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A BLOCK MINIMUM RESIDUAL NORM SUBSPACE SOLVER
WITH PARTIAL CONVERGENCE MANAGEMENT FOR

SEQUENCES OF LINEAR SYSTEMS\ast 

LUC GIRAUD\dagger , YAN-FEI JING\ddagger , AND YANFEI XIANG\S 

Abstract. We are concerned with the iterative solution of linear systems with multiple right-
hand sides available one group after another with possibly slowly varying left-hand sides. For such
sequences of linear systems, we first develop a new block minimum norm residual approach that
combines two main ingredients. The first component exploits ideas from GCRO-DR [Parks et al.,
SIAM J. Sci. Comput., 28 (2006), pp. 1651--1674], enabling us to recycle information from one solve to
the next. The second component is the numerical mechanism for managing the partial convergence of
the right-hand sides, referred to as inexact breakdown detection in IB-BGMRES [Robb\'e and Sadkane,
Linear Algebra Appl., 419 (2006), pp. 265--285], that enables the monitoring of the rank deficiency
in the residual space basis expanded blockwise. Next, for the class of block minimum norm residual
approaches that relies on a block Arnoldi-like equality between the search space and the residual
space (e.g., any block GMRES or block GCRO variants), we introduce new search space expansion
policies defined on novel criteria to detect the partial convergence. These novel detection criteria are
tuned to the selected stopping criterion and targeted convergence threshold to best cope with the
selected normwise backward error stopping criterion, enabling us to monitor the computational effort
while ensuring the final accuracy of each individual solution. Numerical experiments are reported
to illustrate the numerical and computational features of both the new block Krylov solvers and the
new search space block expansion polices.

Key words. block subspace methods, augmentation, deflation, subspace recycling, partial
convergence, inexact block rank deficiency, backward error stopping criterion
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1. Introduction. Many scientific and industrial simulations require the solution
of a sequence of linear systems with multiple right-hand sides and possibly slowly
changing left-hand sides. In that context, one has to solve a series of linear systems
of the form

(1.1) A(\ell )X(\ell ) = B(\ell ), \ell = 1, 2, . . . ,

where, associated with the \ell th family, A(\ell ) \in \BbbC n\times n is a square nonsingular matrix

of large dimension n along the family index \ell , B(\ell ) = [b(\ell ,1), b(\ell ,2), . . . , b(\ell ,p
(\ell ))] \in 

\BbbC n\times p(\ell )

are simultaneously given right-hand sides of full rank with p(\ell ) \ll n, and

X(\ell ) = [x(\ell ,1), x(\ell ,2), . . . , x(\ell ,p(\ell ))] \in \BbbC n\times p(\ell )

are the solutions to be computed. Both
the coefficient matrix A(\ell ) and right-hand sides B(\ell ) change from one family to the
next, and the families of linear systems are typically available in sequence.
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BLOCK GCRO-DR WITH PARTIAL CONVERGENCE MANAGEMENT 711

When solving sequences of linear systems such as (1.1), attractive approaches are
those that can exploit information generated during the solution of a given system
to accelerate the convergence for the next systems. Deflated restarting implements a
similar idea between the cycles in the generalized minimum residual (GMRES) norm
method [18, 20, 26]; it is realized by using a deflation subspace containing a few
approximate eigenvectors deemed to hamper the convergence of the Krylov subspace
methods [11, 12, 13]. Another alternative technique is the subspace recycling strategy
proposed in the generalized conjugate residual with inner orthogonalization (GCRO)
method and deflated restarting (GCRO-DR) method [16]. This latter method can
reuse information accumulated in previous cycles as well as that accumulated during
the solution of the previous families. Because the multiple right-hand sides of (1.1)
are simultaneously available, block Krylov subspace methods are often considered
as suitable candidates because of their capability of sharing search subspace that
can be generated using basic linear algebra subprograms, such as level 3 BLAS-like
implementation [10]. A common issue in block Krylov subspace methods is the rank
deficiency that might appear during the expansion of the residual spaces, which is
caused by the convergence of some individual solution or a linear combination of
solution vectors. Such a rank deficiency problem could cause the block Arnoldi process
to break down before the solutions for all the right-hand sides are found. For the sake
of balancing robustness and convergence rate, Robb\'e and Sadkane proposed an inexact
breakdown detection for the block GMRES algorithm (denoted by IB-BGMRES) [19],
which could keep and reintroduce directions associated with the almost converged
parts in next iteration if necessary. We refer the reader to [1, 2, 19], for relevant
works on inexact breakdown detection, as well as to [22, 23, 24, 25, 27], for related
variants of block Krylov subspace methods for solving linear systems with multiple
right-hand sides.

The contribution of this paper is twofold. We first show how to combine subspace
recycling techniques of GCRO-DR [16], for recycling spectral information at a new
cycle/family, with the inexact breakdown detection introduced by Robb\'e and Sadkane
in IB-BGMRES [19], for handling almost rank deficient blocks generated by the block
Arnoldi procedure, to develop the IB-BGCRO-DR algorithm, a new recycling block
GCRO-DR variant with partial convergence detection. This is a natural extension
of our previous work on IB-BGMRES-DR [1] that enables the deflated restarting
strategy proposed by Morgan [13] to be applied not only at restart but also when
solving a sequence of linear systems. The IB-BGCRO-DR method can reuse spectral
information from solutions in both the previous cycles and families, thus showing
obvious advantages when solving sequences of linear systems like (1.1). In addition,
we propose a flexible counterpart of the new algorithm which allows the use of a
mixed arithmetic computation where all steps are computed with a selected working
precision, except for the preconditioner which is performed with a reduced precision.
The second contribution is related to the block search space expansion policies that
can be further developed based on the partial convergence detection. In particular,
for stopping criteria based on normwise backward error we introduce new strategies
enabling one to focus on the computational effort while ensuring the final accuracy of
each individual solution.

The remainder of this paper is organized as follows. Section 2 is devoted to the
development of the new algorithm and contains some background that enables us
to introduce the various numerical ingredients and notation required to design our
algorithm. In section 2.1 we first recall the governing ideas of the minimum norm
residual Krylov method GCRO in a single right-hand side setting, and in section 2.2
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712 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

we briefly present its block variant. Next, in section 2.3 we present how the original
inexact breakdown detection mechanism [19] introduced for block GMRES can be
applied to block GCRO as well. These two main ingredients are combined to develop
the new algorithm IB-BGCRO-DR in section 2.4 and its flexible preconditioning vari-
ant, referred to as IB-BFGCRO-DR, in section 2.5. In section 3, we describe how to
extend the original inexact breakdown detection mechanism to best adapt the com-
putational effort and reach the targeted accuracy prescribed by the stopping criterion
defined in terms of normwise backward errors for the individual solutions. In partic-
ular, we derive strategies for managing the situation where the different right-hand
sides need to be solved with different convergence thresholds. We also present policies
adapted to a stopping criterion based on normwise backward error on the right-hand
side only (i.e., classical residual norm scaled by the norm of the right-hand side) or the
more general one used to establish the backward stability of GMRES [14]. Section 4
presents some detailed remarks on computational and algorithmic aspects; the associ-
ated pseudocode of the IB-BGCRO-DR algorithm is presented as well. In section 5 we
present numerical experiments that illustrate the benefits of the new algorithm with
both constant and slowly varying successive linear systems with multiple right-hand
sides, and we introduce as well the numerical capabilities of the novel search space
expansion policies. Finally, we conclude with some detailed remarks in section 6.

The symbol | | \cdot | | denotes the Euclidean norm default for both vectors and ma-
trices, and the Frobenius norm is denoted with the subscript F . The superscript H

denotes the transpose conjugate and T stands for transpose. Because much notation
is involved, we make certain choices to improve the readability of the paper. The vec-
tors are described by lowercase letters; matrices with multiple columns are described
by uppercase letters; calligraphy uppercase letters, e.g., V , represent matrices whose
columns are enlarged by multiple columns at each iteration (as commonly appear in
the block Krylov context); and uppercase blackboard bold letters, e.g., \BbbV , refer to the
block Krylov basis generated at each iteration. The superscript \dagger refers to the Moore--
Penrose inverse. For convenience of the algorithm illustration and presentation, some
MATLAB notation is used. Without special note, a subscript j for a vector (in the
single right-hand case) or a matrix (in the block case) is used to indicate that the
vector or matrix is obtained at iteration j, and a positive subscript integer m repre-
sents the maximal iteration number of each (block) Krylov cycle. All the involved
recycling subspaces of dimension k are described as a matrix with the subscript k,
whose columns form a basis. A matrix C \in \BbbC m\times \ell consisting of m rows and \ell columns
sometimes is denoted as Cm\times \ell explicitly. The identity and null matrices of dimension
m are denoted, respectively, by Im and 0m, or by just I and 0 when the dimension
is evident from the context. For a matrix C \in \BbbC m\times \ell , the singular values of C are
denoted by \sigma 1(C) \geq \cdot \cdot \cdot \geq \sigma min(m,\ell )(C) in descending order; furthermore, we denote
by span(C) the space spanned by the columns of C.

For simplicity and notational convenience, in the rest of this paper we drop the
superscript (\ell ) in B(\ell ) and X(\ell ) whenever we consider solving the current \ell th family
of linear systems in the entire sequence of families. We indicate the superscript for a
family order explicitly when necessary. That is, suppose that the current \ell th family
of linear systems to be solved is

(1.2) AX = B,

where, A \in \BbbC n\times n is the current square nonsingular matrix of dimension n, B =
[b(1), b(2), . . . , b(p)] \in \BbbC n\times p are the right-hand sides given simultaneously, and X =
[x(1), x(2), . . . , x(p)] \in \BbbC n\times p are the solutions to be computed.
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BLOCK GCRO-DR WITH PARTIAL CONVERGENCE MANAGEMENT 713

2. Block GCRO-DR with partial convergence detection. For the sake of
completeness, this section contains some (possibly well-known) background which en-
ables us to introduce the notation required to describe the new algorithm and detail
its properties. In that respect, we first recall the main ingredients of the subspace
recycling techniques existing in the minimum residual Krylov methods GCRO [7] and
GCRO-DR [16] that are presented in the single right-hand side context. Next, we in-
troduce the straightforward extension to the multiple right-hand sides framework that
is the block formulation of GCRO-DR (BGCRO-DR) [15, 17]. Then the driving ideas
of partial convergence detection [19], along with the corresponding block Arnoldi-like
recurrence equation, are derived in the block GCRO-DR context, leading to the new
IB-BGCRO-DR algorithm.

2.1. GCRO. The background of GCRO [7] is briefly reviewed in the case of a
single right-hand side and then extended to the block case. The GCRO method relies
on a given full-rank matrix Uk \in \BbbC n\times k and on a matrix Ck as the image of Uk by A
satisfying the relations

AUk = Ck,(2.1)

CH
k Ck = Ik.(2.2)

For the solution of a single right-hand side linear system Ax = b and a given initial
guess x0, the governing idea is to first define x1 \in x0 + Range(Uk) that minimizes
the residual norm. From x1 and its associated residual r1, Arnoldi iterations are
performed to enlarge the nested orthonormal basis of the residual spaces. The vector

x1 = argmin
x\in x0+Range(Uk)

| | b - Ax| | 

is defined by

x1 = x0 + UkC
H
k r0, and r1 = (I  - CkC

H
k )r0 such that r1 \in C\bot 

k .

