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RANDOMIZED LOBPCG ALGORITHM WITH LINEAR DIMENSION REDUCTION

YANFEI XIANG∗

Research report

Abstract. We present a randomized variant of the locally optimal block preconditioned conjugate gradient (LOBPCG) method
that incorporates linear dimension reduction for computing a group of eigenpairs of generalized eigenvalue problems. In contrast to
the well-established LOBPCG method, we do not assert that our randomized variant always yields a superior converging eigensolver.
Instead, our objective is to offer a preliminary exploration of merging statistical randomization into deterministic LOBPCG, aiming
to enhance our understanding of the numerical performance of this randomized LOBPCG variant for solving eigenvalue problems.
Additionally, this work paves some potential avenues for integrating dimension reduction techniques into other deterministic numerical
linear algebra algorithms. Finally, we empirically demonstrate the performance of this novel randomized LOBPCG variant using
extensive academic examples, revealing that its efficiency is comparable to, and in some cases surpasses, original LOBPCG.

Key words. LOBPCG, Block subspace eigensolver, Block Rayleigh-Ritz procedure, Extreme-scale eigenvalue problem,
Randomized linear dimension reduction, Random sketching, Randomized numerical linear algebra

1. Introduction. In this work, we consider the problem of computing a group of, says p, smallest
eigenvalues together with its invariant subspace of eigenvectors of the generalized eigenvalue problem:

AX = BXΛ, (1.1)

where A ∈ Rn×n is a large sparse symmetric matrix, B ∈ Rn×n is a sparse symmetric
positive definite (SPD) matrix (like an identity matrix B = I with size of matrix A), Λ =
Diag(λ(1), λ(2), . . . , λ(p)) ∈ Rp×p is a diagonal matrix with the approximated eigenvalues as the diagonal
elements, and X = [x(1), x(2), . . . , x(p)] ∈ Rn×p (of full rank with 1 < p ≪ n) are the corresponding
eigenvectors to be computed. The (Λ, X) is a group of eigenpairs, and the eigenvalues of (A,B) may have
arbitrary multiplicity and satisfy 0 ≤ λ(1) ≤ λ(2) ≤ . . . ≤ λ(p).

Numerous techniques within numerical linear algebra (NLA) are available to solve the eigenvalue
problem (1.1). These encompass a variety of methods, including the locally optimal block preconditioned
conjugate gradient (LOBPCG) method [17, 18], the preconditioned inverse iteration methods [24–26], the
preconditioned gradient-based methods [27, 29], and other Krylov-type methods illustrated in [32].

The NLA algorithms are traditionally deterministic techniques. Over the recent decades, algorithm
designers in the NLA community have been employed probabilistic random embeddings for many scientific
computing tasks, which has now emerged as randomized NLA (simplified as RandNLA). Overall, the
integration of probabilistic randomization and deterministic NLA can be categorized into three approaches:
(1) sketch-and-solve, (2) iterative-sketching, and (3) sketch-and-precondition. As their name suggests,
sketch-and-solve paradigm focus on exploiting sketching to solve a target problem directly; while
sketch-and-precondition means using sketching to construct a properly preconditioner to accelerate the
convergence. The iterative-sketching refers to applying sketching to a given vector or matrix recursively to
improve the accuracy of the sketched variant. These three categories have been described in many RandNLA
literatures, we refer the reader to a recent comprehensive survey by Martinsson and Tropp [21, Section 10]
for more details on their differences. We also refer the reader to [10, 36] and their extensive bibliographies
for a comprehensive treatment of the ideas of RandNLA.

In this work, we only focus on applying sketch-and-solve and iterative-sketching with subspace
embeddings to the deterministic LOBPCG algorithm to solve the eigenvalue problem (1.1). To be specific,
we apply sketch-and-solve with subspace embeddings to approximate the least squares problem [21,
Section 10] and the matrix-matrix multiplications [7] occurred in parts of LOBPCG implementations.
Then following the philosophy of iterative-sketching, the processes of applying subspace embeddings to
LOBPCG will be executed iteratively along the iteration steps. Moreover, we summarize the pros and cons
of such randomized LOBPCG variant (simplified as sLOBPCG, where “s” refers to sketching) to provide
some hints for the question of when to use randomization for NLA. This work also includes computational
evidence that the sLOBPCG algorithm is as efficient as the deterministic LOBPCG algorithm, or even
outperforms LOBPCG for some particular classes of problems.
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The concept of incorporating randomization into deterministic algorithms, as considered in this
paper, is not without precedent. For the example of applying subspace embeddings for the least-square
problem, Balabanov and Grigori [4] have applied the subspace embeddings iteratively to the Gram-Schmidt
process (with long-term recurrence) to obtain a randomized Gram-Schmidt process (simplified as RGS).
Then this RGS has been applied to the generalized minimum residual norm (GMRES) method [33]
to solve linear system with single right-hand side. In [5], they further developed a block version of
the Arnoldi process with RGS for solving linear systems with multiple right-hand sides and addressing
clustered eigenvalue problems. Parallel, similar literature has been published by Nakatsukasa and Tropp
in [23] for solving eigenvalue problem. Furthermore, randomized embeddings have also been applied
to the generalized conjugate residual with inner orthogonalization (GCRO) and its deflated restarting
variant (GCRO-DR) [30], and the GMRES-DR method [22] in a recent randomized work [13] for addressing
linear systems. For the examples of applying subspace embeddings to approximate the matrix-matrix
multiplication, we refer the reader to [34, Algorithm 4], which presents the randomized version of the
conjugate gradient algorithm with short-term recurrence.

The manuscript is structured as follows: Section 2 serves as the main body of this work. It includes
the necessary background to introduce the notation required for describing the new algorithm and outlines
its properties. Specifically, Section 2.1 revisits the fundamental concepts of the deterministic LOBPCG
algorithm that is the basis of our approach. Section 2.2 reviews research on sketching techniques in
NLA, including sketching realized by structured and unstructured embeddings. This section also explains
how sketching can be integrated into deterministic algorithms to create corresponding RandNLA variants.
Section 2.3 presents the new sLOBPCG algorithm with randomized sketching and analyzes its asymptotic
complexity compared to LOBPCG. Section 3 provides numerical results and finally some concluding
remarks are presented in Section 4.

Before delving into the main content, this paragraph introduces the notations used throughout the
manuscript. The vectors are denoted by lowercase letters; matrices with multiple columns are described
by uppercase letters. The Euclidean inner product is denoted as (·, ·). The notation R refers to the real
number field. For convenience of the algorithm illustration and presentation, some MATLAB notation is
used. The symbol || · || denotes the Euclidean norm default for both vectors and matrices, and the Frobenius
norm is denoted with the subscript F . The superscript T denotes the transpose. The superscript † refers to
the Moore-Penrose inverse. Without special note, a subscript j for a vector or matrix is used to indicate that
the vector or matrix is obtained at iteration j. A matrix C ∈ Rm×ℓ consisting of m rows and ℓ columns
sometimes is denoted as Cm×ℓ explicitly; furthermore, we denote by Span{C} the space spanned by the
columns of a nonsingular matrix C. The identity and null matrices of dimension m are denoted, respectively,
by Im and 0m or by just I and 0 when the dimension is evident from the context.

2. The sketched LOBPCG algorithm with randomized embedding. For the sake of completeness,
this section contains the essential background which enables us to introduce the notation required to describe
the new algorithm and detail its properties. In that respect, we first recall the main ingredients of the locally
optimal block preconditioned conjugate gradient (LOBPCG) method [15,17,18] proposed by A. V. Knyazev,
which is the deterministic algorithm that we rely on for this work. Next, we describe the rough information
of randomized sketching in the randomized numerical linear algebra (RandNLA) [21], and discuss two of
their common applications categorized in the sketch-and-solve paradigm. The driving ideas of these two
applications with randomized sketching are finally merged in the LOBPCG context, leading to the new
randomized sLOBPCG algorithm.

2.1. The LOBPCG algorithm. The LOBPCG method is an attractive gradient-based eigensolver
for the solution of (1.1). With a given random initial guess, the governing idea of LOBPCG is to
iteratively approximate the eigenpairs of the original large matrix pencil A − λ(i)B (i = 1, . . . , p) by
computing eigenpairs of a relatively smaller one obtained by the projection method. To be specific, the
Rayleigh-Ritz (RR) projection described in Definition 1 is applied to a properly defined trail subspace with
full-column rank. Then a relatively smaller system described in Proposition 1 is to be solved iteratively to
approximate eigenpairs of original larger system.

DEFINITION 1 (Rayleigh-Ritz projection). Consider a trial subspace W of Rn with full-column rank.
Given two general nonsingular matrices A,B ∈ Rn×n, a scale λ ∈ R, and a vector y ∈ W , we see that
(λ, y) is a Rayleigh-Ritz pair of the pencil A− λB with respect to the trial subspace W if and only if

Ay − λBy ⊥ W
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or equivalently,

∀w ∈ Range(W) wT (Ay − λBy) = 0.

The vector y is a Rayleigh-Ritz vector associated with the Rayleigh-Ritz value λ.
Denote the approximated eigenpairs of the generalized eigenvalue problem (1.1) obtained at the

j-th (j = 0, 1, . . .) iteration as (Λj , Xj) , where Λj ∈ Rp×p (p > 1) refers to the multiple eigenvalues to
be approximated and Xj ∈ Rn×p refers to the corresponding eigenvectros. The residuals of this eigenpairs
could be formed as Rj = AXj − BXjΛj . With an extra recycling block search direction Pj initialized as
zero (i.e., P0 = 0), the trail subspace in the j-th iteration of LOBPCG is defined as

Wj = Span{Xj , Rj , Pj} ∈ Rn×pY , (where pY = 3× p ≪ n). (2.1)

With the RR process described in Definition 1 and the trail subspace Wj formed in Equation (2.1), the new
approximated eigenvalues Λj+1 of LOBPCG satisfy the relation Λj+1 ∈ Span{WT

j AWj(WT
j BWj)

−1},
referring to the Rayleigh quotient of the actual nonzero approximated egenvectors Xj ∈ Wj .

PROPOSITION 1 (Based on Definition 1 and [17, Section 5]). At each iteration of LOBPCG, the
Rayleigh-Ritz method is applied for the pencil A − λ(i)B (i = 1, . . . , p) with respect to the trail subspace
Wj = [Xj , Rj , Pj ] ∈ Rn×pY (j = 0, 1, . . . , P0 = 0, pY = 3× p). This follows a generalized eigenvalue
problem:

GAyi = λ(i)GByi, for 1 ≤ i ≤ pY , (2.2)

where

GA = WT
j AWj =

 (Xj , AXj) (Xj , ARj) (Xj , APj)
(Rj , AXj) (Rj , ARj) (Rj , APj)
(Pj , AXj) (Pj , ARj) (Pj , APj)

 ∈ RpY ×pY (2.3)

and

GB = WT
j BWj =

 (Xj , BXj) (Xj , BRj) (Xj , BPj)
(Rj , BXj) (Rj , BRj) (Rj , BPj)
(Pj , BXj) (Pj , BRj) (Pj , BPj)

 ∈ RpY ×pY (2.4)

for the computation of the Rayleigh-Ritz pair (λ(i),Wjyi) used for updating the trail subspace for the next
iteration. Note that GB reduces to the identity matrix (i.e., GB = IpY

) when all the columns of Wj are
B-orthonormal to each other.

