachari, N. Demo, G. Stabile, and G. Rozza. Non-intrusive model reduction of advection-
dominated hyperbolic problems using neural network shift augmented manifold transformations.
arXiv, 2024. https://doi.org/10.48550/arXiv.2407.18419.

[37] D. Greenfeld, M. Galun, R. Kimmel, I. Yavneh, and R. Basri. Learning to Optimize Multigrid PDE
Solvers. In Proceedings of the 36th International Conference on Machine Learning, volume 97,
pages 2415–2423, 2019. https://proceedings.mlr.press/v97/greenfeld19a.html.

[38] X.-X. Guo, W. Li, and F. Iorio. Convolutional Neural Networks for Steady Flow Approximation.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2016. https://doi.org/10.1145/2939672.2939738.

[39] J. K. Gupta and J. Brandstetter. Towards Multi-spatiotemporal-scale Generalized PDE Modeling.
Transactions on Machine Learning Research, 2023. https://openreview.net/forum?id=dPSTDbGtBY.

[40] X. Han, F. Hou, and H. Qin. UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear
PDEs. In Proceedings of the 41st International Conference on Machine Learning, pages 17354–
17373, July 2024. https://arxiv.org/abs/2408.04846.

[41] J. He and J. Xu. MgNet: A unified framework of multigrid and convolutional neural network. Sci.
China Math., 62:1331–1354, 2019. https://doi.org/10.1007/s11425-019-9547-2.

[42] A. Heinlein, A. A. Howard, D. Beecroft, and P. Stinis. Multifidelity domain decomposition-
based physics-informed neural networks and operators for time-dependent problems. arXiv, 2024.
https://doi.org/10.48550/arXiv.2401.07888.



35

[43] A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Machine Learning in Adaptive Domain
Decomposition Methods—Predicting the Geometric Location of Constraints. SIAM J. Sci. Comput.,
41(6), 2019. https://doi.org/10.1137/18M1205364.

[44] A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Combining machine learning and domain
decomposition methods for the solution of partial differential equations-A review. GAMM-
Mitteilungen, 44(1), 2021. https://doi.org/10.1002/gamm.202100001.

[45] M. Hestenes. The conjugate gradient method for solving linear systems. PSAM, VI, Numerical
Analysis:83–102, 1956.

[46] A. A. Howard, B. Jacob, S. H. Murphy, A. Heinlein, and P. Stinis. Finite basis Kolmogorov-Arnold
networks: domain decomposition for data-driven and physics-informed problems. arXiv, 2024.
https://doi.org/10.48550/arXiv.2406.19662.

[47] J.-T. Hsieh, S.-J. Zhao, S. Eismann, L. Mirabella, and S. Ermon. Learning Neural PDE Solvers with
Convergence Guarantees. arXiv, 2019. https://doi.org/10.48550/arXiv.1906.01200.

[48] D. Z. Huang, N. H. Nelsen, and M. Trautner. An operator learning perspective
on parameter-to-observable maps. Foundations of Data Science, 7(1):163–225, 2025.
https://doi.org/10.3934/fods.2024037.

[49] J. O. Smith III. Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications.
W3K Publishing, North Charleston, 2nd edition edition, 2007. http://ccrma.stanford.edu/ jos/mdft/.

[50] E. A. Illarramendi, A. Alguacil, M. Bauerheim, A. Misdariis, B. Cuenot, and E. Benazera.
Towards an hybrid computational strategy based on Deep Learning for incompressible flows.
In AIAA AVIATION 2020 FORUM. American Institute of Aeronautics and Astronautics, 2020.
https://doi.org/10.2514/6.2020-3058.

[51] A. Ivagnes, G. Stabile, A. Mola, T. Iliescu, and G. Rozza. Hybrid data-driven
closure strategies for reduced order modeling. Appl. Math. Comput., 448, 2023.
https://doi.org/10.1016/j.amc.2023.127920.

[52] A. Ivagnes, G. Stabile, and G. Rozza. Parametric Intrusive Reduced Order Models enhanced with
Machine Learning Correction Terms. arXiv, 2024. https://doi.org/10.48550/arXiv.2406.04169.

[53] E. Jessup, P. Motter, B. Norris, and K. Sood. Performance-Based Numerical Solver
Selection in the Lighthouse Framework. SIAM J. Sci. Comput., 38(5):S750–S771, 2016.
https://doi.org/10.1137/15M1028406.

[54] M. Khamlich, G. Stabile, G. Rozza, L. Környei, and Z. Horváth. A physics-based reduced
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[86] B. Raonić, R. Molinaro, T. D. Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S. Mishra, and
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A Visualization of three 25× 25 coefficient matrices

Coefficient matrices from Poisson eqs.:
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Coefficient matrices from heterogeneous Darcy flow:
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Coefficient matrices from heterogeneous Convection-Diffusion eqs.:
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Figure 18: Visualize three 25 × 25 coefficient matrices (their elements have been scaled with 0.1 for better
visualization) obtained from applying FDM discretisation for the three heterogeneous fluid equations with the three
type of classical BCs shown in Equation (4).
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These 25× 25 coefficient matrices discretized by FFT have zero image parts.

0 5 10 15 20

0

5

10

15

20

Real part

0 5 10 15 20

0

5

10

15

20

Image part

0 5 10 15 20

0

5

10

15

20

Absolute value

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

10 4

10 3

10 2

10 1

100

(a). Dirichlet BCs

0 5 10 15 20

0

5

10

15

20

Real part

0 5 10 15 20

0

5

10

15

20

Image part

0 5 10 15 20

0

5

10

15

20

Absolute value

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

10 4

10 3

10 2

10 1

(b). Neumann BCs

0 5 10 15 20

0

5

10

15

20

Real part

0 5 10 15 20

0

5

10

15

20

Image part

0 5 10 15 20

0

5

10

15

20

Absolute value

0.10

0.05

0.00

0.05

0.10

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

10 4

10 3

10 2

10 1

100

(c). Cauchy BCs

Figure 19: Visualize 25 × 25 coefficient matrices (their real and image elements have been scaled with 0.1 for better
visualization) from Poisson eqs. discretized by FFT with the three type of classical BCs shown in Equation (4).
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(c). Cauchy BCs

Figure 20: Visualize 25 × 25 coefficient matrices (their real and image elements have been scaled with 0.1 for better
visualization) from Darcy flow discretized by FFT with the three type of classical BCs shown in Equation (4).
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Figure 21: Visualize 25 × 25 coefficient matrices (their real and image elements have been scaled with 0.1 for
better visualization) from Convection-Diffusion eqs. discretized by FFT with the three type of classical BCs shown
in Equation (4).
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