Starting from the unit vector v1 = r1/\| r1\| , the Arnoldi procedure enables us to form
an orthonormal basis Vm = [v1, . . . , vm] of the Krylov space \scrK m((I  - CkC

H
k )A, v1) =

span(v1, (I  - CkC
H
k )Av1, . . . , ((I  - CkC

H
k )A)m - 1v1), yielding an Arnoldi-like relation

in matrix form as

(2.3) (I  - CkC
H
k )AVm = Vm+1Hm,

where the top square part of Hm \in \BbbC (m+1)\times m is upper Hessenberg, and only the last
entry of its last row is nonzero. Combining (2.1) and (2.3) into one matrix form allows
us to write a relation quite similar to an Arnoldi equality that reads

A\widehat Wm = \widehat Vm+1Gm,

where the columns of \widehat Wm = [Uk, Vm] define a basis of the search space, columns of\widehat Vm+1 = [Ck, Vm+1] make up an orthonormal basis of the residual space, and Gm =

[
Ik Bm

0(m+1)\times k Hm
] \in \BbbC (k+m+1)\times (k+m), with \widehat V H

m+1
\widehat Vm+1 = Im+1 and Bm = CH

k AVm. The

minimum residual norm solution in the affine space x1 +Range(\widehat Wm) can be written

as xm = x1 +\widehat Wmym, where

ym = argmin
y\in \BbbC k+m

\| c - Gmy\| ,

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

28
.9

3.
82

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

714 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

and c = \widehat V H
m+1r1 = (0k, \| r1\| , 0m)T \in \BbbC k+m+1 are the components of the residual

associated with x1 in the residual space spanned by the columns of \widehat Vm+1.
GCRO and GMRES [20] both belong to the family of residual norm minimization

approaches and rely on an orthonormal basis of the residual space. In addition to
sharing the Arnoldi procedure to form part or all of this basis, they also share the
property of ``happy breakdown""; that is, if the search space cannot be enlarged because
the new direction computed by the Arnoldi process is the null vector, then the solution
is exactly found in the search space. This sharing of features extends to the block
context for the solution of linear systems with multiple right-hand sides; in particular,
the inexact breakdown principle introduced in [19] in the context of block GMRES
can be extended to block GCRO, as discussed in what follows. The purpose of the
partial convergence detection is to prevent, in an elegant and effective way, the loss of
numerical rank of the search space basis; this turns out to be also a way to monitor
the search space expansion according to the final target accuracy.

2.2. Block GCRO. The straightforward extension of the GCRO method in
the block context is briefly described below. To facilitate reading, we do not use
the calligraphic form in the notation but keep the same letters to denote the block
counterparts of the quantities involved in the method. Starting from the block initial

guess X0 = [x
(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] \in \BbbC n\times p and associated initial residual block R0 =

B  - AX0, one can define

X1 = argmin
X\in X0+Range(Uk)

| | B  - AX| | F ,

given by

(2.4) X1 = X0 + UkC
H
k R0, and R1 = (I  - CkC

H
k )R0 such that R1 \in C\bot 

k .

For the sake of simplicity, we first assume that R1 is of full rank and denote R1 = \BbbV 1\Lambda 1

as its reduced QR-factorization. The orthonormal block \BbbV 1 is then used to build the
search space via m steps of the block Arnoldi procedure, depicted in Algorithm 1, to
generate Vm = [\BbbV 1, . . . ,\BbbV m], whose columns form an orthonormal basis of \scrK m((I  - 
CkC

H
k )A,\BbbV 1) =

\bigoplus p
t=1 \scrK m((I  - CkC

H
k )A, v

(t)
1 ).

Algorithm 1. Block Arnoldi procedure with deflation of the Ck space.

1: Given a nonsingular coefficient matrix A \in \BbbC n\times n, choose a matrix \BbbV 1 \in \BbbC n\times p

with orthonormal columns
2: for j = 1, 2, . . . ,m do
3: Compute Wj = (I  - CkC

H
k )A\BbbV j

4: for i = 1, 2, . . . , j do
5: Hi,j = \BbbV H

i Wj

6: Wj = Wj  - \BbbV iHi,j

7: end for
8: Wj = \BbbV j+1Hj+1,j (reduced QR-factorization of Wj)
9: end for

The block Arnoldi procedure leads to the matrix equality

(2.5) (I  - CkC
H
k )AVm = Vm+1H m,
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BLOCK GCRO-DR WITH PARTIAL CONVERGENCE MANAGEMENT 715

where H m is a block Hessenberg matrix with (i, j) block defined by Hi,j . Similarly
to the single right-hand side case, (2.1) and (2.5) can be gathered into matrix form

(2.6) A\widehat Wm = \widehat Vm+1\scrG m,

where \widehat Wm = [Uk,Vm] \in \BbbC n\times (k+mp), \widehat Vm+1 = [Ck,Vm+1] \in \BbbC n\times (k+(m+1)p), and

\scrG m = [
Ik \scrB m

0(m+1)p\times k H m
] = [

c\scrG m

0p\times (k+(m - 1)p) Hm+1,m
] \in \BbbC (k+(m+1)p)\times (k+mp) with\widehat V H

m+1
\widehat Vm+1 = Ik+(m+1)p and \scrB m = CH

k AVm \in \BbbC k\times mp; here mp = m \times p. The mini-

mum residual norm solution in the affine space X1 + Range(\widehat Wm) can be written as

Xm = X1 + \widehat WmYm, where

Ym = argmin
Y \in \BbbC (k+mp)\times p

\| \scrC  - \scrG mY \| F ,

\scrC = \widehat V H
m+1R1 = (0p\times k,\Lambda 

T
1 , 0p\times mp)

T \in \BbbC (k+(m+1)p)\times p, and the columns of \scrC are the

components of the initial residual block R1 in the residual space \widehat Vm+1.

2.3. Block GCRO with partial convergence detection. When one solu-
tion or a linear combination of solutions has converged, the block Arnoldi procedure
implemented to build an orthonormal basis of \scrK j((I - CkC

H
k )A,\BbbV 1) needs to be mod-

ified to account for this partial convergence. This partial convergence is characterized
by a numerical rank deficiency in the new p directions that are usually introduced
for enlarging the search space at the next iteration. In [19], the authors present an
elegant numerical variant that enables the detection of what is referred to as inexact
breakdowns. In that approach the directions that have a low contribution to the
residual block are discarded from the candidate set of vectors used to expand the
search space at the next iteration, but these directions are reintroduced in iterations
afterward if necessary. In this section, we try to give an insight and the main equality
required to derive the IB-BGCRO-DR algorithm. We refer the reader to the original
paper [19] for a detailed and complete description. For the sake of simplicity and easy
cross reference, we adopt most of the notation from [1, 19].

When a partial convergence occurs, not all the space spanned by Wj is considered
to build \BbbV j+1 in order to expand the search space. For the sake of simplicity, we
assume that p1 = p, and we denote by pj+1 the number of columns of the block
orthonormal basis vector \BbbV j+1. Then \BbbV j+1 \in \BbbC n\times pj+1 ,Wj \in \BbbC n\times pj , and Hj+1,j \in 
\BbbC pj+1\times pj . As a consequence the dimension of the search space \scrK j((I  - CkC

H
k )A,\BbbV 1)

considered at the jth iteration is no longer necessarily equal to j \times p but is equal to
nj =

\sum j
i=1 pi, that is, the sum of the column rank of \BbbV \prime 

is (i = 1, . . . , j).
When no partial convergence has occurred, that is, pj+1 = pj = \cdot \cdot \cdot = p1 = p, the

range of Wj has always been used to enlarge the search space, and we obtain the block
relation given by (2.6). To account for a numerical deficiency in the residual block
Rj = B  - AXj in a way that is described later, Robb\'e and Sadkane [19] proposed
splitting

(2.7) Wj = \BbbV j+1Hj+1,j +Qj

such that the columns of Qj and \BbbV j+1 are orthogonal to each other and only \BbbV j+1 is
used to enlarge Vj to form Vj+1. We can then extend (2.6) into

(2.8) A\widehat Wj = \widehat Vj\scrG j + [0n\times k, \scrQ j - 1, Wj ],
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716 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

where \scrG j \in \BbbC (k+nj)\times (k+nj) is the first k + nj rows of \scrG j \in \BbbC (k+nj+p)\times (k+nj), and

\scrQ j - 1 = [Q1, . . . , Qj - 1] \in \BbbC n\times nj - 1 accounts for all the discarded directions. The
matrix \scrQ j - 1 is rank deficient, and it reduces to the zero matrix of \BbbC n\times nj - 1 as long
as no partial convergence has occurred.

In order to characterize a minimum norm solution in the space spanned by\widehat Wj using (2.8) we need to form an orthonormal basis of the space spanned by

[ \widehat Vj ,\scrQ j - 1,Wj ]. This is performed by first orthogonalizing \scrQ j - 1 against \widehat Vj , that is,\widetilde \scrQ j - 1 = (I  - \widehat Vj
\widehat V H
j )\scrQ j - 1. Because \scrQ j - 1 is of rank deficiency, so is \widetilde \scrQ j - 1, which can

be written as
(2.9)\widetilde \scrQ j - 1 = Pj - 1\BbbG j - 1 with

\biggl\{ 
Pj - 1 \in \BbbC n\times qj has orthonormal columns with \widehat V H

j Pj - 1 = 0,
\BbbG j - 1 \in \BbbC qj\times nj - 1 is of full rank with qj = p - pj .

Next, Wj that is already orthogonal to \widehat Vj is made to be orthogonal to Pj - 1 with Wj - 
Pj - 1Ej where Ej = PH

j - 1Wj ; then one computes \widetilde WjDj with \widetilde Wj \in \BbbC n\times pj and Dj \in 
\BbbC pj\times pj by carrying out the reduced QR-factorization of the tall and skinny matrix
Wj  - Pj - 1Ej . Eventually, the columns of the matrix [ \widehat Vj , Pj - 1,\widetilde Wj ] form an orthonor-

mal basis of the residual space spanned by [ \widehat Vj ,\scrQ j - 1,Wj ].
With this new basis, (2.8) reads

A[Uk,Vj ] =[Ck,Vj ]

\biggl[ 
I \scrB j

0 Lj

\biggr] 
+

\biggl[ 
0k, Pj - 1\BbbG j - 1,

\Bigl[ 
Pj - 1, \widetilde Wj

\Bigr] \biggl[ Ej

Dj

\biggr] \biggr] 

=
\Bigl[ 
Ck,Vj , [Pj - 1, \widetilde Wj ]

\Bigr] \left[    
Ik \scrB j

0(nj+p)\times k

Lj

\BbbG j - 1 Ej

0 Dj

\right]    ,(2.10)

where

Lj =

\left[       
H1,1 H1,2 H1,3 \cdot \cdot \cdot H1,j

H2,1 H2,2 H2,3 \cdot \cdot \cdot H2,j

\BbbV H
3 Q1 H3,2 H3,3 \cdot \cdot \cdot H3,j

...
...

...
. . .

...
\BbbV H

j Q1 \cdot \cdot \cdot \BbbV H
j Qj - 2 Hj,j - 1 Hj,j

\right]       \in \BbbC nj\times nj

is no longer upper Hessenberg as soon as one partial convergence occurs, i.e.,
\exists \ell s.t. Q\ell \not = 0.