Proof. The proofs basically rely on some matrix computations as briefly outlined below.
• Case 1: When all the columns of Wj are B-orthonormal to each other, according to Definition 1,

each Rayleigh-Ritz pair (λ(i),Wjyi) satisfies

∀w ∈ Range(Wj) wT (AWjyi − λ(i) BWjyi) = 0,

which is equivalent to

WT
j (AWjyi − λ(i)BWjyi) = 0 with WT

j BWj = IpY
. (2.5)

• Case 2: When the columns of Wj just be linearly independent rather than B-orthonormal, we
denote its basis as W̃j that with B-orthonormal columns. Thus there is a nonsigular square matrix
Φ ̸= IpY

∈ RpY ×pY such that W̃j = WjΦ. Apply the columns of W̃j to the above Case 1, we have
the Rayleigh-Ritz pair (λ(i), W̃j ỹi) = (λ(i),WjΦỹi) = (λ(i),Wjyi) (with yj = Φỹi) satisfies

∀w ∈ Range(W̃j) wT (AW̃j ỹi − λ(i) BW̃j ỹi) = 0,

which is equivalent to

W̃T
j (AW̃j ỹi − λ(i) BW̃j ỹi) = ΦTWT

j (AWjΦỹi − λ(i)BWjΦỹi) = 0 because of W̃j = WjΦ.

Furthermore, given the nosingularity of Φ and yj = Φỹi, the above equation could be reformed as

WT
j (AWjyi − λ(i)BWjyi) = 0 with WT

j BWj = (ΦΦT )−1. (2.6)

Substituting Equation (2.1) into the left equation of (2.5) or (2.6) leads to the formulation (2.2)
with Gram matrices GA and GB with form described in (2.3) and (2.4), respectively.
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Repeat the above processes described in Proposition 1, some eigenvalues (like the smallest, largest,
rightmost etc.,) λ(i) of the relatively smaller eigenvalue problem (2.2) in RpY ×pY gradually approximate
to some eigenvalues of the original larger one (1.1) in Rn×n (pY ≪ n). Assume the first p computed
eigenvalues of (2.2) are λ(1), . . . , λ(p) (with λ(1) ≤ . . . ≤ λ(p)), then the corresponding eigenvectors are
denoted as

Y = [y1, . . . , yp] =

 YX

YR

YP

 = [YX ;YR;YP ] ∈ RpYJ
×p. (2.7)

According to the original LOBPCG method [15,17,18], with these updated Rayleigh-Ritz pairs (λ(i),Wjyi)
and the trial subspace Wj (2.1), the approximated eigenpairs (Λj , Xj) of (1.1) and other recycling tall and
skinny matrices for the next iteration are formed as

Xnew = WjY = XjYX +RjYR + PjYP , (2.8)

Λnew = Diag(λ(1), . . . , λ(p)) = (Xnew, AXnew)(Xnew, BXnew)
−1 (2.9)

Rnew = AXnew −BXnewΛnew, (2.10)
Pnew = RjYR + PjYP = Xnew −XjYX , (2.11)

where the updated matrices Rnew and Pnew gradually converge to zero along the iteration.
The main computational cost of LOBPCG in one iteration comes from the solving of the smaller

generalized eigenvalue problem (2.2), which includes the cost in forming the Gram matrices GA in (2.3)
and GB in (2.4), and the cost in computing the other recycling tall and skinny matrices listed in (2.8)-(2.11).

Note that so far, we have not made any further specific assumption about the definition of trial subspace
for this RR process except that it has full-column rank. In the following sections, we will describe how to
define a properly trial subspace from different aspects to further reduce these computational costs. To
simplify the notation for the results of matrix-matrix multiplication, we define WjA = AXj , WjB = BXj ,
ZjA = ARj , ZjB = BRj , QjA = APj , QjB = BPj for the remainder of this manuscript.

2.1.1. The trial subspace with B-orthonormal block vectors. To reduce the cost of solving the
smaller eigenvalue problem (2.2), in this section, we describe how to generate a B-orthonormal basis of the
columns of block vectors Xj ∈ Rn×p, Rj ∈ Rn×p and Pj ∈ Rn×p, respectively, for composing a trial
subspace (2.1).

Let X̃j with tilde denotes the eigenvectors before B-orthonormalization, and the same rule applies to
residuals R̃j and search directions P̃j . For the B-orthonormalization of the columns of X̃j , R̃j and P̃j , the
Cholesky decomposition (simplified as chol(·)) of these three block vectors has been used in LOBPCG as

Xj = X̃jT
−1
X ,WjB = W̃jBT

−1
X , with TX = chol((X̃j , W̃jB)), (2.12)

Rj = R̃jT
−1
R , ZjB = Z̃jBT

−1
R , with TR = chol((R̃j , Z̃jB)), (2.13)

Pj = P̃jT
−1
P , QjB = Q̃jBT

−1
P , QjA = Q̃jAT

−1
P , with TP = chol((P̃j , Q̃jB)) (2.14)

for ensuring (Xj ,WjB) = I, (Rj , ZjB) = I and (Pj , QjB) = I. With these B-orthonormalizations and
the recycling eigenpair information described from (2.8)-(2.9), the two Gram matrices in (2.3) and (2.4) can
be approximated by

GA =

 Λj (Xj , ZjA) (Xj , QjA)
(Rj ,WjA) (Rj , ZjA) (Rj , QjA)
(Pj ,WjA) (Pj , ZjA) (Pj , QjA)

 ∈ RpY ×pY (2.15)

with a simplified form the first p principle submatrix, and

GB =

 I (Xj , ZjB) (Xj , QjB)
(Rj ,WjB) I (Rj , QjB)
(Pj ,WjB) (Pj , ZjB) I

 ∈ RpY ×pY (2.16)

with simplified form for the three p block diagonal elements.
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Assume Rj ∈ Rn×p and ZjB ∈ Rn×p required in (2.13) are available, the matrix-matrix multiplication
(Rj , ZjB) = RT

j ZjB in the chol(·) requires O((2n−1)p2) floating-point operations. The same operation
flops are required for the B-orthonormalization of the eigenvectors Xj shown in (2.12) and search directions
Pj presented in (2.14).

Note that except the Cholesky decomposition, the Gram-Schmidt (GS) process [31] that requires
O(np2) flops in magnitude at each iteration, like the classical GS (CGS), the modified GS (MGS),
the CGS process with re-orthogonalization (CGS2), and the MGS2 could also be used for these
B-orthonormalization processes described in (2.12)-(2.14).

2.1.2. B-orthogonalize the block residual against the block eigenvector. According to
LOBPCG [15, 17, 18], based on the setting of the trial subspace in formulation (2.1), the RR projection
details in Definition 1, and the way to update the new block eigenvector described in Equation (2.8),
it is easy to know that the block residual Rj is supposed to be B-orthogonal to the block eigenvector
Xj (i.e., Rj⊥BXj). Besides after Equation (2.12), the columns of Xj own a B-orthonormal basis such that
XT

j WjB = Ip.
However, we may gradually loss this theoretically B-orthogonalization condition Rj⊥BXj in the

practical finite precision arithmetic thus causing the instability. As a remedy, in this section, we discuss
how to implement an explicit B-orthogonalization of the Rj against Xj . Specifically, define a projector
Pj = In − XjX

T
j B

T = In − XjWjB
T ∈ Rn×n for each iteration step, then this B-orthogonalization

could be formed as a projection or least-square problem

argmin
Rj∈Rn×p

∥Rj∥ = argmin
Rj∈Rn×p

∥PjRj∥ = argmin
WjB

TRj∈Rp×p

∥Rj −XjWjB
TRj∥, (2.17)

which requires O((4n− 1)p2) floating-point operations such that WjB
TRj = 0.

With the B-orthogonality of Rj ∈ Rn×p to Xj ∈ Rn×p, we have XT
j ZjB = XT

j BRj = 0 and
RT

j WjB = RT
j BXj = 0, thus the Gram matrix GB shown in Equation (2.16) can be further simplified as

GB =

 I 0 (Xj , QjB)
0 I (Rj , QjB)

(Pj ,WjB) (Pj , ZjB) I

 ∈ RpY ×pY . (2.18)

2.1.3. Strategy for partial convergence. When several eigenvectors are computed simultaneously,
it is often the case that some eigenvectors converge faster than the others. Moreover, since the columns
of Rj ∈ Rn×p and Pj ∈ Rn×p converge to zero at different rates, the block matrices involved in the
Cholesky decomposition or the MGS process become extremely poorly scaled. To avoid unnecessary
computations and instability caused by partial convergence, one can deflate or remove the column-index
of eigenvectors that have already converged within the required tolerance, continuing the iteration with the
activate (i.e., those that have not yet converged). This approach is known as the locking strategy. Knyazev’s
LOBPCG [18] outlines two locking strategies for defining a trial subspace, summarized as follows.

• Soft-locking: define Wj = Span{Xj , RjJ , PjJ} ∈ Rn×pY (pY = p+ pRjJ
+ pPjJ

≪ n),
• Hard-locking: define Wj = Span{XjJ , RjJ , PjJ} ∈ Rn×pY (pY = pXjJ

+ pRjJ
+ pPjJ

≪ n),
where the column-index set J is initialized as {1, ..., p}, and in each iteration, exclude from the index set J
the indices that correspond to residual vectors for which the residual norm become smaller than a tolerance.
Thus 0 ≤ pRjJ

≤ p refers to the number of activate columns in Rj , same rule applies for pPjJ
and pXjJ

.
According to the detailed remarks on computational and algorithmic aspects presented in Section 2.1

and Section 2.1.1-2.1.3, the associated pseudocode of Knyazev’s LOBPCG algorithm is presented in
Algorithm 1 1 with the simplified Gram matrices and soft-locking strategy.

2.1.4. Some further developments in the basis selection in LOBPCG. After wide application of
Knyazev’s LOBPCG algorithm [17, 18], some researchers noticed that an inappropriate choice of the basis
of the trial subspace can lead to ill-conditioned Gram matrices in the RR process that can delay convergence
or produce inaccurate eigenpairs. For remedy, [11,28] proposed a robust version of LOBPCG with different
ways of the basis selection for the case of standard eigenvalue problem (i.e., B = In in (1.1)). Refer to
Appendix A for more of its details.

1refer to https://github.com/lobpcg/blopex/blob/master/blopex tools/matlab/lobpcg/lobpcg.m for the code implementation.

https://github.com/lobpcg/blopex/blob/master/blopex_tools/matlab/lobpcg/lobpcg.m
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Algorithm 1 Detailed description of the LOBPCG Algorithm [18, Section 2.2] or [17, Algorithm 5.1]:
Require: p starting linearly independent vectors in X0 ∈ Rn×p, ℓ linearly independent constraint vectors in

Y ∈ Rn×ℓ, devices to compute WA = AX , WB = BX and MX (the M ∈ Rn×n is an approximation
of the inverse of A) for a given vector X , and define the B-orthonormalized X as (X,WB) = I

1: Let j = 0, allocate memory for Xj , Rj , Pj ,WjA, ZjA, QjA ∈ Rn×p, and WjB , ZjB , QjB ∈ Rn×p,
BY ∈ Rn×ℓ when B ̸= I

2: Apply constraints to X0: X0 = X0 − Y (Y,BY )−1((BY )TX0)
3: B-orthonormalize X0 (s.t., (X0,WjB) = I): T = chol((X0,W0B)) or MGS(X0); X0 = X0T

−1;
W0B = W0BT

−1; W0A = A×X0 (Note: “chol” is the Cholesky decomposition)
/* Perform the Rayleigh–Ritz (RR) procedure for the pencil A − BΛ with the B-orthonormalized
subspace Span{X0} to compute the initial Ritz vectors X1 and corresponding Ritz values Λ1: */

4: Solve eigenproblem (X0,W0A)t = ItΛ1; and compute X1 = X0t; W1A = W0At; W1B = W0Bt
5: Define the index set J of active iterates to be {1, ..., p}
6: for j = 1, 2, . . . ,MaxIterations: do
7: Compute the residuals: Rj = WjA −WjBΛj (we have Rj⊥Xj because of Step 4, 12, 22)
8: Exclude from the index set J the indices that correspond to residual vectors for which the norm has

become smaller than the tolerance. If J then becomes empty, exit loop.
9: Compute the active vectors with the update index set J (here length(J) ≤ p):

RjJ = Rj(:, J), QjBJ = BPj(:, J) ∈ Rp×pRjJ ; PjJ = Pj(:, J), QjAJ = APj(:, J) ∈ Rp×pPjJ

10: Apply the preconditioner M to the active residuals: RjJ = MRjJ
11: Apply the constraints to preconditioned active residuals: RjJ = RjJ − Y (Y,BY )−1((BY )TRjJ)
12: B-orthogonalize (i.e., (WjB , RjJ) = 0) preconditioned RjJ to Xj as Equation (2.17) in

Section 2.1.2
13: Compute ZjBJ as ZjBJ = BRjJ , and B-orthonormalize RjJ (s.t., (RjJ , ZjBJ) = I) as process in

Equation (2.13) in Section 2.1.1 ; compute ZjAJ as ZjAJ = ARjJ
14: if j > 1 then
15: B-orthonormalize PjJ (s.t., (PjJ , QjBJ) = I) as process in Equation (2.14) in Section 2.1.1
16: end if

/* Perform the RR procedure for the pencil A−BΛ in the trial space: Wj = Span{Xj , RjJ , PjJ} ∈
Rn×pY (pY = p + pRjJ

+ pPjJ
≪ n) to update Ritz values Λ and corresponding Ritz vectors X.

Compute the symmetric Gram matrices GA, GB shown in Equation (2.2):*/
17: if j > 1 then
18: GA ∈ RpY ×pY in (2.15) and GB ∈ RpY ×pY in (2.18) with J for columns of RjJ and PjJ
19: else
20: GA =

[
Λj (Xj , ZjAJ)

(RjJ ,WjA) (RjJ , ZjAJ)

]
∈ R(p+pRjJ

)×(p+pRjJ
), GB = Ip+pRjJ

21: end if
22: Solve the generalized eigenvalue problem: GAY = GBY Λj+1, where the first p eigenvalues in

increasing order are in the diagonal matrix Λj+1 ∈ Rp×p, and the GB-orthonormalized eigenvectors
are the columns of Y (i.e., (Y,GB Y ) = I, (Y,GA Y ) = Λj+1)
/* Update Ritz vectors and the recycling tall matrices: */

23: if j > 1 then
24: Partition Y as form (2.7) according to the number of columns in Xj , RjJ , and PjJ
25: Update Pj+1 = RjJYR+PjJYP ; Qj+1A = ZjAJYR+QjAJYP ; Qj+1B = ZjBJYR+QjBJYP

26: Update Xj+1 = XjYX + Pj+1; Wj+1A = WjAYX +Qj+1A; Wj+1B = WjBYX +Qj+1B
27: else
28: Partition Y =

[
YX

YR

]
∈ R(p+pRjJ

)×p according to the number of columns in Xj , RjJ

29: Update Pj+1 = RjJYR; Qj+1A = ZjAJYR; Qj+1B = ZjBJYR

30: Update Xj+1 = XjYX + Pj+1; Wj+1A = WjAYX +Qj+1A; Wj+1B = WjBYX +Qj+1B
31: end if
32: B-orthonormalize Xj+1 (s.t., (Xj+1,Wj+1B) = I) as process in Equation (2.12) in Section 2.1.1
33: end for
34: return the approximations Λj+1 and Xj+1 to the smallest eigenvalues and corresponding eigenvectors
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Note that we only focus on how to apply randomized sketching to the original Knyazev’s LOBPCG.
Details of applying randomization to other related LOBPCG variants with modification of basis selection
could be deduced similarly (refer to Appendix B for details) thus be omitted in the main manuscript.

2.2. Randomized numerical linear algebra with sketching. Dimension reduction is an elegant
idea from computer science that has found applications in numerical linear algebra (NLA), which forms
a new research trend called randomized numerical linear algebra (RandNLA). Here is the basic concept:
Solving a computational problem in high-dimensional space can often be made more efficient by first
transforming the problem into a lower-dimensional space while preserving its essential structure. The
randomized embedding is a popular dimension reduction technique. This approach is usually traced to
the celebrated paper of Johnson and Lindenstrauss published in 1986 [14], which says that any d-point
subset in n dimensions Euclidean space can be embedded onto a random subspace of t = O(logn/ε2)
dimensions without distorting the distances between any pair of inter-points by more than a factor of (1±ε)
with positive probability, for any 0 < ε < 1. Around two decades later, some researchers have shown that
this result is essentially tight. For example in [8], Dasgupta and Gupta proved another version of this result
with a higher bound on t = O(4(ε2/2− ε3/3)−1lnn). These details are recollected in Theorem 1.

THEOREM 1 (Johnson-Lindenstrauss theorem [8, 14]). For any 0 < ε < 1 and any integer n, let
t (t ≪ n) be a positive integer such that

t ≥ logn/ε2,

which follows the bound in Johnson and Lindenstrauss’s paper [14], or a recent new bound in [8] as

t ≥ 4(ε2/2− ε3/3)−1lnn.

Then, for any subset V of d-point in Rn, there is a linear map f : Rn → Rt such that for all u, v ∈ V ⊂ Rn,

(1− ε)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ε)∥u− v∥2. (2.19)

Furthermore, this map can be found in randomized polynomial time.
In the literature of RandNLA, the dimension reduction map f is referred as subspace embedding

or random sketching. Using this terminology, the relation (2.19) conveys that the embedding f should
preserve the geometry, such as the norm, distance, or inner product, of the original subset V . However,
the subset V is not always known in advance. If the embedding f can be constructed without prior
knowledge of V , apart from its dimension d, the embedding f is said to be oblivious and is referred to as an
(ε, δ, d)-oblivious subspace embedding (OSE) defined in Definition 2. Since dimension transformation can
be realized through the application of a matrix, we denote the embedding f as a sketching matrix Θ ∈ Rt×n,
assuming the embedding dimension t is already known.

DEFINITION 2 (Oblivious Subspace Embedding). Let n and t be two positive integers and t ≪ n. Let
0 < δ < 1 and 0 < ε < 1. The sketching matrix Θ ∈ Rt×n is an (ε, δ, d)-oblivious subspace embedding
for the norm ∥ · ∥ when for any fixed d-dimensional subspace V ⊂ Rn,

(1− ε)∥x∥2 ≤ ∥Θx∥2 ≤ (1 + ε)∥x∥2 for ∀x ∈ V

holds with probability at least 1− δ.
In general, the sketching could be realized by unstructured or structured embedding, like

the unstructured Gaussian matrices or the subsampled randomized Hadamard transform (SRHT)
embeddings. In early work, these (oblivious) subspace embeddings were commonly accomplished
with uniformly random projectors, such as an unstructured random Gaussian embedding. It is a
random matrix Θ ∈ Rt×n (t ≪ n) with i.i.d (i.e., “independent and identically distributed”) entries
(Θ)i,j ∼ NORMAL(0, t−1), 1 ≤ i ≤ t, 1 ≤ j ≤ n. The cost of explicitly storing unstructured Gaussian
embedding is O(tn), and the cost of applying it to a matrix, like project X ∈ Rn×p to ΘX, is O(tnp).
Gaussian embeddings work extremely well. However, they are not suitable for practical applications
because they are expensive to construct, to store, and to apply to a matrix or vector. Instead, one may
prefer to implement more structured embedding matrices that alleviate these burdens. The SRHT technique
introduced by Woolfe et. al., [37] is one type of structured dimension reduction map, which contains a subset
of the columns of a randomized fast Walsh–Hadamard matrix as described in the following Definitions 3
and 4.
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DEFINITION 3 (normalized Walsh–Hadamard matrix [7]). Fix an integer n = 2p for p = 1, 2, 3, . . . .
The (nonnormalized) n× n matrix of the Walsh–Hadamard transform is defined recursively as,

Hn =

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
with H2 =

[
1 1
1 −1

]
.

The n× n normalized matrix of the Walsh–Hadamard transform is equal to H =
1√
n

Hn ∈ Rn×n.

DEFINITION 4 (Subsampled Randomized Hadamard Transform (SRHT) matrix [7]). Fix integers t
and n = 2p with t < n and p = 1, 2, 3, . . . . An SRHT sketching Θ ∈ Rt×n is a matrix of the form

Θ =

√
n

t
RHD; (2.20)

• D ∈ Rn×n is a random diagonal matrix whose entries are independent random signs, i.e., random
variables uniformly distributed on ±1;

• H ∈ Rn×n is a normalized Walsh–Hadamard matrix;
• R ∈ Rt×n is a subset of t rows from the n×n identity matrix, where the rows are chosen uniformly

at random and without replacement.
Note that other alternative form of SRHT is available as well. Such as the Fast Johnson-Lindenstrauss

Transform (FJLT) [1], which was realized by Ailon and Chazelle with a randomized Fourier transform (i.e.,
the change in H in the right-hand side of Equation (2.20).

In practical applications, the SRHT-based low-rank matrix approximation technique is of particular
interest because the highly structured nature of map Θ ∈ Rt×n can be exploited to reduce the time
of computing ΘX from O(tnp) to O(nplog2(n)), or a much sharper bound O(nplog2(t + 1)) as
described in [2, 7]. For this type of structured SRHT embedding map Θ, Tropp demonstrated that it
preserves the Euclidean geometry of an entire subspace of vectors in Rn×p if the embedding dimension
t ∼ plog(p)/ε2 [35, Theorem 1.3, Theorem 3.1, and Theorem 3.2]. This is the essential ingredient required
to show that the SRHT map can be used in the deterministic algorithms for RandNLA.

Note that we only consider the SRHT embedding with the form described in (2.20) as the sketching
matrix Θ for the rest of this manuscript.