Equation (2.10) can be rewritten in a more compact form as

A[Uk,Vj ] =
\Bigl[ 
Ck,Vj , [Pj - 1,\widetilde Wj ]

\Bigr] 
F j ,

so that the least squares problem to be solved to compute the minimum residual norm
solution associated with the generalized Arnoldi relation (2.10) becomes

(2.11) Yj = argmin
Y \in \BbbC (k+nj)\times p

\bigm\| \bigm\| \Lambda j  - F jY
\bigm\| \bigm\| 
F
,

with

(2.12) F j =

\left[    
Ik \scrB j

0(nj+p)\times k

Lj

\BbbG j - 1 Ej

0 Dj

\right]    =

\biggl[ 
Fj

\BbbH j

\biggr] 
\in \BbbC (k+nj+p)\times (k+nj)
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BLOCK GCRO-DR WITH PARTIAL CONVERGENCE MANAGEMENT 717

and \Lambda j = [
0k\times p

\Lambda 1
0nj\times p

] \in \BbbC (k+nj+p)\times p, where Fj = [
Ik \scrB j

0nj\times k Lj
] \in \BbbC (k+nj)\times (k+nj) and \BbbH j =

[0p\times k
\BbbG j - 1 Ej

0 Dj
] \in \BbbC p\times (k+nj).

The numerical mechanism for selecting \BbbV j+1 out of [Pj - 1,\widetilde Wj ] follows the same
ideas as discussed in [1, 19] in the context of block GMRES. The governing idea
consists of building an orthonormal basis for the directions that contribute the most
to the individual residual norms and make them larger than a prescribed threshold \tau .

Specifically, the singular value decomposition (SVD) is applied to the least squares
residuals

(2.13) \Lambda j  - F jYj = \BbbU 1,L\Sigma 1\BbbU H
1,R + \BbbU 2,L\Sigma 2\BbbU H

2,R,

where \Sigma 1 contains the pj+1 singular values greater than or equal to the prescribed

threshold \tau . Then we decompose \BbbU 1,L =
\bigl( \BbbU (1)

1

\BbbU (2)
1 x

\bigr) 
in accordance with [[Ck,Vj ], [Pj - 1,\widetilde Wj ]],

that is, \BbbU (1)
1 \in \BbbC (k+nj)\times pj+1 and \BbbU (2)

1 \in \BbbC p\times pj+1 . Because the objective is to construct
an orthonormal basis, we consider a unitary matrix [\BbbW 1,\BbbW 2] such that Range(\BbbW 1) =

Range(\BbbU (2)
1 ). The new set of orthonormal candidate vectors used to expand the search

space

(2.14) \BbbV j+1 =
\Bigl[ 
Pj - 1,\widetilde Wj

\Bigr] 
\BbbW 1

is the set that contributes the most to the residual norms, while

Pj =
\Bigl[ 
Pj - 1,\widetilde Wj

\Bigr] 
\BbbW 2

is the new set of discarded directions with orthonormal columns. Through this mech-
anism, directions that have been discarded at a given iteration can be reintroduced
if the residual block has a large component along them. Furthermore, this selection
strategy ensures that all the solutions have converged when p partial convergence has
been detected. We do not give details of the calculation but instead refer the reader to
section 3 of [19] for a complete description; we only state that via this decomposition,
the main terms that appear in (2.10) can be computed incrementally.

2.4. Subspace recycling policies along with partial convergence detec-
tion. So far, we have not made any specific assumption about the definition of the
recycling space Uk except that it has full column rank. In the context of subspace
recycling, one key point is to specify what subspace is to be recycled at restart. At
the cost of the extra storage of k vectors, block GCRO offers more flexibility than
block GMRES in the choice of the recycling space. This extra storage, which enables
us to remove the constraints so that the search space is included in the residual space,
allows us to consider any subspace to be deflated at restart. In particular, either
of the two classical alternatives, the Rayleigh--Ritz procedure or the harmonic-Ritz
procedure, can be considered to compute the targeted approximated eigenvectors to
define Uk and Ck at restart. To keep this paper to a reasonable length, we present
details on building a recycling subspace based on the harmonic-Ritz projection. We
refer the reader to our technical report [9, sections 2.4 and 5.1] for corresponding
discussions on the implementation based on the Rayleigh--Ritz procedure.

Definition 1 (harmonic-Ritz projection). Consider a subspace \scrW of \BbbC n. Given
a general nonsingular matrix A \in \BbbC n\times n, \lambda \in \BbbC , and g \in \scrW , we see that (\lambda , g) is a

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

28
.9

3.
82

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

718 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

harmonic-Ritz pair of A with respect to the space \scrW if and only if

Ag  - \lambda g \bot A\scrW 

or, equivalently,
\forall w \in Range(A\scrW ), wH (Ag  - \lambda g) = 0.

The vector g is a harmonic-Ritz vector associated with the harmonic-Ritz value \lambda .

Once the maximum size of the search space has been reached, we have

A\widehat Wm = \widehat Vm+1Fm =
\Bigl[ 
Ck,Vm, [Pm - 1,\widetilde Wm]

\Bigr] 
Fm,(2.15)

Xm = X1 + \widehat WmYm,(2.16)

Rm = B  - AXm =
\Bigl[ 
Ck,Vm, [Pm - 1,\widetilde Wm]

\Bigr] 
(\Lambda m  - FmYm),(2.17)

Ym = argmin
Y \in \BbbC (k+nm)\times p

\| \Lambda m  - FmY \| F , \Lambda m = [0p\times k,\Lambda 
T
1 , 0p\times nm ]T .(2.18)

Then, a restart procedure has to be implemented to possibly refine the spectral in-
formation to be recycled during the next cycle. Based on these equalities we will
compute the approximated eigen-information as shown in Proposition 1 and then use
it to define the new deflation basis Unew

k and its orthonormal image Cnew
k by A as

described in Theorem 1.

Proposition 1. At restart of IB-BGCRO-DR, the update of the recycling sub-

space for the next cycle relies on the computation of harmonic-Ritz vectors \widehat Wmgi \in 
span(\widehat Wm) of A with respect to \widehat Wm = [Uk,Vm] \in \BbbC n\times (k+nm).

The harmonic-Ritz pairs (\theta i, \widehat Wmgi) to be possibly used for the next restart satisfy

(2.19) FH
mFmgi = \theta jF

H
m
\widehat V H
m+1

\widehat Wmgi for 1 \leq i \leq k + nm,

where

\widehat V H
m+1

\widehat Wm =

\left[    
CH

k Uk 0k\times nm

V H
m Uk Inm

PH
m - 1Uk\widetilde WH
mUk

0p\times nm

\right]    \in \BbbC (k+nm+p)\times (k+nm).

Proof. The proofs basically rely on some matrix computations as shortly described
below.

According to Definition 1, each harmonic-Ritz pair (\theta i, \widehat Wmgi) satisfies

\forall w \in Range(A\widehat Wm), wH (A\widehat Wmgi  - \theta i \widehat Wmgi) = 0,

which is equivalent to

(A\widehat Wm)H (A\widehat Wmgi  - \theta i \widehat Wmgi) = 0.

Substituting (2.15) into the above leads to

(2.20)
\Bigl( \widehat Vm+1Fm

\Bigr) H \Bigl( \widehat Vm+1Fmgi  - \theta i \widehat Wmgi

\Bigr) 
= 0.

Because the columns of \widehat Vm+1 = [Ck,Vm, [Pm - 1,\widetilde Wm]] generated at the end of each
cycle are orthonormal, (2.20) becomes

FH
m Fmgi  - \theta iF

H
m
\widehat V H
m+1

\widehat Wmgi = 0,

which gives the formulation (2.19).
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BLOCK GCRO-DR WITH PARTIAL CONVERGENCE MANAGEMENT 719

Depending on the region of the spectrum that is intended to be deflated (e.g.,
subspace associated with the smallest and/or largest eigenvalues in magnitude), a
subset of k approximated eigenvectors is chosen from among the k + nm ones to
define a space that will be used to span Unew

k . Then, we describe in Theorem 1 the
update of Unew

k and its image Cnew
k with respect to A at restart of IB-BGCRO-DR.

Theorem 1. At restart of IB-BGCRO-DR, if we intend to deflate the space
span([Uk,Vm]Gk), where Gk = [g1, . . . , gk] is the set of vectors associated with the
targeted eigenvalues, then the matrices Unew

k and Cnew
k to be used for the next cycle

are defined by

Unew
k = \widehat WmGkR

 - 1 = [Uk,Vm]GkR
 - 1,(2.21)

Cnew
k = \widehat Vm+1Q =

\Bigl[ 
Ck,Vm, [Pm - 1,\widetilde Wm]

\Bigr] 
Q,(2.22)

where Q and R are the factors of the reduced QR-factorization of the tall and skinny
matrix FmGk, which ensure that AUnew

k = Cnew
k and (Cnew

k )
H
Cnew

k = Ik.

Proof. Let Q and R be the factors of the reduced QR-factorization of the tall and

skinny matrix FmGk. Right multiplyingGk on both sides of (2.15) leads to A\widehat WmGk=\widehat Vm+1FmGk = \widehat Vm+1QR that is equivalent to A\widehat WmGkR
 - 1 = \widehat Vm+1FmGkR

 - 1 =\widehat Vm+1Q, concluding the proof; as span(\widehat WmGkR
 - 1) = span(\widehat WmGk), and \widehat Vm+1Q is

the product of two matrices with orthonormal columns, so are its columns.

Corollary 1. The residual block at restart Rnew
1 = Rold

m = B  - AXnew
1 with

Xnew
1 = Xold

m is orthogonal to Cnew
k .

Proof. Xold
m = X1 + \widehat WmYm, where Ym solves the least squares problem (2.18)

so that (\Lambda m  - FmYm) \in (Range(Fm))\bot = Null(FH
m). We also have Rold

m =\widehat Vm+1 (\Lambda m  - FmYm), and consequently,

(Cnew
k )HRold

m =
\Bigl( \widehat Vm+1Q

\Bigr) H \Bigl( \widehat Vm+1 (\Lambda m  - FmYm)
\Bigr) 

=
\Bigl( \widehat Vm+1FmGkR

 - 1
\Bigr) H \Bigl( \widehat Vm+1 (\Lambda m  - FmYm)

\Bigr) 
= R - HGH

k FH
m (\Lambda m  - FmYm)\underbrace{}  \underbrace{}  

= 0 because of (2.18)

= 0.

2.5. A variant suited for flexible preconditioning. All the descriptions in
the previous sections are naturally extended to the right preconditioning case with a
fixed preconditioner M , and the central equality reads

(2.23) A[Uk,MVm] =
\Bigl[ 
Ck,Vm, [Pm - 1,\widetilde Wm]

\Bigr] 
Fm.

The least squares problem to be solved to compute the minimum norm solution be-
comes

Ym = argmin
Y \in \BbbC (k+nm)\times p

\| \Lambda m  - FmY \| F ,

and the solution is

Xm = X1 + [Uk,MVm]Ym.
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720 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

If we denote by Mj a (possibly nonlinear) nonsingular preconditioning operator at
iteration j and by Mj(\BbbV j) the action of Mj on a block vector \BbbV j , (2.23) translates
into

A[Uk,Zm] =
\Bigl[ 
Ck,Vm, [Pm - 1,\widetilde Wm]

\Bigr] 
Fm with Zm = [M1(\BbbV 1), . . . ,Mm(\BbbV m)] ,

which can be written in a more compact form as

(2.24) A \widehat Zm = \widehat Vm+1Fm with \widehat Zm = [Uk,Zm] and \widehat Vm+1 =
\Bigl[ 
Ck,Vm, [Pm - 1,\widetilde Wm]

\Bigr] 
.