2.3. The sketched LOBPCG algorithm. The RandNLA methods based on sketching fall into three
rough categories: (1) sketch-and-solve, (2) iterative-sketching, and (3) sketch-and-precondition. In this
work, we only focus on applying the first two categories to Knyazev’s LOBPCG method [17, 18] to deduce
its randomized variant denoted as sLOBPCG. Specifically, the sketching technique for approximating
the matrix-matrix multiplication [7], which appears in orthonormalization, is described in Section 2.3.1,
and sketching for solving the least-square problems [21, Section 10] is illustrated in Section 2.3.2. The
sLOBPCG method with the standard Rayleigh-Ritz procedure is summarized in Section 2.3.3, followed
by a preliminary discussion on convergence analysis in Section 2.3.5. Finally, additional remarks on the
sLOBPCG method with the sketched Rayleigh-Ritz procedure are presented in Section 2.3.6.

2.3.1. Sketching for the B-orthonormalization. In this section, we apply sketching to parts of the
matrix-matrix multiplication appeared in the B-orthonormalization described in Section 2.1.1. Without loss
of generality, we use Equation (2.13) as an example for illustration. Within the traditional NLA area, the
matrix-matrix multiplication RT

j ZjB of matrix Rj ∈ Rn×p requires at most (2n − 1)p2 flop operations.
These computations are deterministic, i.e., ensure that the solution of the underlying problem is returned
after the corresponding operation count.

Although these algorithms are numerically stable and run in polynomial time, O(np2) arithmetic
operations can be prohibitive for many applications when the size of the matrix is large, e.g., on the
order of millions or billions. One way to speed up these algorithms is to reduce the size of Rj , and then
apply standard deterministic procedures to the embedding matrix. In more detail, for an SRHT matrix
Θ ∈ Rt×n (n > t = o(n)), let matrix Y = ΘRj = Rj

Θ ∈ Rt×p, YB = ΘZjB = ZjB
Θ ∈ Rt×p with

a superscript Θ denote the sketched matrix. According to Section 2.2, Θ is referred to as the dimension
reduction matrix, ensuring that Y and YB retain as much information from Rj and ZjB as possible.
Consider applying sketching Θ for the matrix-matrix multiplication operation mentioned above, we rewrite
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the B-orthonormalization parts formed in Equation (2.12)-(2.14) as

Xj = X̃jT
−1
X ,WjB = W̃jBT

−1
X , with TX = chol((X̃j

Θ, W̃jB
Θ)), (2.21)

Rj = R̃jT
−1
R , ZjB = Z̃jBT

−1
R , with TR = chol((R̃j

Θ, Z̃jB
Θ)), (2.22)

Pj = P̃jT
−1
P , QjB = Q̃jBT

−1
P , QjA = Q̃jAT

−1
P , with TP = chol((P̃j

Θ, Q̃jB
Θ)) (2.23)

for ensuring (Xj
Θ,WjB

Θ) = I, (Rj
Θ, ZjB

Θ) = I and (Pj
Θ, QjB

Θ) = I. Note that in this case
(Xj ,WjB) ̸= I, (Rj , ZjB) ̸= I and (Pj , QjB) ̸= I. Besides the sketched B-orthogonalization processes
described in Equation (2.21)-(2.23) is referred as B-Θ-orthogonalization, which can also be realized by the
randomized Gram-Schmidt (RGS) process [4].

In this B-Θ-orthogonalization setting, one can compute Y TYB instead of RT
j ZjB . If Θ is chosen

carefully (in terms of unstructured or structured embedding and the embedding dimension), then
Y TYB = (Rj

Θ)
T
ZjB

Θ ≈ RT
j ZjB and the number of operations needed to compute Y TYB is at most

(2t − 1)p2 or o(np2). As a supplement, refer to [7, Lemma 4.11] [38] for the bound of developing an
approximated matrix multiplication method based on dimension embedding.

2.3.2. Sketching for the least-square problem. Overdetermined least-square problems sometimes
arise in statistics and data-analysis applications. We may imagine that some of the data in these problems is
redundant. As such, we could reduce the size of the problem to accelerate computation without too much
loss in accuracy. Instead of the classical approach such as MGS at a cost of (4n − 1)p2 (i.e., O(np2))
arithmetic operations, in this section, we apply a sketching map to the least-square problem described in
Equation (2.17). Specifically, the sketch-and-solve paradigm maps the least-square problem into a lower
dimension. Then, its solution is used as a proxy for the solution of the original problem. This approach can
be very fast, and we only need one sketching for the block vector Rj , Xj and WjB .

Let Θ ∈ Rt×n be a sketching for Span{Rj , Xj} ∈ Rn×2p (p < t ≪ n) with distortion ε. From
the B-Θ-orthonormalization process for eigenvectors Xj

Θ ∈ Rt×p described in Equation (2.21), we have
Xj

ΘT
WjB

Θ = Ip. Define P̃j
Θ = It − Xj

ΘWjB
ΘT ∈ Rt×t and Pj

Θ = In − XjWjB
ΘT

Θ = In −
XjWjB

TΘTΘ ∈ Rn×n, we consider a lower-dimensional least-square problem as

argmin
Rj

Θ∈Rt×p

∥Rj
Θ∥ = argmin

Rj
Θ∈Rt×p

∥P̃j
ΘRj

Θ∥ = argmin
WjB

ΘTRj
Θ∈Rp×p

∥Rj
Θ −Xj

ΘWjB
ΘT

Rj
Θ∥. (2.24)

Then the least-square problem related to residuals in original high-dimensional space could be formed as

argmin
Rj∈Rn×p

∥Rj∥ = argmin
Rj∈Rn×p

∥Pj
ΘRj∥ = argmin

WjB
ΘTRj

Θ∈Rp×p

∥Rj −XjWjB
ΘT

Rj
Θ∥. (2.25)

The projection processes described in Equation (2.24)-(2.25) can be viewed as a paired results that
requires (2n + 2t − 1)p2 (i.e., O(np2)) floating-point operations such that WjB

ΘT
Rj

Θ = 0. The
Equation (2.24) in lower dimension is the sketched variant of the original least-square problem (2.17).
Since Θ preserves geometry, we hope that the solution to the sketched problem (2.24) (like WjB

ΘT
Rj

Θ)
can mimic or approximate the solution to the original problem (2.17) (like WjB

TRj). The theoretical bound
for the distance between the deterministic least-square problem and the sketched one could be deduced
similarly by the process described in [5, Section 2.1] [7, Lemma 5.6] and [21, Section 10.3].

The sketch-and-solve paradigm requires us to form matrix Xj
Θ = ΘXj at a cost around O(nplog(t))

operations. We can solve the (dense) reduced problem with a direct method, using O(tp2) operations.
Assuming t ∼ plog(p)/ε2, the total arithmetic cost is O(nplog(p/ε2) + p3log(p)/ε2).

In summary, we witness an improvement in computational cost over classical methods since
log(p) ≪ p ≪ n/log(p) and ε is constant. While we have to accept large errors if only one step of sketching
described in Equation (2.24) is applied to the whole iteration processes of sLOBPCG. Alternatively,
iterative-sketching attempts to remediate such poor accuracy by applying sketching recursively at each
iteration. That is for each iteration j, we draw a fresh random subspace embedding Θj ∈ Rt×n (rather than
a fixed one Θ) for Span{Rj , Xj}, with constant distortion for the least-square problem (2.25). In this setting,
iterative-sketching costs more than the sketch-and-solve paradigm to achieve better accuracy because of the
repeated sketches of the block vectors at each iteration. Here recall that this iterative-sketching is also
applied to the sketched B-Θ-orthonormalization process described in Section 2.3.1.
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2.3.3. sLOBPCG with the normal Rayleigh-Ritz procedure. If the normal Rayleigh-Ritz (RR)
procedure is applied to sLOBPCG with the aforementioned Section 2.3.1-2.3.2, then the Gram matrix GB

in Equation (2.18) switches back to the dense form in Equation (2.4) because of XT
j ZjB ̸= 0, RT

JWjB ̸= 0,
XT

j WjB ̸= I, RT
j ZjB ̸= I and PT

J QjBJ ̸= I. The Gram matrix GA in sLOBPCG keeps the form in
Equation (2.3). For this sLOBPCG with normal RR procedure applied on the trial subspace Wj defined
in Equation (2.1), if we only consider the first p rows of the computed block eigenvector Y partitioned in
Equation (2.7), we have

(XT
j AXj)YX = (XT

j BXj)(YXΛj+1) (2.26)

with Xj
ΘT

WjB
Θ = (ΘXj)

T (ΘBXj) = Ip and Xj ∈ Rn×p, YX ,Λj+1 ∈ Rp×p. By repeatedly applying
the normal Rayleigh-Ritz process to the trial subspace Wj ∈ Rn×pY (p < pY ≪ n), we aim to refine
Equation (2.26) such that the first p eigenpairs of WT

j AWj ∈ RpY ×pY are as close as possible to those of
A ∈ Rn×n. In other words, these eigenpairs are well approximated through this normal RR process even
with the B-Θ-orthonormal Xj . Note that Equation (2.26) still holds for LOBPCG recalled in Section 2.1
but with XT

j WjB = XT
j BXj = Ip, i.e., the columns of Xj are B-orthonormal.

In the case of sLOBPCG, the trial subspace defined in Equation (2.1) remains full-column rank.
Initially, the columns of the block eigenvecor X0 are B-orthonormal, as in LOBPCG. However, for
subsequent iterations (i.e., j > 1), the columns of the block eigenvecor Xj , block residual Rj and block
search direction Pj become B-Θ-orthonormal, as described in Equation (2.21)-(2.23), respectively.

Furthermore, from Equation (2.21)-(2.25), we observe that six sketching operations are required for
each iteration step. However, if we assume B = I, only three sketching operations are required. That is the
sketching for the block eigenvector, block residual and block search direction, which respectively writes as
Xj

Θ = ΘXj , Rj
Θ = ΘRj , and Pj

Θ = ΘPj . Alternatively, instead of computing all the three sketched
block vectors, we can do one sketching to block residual and then explicitly update the other two sketched
results as

PΘnew
= Rj

ΘYR + Pj
ΘYP , (2.27)

XΘnew
= Xj

ΘYX + PΘnew
, (2.28)

to further reduce the cost caused by applying sketchings. Combining Equation (2.27)-(2.28) with
Equation (2.8)-(2.11), we have the new block vectors required for the next iteration of the sLOBPCG
algorithm. Note that the case for B ̸= I could be similarly derived and is therefore omitted here. The
sLOBPCG algorithm with three (or six when B ̸= I) explicitly sketchings for each iteration step is referred
as sLOBPCGe-s, where the “e-s” means applying explicitly sketching to the six involved block vectors
discussed above. To facilitate the distinction, another sketched variant with one (or two when B ̸= I)
explicit sketching for residuals and other two (or four when B ̸= I) implicit sketchings as described in
Equation (2.27)-(2.28) is denoted as sLOBPCG alternatively.

Theoretically, these two sketched LOBPCG variants, differing in the frequency of applying sketchings
at each iteration step, are mathematically equivalent. Our experiments, however, revealed that the
sLOBPCG variant may be less stable than sLOBPCGe-s in terms of the final required iteration steps. On the
other hand, the sLOBPCG variant is faster than sLOBPCGe-s in terms of implementation time. A similar
observation was made in [4, Remark 2.10] for the randomized Gram-Schmidt process, which can involve
one or two sketching operations per Gram-Schmidt step.