The solution update is Xm = X1 + [Uk,Zm]Ym. For the sake of simplicity, we choose
to keep the notation for quantities that have the same meaning as in the nonflexible
case, but of course they will have different values.

In the context of flexible preconditioning many strategies for defining harmonic-
Ritz vectors can be envisioned for GCRO-DR. Among those considered in [4], we
follow the one with a lower computational cost required in solving the generalized
eigenvalue problem, referred to as Strategy C in [4]. Furthermore, it also allows us
to obtain companion properties in the flexible preconditioning case that are quite
similar to the ones we have shown in the nonpreconditioned case in section 2.4. We
refer the reader to [9, Appendix A] for two other strategies for approximating targeted
eigen-information. Proposition 2 indicates that with an appropriate definition of the
harmonic-Ritz vectors, all the properties of IB-BGCRO-DR extend to the flexible
preconditioning variant denoted as IB-BFGCRO-DR.

Proposition 2. At the end of a cycle of the IB-BFGCRO-DR algorithm, if the

deflation space is built on the harmonic-Ritz vectors \scrW mgi \in span(\scrW m) of A \widehat Zm\scrW \dagger 
m

with respect to \scrW m = [\scrW k, Vm] \in \BbbC n\times (k+nm), the following hold:
1. The harmonic-Ritz pairs (\theta i,\scrW mgi) for all restarts satisfy

(2.25) FH
mFmgi = \theta jF

H
m
\widehat V H
m+1\scrW mgi for 1 \leq i \leq k + nm,

where

\widehat V H
m+1\scrW m =

\left[    
CH

k \scrW k 0k\times nm

V H
m \scrW k Inm

PH
m - 1\scrW k\widetilde WH
m\scrW k

0p\times nm

\right]    \in \BbbC (k+nm+p)\times (k+nm).

2. At restart, if Gk = [g1, . . . , gk] is associated with the k targeted eigenvalues,
the matrices \scrW new

k , Unew
k , and Cnew

k to be used for the next cycle are updated
by

\scrW new
k = \scrW mGkR

 - 1 = [\scrW k,Vm]GkR
 - 1,(2.26)

Unew
k = \widehat ZmGkR

 - 1 = [Uk,Zm]GkR
 - 1,(2.27)

Cnew
k = \widehat Vm+1Q =

\Bigl[ 
Ck,Vm, [Pm - 1,\widetilde Wm]

\Bigr] 
Q,

where Q and R are the factors of the reduced QR-factorization of the tall and
skinny matrix FmGk, ensuring AUnew

k = Cnew
k with (Cnew

k )
H
Cnew

k = Ik.
3. The residual at restart Rnew

1 = Rold
m = B  - AXnew

1 with Xnew
1 = Xold

m is
orthogonal to Cnew

k .

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

28
.9

3.
82

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK GCRO-DR WITH PARTIAL CONVERGENCE MANAGEMENT 721

Proof. The proof essentially follows the arguments developed for IB-BGCRO-DR
described in section 2.4. We refer the reader to [9, Appendix B] for the details.

We also mention that a closely related numerical technique that extends IB-
BGMRES-DR in the flexible preconditioning context can be derived similarly. We
refer the reader to [9, Appendix C], where the resulting new algorithm named IB-
BFGMRES-DR is detailed and its properties are described.

3. Search space expansion policies governed by the stopping criterion.
In this section we describe a few novel policies for expanding the search space that
generalize the original one considered for inexact breakdown detection [19]. In par-
ticular, we first show how numerical criteria for detecting the partial convergence and
expanding the search space can be tuned to ensure that a targeted threshold for a
prescribed stopping criterion based on the individual backward error solution will be
eventually satisfied. Second, we present how computational constraints can be taken
into account and combined with any of the previous numerical criteria to best cope
with the performance of the underlying computer architecture.

The partial convergence detection briefly described in section 2.3 ensures that if
all the singular values of the least squares residual are smaller than the threshold
\tau , then all the linear system residual norms are also smaller than \tau (i.e., p partial
convergences have occurred). This is due to the inequality

(3.1) \forall i \| b(i)  - Ax
(i)
j \| \leq \| B  - AXj\| = \| \Lambda j  - F jYj\| = \sigma max(\Lambda j  - F jYj) < \tau ,

which follows from the facts that the 2-norm of a matrix is an upper bound of the
2-norm of its individual columns and that \widehat Vj+1 has orthonormal columns.

3.1. Search space expansion policy governed by \bfiteta \bfitb . A classical stopping
criterion for the solution of a linear system Ax = b is based on backward error analysis
and consists of stopping the iteration when

(3.2) \eta b(xj) =
\| b - Axj\| 

\| b\| 
\leq \varepsilon .

This criterion was considered in [1] where it was consequently proposed to define
\tau = \varepsilon mini=1,...,p \| b(i)\| . With this choice, when the iteration complies with (3.1), we
have

(3.3) \eta b(x
(i)
j ) \leq 

\| b - Ax
(i)
j \| 

min
i=1,...,p

\| b(i)\| 
\leq \varepsilon .

When the different right-hand sides have very different norms in magnitude, the
subspace expansion associated with this criterion might not be effective because the
upper bound in (3.3) will not be tight. This leads to enlarging the search space with
directions that are not relevant (generating useless computation). In that context
a better choice would be to focus on the space expansion to reduce the residual
associated with the right-hand side of the large norm. For that purpose, the idea is
to perform the SVD not directly on the least squares residual but on its scaled least
squares residual.

Proposition 3. Performing the SVD of the scaled least squares residuals (\Lambda j  - 
F jYj)Db,\varepsilon with threshold \tau = 1 and Db,\varepsilon = \varepsilon  - 1diag(\| b(1)\|  - 1, \cdot \cdot \cdot , \| b(p)\|  - 1) ensures
that when p partial convergences have occurred, so that the search space cannot be
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722 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

enlarged, each of the current individual iterates complies with the stopping crite-
rion (3.2).

Proof. This is a direct consequence of the inequalities

max
i=1,...,p

\| b(i)  - Ax
(i)
j \| 

\varepsilon \| b(i)\| 
\leq \| (B  - AXj)Db,\varepsilon \| = \| (\Lambda j  - F jYj)Db,\varepsilon \| \leq 1

and implies \forall i \eta b(x(i)
j ) \leq \varepsilon .

In some applications all the solutions associated with a block of right-hand sides
do not need to be solved with the same accuracy. That is, we may have to solve a
family of right-hand sides B = [b(1), . . . , b(p)] with individual convergence thresholds
\varepsilon (i) for the solution associated with each right-hand side b(i) (i = 1, . . . , p); thus we
have the more general version of (3.2),

(3.4) \eta b(i)(x
(i)
j ) =

\| b(i)  - Ax
(i)
j \| 

\| b(i)\| 
\leq \varepsilon (i).

In that context, the subspace expansion policy can be easily adapted to ensure the
convergence for each individual accuracy.

Corollary 2. Performing the SVD of the scaled least squares residuals (\Lambda j  - 
F jYj)Db,\varepsilon i with threshold \tau = 1 and Db,\varepsilon i = diag((\varepsilon 1\| b(1)\| ) - 1, . . . , (\varepsilon p\| b(p)\| ) - 1)
ensures that when p partial convergences have occurred each of the current individual
iterates complies with the stopping criterion (3.4).

3.2. Search space expansion policy governed by \bfiteta \bfitA ,\bfitb . One can also adapt
the expansion policy described in the previous section to the situation where the
stopping criterion is based on the normwise backward error on A and b, defined by

(3.5) \eta A,b(xj) =
\| b - Axj\| 

\| b\| + \| A\| \| xj\| 
\leq \varepsilon .

It suffices to define accordingly the scaled least squares residuals in the SVD that is
involved in the search space expansion. We notice that this type of stopping criterion
will have a computational penalty as the iterates of all individual iterations have to
be computed to calculate their norm.

Corollary 3. Performing the SVD of the scaled least squares residual (\Lambda j  - 
F jYj)DA,b,\varepsilon with threshold \tau = 1 and DA,b,\varepsilon = \varepsilon  - 1diag((\| A\| \| x(1)

j \| + \| b(1)\| ) - 1, . . . ,

(\| A\| \| x(p)
j \| + \| b(p)\| ) - 1) ensures that when p partial convergences have occurred, each

of the current individual iterates complies with the stopping criterion (3.5).

We do not further develop these ideas, but similarly we could define expansion
policies where for each solution we can select either \eta b or \eta A,b as a stopping criterion
with an individual threshold setting.

The occurrence of p partial convergences is a sufficient condition that ensures the
convergence of the p solution vectors, but the convergence might occur earlier, and a
more classical stopping criterion can be accommodated at a low computational cost.
Given that the norms of true residuals are very close to those of the least squares
residuals when the loss of orthogonality of the generated block Krylov basis is not
too serious, one can also check the convergence by looking at the norm of the least
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squares residual, which is easy to compute. Let QLS
j RLS

j be a full QR-factorization

of F j (i.e., QLS
j is unitary); then

(3.6) \Lambda j  - F jYj = QLS
j

\Biggl( 
0(nj+k)\times p

R\ell s
j

\Biggr) 
,

where R\ell s
j \in \BbbC p\times p are the last p rows of (QLS

j )H\Lambda j so that \| b(i) - Ax
(i)
j \| = \| R\ell s

j (:, i)\| .
Those residual norm calculations are part of the stopping criterion based on \eta b or \eta A,b.

3.3. Search space expansion policy governed by computational perfor-
mance. Based on any of these expansion policies, the discarded directions at a given
iteration might be reintroduced in a subsequent one; thereby we can trade on the con-
sidered numerical policy and select for the subspace expansion only a subset of those
eligible. In particular, it might be relevant to choose a prescribed block size pCB (here
the superscript CB stands for computational blocking) that is best suited to cope with
the computational features on a given platform rather than selecting the numerical
block size pj+1 defined as the number of singular values greater than or equal to the
prescribed threshold \tau = 1. In that respect, we consider a subspace expansion pol-
icy so that the block size at the end of step j is defined as pCB

j+1 = min(pCB , pj+1).
We refer to this variant as inexact breakdown block GCRO-DR with computational
blocking (denoted by IB-BGCRO-DR-CB).

Note that all the subspace expansion policies discussed in section 3 could be
applied to any other block minimum residual norm methods equipped with the par-
tial convergence detection, such as the IB-BGMRES [19] and IB-BGMRES-DR [1]
algorithms.

4. Remarks on some computational and algorithmic aspects. The math-
ematical description in the previous section assumes exact calculation. In practice,
the numerical behavior of the algorithms depends on the numerical algorithms se-
lected to perform the computation in finite precision arithmetic. In particular, all the
above descriptions assume the orthonormality of the residual basis; the orthonormal-
ity ensures the norm equality of the true linear system residual and their least squares
counterpart, which governs the numerical search space expansion policies described
in the previous section. In our implementation, for the block Arnoldi procedure (See
Algorithm 1), we consider the block modified Gram--Schmidt (BMGS) algorithm with
reduced QR-factorization based on Householder reflections of the final tall and skinny
block (referred to as (BMGS \circ HouseQR) in [3]). In addition, at restart the re-
orthogonalization of the recycling space Ck and of the initial block residual vector
[\BbbV 1, P0] in (4.2) is performed a vector at a time using modified Gram--Schmidt. For
the sake of conciseness, we do not give full technical details of what we briefly present
in the core of the paper, but we sometimes refer to a particular part in the appendices.

4.1. Inexact breakdown and re-orthogonalization at restart. For the
sake of simplicity, in the previous sections we made the assumption that the initial
residual block was of full rank. In practice, this constraint can be removed by applying
the partial convergence detection to the initial residual block. In that case, only a
subspace of the space spanned by the columns of the initial residual block will be
selected to define the first search space, and the discarded directions are kept in the
basis of the residual space. This has the following two main consequences:

1. The first iteration needs some extra attention to set up the initial basis \BbbV 1

and discarded directions P0 defined in (2.9).
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724 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

2. A consequence of having discarded directions in the first search space is that
the projection of the initial residual block in the residual space that defines
the right-hand side of the least squares residual solved at each block iteration
will no longer have the nested block structure that is expanded by a p \times p
zero block at each block iteration as presented in (2.18).

Without loss of generality, let us present the partial convergence detection and
re-orthogonalization at restart where the recycling subspaces Unew

k and Cnew
k are

defined by (2.21) and (2.22), respectively, so that mathematically AUnew
k = Cnew

k

and (Cnew
k )

H
Cnew

k = Ik, and the initial residual block Rnew
1 = R1 in Corollary 1 is

orthogonal to Cnew
k . For a prescribed stopping criterion and convergence threshold,

let us denote by D\varepsilon the diagonal matrix used to select the space expansion described
in section 3. Let

(4.1) R1D\varepsilon = [\BbbV new
1 , Pnew

0 ]

\biggl[ 
\Sigma p1

\Sigma q1

\biggr] 
\BbbV H

R1
= [\BbbV new

1 , Pnew
0 ]\^\Lambda 

\prime 

1,

where \BbbV new
1 \in \BbbC n\times p1 , Pnew

0 \in \BbbC n\times q1 with p1+q1 = p, and \Sigma p1 contains the p1 singular
values of R1D\varepsilon greater than or equal to the prescribed \tau , and \Sigma q1 contains the ones
smaller than \tau . We first perform an MGS re-orthogonalization of the columns of
[Cnew

k , [\BbbV new
1 , Pnew

0 ]] that reads

(4.2) [Cnew
k , [\BbbV new

1 , Pnew
0 ]] = [Ck, [\BbbV 1, P0]]

\biggl[ 
R11 R12

R22

\biggr] 
,

where all the columns of [Ck, [\BbbV 1, P0]] are orthogonal to one another, and [R11 R12

R22
] \in 

\BbbC (k+p)\times (k+p) is an upper triangular matrix with R11 \in \BbbC k\times k and R22 \in \BbbC p\times p. Next,
we update Uk = Unew

k R - 1
11 to satisfy (2.1), and V1 = \BbbV 1 will serve to span the first

search space and P0 will be abandoned for this first block iteration that will be run
as follows:

1. Form W1 = A\BbbV 1 and orthogonalize it (using BMGS \circ HouseQR) against
the set of orthonormal vectors that are part of the residual space [Ck,\BbbV 1, P0]
which enables the computation of the entries of \scrB 1 = CH

k W1, L1,1 = \BbbV H
1 W1,

and E1 = PH
0 W1.

2. The resulting block \=W1 formally reads \=W1 = W1  - Ck\scrB 1  - \BbbV 1L1,1  - P0E1,

with \=W1 = \widetilde W1D1 being its reduced QR-factorization.
3. In matrix form the above relations also read

W1 = A\BbbV 1 =
\Bigl[ 
Ck,\BbbV 1, [P0,\widetilde W1]

\Bigr] \left[    
\scrB 1

L1,1

E1

D1

\right]    ,

so that we have the first Arnoldi-like relation

(4.3) A[Uk,\BbbV 1] =
\Bigl[ 
Ck,\BbbV 1, [P0,\widetilde W1]

\Bigr] 
F 1,

with

F 1 =

\left[  Ik \scrB 1

0(p1+p)\times k
L1,1\widetilde \BbbH 1

\right]  \in \BbbC (k+p1+p)\times (k+p1) and \widetilde \BbbH 1 =

\biggl[ 
E1

D1

\biggr] 
\in \BbbC p\times p1 .
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4. Next, define the minimum norm solution X2 = X1 + [Uk,\BbbV 1]Y , and note

that R1 belongs to the space [Ck,\BbbV 1, P0,\widetilde W1] where its components in this

orthogonal basis are given by [Ck,\BbbV 1, P0,\widetilde W1]
HR1. From (4.3) we have

\| B  - AX2\| F = \| R1  - A [Uk,\BbbV 1]Y \| F = \| R1  - [Ck,\BbbV 1, P0,\widetilde W1]F 1Y \| F
= \| [Ck,\BbbV 1, P0,\widetilde W1]

HR1  - F 1Y \| F
= \| [Ck,\BbbV 1, P0,\widetilde W1]

H [\BbbV new
1 , Pnew

0 ]\^\Lambda 1  - F 1Y \| F ,

and then from (4.1), we have

(4.4) R1 = [\BbbV new
1 , Pnew

0 ]\^\Lambda 
\prime 

1D
 - 1
\varepsilon = [\BbbV new

1 , Pnew
0 ]\^\Lambda 1 with \^\Lambda 1 = \^\Lambda 

\prime 

1D
 - 1
\varepsilon ,

so that from (4.2), the right-hand side of the above least squares residual
reads

(4.5)

\Lambda 1 = [Ck,\BbbV 1, P0,\widetilde W1]
H [\BbbV new

1 , Pnew
0 ]\^\Lambda 1

= [Ck,\BbbV 1, P0,\widetilde W1]
H [CkR12 + [\BbbV 1, P0]R22]\^\Lambda 1

=
\Bigl( 
[Ck,\BbbV 1, P0,\widetilde W1]

HCkR12 + [Ck,\BbbV 1, P0,\widetilde W1]
H [\BbbV 1, P0]R22

\Bigr) 
\^\Lambda 1

=

\biggl[ 
R12

0(p1+p)\times p

\biggr] 
\^\Lambda 1 +

\left[    
0k\times p1 0k\times q1

Ip1 0p1\times q1

0q1\times p1
Iq1

0p1\times p1
0p1\times q1

\right]    R22
\^\Lambda 1 \in \BbbC (k+p1+p)\times p.

5. Compute Y1, the solution of the first new least squares problem:

Y1 = argmin
Y \in \BbbC (k+p1)\times p

\| \Lambda 1  - F 1Y \| F .

6. Execute the search space expansion policy following the IB principles:
(a) Compute the SVD of the scaled least squares residual

(\Lambda 1  - F 1Y1)D\varepsilon = \BbbU 1,L\Sigma 1\BbbV H
1,R + \BbbU 2,L\Sigma 2\BbbV H

2,R,

where \sigma min(\Sigma 1) \geq 1 > \sigma max(\Sigma 2).

(b) Compute \BbbW 1 and \BbbW 2 such that Range(\BbbW 1) = Range(\BbbU (2)
1 ) \in \BbbC p\times p2

with \BbbU 1,L =
\bigl( \BbbU (1)

1

\BbbU (2)
1

\bigr) 
\in \BbbC (k+p1+p)\times p2 , [\BbbW 1, \BbbW 2] is unitary, and \BbbW 2 \in 

\BbbC p\times q2 with p2 + q2 = p.

(c) Compute the new orthonormal matrices \BbbV 2 and P1 as

\BbbV 2 = [P0,\widetilde W1]\BbbW 1 \in \BbbC n\times p2 , P1 = [P0,\widetilde W1]\BbbW 2 \in \BbbC n\times q2 ,

and compute as well as the last block row matrix L2,: of L 1 and \BbbG 1 as

L2,: = \BbbW H
1
\widetilde \BbbH 1 \in \BbbC p2\times p1 , \BbbG 1 = \BbbW H

2
\widetilde \BbbH 1 \in \BbbC q2\times p1 .

7. Set L 1 =
\bigl( 

L1

L2,:

\bigr) 
\in \BbbC (p1+p2)\times p1 = \BbbC n2\times p1 .
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726 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

Whenever a partial convergence is detected in R1, some of its components (along
Pnew
0 ) are first discarded but could be reintroduced in some subsequent iterations.

One of the consequences of this is that the last q1 columns of the least squares right-
hand side problem evolve from one iteration to the next, depending on how some of
the Pnew

0 directions are reintroduced in the search space along the iterations. There is
a way to incrementally update the least squares right-hand side, and this is discussed
in the next proposition.

Proposition 4. At each iteration of IB-BGCRO-DR, the new least squares
problem reads
(4.6)
Yj+1 = argmin

Y \in \BbbC (k+nj+1)\times p

\bigm\| \bigm\| \Lambda j+1  - F j+1Y
\bigm\| \bigm\| 
F
, \Lambda j+1 \in \BbbC (k+nj+1+p)\times p, j = 0, 1, 2, . . . ,

with the updated right-hand sides being

(4.7)

\Lambda j+1 =

\biggl[ 
R12

0(nj+p+pj+1)\times p

\biggr] 
\^\Lambda 1 +

\left[    
0k\times p1

0k\times q1\biggl[ 
Ip1

0(nj+p - p1)\times p1

\biggr] 
\Phi j+1

0pj+1\times p1
0pj+1\times q1

\right]    R22
\^\Lambda 1,

where \Phi j+1 = [
\Phi j(1:nj ,:)

[\BbbW 1,\BbbW 2]
H [

\Phi j(nj+1:nj+qj ,:)
0pj\times q1

]
] \in \BbbC (nj+p)\times q1 for j = 0, 1, 2, . . . , with \Phi 1 =

[
0p1\times q1

Iq1
] \in \BbbC p\times q1 and qj = p - pj(j > 0); [\BbbW 1,\BbbW 2] is unitary as defined in the search

space expansion algorithm based on IB principles; and R12 \in \BbbC k\times p and R22 \in \BbbC p\times p

are two block components of the upper triangular matrix as shown in the right-hand
side of (4.2).

Proof. We refer the reader to Appendix A for details of the proof.

Based on the above discussions, the IB-BGCRO-DR algorithm with partial con-
vergence detection in the initial residual block and updated right-hand sides of the
least squares residual is presented as Algorithm 2 for solving a series of linear systems
with slowly changing left-hand sides.

4.2. Solution of the least squares problem and cheap SVD calculation
of the scaled least squares residual. Computing the full QR-factorization of the
matrices involved in the least squares problems allows us to reuse its Q factor to
compute the SVD of the least squares residual using a QR-SVD algorithm such that
the actual SVD decomposition is performed on a p\times p block R\ell s

j D\varepsilon , where R
\ell s
j appears

as in the right-hand side of (3.6), at each iteration (we refer the reader to Appendix B
for the details of this calculation). Note that this observation applies naturally to the
IB-BGMRES [19] and IB-BGMRES-DR [1] algorithms as well.