The associated pseudocode of sLOBPCGe-s and sLOBPCG are respectively presented in Algorithm 2
and Algorithm 3 with the dense Gram matrices in form (2.3) and (2.4) and with the soft-locking strategy
discussed in Section 2.1.3.

According to Section 2.1.1-2.1.2 of LOBPCG and Section 2.3.1-2.3.3 of sLOBOCG variants,
we know that the Cholesky decomposition (simplified as chol(·)), the Gram-Schmidt (GS) process,
like the classical GS (simplified as CGS(·)), the modified GS (simplified as MGS(·)), and the
randomized GS (simplified as RGS(·)) can be used for the orthonormalization processes of related block
vectors. For easy comparison, we summarize the orthonormalization processes of LOBPCG and sLOBPCG
variants as follows:

• LOBPCG:
– B-orthogonalization of Xj , Rj , Pj in Section 2.1.1: chol(·), CGS(·), MGS(·);
– B-orthogonalize Rj to Xj Section 2.1.2: CGS(·), MGS(·);
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Algorithm 2 sLOBPCGe-s: sketched LOBPCG algorithm with Rayleigh-Ritz (RR) procedure and explicitly
computed sketched vectors
Require: As the Require described in the Algorithm 1, and set a sketch matrix Θ ∈ Rt×n (t =

min(n, 2mlog(n)/log(m), 3 × m), here the m is the length of the search space), the sketched inner
vector products as (X,Y )Θ = (XΘ, Y Θ), and define the B-Θ-orthonormalized X as (X,BX)Θ = I

1: Step 1-5 of the Algorithm 1
2: for j = 1, 2, . . . ,MaxIterations: do
3: Step 7-11 of the Algorithm 1
4: Compute the sketched active eigenvector Xj

Θ, and WjB
Θ, and then B-Θ-orthonormalize Xj (s.t.,

(Xj ,WjB)Θ = I) as process in Equation (2.21) in Section 2.3.1
5: B-Θ-orthogonalize the preconditioned active residuals to Xj

Θ as Equation (2.25) in Section 2.3.2
6: Compute ZjBJ as ZjBJ = BRjJ , compute the sketched preconditioned active residuals RjJ

Θ and
ZjBJ

Θ, and then B-Θ-orthonormalize RjJ (s.t., (RjJ , ZjBJ)Θ = I) as process in Equation (2.22)
in Section 2.3.1. Compute ZjAJ : ZjAJ = ARjJ

7: if j > 1 then
8: Compute the sketched active residuals PjJ

Θ and QjBJ
Θ, and then B-Θ-orthonormalize PjJ (s.t.,

(PjJ , QjBJ)Θ = I) as process in Equation (2.23) in Section 2.3.1
9: end if

/* Perform the RR Procedure for the pencil A − BΛ in the B-orthonormalized and B-Θ-
orthonormalized subspace: Wj = Span{Xj , RjJ , PjJ} ∈ Rn×pY (pY = p + pRjJ

+ pPjJ
≪ n)

to compute/update the Ritz values Λ and the corresponding Ritz vectors X. */
10: Compute symmetric Gram matrices of size RpYJ

×pYJ (pYJ
equals to p+ pRJ

+ pPJ
or p+ pRJ

):
11: if j > 1 then
12: GA ∈ RpY ×pY in Equation (2.3) and GB ∈ RpY ×pY in Equation (2.4) with J for columns of RjJ

and PjJ
13: else
14: With J for columns of RjJ , GA =

[
(Xj ,WjAJ) (Xj , ZjAJ)
(RjJ ,WjAJ) (RjJ , ZjAJ)

]
∈ R(p+pRjJ

)×(p+pRjJ
),

GB =

[
(Xj ,WjBJ) (Xj , ZjBJ)
(RjJ ,WjBJ) (RjJ , ZjBJ)

]
∈ R(p+pRjJ

)×(p+pRjJ
)

15: end if
16: Solve the generalized eigenvalue problem: GAY = GBY Λj+1, where the first p eigenvalues in

increasing order are in the diagonal matrix Λj+1 ∈ Rp×p, and the GB-orthonormalized eigenvectors
are the columns of Y (i.e., (Y,GB Y ) = I, (Y,GA Y ) = Λj+1)
/* Update Ritz vectors and the recycling tall matrices: */

17: if j > 1 then
18: Partition Y ∈ RpYJ

×p as form (2.7) according to the number of columns in Xj , RjJ , and PjJ
19: Update Pj+1 = RjJYR+PjJYP ; Qj+1A = ZjAJYR+QjAJYP ; Qj+1B = ZjBJYR+QjBJYP

20: Update Xj+1 = XjYX + Pj+1; Wj+1A = WjAYX +QAj+1; Wj+1B = WjBYX +QBj+1

21: else
22: Partition Y =

[
YX

YR

]
∈ R(p+pRjJ

)×p according to the number of columns in X , RJ

23: Update Pj+1 = RjJYR; Qj+1A = ZjAJYR; Qj+1B = ZjBJYR

24: Update Xj+1 = XjYX + Pj+1; Wj+1A = WjAYX +QjA; Wj+1B = WjBYX +QjB

25: end if
26: end for
27: return the approximations Λj+1 and Xj+1 to the smallest eigenvalues and corresponding eigenvectors

• sLOBPCG variants with normal Rayleigh-Ritz procedure:
– B-Θ-orthogonalization Xj Rj , Pj in Section 2.3.1: chol(·), RGS(·);
– B-Θ-orthogonalize Rj to Xj Section 2.3.2: RGS(·).

2.3.4. Comparison with LOBPCG in terms of the flops within a single iteration. For comparison
with LOBPCG in terms of computational cost, Table 2.1 describes the difference between LOBPCG and
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Algorithm 3 sLOBPCG: Variant of sLOBPCGe-s with RR and implicitly computed sketched vectors
Require: As the Require described in the Algorithm 2

1: Step 1-5 of the Algorithm 1
2: Compute X1

Θ = ΘX1, W1B
Θ = ΘW1B ∈ Rt×p

3: Define the index set J of active iterates to be {1, ..., p}
4: for j = 1, 2, . . . ,MaxIterations: do
5: Step 7-11 of the Algorithm 1
6: B-Θ-orthonormalize Xj (s.t., (Xj ,WjB)Θ = I) as process in Equation (2.21) in Section 2.3.1
7: Compute the sketched preconditioned active residuals RjJ

Θ = ΘRjJ , and then B-Θ-
orthogonalize preconditioned active residuals RjJ to subspace Xj

Θ: compute RjJ
Θ = RjJ

Θ −
Xj

Θ(WjB
Θ, RjJ

Θ), and update RjJ = RjJ −Xj(WjB
Θ, RjJ

Θ)
8: Compute ZjBJ as ZjBJ = BRjJ , and sketch ZjBJ as ZjBJ

Θ = ΘZjBJ , and then B-Θ-
orthonormalize RjJ (s.t., (RjJ , ZjBJ)Θ = I) as process in Equation (2.22) in Section 2.3.1. Update
RjJ

Θ = RjJ
Θ T−1, ZjBJ

Θ = ZjBJ
Θ T−1 and compute ZjAJ : ZjAJ = ARjJ

9: if j > 1 then
10: B-Θ-orthonormalize PjJ (s.t., (PjJ , QjBJ)Θ = I) as process in Equation (2.23) in Section 2.3.1.

Update PjJ
Θ = PjJ

Θ T−1, QjB
Θ = QjB

Θ T−1, QjAJ
Θ = QjAJ

Θ T−1

11: end if
12: Step 10-15 of Algorithm 2: Perform the RR Procedure to solve a generalized eigenvalue problem

/* Update Ritz vectors and the recycling tall matrices: */
13: if j > 1 then
14: Partition Y ∈ RpYJ

×p as form (2.7) according to the number of columns in Xj , RjJ , and PjJ
15: Compute and store Pj+1

Θ = RjJ
ΘYR+PJ

ΘYP , Qj+1B
Θ = ZjBJ

ΘYR+QjBJ
ΘYP (for Step 8-

10); Xj+1
Θ = Xj

ΘYX + Pj+1
Θ, Wj+1B

Θ = WjB
ΘYX +Qj+1B

Θ (for Step 6)
16: Update Pj+1 = RjJYR+PjJYP , Qj+1A = ZjAJYR+QjAJYP , Qj+1B = ZjBJYR+QjBJYP

17: Update Xj+1 = XjYX + Pj+1, Wj+1A = WjAYX +Qj+1A, Wj+1B = WjBYX +Qj+1B
18: else
19: Partition Y =

[
YX

YR

]
∈ R(p+pRjJ

)×p according to the number of columns in Xj and RjJ

20: Compute and store Pj+1
Θ = RjJ

ΘYR, Qj+1B
Θ = ZjBJ

ΘYR (for Step 8-10); Xj+1
Θ =

Xj
ΘYX , Wj+1B

Θ = WjB
ΘYX (for Step 6)

21: Update Pj+1 = RjJYR; Qj+1A = ZjAJYR; Qj+1B = ZjBJYR

22: Update Xj+1 = XjYX + Pj+1, Wj+1A = WjAYX +Qj+1A, Wj+1B = WjBYX +Qj+1B
23: end if
24: end for
25: return the approximations Λj+1 and Xj+1 to the smallest eigenvalues and corresponding eigenvectors

sLOBPCG in terms of the floating-point operations and stored vectors within a single iteration step. From
Table 2.1 we noticed that the sLOBPCG variant with normal Rayleigh-Ritz procedure requires more flops
than LOBPCG within one iteration. The extra cost mainly comes from sketching, which includes the cost
of constructing a sketching matrix and further applying it to the block vectors. For this, some block SRHT
variants have been devised in [3] for parallel computing to further reduce the sketching cost. We emphasize
that the main focus of the current work is to discuss the details of realizing sLOBPCG. However, its parallel
implementation with this block SRHT technique [3] should be considered in the future. Additionally, this
extra cost arises from the fact that we cannot leverage the sketched orthogonalization properties to simplify
certain matrix-matrix multiplications when constructing the Gram matrix GB as shown in Equation (2.4).

Furthermore, we observed that the computational flops cost for the LOBPCG and sLOBPCG variants
is roughly the same for each iteration, provided we do not account for the inevitable cost introduced by
sketching. Generally, one can expect that the benefits of sketching, do parts of implementations in a
lower-dimension subspace rather than in the original high-dimension space, can offset this inescapable
sketching cost. This expectation holds true when sketching is applied to algorithms with long-term
recurrence, such as the GMRES-type methods considered in [4, 5, 13], where the sketched vectors (used
once or twice) contribute to multiple matrix-matrix multiplications, least-squares problems, or projection
tasks in each iteration. Additionally, we hope that the sketched orthogonalization property (as opposed to the
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standard orthogonalization) can be “recyclable” for subsequent computations. However, these discussions
are not always true for algorithms with short-term recurrence [34], like the conjugate gradient typed methods
considered in this work. Based on these trade-offs and the total computational flops cost for each iteration,
we conclude that applying dimension reduction sketching techniques is more advantageous for algorithms
with long-term recurrence, rather than those with short-term recurrence, even if both types of randomized
variants can converge.