5. Numerical experiments. In the following sections we illustrate different
numerical features of the novel algorithm introduced above. For the sake of com-
parison, in some of the experiments we also display results of closely related block
methods such as BGCRO-DR [17, 21, 28] or IB-BGMRES-DR [1]. All the numerical
experiments have been run using a MATLAB prototype, so that the respective per-
formances of the algorithms are evaluated in terms of the number of matrix-vector
products, denoted as mvps (and preconditioner applications in the preconditioned
case) required to converge.
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BLOCK GCRO-DR WITH PARTIAL CONVERGENCE MANAGEMENT 727

Algorithm 2. IB-BGCRO-DR for slowly changing left-hand sides and massive num-
ber of right-hand sides.

Require: A \in \BbbC n\times n left-hand side of current family (assumed to not vary much compared to
previous one)

Require: B \in \BbbC n\times p the block of right-hand-sides and X0 \in \BbbC n\times p the block initial guess
Require: m maximum number of Arnoldi steps within a cycle
Require: pCB a given constant number satisfying 1 \leq pCB \leq p for computational blocking
Require: D\varepsilon \in \BbbC p\times p a diagonal matrix used to select the space expansion described in section 3
Require: Uk, Ck \in \BbbC n\times k the recycling subspaces assumed to be empty for the first family and

obtained after solving previous slow-changing family
1: Compute R0 = B  - AX0

/* Some families have already been solved ? */
2: if the recycling space is not empty, Uk \not = 0 then
3: Apply the reduced QR-factorization to AUk for updating Uk and Ck for the current family

such that the Uk and Ck satisfy (2.1) and (2.2). Compute R1 and X1 as described in (2.4)
4: else
5: Set R1 = R0, X1 = X0, Uk = 0, Ck = 0
6: end if

/* Loop over the restarts */
7: while the stopping criterion based on section 3.1 or 3.2 is not met do
8: Apply partial convergence detection in the scaled (least squares) residual block following sec-

tion 4.1
/* Arnoldi loop */

9: for j = 2, 3, . . . ,m do
10: Orthogonalize A\BbbV j against Ck as Wj = (I  - CkC

H
k )A\BbbV j . Then orthogonalize Wj against

previous block orthonormal vector Vj = [\BbbV 1, . . . ,\BbbV j ] as

Wj = A\BbbV j - CkC
H
k A\BbbV j - VjL1,1:j , where L1,1:j = V H

j (Wj) = V H
j (A\BbbV j) is a block column matrix

11: Set Lj =
\Bigl[ 
L j - 1, L1,1:j

\Bigr] 
\in \BbbC nj\times nj , \scrB j =

\bigl[ 
\scrB j - 1, CH

k A\BbbV j

\bigr] 
\in \BbbC k\times nj

12: Orthogonalize Wj against Pj - 1 and carry out its reduced QR-factorization as

\widetilde WjDj = Wj  - Pj - 1Ej , where Ej = PH
j - 1Wj

13: Compute Yj by solving the least squares problem described in (2.11) (or (4.6)) with F j
shown in (2.12) composed of Fj and \BbbH j but with the updated right-hand side \Lambda j as shown
in (4.7) instead

14: if the stopping criterion is met then
15: return Xj = X1 + [Uk,Vj ]Yj , Uk, and Ck

16: end if
17: Singular value decomposition of the residuals scaled by D\varepsilon 

(\Lambda j  - F jY )D\varepsilon = \BbbU 1,L\Sigma 1\BbbV H
1,R + \BbbU 2,l\Sigma 2\BbbV H

2,R with \sigma min(\Sigma 1) \geq 1 > \sigma max(\Sigma 2)

18: if Computational blocking of section 3.3 is activated then
19: \BbbU 1,L = \BbbU 1,L(:, 1 : pCB

j ) with pCB
j = min(pCB , nl\Sigma 1

), nl\Sigma 1
refers to column number of

\Sigma 1

20: end if
21: Following item 6 described in section 4.1 for computing \BbbW 1 and \BbbW 2

22: Compute orthonormal matrices \BbbV j+1 and Pj , the last block row matrix Lj+1,: of L j , and
Gj as

\BbbV j+1 =
\Bigl[ 
Pj - 1,\widetilde Wj

\Bigr] 
\BbbW 1, Pj =

\Bigl[ 
Pj - 1,\widetilde Wj

\Bigr] 
\BbbW 2,Lj+1,: = \BbbW H

1 \BbbH j ,\BbbG j = \BbbW H
2 \BbbH j ,L j =

\biggl( 
Lj

Lj+1,:

\biggr) 
23: end for

/* Restart procedure */
24: Compute the solution Xm as described in (2.16) and residual Rm according to (2.17)
25: Compute the targeted harmonic-Ritz vectors Gk = [g1, . . . , gk] by solving the generalized

eigenvalue problem (2.19) described in Proposition 1
26: Update the values of Uk and Ck, respectively, by (2.21) and (2.22) described in Theorem 1

27: Restart with X1 = Xm, \widehat Vm+1, RLS
1 = \Lambda m  - FmYm (R1 = Rm = \widehat Vm+1RLS

1 )
28: end while
29: return Xj for approximation of the current family; Uk, Ck for the next family to be solved
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For each set of blocks of right-hand sides, referred to as a family, the block initial
guess is equal to 0 \in \BbbC n\times p, where p is the number of right-hand sides. The block
right-hand side B = [b(1), b(2), . . . , b(p)] \in \BbbC n\times p is composed of p linearly independent
vectors generated randomly (using the same random seed when block methods are
compared). While any part of the spectrum could be considered to define the recycling
space, we consider for all the experiments the approximated eigenvectors associated
with the k smallest approximated eigenvalues in magnitude. The maximum dimension
of the search space in each cycle is set to be md = 15\times p. To illustrate the potential
benefit of IB-BGCRO-DR when compared to another block solver, we consider the
overall potential gain when solving a sequence of \ell families defined as

(5.1) Gain (\ell ) =

\sum \ell 
s=1 \#mvps (method)(s)\sum \ell 

s=1 \#mvps (IB-BGCRO-DR)(s)
.

5.1. Benefits of recycling between the families. To illustrate the benefits
of recycling spectral information from one family to the next as well as the computa-
tional savings due to the partial convergence detection mechanism, we first report on
experiments with BGCRO-DR, IB-BGCRO-DR, and IB-BGMRES-DR on a series of
linear systems with a constant left-hand side.

Following in the spirit of the test examples considered in [12], we consider a
bidiagonal matrix of size 5000 with upper diagonal unity so that its spectrum is
defined by the diagonal entries 0.1, 1, 2, 3, . . . , 4999; this is denoted as Matrix 1. We
consider experiments with a family size p = 20 and a recycled space size k = 30, and
where the maximal dimension of the search space is md = 300.
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Fig. 1. Comparison history for section 5.1. IB-BGCRO-DR with BGCRO-DR and IB-
BGMRES-DR by solving Matrix 1 (p = 20, md = 300, and k = 30). Left: convergence histories of
the largest/smallest backward errors \eta b(i) at each mvps for 2 consecutive families. Right: varying
blocksize (i.e., pj) along the iterations.

In the left plot of Figure 1 we display the convergence histories for solving two
consecutive families with the \eta b-based stopping criterion. Several observations can
be made. Because IB-BGMRES-DR, IB-BGCRO-DR, and BGCRO-DR do not have
a deflation space to start with for the first family, the convergence histories of these
three solvers overlap as long as no partial convergence is detected. After this first
partial convergence, the convergence rate of IB-BGCRO-DR and IB-BGMRES-DR
becomes faster (in terms of mvps) than that of BGCRO-DR, and the former two
convergence histories mostly overlap as the two IB solvers remain mathematically
equivalent. For the second and subsequent families, the capability of starting with a
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deflation space shows its benefit for BGCRO-DR and IB-BGCRO-DR. It is because
IB-BGMRES-DR needs a few restarts to capture this spectral information again and
to refine it in its subsequent search spaces construction process; eventually it exhibits
a convergence rate similar to the BGCRO-DR counterpart. For the sake of comparison
and to illustrate the benefit of the partial convergence detection we also display the
convergence histories of BGCRO-DR, which always requires more mvps compared
to its IB counterpart. Those extra mvps mostly enable us to improve the solution
quality for some right-hand sides beyond the targeted accuracy.

To visualize the effect of the partial convergence detection, we report in the right
plot of Figure 1 the size of search space expansion pj as a function of the iterations.
Because BGCRO-DR does not implement the partial convergence detection, its search
space is increased by p = 20 at each iteration. For the other two block IB-solvers, the
block size monotonically decreases to 1. Note that the partial convergence detection
is implemented in the initial (least squares) residual block in IB-BGCRO-DR, and
thus its block size does not jump back to the original block size p at restart. By con-
struction, IB-BGMRES-DR implements the partial convergence detection at restart
so that the same observation applies.

Table 1
Numerical results in terms of both mvps and its for section 5.1 with Matrix 1 (p = 20, md = 300,

and k = 30).

Number of families Method mvps its

2

BGCRO-DR 6640 332
IB-BGMRES-DR 5404 343
IB-BGCRO-DR 4928 299

20

BGCRO-DR 56940 2847
IB-BGMRES-DR 53772 3454
IB-BGCRO-DR 45652 2637

A summary of the mvps and the number of block iterations (referred to as its)
is given in Table 1 that shows the benefit of using IB-BGCRO-DR.

In the rest of this paper, Matrix 1 is chosen as the constant left-hand side in
sections 5.2--5.4, in which the related parameters are likewise set to be p = 20, k = 30,
and md = 300 by default.

5.2. Subspace expansion governed by the convergence criterion \bfiteta \bfitA ,\bfitb .
In this section we show the capability of the novel subspace expansion policy to drive
the individual backward errors \eta A,b down to different accuracies and its benefit with
respect to the original BGCRO-DR method. In Figure 2, we display the convergence
histories of the IB and IB-free methods for three different convergence thresholds, from
the less stringent on the left to the most stringent on the right. We can first observe
that the first iteration, where the partial convergence detection starts to act, depends
on the targeted accuracy as can have been expected from the associated threshold on
the singular values of the least squares residual. The second interesting observation is
that IB-BGCRO-DR is able to decrease \eta A,b to a very low value close to the machine
epsilon, that is, \scrO (10 - 16). This latter result mostly reveals the orthogonality quality
of the residual space basis computed by (BMGS \circ HouseQR) in the block Arnoldi
implementation and the re-orthogonalization using MGS between all the columns of
the recycling subspace Ck and the initial block Arnoldi basis at restart. This ensures
that the least squares residual norms are quite close to the linear system residual ones.
This latter fact ensures the relevance of the space expansion policy that monitors the
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Fig. 2. Convergence histories of the largest/smallest \eta A,b(i) (x
(i)
j ) at each mvps for 2 consecutive

families for section 5.2 with different convergence thresholds. Comparison of IB-BGCRO-DR with
BGCRO-DR by solving Matrix 1 (p = 20, md = 300, and k = 30).

linear system residual norms through the least squares residual ones. To illustrate the

orthonormal quality of the basis \widehat Vj+1 =
\Bigl[ 
Ck,Vj , [Pj - 1,\widetilde Wj ]

\Bigr] 
, we display in Figure 3

the loss of orthogonality along mvps that is defined by

(5.2) Loss-Orth =
\bigm\| \bigm\| \bigm\| \widehat V H

j+1
\widehat Vj+1  - Ij+1

\bigm\| \bigm\| \bigm\| .
In a quite similar manner to MGS-GMRES that is backward-stable [14], it can be
observed that the loss of orthogonality mostly appears when the solutions of the linear
systems converge. Note that without the re-orthogonalization at restart, the loss of
orthogonality tends to accumulate along restart, which prevents the value of Loss-Orth
from being close to the machine epsilon. We refer the reader to [9, Figure 5.7] for
the corresponding results without applying re-orthogonalization to all the columns of
[Ck, [\BbbV 1, P0]] at restart.