TABLE 2.1
The difference between LOBPCG and sLOBPCG variants with normal Rayleigh-Ritz (RR) procedure in terms of

the floating-point operations (or flops) and stored and updated vectors within a single iteration step.

LOBPCG + RR floating-point operations (⊥ + chol/CGS/MGS) stored vectors

R ⊥ WjB : (4n− 1)p2

do chol/CGS/MGS as :
chol((Xj ,WjB)) : (4n− 1)p2

chol((RJ , ZjBJ)) : (4n− 1)p2

chol((PJ , QjBJ)) : (4n− 1)p2

RT
JWjB = 0 : 0

XT
j WjA = Λj : 0

XT
j WjB = I : 0

RT
JZjBJ = I : 0

PT
J QjBJ = I : 0

Whole flops: (16n− 3)p2 = O(np2)

Update : X,P
WjA, QjA

WjB , QjB

sLOBPCG + RR floating-point operations (⊥Θ + chol/RGS) stored vectors

RΘ, ZjB
Θ : 2nplog2(t+ 1) [7]

R ⊥Θ WjB : (2n+ 2t− 1)p2

do chol/RGS as :
chol((Xj

Θ,WjB
Θ)) : (2n+ 2t− 1)p2

chol((RJ
Θ, ZjBJ

Θ)) : (2n+ 2t− 1)p2

chol((PJ
Θ, QjBJ

Θ)) : (2n+ 2t− 1)p2

RT
JWjB ̸= 0 : (2n− 1)p2

XT
j WjA ̸= Λj : (2n− 1)p2

XT
j WjB ̸= I : (2n− 1)p2

RT
JZjBJ ̸= I : (2n− 1)p2

PT
J QjBJ ̸= I : (2n− 1)p2

Whole flops:
(18n+ 8t− 9)p2+
O(nplog2(t+ 1))
= O(np2 + nplog2(t+ 1))

Update : X,P
WjA, QjA

WjB , QjB

Update : XΘ,WjB
Θ

PΘ, QjB
Θ

2.3.5. Convergence analysis. Currently, there is no established theory to accurately predict the
convergence rate of the LOBPCG algorithm [17], which similarly makes predicting the convergence speed
of the sLOBPCG algorithm equally challenging. Given the LOBPCG variants belongs to the category
of gradient-based methods for the eigenvalue problem, thus, we can use the known and well-developed
convergence theory of the latter methods to approximate convergence rate of the former methods.
For example, see the results by Neymeyr [24–26] for the theoretical convergence rate of the block
preconditioned inverse iterations for computing single and multiple eigenpairs. In short, we do not prove
any new theoretical convergence rate results for the sLOBPCG algorithm, but as the remedy Knyazev did
for LOBPCG [17, Section 7 and 8]: the numerical comparisons are used to illustrate that the sLOBPCG is
as efficient as LOBPCG.

Assume the convergence threshold is denoted as a given parameter ϵ, the stopping criterion for the
eigenpairs (Λj , Xj) (with Λj = Diag(λ(1)

j , . . . , λ
(p)
j ) ∈ Rp×p, Xj = [x

(1)
j , . . . , x

(p)
j ] ∈ Rn×p) of the

eigenvalue problem (1.1) considered in this work is based on the Eucledian norm of the columns of block
residual

η(λ
(i)
j , x

(i)
j ) = ∥Rj(:, i)∥ = ∥Ax

(i)
j − x

(i)
j λ

(i)
j ∥ ≤ ϵ for all i = 1, 2 . . . , p (2.29)
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or its scaled version

η(λ,x)(λ
(i)
j , x

(i)
j ) =

∥Ax
(i)
j − x

(i)
j λ

(i)
j ∥

∥x(i)
j λ

(i)
j ∥

≤ ϵ. (2.30)

The corresponding Estimated eigenvalue errors is formed as

η(λ
(i)
j ) = |Λk(:, i)− Λj(:, i)| = |λ(i)

k − λ
(i)
j | with k = 1, 2, . . . , j − 1. (2.31)

2.3.6. Further remarks on sLOBPCG with the sketched Rayleigh-Ritz procedure. Comparing
to Section 2.3.3, in this section, we discuss the situation of applying the sketched Rayleigh-Ritz (sRR)
projection defined in Definition 5 to Knyazev’s LOBPCG method.

DEFINITION 5 (Sketched Rayleigh-Ritz projection). Consider a trial subspace W of Rn. Given two
general nonsingular matrices A,B ∈ Rn×n, a sketching matrix Θ ∈ Rt×n(t ≪ n), a scale λ ∈ R,
and a vector y ∈ W , we see that (λ, y) is a Rayleigh-Ritz pair of the pencil ΘTΘ(A − λB), a low-rank
approximation of A− λB, with respect to the space W if and only if

Ay − λBy ⊥Θ W

or equivalently,

∀w ∈ Range(W) (wΘ)T (Ay − λBy)Θ = 0 or wT ΘTΘ(Ay − λBy) = 0.

The vector y is a Rayleigh-Ritz vector associated with the Rayleigh-Ritz value λ.
Based on Definition 5 and the processes described in Section 2.3.1-2.3.3, the generalized eigenvalue

problem of sLOBPCG with sRR and trial subspace Wj in Equation (2.1) can be written as

GA
sRRY = GB

sRRY Λj+1

with

GA
sRR =

 Λj (Xj
Θ, ZjA

Θ) (Xj
Θ, QjA

Θ)
(Rj

Θ,WjA
Θ) (Rj

Θ, ZjA
Θ) (Rj

Θ, QjA
Θ)

(Pj
Θ,WjA

Θ) (Pj
Θ, ZjA

Θ) (Pj
Θ, QjA

Θ)

 ∈ RpY ×pY ,

GB
sRR =

 I 0 (Xj
Θ, QjB

Θ)
0 I (Rj

Θ, QjB
Θ)

(Pj
Θ,WjB

Θ) (Pj
Θ, ZjB

Θ) I

 ∈ RpY ×pY ,

and Y ∈ RpYJ
×p with the form shown in Equation (2.7). Then the new eigenvectors for next iteration are

updated as (XΘ)new = (ΘX)new = Θ[Xj , Rj , Pj ]Y and Xnew = [Xj , Rj , Pj ]Y.
If one only consider the first p rows of Y partitioned in Equation (2.7), we have

(XT
j Θ

TΘAXj)YX = YXΛj

for the sLOBPCG with sRR. Thus repeat above sRR process and update equation with information of the
first p columns, it will be some eigenvalues of WT

j Θ
TΘAWj ∈ RpY ×pY to approximate some eigenvalues

of ΘTΘA ∈ Rn×n rather than the original matrix A ∈ Rn×n. Even ΘTΘA could be viewed as a low-rank
approximation of A, their similarity closely depends on the random sketching.

To distinguish the previously discussed sLOBPCG method with the normal Rayleigh-Ritz (RR)
procedure, we use the abbreviation sLOBPCG+sRR to represent the sLOBPCG method that incorporates
a sketched RR procedure, as discussed in this section. Numerical tests reveal that in the early stages
of iteration, the convergence curves of the residual norms for sLOBPCG+sRR overlap with those of the
deterministic LOBPCG and randomized sLOBPCG methods. However, once the accuracy reaches a certain
threshold, the LOBPCG and sLOBPCG methods continue to improve with additional iterations. In contrast,
the sLOBPCG+sRR method experiences stagnation. This stagnation prevents sLOBPCG+sRR from
achieving higher accuracy and ultimately causes it to fail in approximating the eigenpairs of the original
problem to the desired precision. Due to these observations, we exclude the results of sLOBPCG+sRR
from the subsequent numerical sections. When referring to the use of sLOBPCG variants in the following
discussions, it specifically indicates the sLOBPCG method employing the normal RR procedure.
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3. Numerical experiments. In the following sections, we present various numerical aspects of the
novel sLOBPCG algorithm. For simplicity, we exclusively consider the normal eigenvalue problem as
exemplified in the numerical sections of [17], that is Equation (1.1) with matrix B = I . To facilitate
comparisons, we also include results obtained using the deterministic LOBPCG method [17]. We evaluate
the performance of these algorithms based on two key metrics: the number of iteration steps (#iter) and
the CPU time (#time(s)) required for convergence. To illustrate the potential benefit of sLOBPCG when
compared to LOBPCG, in some experiments we also plot the convergence history of the eigenpairs errors
along the iteration steps. This includes the Eucledian norm of the columns of the block residual η(λ(i)

j , x
(i)
j )

described in Equation (2.29) or its scaled one η(λ,x)(λ
(i)
j , x

(i)
j ) in Equation (2.30), and the estimated

eigenvalue errors η(λ
(i)
j ) shown in Equation (2.31) with j = 1, 2, . . . ,md, and md is the final value of

the consumed #iter of the involved block methods. Moreover, we may also plot out the convergence
history of the approximated eigenvalues [λ(1)

j , . . . , λ
(p)
j ], and the condition number of the trail space Wj in

Eucledian norm along the iteration step. For simplicity, we set Cond.-W = cond(Wj , 2) where cond(·)
refers to a function to compute the condition number.

The default experimental settings are as follows: the block initial eigenvector X0 = randn(n, p) =
[x(1), x(2), . . . , x(p)] ∈ Rn×p is constructed with p randomly generated linearly independent vectors, and p
is the number of clustered eipenparis to be computed. The sketching matrix is an SRHT matrix Θ ∈ Rt×p

with sketching dimension t = 3× tW , where tW = 3× p refers to the maximal length of the trail subspace
Wj with soft-locking strategy illustrated in Section 2.1.3. In this case, the sketching dimension t depends
solely on the block size p and is independent of the size of the coefficient matrix n. Note that other setting
of the sketching dimension works as well, such as t = 2 × tW × log(n)/log(tW) used in [4] for the
randomized Gram-Schmidt (RGS) process. For this case, the sketching dimension t is related to both p and
log(n). Unless otherwise noted, the number of clustered eigenpairs is set to p = 10, the maximum iterations
maxIters is 50000, and the convergence threshold is ϵ = 10−4. Generally, we stop the algorithm when
the residual norm satisfying max

i=1,...,p
η(λ

(i)
j , x

(i)
j ) ≤ ϵ or when #iter reaches maxIters. We may also use

scaled residual norm max
i=1,...,p

η(λ,x)(λ
(i)
j , x

(i)
j ) ≤ ϵ as the stopping criterion for some cases.

Based on the B-orthogonalization strategies for the LOBPCG and sLOBPCG variants discussed at
the end of Section 2.3.3, we observe that there are multiple approaches for achieving B-orthogonalization
of the columns of Xj , Rj , Pj , as well as for implementing the B-orthogonalization of Rj with respect to
Xj . Numerical results show that the performance of involved solvers employing these different strategies is
similar to each other. Below, we summarize the default B-orthonormalization strategies used in this section:

• LOBPCG:
– B-orthogonalization of Xj , Rj , Pj in Section 2.1.1: chol(·);
– B-orthogonalize Rj to Xj Section 2.1.2: CGS(·);

• sLOBPCG variants with normal Rayleigh-Ritz procedure:
– B-Θ-orthogonalization Xj , Rj , Pj in Section 2.3.1: chol(·);
– B-Θ-orthogonalize Rj to Xj Section 2.3.2: RGS(20reorth)(·).

The experiments have been carried out on the CLEPS 2 system by MATLAB (R2021b) with hardware
setting as 2x Cacade Lake Intel Xeon 5218 16 cores, 2.4GHz, 6 GB RAM. Numerical experiments are
carried out on a set of symmetric positive definite (denoted as SPD) and symmetric but not positive
definite (denoted as SYS) matrices downloaded from the University of Florida SuiteSparse Matrix
Collection [9]. Following the test examples used in [17], we also consider a self-defined SYS matrix
of size n = 10000; we denote it as Matrix1. It is composed by the addition of two sparse SYS
matrices generated by two MATLAB built-in functions. To be specific, Matrix1 = spdiags([1 :
n]′, 0, n, n)+sprandsym(n, .1), where spdiags(·) refers to a sparse matrix formed from diagonals, and
the sprandsym(·) means a sparse random symmetric matrix. The main features of these SPD and SYS are
respectively described in Table 3.1 and Table 3.2, where notation “-” refers to the information is unavailable
from the SuiteSparse Matrix Collection website. As a supplement to testing examples from industry, we
also consider a sequence of sparse SYS Hamiltonian matrices [12] derived from molecular simulations in
quantum chemistry. Information of these large sparse SYS Hamiltonian matrices is presented in Table 3.8.

2https://paris-cluster-2019.gitlabpages.inria.fr/cleps/cleps-userguide/index.html

https://paris-cluster-2019.gitlabpages.inria.fr/cleps/cleps-userguide/index.html
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TABLE 3.1
Main characteristics of the symmetric positive definite (denoted as SPD here) matrices

Name n Nonzero Nonzero / n2 Origin* Cond. number

af shell3 504,855 17,562,051 6.8904e-05 Sub. Stru. Prob. -
apache1 80,800 542,184 8.3047e-05 Stru. Prob. -
bodyy4 17,546 121,550 3.9482e-04 Stru. Prob. 8.06e+02
bodyy5 18,589 128,853 3.7289e-04 Stru. Prob. 7.87e+03
bodyy6 19,366 134,208 3.5785e-04 Stru. Prob. 769e+04
boneS01 127,224 5,516,602 3.4083e-04 Model Redu. Prob. -
bundle1 10,581 770,811 0.0069 Comp. Grap./Vis. Prob. 1.00e+03
cant 62,451 4,007,383 0.0010 2D/3D Prob. -
cbuckle 13,681 676,515 0.0036 Stru. Prob. 3.29e+07
cfd1 70,656 1,825,580 3.6568e-04 CFD Prob. -
cfd2 123,440 3,085,406 2.0249e-04 CFD Prob. -
crystm02 13,965 322,905 0.0017 Mat. Prob. 2.504738e+02
crystm03 24,696 583,770 9.5717e-04 Mat. Prob. 2.640325e+02
Dubcova1 16,129 253,009 9.7257e-04 2D/3D Prob. 9.97e+02
Dubcova2 65,025 1,030,225 2.4365e-04 2D/3D Prob. -
Dubcova3 146,689 3,636,643 1.6901e-04 2D/3D Prob. -
finan512 74,752 596,992 1.0684e-04 Econ. Prob. -
fv1 9,604 85,264 9.2440e-04 2D/3D Prob. 8.81e+00
fv2 9,801 87,025 9.0595e-04 2D/3D Prob. 8.81e+00
fv3 9,801 87,025 9.0595e-04 2D/3D Prob. 2.03e+03
G2 circuit 150,102 726,674 3.2253e-05 Cir. Sim. Prob. -
Kuu 7,102 340,200 0.0067 Stru. Prob. 1.57e+04
minsurfo 40,806 203,622 1.2229e-04 Opti. Prob. -
msdoor 415,863 19,173,163 1.1086e-04 Stru. Prob. -
nd6k 18,000 6,897,316 0.0213 2D/3D Prob. 1.573206e+07
nd12k 36,000 14,220,946 0.0110 2D/3D Prob. 1.330782e+07
nd24k 72,000 28,715,634 0.0055 2D/3D Prob. -
obstclae 40,000 197,608 1.2350e-04 Opti. Prob. 4.10e+01
Pres Poisson 14,822 715,804 0.0033 CFD Prob. 2.04e+06
pdb1HYS 36,417 4,344,765 0.0033 Weig. Undire. Grag. 3.53e+11
qa8fm 66,127 1,660,579 3.7975e-04 Acos. Prob. -
shallow water1 81,920 327,680 4.8828e-05 CFD Prob. -
shallow water2 81,920 327,680 4.8828e-05 CFD Prob. -
ted B 10,605 144,579 0.0013 Ther. Prob. 1.89e+07
ted B unscaled 10,605 144,579 0.0013 Ther. Prob. 1.27e+11
thermal1 82,654 574,458 8.4087e-05 Ther. Prob. -
torsion1 40,000 197,608 1.2350e-04 Dup. Opti. Prob. 4.10e+01
wathen100 30,401 471,601 5.1027e-04 Rand. 2D/3D Prob. 5.82e+03
wathen120 36,441 565,761 4.2604e-04 Rand. 2D/3D Prob. 2.58e+03

*Structural Problem, Computer Graphics/Vision Problem, Optimization Problem, Model Reduction Problem,
Computational Fluid Dynamics Problem, 2D/3D Problem, Duplicate Optimization Problem, Acoustics Problem,

Random 2D/3D Problem, Subsequent Structural Problem, Circuit Simulation Problem, Weighted Undirected Graph,
Economic Problem, Materials Problem, and Thermal Problem are simplified as Stru. Prob., Comp. Grap./Vis. Prob.,

Opti. Prob., Model Redu. Prob., CFD Prob., 2D/3D Prob., Dup. Opti. Prob., Acos. Prob., Rand. 2D/3D Prob.,
Sub. Stru. Prob., Cir. Sim. Prob., Weig. Undire. Grag., Econ. Prob., Mat. Prob., and Ther. Prob., respectively.

3.1. Influence of the value of the sketching dimension. In this section, we investigate how the value
of sketching dimension t in the SRHT matrix Θ affects the performance and robustness of the proposed
sLOBPCG variants. Except for the default numerical setting described above (i.e., 3×tW with tW = 3×p, a
commonly sketching dimension bound used in RandNLA), the testing sketching dimension t for sLOBPCG
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TABLE 3.2
Main characteristics of the symmetric but not positive definite (denoted as SYS here) matrices

Name n Nonzero Nonzero / n2 Origin* Cond. number

3dtube 45,330 3,213,618 0.0016 CFD Prob. -
af shell1 504,855 17,562,051 6.8904e-05 Stru. Prob. Seq. -
barth5 15,606 61,484 2.5245e-04 Dup. Stru. Prob. 5.85e+10
brainpc2 27,607 179,395 2.3538e-04 Opti. Prob. 4.46e+04
bratu3d 27,792 173,796 2.2501e-04 2D/3D Prob. 5.92e+02
copter1 17,222 211,064 7.1162e-04 CFD Prob. 9.63e+03
c-55 32,780 403,450 3.7547e-04 Opti. Prob. 4.74e+08
darcy003 389,874 2,097,566 1.3800e-05 2D/3D Prob. -
d pretok 182,730 1,641,672 4.9166e-05 2D/3D Prob. -
ecology1 1,000,000 4,996,000 4.9960e-06 2D/3D Prob. -
F1 343,791 26,837,113 2.2706e-04 Stru. Prob. -
fcondp2 201,822 11,294,316 2.7728e-04 Stru. Prob. -
gearbox 153,746 9,080,404 3.8415e-04 Stru. Prob. -
gupta1 31,802 2,164,210 0.0021 Opti. Prob. Inf
helm2d03 392,257 2,741,935 1.7820e-05 2D/3D Prob. -
helm3d01 32,226 428,444 4.1255e-04 2D/3D Prob. 2.45e+05
ins2 309,412 2,751,484 2.8740e-05 Opti. Prob. -
k1 san 67,759 559,774 1.2192e-04 2D/3D Prob. -
kkt power 2,063,494 12,771,361 2.9994e-06 Opti. Prob. -
Lin 256,000 1,766,400 2.6953e-05 Stru. Prob. -
lp1 534,388 1,643,420 5.7549e-06 Opti. Prob. -
Matrix1 10,000 9,526,450 0.0953 self-defined 6.34e+04
mario001 38,434 204,912 1.3872e-04 2D/3D Prob. 1.87e+04
mario002 389,874 2,097,566 1.3800e-05 2D/3D Prob. -
nemeth01 9,506 725,054 0.0080 T/QC Prob. 1.40e+02
nlpkkt200 16,240,000 440,225,632 1.6692e-06 Opti. Prob. -
onera dual 85,567 419,201 5.7255e-05 Stru. Prob. -
pct20stif 52,329 2,698,463 9.8544e-04 Stru. Prob. -
pkustk03 63,336 3,130,416 7.8037e-04 Stru. Prob. -
qa8fk 66,127 1,660,579 3.7975e-04 Acou. Prob. -
rajat06 10,922 46,983 3.9386e-04 Cirt Sim Prob. 6.35e+02
rajat07 14,842 63,913 2.9014e-04 Cirt Sim Prob. 7.89e+02
rajat09 24,482 105,573 1.7614e-04 Cirt Sim Prob. 1.23e+03
rajat10 30,202 130,303 1.4285e-04 Cirt Sim Prob. 1.31e+03
saylr4 3,564 22,316 0.0018 CFD Prob. 6.86e+06
struct3 53,570 1,173,694 4.0899e-04 Stru. Prob. -
tandem vtx 18,454 253,350 7.4394e-04 Stru. Prob. 1.68e+05
tuma1 22,967 87,760 1.6638e-04 2D/3D Prob. 3.07e+03
tuma2 12,992 49,365 2.9246e-04 2D/3D Prob. 1.70e+03
turon m 189,924 1,690,876 4.6876e-05 2D/3D Prob. -

*Abbreviation T/QC Prob., Cirt Sim Prob., Stru. Prob. Seq., Dup. Stru. Prob., refers to Theoretical/Quantum Chemistry
Problem, Circuit Simulation Problem, Structural Problem Sequence, Duplicate Structural Problem, respectively.

is also set as t = tW , l, 2× l, 3× l, 5× l with l = 2× tW × log(n)/log(tW) (the sketching dimension bound
defined in [4]). With these numerical settings, for illustration purpose, the numerical results for solving the
eigenpairs of the self-defined Matrix1 and an SPD matrix wathen120 by LOBPCG and sLOBPCG variants
with different t are depicted in Table 3.3. Within Table 3.3, notation “∗” indicates that the convergence
based on the residual norm max

i=1,...,p
η(λ

(i)
j , x

(i)
j ) ≤ ϵ was not met.

For this example, no significant impact on performance is observed with an increase in the sketching
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TABLE 3.3
Numerical results of LOBPCG variants with different sketching dimension t in terms of #iter and #time(s) for

the self-defined symmetric Matrix1 with the p = 10 eigenpairs to be computed. Here l = 2 × tW × log(n)/log(tW),
tW = 3× p, ϵ = 10−4, and the“∗” indicates that the algorithm diverges.