0 1000 2000 3000 4000 5000

 mvps (tol = 1e-08)

10 -15

10 -14

10 -13

10 -12

10 -11

 L
o

s
s
-O

rt
h

 Loss of orthogonality for 2 consecutive families

IB-BGCRO-DR

BGCRO-DR

0 1000 2000 3000 4000 5000 6000 7000 8000

 mvps (tol = 1e-12)

10 -15

10 -14

10 -13

10 -12

10 -11

 L
o

s
s
-O

rt
h

 Loss of orthogonality for 2 consecutive families

IB-BGCRO-DR

BGCRO-DR

0 2000 4000 6000 8000 10000

 mvps (tol = 1e-15)

10 -15

10 -14

10 -13

10 -12

10 -11

 L
o

s
s
-O

rt
h

 Loss of orthogonality for 2 consecutive families

IB-BGCRO-DR

BGCRO-DR

Fig. 3. Loss-Orth defined in (5.2) of GCRO-variants with stopping criterion based on

\eta A,b(i) (x
(i)
j ) at each mvps for 2 consecutive families for section 5.2 with different convergence thresh-

olds. Comparison of IB-BGCRO-DR with BGCRO-DR for solving Matrix 1 (p = 20, md = 300,
and k = 30).

5.3. Subspace expansion policy for individual convergence thresholds
for \bfiteta \bfitb . To illustrate this feature, we consider a family of p right-hand sides and a
convergence threshold 10 - 4 for the first p/2 right-hand sides and 10 - 8 for the last
p/2 ones. To estimate the computational benefit of this feature, we also compare
with calculations where all the right-hand sides are solved with the most stringent
threshold, that is, 10 - 8. In the left part of Figure 4, we display the convergence
histories for 3 successive families. The variant that controls the individual threshold is
denoted as IB-BGCRO-DR-VA, where VA stands for variable accuracy. It can be seen
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that the numerical feature works well and that the envelope of the backward errors
has the expected shape, that is, the minimum backward error decreases to 10 - 8, while
the maximum one (associated with the first p/2 solutions) only decreases to 10 - 4. If
we compare the convergence histories of IB-BGCRO-DR and IB-BGCRO-DR-VA, it
can be seen that the slope of IB-BGCRO-DR-VA is deeper than that of IB-BGCRO-
DR once the first p/2 solutions have converged; after this point IB-BGCRO-DR-VA
somehow focuses on the new directions (produced by mvps given for the x-axis) to
reduce the residual norms of the remaining p/2 solutions that have not yet converged.
The right plot of Figure 4 shows the computational gain induced by the individual
control of the accuracy compared to the situation where all the right-hand sides would
have been solved to the most stringent stopping criterion threshold if this feature were
not designed. In this case the individual monitoring of the convergence saves around
45\% of mvps in this example. Those results are summarized in Table 2.

We refer the reader to [9, Figure F.1 and Table F.1 of Appendix F] for an illus-
tration of extending such individual control to the block solver IB-BGMRES-DR that
can also accommodate this feature.
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Fig. 4. Comparison of IB-BGCRO-DR to IB-BGCRO-DR-VA for section 5.3 with Matrix 1
(p = 20, md = 300, and k = 30). Left: convergence histories of the largest/smallest backward errors
\eta b(i) at each mvps for 3 consecutive families. Right: gain (\ell ) defined in (5.1) of IB-BGCRO-DR-VA
to IB-BGCRO-DR versus family index.

Table 2
Numerical results of IB-BGCRO-DR with fixed/varying accuracy for each right-hand side in

terms of mvps and its for section 5.3, where the coefficient matrix is Matrix 1 with p = 20, md = 300,
and k = 30.

Number of families Method mvps its

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-VA 5119 395

30
IB-BGCRO-DR 68263 3932
IB-BGCRO-DR-VA 47143 3566

5.4. Expansion policy governed by computational performance. As dis-
cussed in section 3.3, only a subset of the candidate directions exhibited by the par-
tial convergence detection mechanism can be eventually selected to expand the search
space at the next block iteration; we denote this maximum size as pCB and refer to
this variant as IB-BGCRO-DR-CB, where CB stands for computational blocking. In
Table 3 we show the effect of this algorithmic parameter on mvps and its for the

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

28
.9

3.
82

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

732 LUC GIRAUD, YAN-FEI JING, AND YANFEI XIANG

solutions of 3 and 30 families with Matrix 1 when pCB varies from 1 to 15 for a num-
ber of right-hand sides p = 20. Generally, the smaller pCB is, the smaller mvps, but
the larger its. Although reported only on one example, this trend has been observed
in all our numerical experiments. Depending on the computational efficiency or cost
of the mvps with respect to the computational weight of the least squares problem
and SVD of the scaled least squares residual, this gives opportunities to monitor the
overall computational effort needed to complete the solution.

Table 3
Numerical results of IB-BGCRO-DR and IB-BGCRO-DR-CB for pCB = 1, 5, 10, 15 in terms

of mvps and its for section 5.4, where the coefficient matrix is Matrix 1 with p = 20, md = 300,
and k = 30.

Number of families Method mvps its

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-CB (pCB = 15) 6934 467
IB-BGCRO-DR-CB (pCB = 10) 6941 668
IB-BGCRO-DR-CB (pCB = 5) 6968 1312
IB-BGCRO-DR-CB (pCB = 1) 6966 6444

30
IB-BGCRO-DR 68262 3932
IB-BGCRO-DR-CB (pCB = 15) 65364 4303
IB-BGCRO-DR-CB (pCB = 1) 65823 60836

As in previous subsections, we note that this subspace expansion policy is also
applicable to IB-BGMRES-DR. We refer the reader to [9, Figure G.1 and Table G.1
of Appendix G] for an illustration.

5.5. Behavior on sequences of slowly varying left-hand side problems.
The example used in this section is from a finite element fracture mechanics problem
in the field of fatigue and fracture of engineering components (denoted as the FFEC
collection), which is fully documented in [16, section 4.1]. Over 2000 linear systems
of size 3988 \times 3988 from the FFEC collection need to be solved in order to capture
the fracture progression, and among them 151 (linear systems 400--550) representing
a typical subset of the fracture progression in which many cohesive elements break
are examined in [16]. The solutions of these linear systems have been investigated
using both GCRO-DR and GCROT (generalized conjugate residual with inner or-
thogonalization and outer truncation). We refer the reader to [8] for a comprehensive
experimental analysis. For our numerical experiments we borrow the 10 linear sys-
tems numbered from 400 to 409 from the FFEC collection. For each set of linear
systems we select the matrix and the corresponding right-hand sides that we expand
to form a block of p = 20 by appending random linearly independent vectors.

We display the convergence histories for solving the first 3 consecutive families
of such linear systems in the left plot of Figure 5. For the solution of the first linear
system, the observations on the IB and DR mechanisms discussed in section 5.1 apply.
Even though the coefficient matrix has changed, the recycling spectral information
computed for the previous family still enables a faster convergence at the beginning of
the solution of the next one. Specifically, for the solution of the first family the con-
vergence histories of the two methods fully overlap until the first partial convergence
occurs, as until this step the two methods are identical. From the initial slope of the
subsequent families, it can be seen that the sequence of matrices are close enough
to ensure that the recycled space from one system to the next is still beneficial to
the convergence. The benefit of the partial convergence detection is also illustrated
on that example since IB-BGCRO-DR still outperforms BGCRO-DR. The overall
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benefit in term of mvps savings is illustrated in the right plot on a sequence of 10
linear systems, where the savings are more than 65\% with respect to BGCRO-DR.
Corresponding results are summarized in Table 4.
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Fig. 5. Convergence results of IB-BGCRO-DR and BGCRO-DR on a sequence of slowly chang-
ing left-hand sides described in section 5.5, where the coefficient matrices are built on the FFEC
with p = 20, md = 300, and k = 15.

Table 4
Numerical results in terms of mvps and its for section 5.5 with p = 20, md = 300, and k = 15.

Number of families Method mvps its

3

BGCRO-DR 13050 651
IB-BGCRO-DR 7489 540

10

BGCRO-DR 39935 1990
IB-BGCRO-DR 24200 1658

5.6. A variant suited for flexible preconditioning. In this section, we
illustrate the numerical behavior of the flexible variant IB-BFGCRO-DR that we have
derived in section 2.5 and make a comparison with closely related variants, namely
BFGCRO-DR (a straightforward block extension of FGCRO-DR [5]).

We consider a representative quantum chromodynamics (QCD) matrix from the
University of Florida Sparse Matrix Collection [6]. It is the conf5.4-00l8x8-0500 matrix
denoted as BQCD of size 49152 \times 49152 with the critical parameter \kappa c = 0.17865 as
a model problem. Thirty families of linear systems are constructed that are defined
as A(\ell ) = I  - \kappa c(\ell )BQCD with 0 \leq \kappa c(\ell ) < \kappa c and \ell = 1, 2, . . . , 30. We use the
MATLAB function linspace(0.1780, 0.1786, 30) to generate the parameters \kappa c(\ell ) for
a sequence of matrices and observe that those matrices have the same eigenvectors
associated with shifted eigenvalues. A sequence of p = 12 successive canonical basis
vectors are chosen to be the block of right-hand sides for a given left-hand side matrix
following [16, section 4.3] so that the complete set of the right-hand sides for the \ell 
linear systems reduces to the first p \times \ell columns of the identity matrix. This choice
could be supported by the fact that the problem of numerical simulations of QCD on
a four-dimensional space-time lattice for solving QCD ab initio (cf. [16, section 4.3])
has a 12\times 12 block structure, and then a system with 12 right-hand sides related to
a single lattice site is often of interest to solve.

The flexible preconditioner is defined by a 32-bit ILU(0) factorization of the
matrix involved in the linear system. In a 64-bit calculation framework, the precondi-
tioning consists of casting the set of directions to be preconditioned in 32-bit format,
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performing the forward/backward substitution in 32-bit calculation, and casting back
the solutions in 64-bit arithmetic. The rounding applied to the vectors, cast from 64-
to 32-bit format, has a nonlinear effect that makes the preconditioner nonlinear.
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Fig. 6. Behavior of the BGCRO-DR-solvers with flexible preconditioner on families of QCD
matrices described in section 5.6 with p = 12, md = 180, and k = 90. Left: convergence histories of
the largest/smallest backward errors \eta b(i) at each mvps for 3 consecutive families. Right: gain (l)
of the block methods with respect to IB-BFGCRO-DR along the family index.

For those experiments, we attempt to favor the recycling of the space, because
the matrices share the same invariant space, so that we choose a relatively large value
for k that is k = md/2. We report in the left plot of Figure 6 the convergence histories
of the two flexible block variants. Similarly to what has already been observed, the
convergences are very similar on the first family and only differ when the partial
convergence detection becomes active mostly in the last restart. For the second and
third families, one can see that IB-BFGCRO-DR and BFGCRO-DR have identical
convergence speeds. One can observe a shift in the convergence histories between
the end of the solution of one family and the beginning of the next for both IB-
BFGCRO-DR and BFGCRO-DR. This shift is due to the extra k mvps that have
to be performed when the matrix changes in order to adapt the recycling space as
follows:

1. Compute A(\ell +1)U
(\ell )
k = \~Ck.

2. Compute the reduced QR-factorization of \~Ck = C
(\ell +1)
k R.

3. Update the basis of the deflation space U
(\ell +1)
k =U

(\ell )
k R - 1 so thatA(\ell +1)U

(\ell +1)
k =

C
(\ell +1)
k .

Because k is large, we can clearly see this shift in the left plot of Figure 6. For
this parameter selection in this section, it can be seen that the dominating effect
on the convergence improvement is due to the space recycling and not the partial
convergence detection. This observation is highlighted in the right plot of Figure 6,
where the benefit of using IB-BFGCRO-DR rather than BFGCRO-DR diminishes
when compared to previous experiments and is only about 4\%. Numerical details are
summarized in Table 5.

6. Concluding remarks. In this paper, we develop a new variant of the block
GCRO-DR method, denoted as IB-BGCRO-DR, that inherits the appealing genes of
its two parents [16, 19]. First, it inherits the capability of speeding up the convergence
rate when solving sequences of linear systems by recycling spectral information from
one family to the next. Second, the extended search space expansion policy enabled
by the so-called partial convergence detection allows us to focus on the convergence
by considering only the most important directions. Along this line, we introduce
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Table 5
Numerical results in terms of mvps and its for section 5.6 with p = 12, md = 15 \times p = 180,

and k = 90.

Number of families Method mvps its

3

BFGCRO-DR 1944 147
IB-BFGCRO-DR 1838 148

30

BFGCRO-DR 18774 1347
IB-BFGCRO-DR 18054 1350

stopping-criterion driven search space expansion polices that enable us to ensure that
a prescribed threshold used for the partial convergence detection will eventually lead
to reaching a prescribed threshold for a backward error based stopping criterion.
While introduced in the block GCRO context, those policies apply to any block mini-
mum residual norm approach that relies on an Arnoldi-like relation and includes both
block GMRES and GCRO variants. In exact arithmetic, these policies exploit the
close link between the least squares residuals and the linear system residuals, which is
guaranteed by the orthonormal basis of the residual space. Through numerical exper-
iments, we show that the MGS re-orthogonalization between the columns of recycling
space and initial block Arnoldi basis at restart combined with (BMGS \circ HouseQR)
in the block Arnoldi algorithm seems to generate a good enough orthonormal basis
to ensure that such a property also holds in finite precision calculation. Following
ideas from [14], future research could theoretically establish that this class of sub-
space augmentation algorithms is backward stable. To comply with mixed-precision
calculation, the flexible preconditioning variant is also proposed, which would be of
interest for emerging computing platforms where mixed-precision calculation could be
a way to reduce data movement, which is foreseen as one of the major bottlenecks to
reaching high performance.

Appendix A. Proof of Proposition 4.

Proof. From (4.1), (4.2), and (4.4), the initial residual block R1 with partial
convergence detection at restart could be described as

R1 = [Ck,\BbbV 1, P0,\widetilde W1][Ck,\BbbV 1, P0,\widetilde W1]
HR1

= [Ck,\BbbV 1, P0,\widetilde W1][Ck,\BbbV 1, P0,\widetilde W1]
H [\BbbV new

1 , Pnew
0 ]\^\Lambda 1

= [Ck,\BbbV 1, P0,\widetilde W1]
\Bigl( 
[Ck,\BbbV 1, P0,\widetilde W1]

HCkR12 + [Ck,\BbbV 1, P0,\widetilde W1]
H [\BbbV 1, P0]R22

\Bigr) 
\^\Lambda 1

= [Ck,\BbbV 1, P0,\widetilde W1]\Lambda 1 with \Lambda 1 =

\biggl[ 
R12

0(p1+p)\times p

\biggr] 
\^\Lambda 1 +

\left[    
0k\times p1

0k\times q1

Ip1
0p1\times q1

0q1\times p1 Iq1
0p1\times p1 0p1\times q1

\right]    R22
\^\Lambda 1

by [\BbbV new
1 , Pnew

0 ] = CkR12+[\BbbV 1, P0]R22 obtained from (4.2). That can also be written
as

\Lambda 1 =

\biggl[ 
R12

0(p1+p)\times p

\biggr] 
\^\Lambda 1 +

\left[    
0k\times p1 0k\times q1

Ip1

0q1\times p1

\Phi 1

0p1\times p1
0p1\times q1

\right]    R22
\^\Lambda 1,

where

\Phi 1 =

\biggl[ 
0p1\times q1

Iq1

\biggr] 
\in \BbbC p\times q1 and q1 + p1 = p.
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The right-hand sides of the least squares problem at iteration (j + 1) for j =
1, 2, . . . are defined by

\Lambda j+1 = [Ck,Vj+1, [Pj ,\widetilde Wj+1]]
HR1 = [Ck,Vj , Vj+1, [Pj ,\widetilde Wj+1]]

HR1

=
\Bigl[ 
Ck,Vj , [Pj - 1,\widetilde Wj ]\BbbW 1, [Pj - 1,\widetilde Wj ]\BbbW 2,\widetilde Wj+1

\Bigr] H
R1

=
\Bigl[ 
Ck,Vj , [Pj - 1,\widetilde Wj ][\BbbW 1,\BbbW 2],\widetilde Wj+1

\Bigr] H
[\BbbV new

1 , Pnew
0 ]\^\Lambda 1

=

\biggl( \Bigl[ 
Ck,Vj , [Pj - 1,\widetilde Wj ][\BbbW 1,\BbbW 2],\widetilde Wj+1

\Bigr] H
CkR12

+
\Bigl[ 
Ck,Vj , [Pj - 1,\widetilde Wj ][\BbbW 1,\BbbW 2],\widetilde Wj+1

\Bigr] H
[\BbbV 1, P0]R22

\biggr) 
\^\Lambda 1

=

\biggl[ 
R12

0(nj+p+pj+1)\times p

\biggr] 
\^\Lambda 1

+

\left[     
CH

k \BbbV 1 CH
k P0

V H
j \BbbV 1 V H

j P0

[Vj+1, Pj ]
H \BbbV 1 [\BbbW 1,\BbbW 2]

H
\Bigl[ 
Pj - 1,\widetilde Wj

\Bigr] H
P0\widetilde WH

j+1\BbbV 1
\widetilde WH

j+1P0

\right]     R22
\^\Lambda 1

=

\biggl[ 
R12

0(nj+p+pj+1)\times p

\biggr] 
\^\Lambda 1

+

\left[        

0k\times p1 0k\times q1\biggl[ 
Ip1

0(nj - p1)\times p1

\biggr] 
\Phi j(1 : nj , :)

0p\times p1
[\BbbW 1,\BbbW 2]

H

\biggl[ 
PH
j - 1\widetilde WH
j

\biggr] 
P0

0pj+1\times p1
0pj+1\times q1

\right]        R22
\^\Lambda 1

=

\biggl[ 
R12

0(nj+p+pj+1)\times p

\biggr] 
\^\Lambda 1

+

\left[        
0k\times p1 0k\times q1\biggl[ 
Ip1

0(nj - p1)\times p1

\biggr] 
\Phi j(1 : nj , :)

0p\times p1 [\BbbW 1,\BbbW 2]
H

\biggl[ 
\Phi j(nj + 1 : nj + qj , :)

0pj\times q1

\biggr] 
0pj+1\times p1

0pj+1\times q1

\right]        R22
\^\Lambda 1

=

\biggl[ 
R12

0(nj+p+pj+1)\times p

\biggr] 
\^\Lambda 1 +

\left[    
0k\times p1

0k\times q1\biggl[ 
Ip1

0(nj+p - p1)\times p1

\biggr] 
\Phi j+1

0pj+1\times p1
0pj+1\times q1

\right]    R22
\^\Lambda 1,

where \Phi j+1 \in \BbbC (nj+p)\times q1 for j = 1, 2, . . . .

Appendix B. The SVD decomposition of the least squares residual and
the solution of the least squares problem. The partial convergence detection
mechanism allows us to extract from the residual spaces new directions to expand
the search space at the next iteration of the block method. The selection consists of
extracting the directions that contribute the most to the scaled residual block and
is based on the SVD of the scaled least squares residual. In this section, we detail
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how the solution of the least squares problem (2.11) enables us to compute easily and
cheaply the SVD of the associated scaled (least squares) residual block. The least
squares problem

(B.1) Yj = argmin
Y \in \BbbC (k+nj)\times p

\bigm\| \bigm\| \Lambda j  - F jY
\bigm\| \bigm\| 
F
, with F j \in \BbbC (k+nj+p)\times (k+nj),

is solved by using a full QR-factorization of F j = QLS
j RLS

j , where the superscript
LS stands for least squares, QLS

j = [Q
LS(1)
j , Q

LS(2)
j ] with Q

LS(1)
j \in \BbbC (k+nj+p)\times (k+nj)

and Q
LS(2)
j \in \BbbC (k+nj+p)\times p, and RLS

j =

\biggl[ 
R

LS(1)
j

0p\times (k+nj)

\biggr] 
\in \BbbC (k+nj+p)\times (k+nj) with R

LS(1)
j \in 

\BbbC (k+nj)\times (k+nj) is an upper triangular matrix, from which the reducedQR-factorization

of F j is formulated as F j = Q
LS(1)
j R

LS(1)
j if Q

LS(1)
j is considered as an orthogonal

basis of F j . Thus, we could still formulate Yj in a relatively economic way as

Yj = (R
LS(1)
j ) - 1((Q

LS(1)
j )H\Lambda j) \in \BbbC (k+nj)\times p,(B.2)

from which we could deduce the residual of the least squares problem described in
(3.6) as follows:

\Lambda j  - F jYj = \Lambda j  - QLS
j RLS

j Yj = QLS
j

\bigl( 
(QLS

j )H\Lambda j  - RLS
j Yj

\bigr) 
,

= QLS
j

\Biggl( \Biggl[ 
(Q

LS(1)
j )H

(Q
LS(2)
j )H

\Biggr] 
\Lambda j  - 

\Biggl[ 
R

LS(1)
j

0p\times (k+nj)

\Biggr] 
Yj

\Biggr) 
,

= QLS
j

\Biggl( \Biggl[ 
0(k+nj)\times (k+nj+p)

(Q
LS(2)
j )H

\Biggr] 
\Lambda j

\Biggr) 
,

= QLS
j

\Biggl( 
0(k+nj)\times p

R\ell s
j

\Biggr) 
,

where R\ell s
j = (Q

LS(2)
j )H\Lambda j \in \BbbC p\times p are the last p rows of (QLS

j )H\Lambda j . The SVD of

scaled residual R\ell s
j D\varepsilon can be written as

R\ell s
j D\varepsilon = U\ell s\Sigma V

H
\ell s ,

so that the SVD of the scaled least squares residual is

\bigl( 
\Lambda j  - F jYj

\bigr) 
D\varepsilon = QLS

j

\biggl( 
0(nj+k)\times p Inj+k

U\ell s 0p\times (nj+k)

\biggr) 
\underbrace{}  \underbrace{}  

Unitary

\biggl( 
\Sigma 

0(nj+k)\times p

\biggr) 
V H
\ell s .
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