#
t / t

Matrix (SPD / SYS) Method #iter #time(s)

p : 10 / 10 wathen120 / Matrix1
sLOBPCGe-s ∗ / ∗ ∗ / ∗
sLOBPCG ∗ / ∗ ∗ / ∗

tW : 30 / 30 wathen120 / Matrix1
LOBPCG 339 / 1226 15.3545 / 45.4359
sLOBPCGe-s 325 / 1226 36.5405 / 66.8635
sLOBPCG 339 / 684 22.3644 / 33.4502

3× tW : 90 / 90 wathen120 / Matrix1
LOBPCG 339 / 1226 16.893 / 51.2093
sLOBPCGe-s 343 / 707 38.6099 / 49.1428
sLOBPCG 333 / 814 22.629 / 38.6313

l : 186 / 163 wathen120 / Matrix1
LOBPCG 339 / 1226 15.9744 / 47.001
sLOBPCGe-s 442 / 589 43.9464 / 44.7617
sLOBPCG 284 / 549 20.749 / 35.1521

2× l : 372 / 326 wathen120 / Matrix1
LOBPCG 339 / 1226 15.7819 / 45.7408
sLOBPCGe-s 331 / 615 35.7045 / 45.0125
sLOBPCG 331 / 692 22.3746 / 34.7217

3× l : 558 / 489 wathen120 / Matrix1
LOBPCG 339 / 1226 15.836 / 48.9274
sLOBPCGe-s 294 / 920 35.447 / 56.6996
sLOBPCG 427 / 1079 25.4063 / 46.2687

5× l : 930 / 815 wathen120 / Matrix1
LOBPCG 339 / 1226 15.4633 / 45.2971
sLOBPCGe-s 341 / 620 37.4333 / 44.6228
sLOBPCG 335 / 709 23.4066 / 36.7186

dimension t, as long as it exceeds the required lower bound for the sketching dimension (i.e., t ≥
min(tW , l)). With a reasonable sketching dimension, it can be observed that the sketched LOBPCG
variants, including sLOBPCGe-s and sLOBPCG, are capable of computing the required eigenpairs as
efficient as the deterministic LOBPCG algorithm. Moreover, extensive numerical results demonstrate a
high probability that the sLOBPCG variants (significantly) reduce the computational cost of #iter, which
in turn leads to a further reduction in the overall computational cost #time(s). It is also noticed that the
performance of sLOBPCGe-s and sLOBPCG is similar to each other in terms of #iter, while sLOBPCGe-s
requires more #time(s). This is because each iteration of sLOBPCGe-s requires three sketchings, whereas
sLOBPCG only requires one. Additionally, the #time(s) cost associated with performing sketching can
be non-negligible.

As discussed in Section 2.2, how to reduce the cost of constructing a sketching matrix and applying it
to a matrix or vector is an important but also challenging topic in RandNLA. In the remainder of this work,
the sketching dimension is set to t = 3× tW by default. This value depends solely on the block size p and
is independent from the size of the coefficient matrix n.

3.2. Influence of the number of the block size. In this section, we illustrate the interplay between
the number of eigenpairs to be computed and the performance of the LOBPCG variants; we vary
p = 1, 4, 6, 10, 20, 30, 50, 100. The performances in terms of #iter and #time(s) are reported in Table 3.4
to illustrate the numerical results of solving the SPD matrix wathen120 and the self-defined SYS Matrix1
with t = 3 × tW (tW = 3 × p) and ϵ = 10−4. It can be observed that the #time(s) for all block
solvers increase along with the growth of block size p. For explanation we retrospect that all the block
solvers are required to solve a generalized eigenvalue problem GAY = GBY Λ with Gram matrices
GA, GB ∈ RpY ×pY . The pY = 3×p if no partial convergence occurs and satisfying p ≤ pY ≤ 3×p along
iterations. Because of this, we summary that the cost of solving this generalized eigenvalue problem will
gradually dominate the total #time(s) cost with the growth of block size p. When comparing the results of
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solvers with a fixed p, the observations align closely with those in the previous section, that is the sLOBPCG
variants demonstrate efficiency comparable to LOBPCG. And sLOBPCGe-s incurs a higher #time(s) due
to the additional cost of applying sketching to two other block vectors.

A reasonable setting of the block size p should be based on the number of clustered eigenpairs,
which requires priority information about the spectral distribution that is generally not known in advance.
Therefore, in the remainder of this numerical section, we set the block size as p = 10 by default.

TABLE 3.4
Numerical results of LOBPCG variants with different block size p in terms of #iter and #time(s) for two

matrices with different eigenpairs to be computed. Here t = 3× tW , tW = 3× p and ϵ = 10−4.

#
p / t

Matrix (SPD / SYS) Method #iter #time(s)

1 / 9 wathen120 / Matrix1
LOBPCG 591 / 702 6.1978 / 14.5054
sLOBPCGe-s 558 / 703 8.2459 / 14.5169
sLOBPCG 564 / 701 5.2549 / 13.1285

4 / 36 wathen120 / Matrix1
LOBPCG 287 / 882 7.0637 / 23.2731
sLOBPCGe-s 252 / 909 14.2177 / 32.986
sLOBPCG 253 / 805 8.5729 / 24.7395

6 / 54 wathen120 / Matrix1
LOBPCG 324 / 1772 9.6936 / 51.5895
sLOBPCGe-s 354 / 984 23.3955 / 43.4237
sLOBPCG 350 / 704 13.5244 / 29.2783

10 / 90 wathen120 / Matrix1
LOBPCG 339 / 1226 15.6759 / 45.6136
sLOBPCGe-s 359 / 1075 40.6751 / 60.5165
sLOBPCG 340 / 750 23.4286 / 36.7012

20 / 180 wathen120 / Matrix1
LOBPCG 369 / 495 28.6103 / 44.7397
sLOBPCGe-s 349 / 389 67.3797 / 60.1008
sLOBPCG 302 / 600 36.3695 / 61.729

30 / 270 wathen120 / Matrix1
LOBPCG 435 / 798 44.797 / 65.2185
sLOBPCGe-s 426 / 787 111.8627 / 110.1823
sLOBPCG 482 / 860 64.1862 / 87.2924

50 / 450 wathen120 / Matrix1
LOBPCG 808 / 510 100.6285 / 73.899
sLOBPCGe-s 831 / 1033 271.5738 / 189.5917
sLOBPCG 608 / 1023 118.717 / 135.7128

100 / 900 wathen120 / Matrix1
LOBPCG 640 / 477 187.4984 / 112.8754
sLOBPCGe-s 575 / 452 460.4572 / 214.1983
sLOBPCG 543 / 390 266.9136 / 169.0814

3.3. Strategy for the orthonormalization of the columns of the block vector. Based on the
orthonormalization strategies for LOBPCG and sLOBPCG variants outlined at end of Section 2.3.3, we
summarize the various B-orthonormalization strategies to be compared in this section as follows.

• LOBPCG:
– B-orthogonalization of Xj , Rj , Pj in Section 2.1.1: chol(·), MGS(·);
– B-orthogonalize Rj to Xj Section 2.1.2: CGS(·), MGS(·);

• sLOBPCG variants with normal Rayleigh-Ritz procedure:
– B-Θ-orthogonalization Xj , Rj , Pj in Section 2.3.1: chol(·), RGS(·);
– B-Θ-orthogonalize Rj to Xj Section 2.3.2: RGS(·).

Table 3.5 presents the results of using these different orthonormalization strategies for solving
10 eigenpairs of an SPD and and an SYS examples selected from Table 3.1 and Table 3.2, respectively. From
Table 3.5, we noticed that re-orthogonalization processes increase #time(s), but there is no significant
impact on #iter, particularly when the testing matrix is well-conditioned, such as the wathen120 matrix.
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TABLE 3.5
Numerical results of applying different strategies for implementing the B-orthogonalization of the block residual

R to the block eigenvector X (i.e., R ⊥ X) in terms of #iter and #time(s) for an SPD and an SYS matrix with the
p = 10 eigenpairs to be computed. Here t = 3× tW and ϵ = 10−4.

#
R ⊥ X

#
B-orthonormal X,R, P

Matrix Method #iter #time(s)

CGS chol(·) wathen120 LOBPCG 339 16.0072

MGS(2reorth) chol(·) wathen120 LOBPCG 339 21.6917

MGS(5reorth) chol(·) wathen120 LOBPCG 339 23.8801

CGS chol(·) c-55 LOBPCG 2403 87.2743

MGS(2reorth) chol(·) c-55 LOBPCG 2141 100.0005

MGS(5reorth) chol(·) c-55 LOBPCG 1417 95.78591

CGS chol(·) wathen120 LOBPCG 339 17.2895

CGS MGS(2reorth) wathen120 LOBPCG 339 22.6262

CGS MGS(5reorth) wathen120 LOBPCG 339 21.9575

CGS chol(·) c-55 LOBPCG 2403 87.779

CGS MGS(2reorth) c-55 LOBPCG 2014 104.7119

CGS MGS(5reorth) c-55 LOBPCG 1878 120.9614

RGS(5reorth) chol(·) wathen120 sLOBPCGe-s 342 37.1184
sLOBPCG 309 20.8371

RGS(10reorth) chol(·) wathen120 sLOBPCGe-s 306 35.8964
sLOBPCG 341 21.6057

RGS(20reorth) chol(·) wathen120 sLOBPCGe-s 328 36.4628
sLOBPCG 339 22.4108

RGS(5reorth) chol(·) c-55 sLOBPCGe-s 1463 153.2691
sLOBPCG 1619 104.6198

RGS(10reorth) chol(·) c-55 sLOBPCGe-s 1441 148.5389
sLOBPCG 1788 120.8447

RGS(20reorth) chol(·) c-55 sLOBPCGe-s 1293 149.5971
sLOBPCG 1408 97.4648

RGS(20reorth) RGS(5reorth) wathen120
sLOBPCGe-s 442 44.4341
sLOBPCG 311 22.054

RGS(20reorth) RGS(10reorth) wathen120
sLOBPCGe-s 429 44.3073
sLOBPCG 338 24.2958

RGS(20reorth) RGS(20reorth) wathen120
sLOBPCGe-s 301 36.7359
sLOBPCG 327 22.675

RGS(20reorth) RGS(5reorth) c-55
sLOBPCGe-s 3789 285.6189
sLOBPCG 3182 134.4775

RGS(20reorth) RGS(10reorth) c-55
sLOBPCGe-s 1987 182.9228
sLOBPCG 2808 124.9048

RGS(20reorth) RGS(20reorth) c-55
sLOBPCGe-s 1647 164.2125
sLOBPCG 1560 101.1567
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3.4. Influence of the preconditioner. Based on the preconditioning techniques for eigenvalue
problems discussed in [17, Section 2], the preconditioner for solving linear systems is considered in this
section to accelerate the convergence rate of the involved block methods. To be specific, the preconditioner
denoted as M is an approximation of A−1. This corresponds to the shift-and-invert preconditioner
(A − σB)−1 [32, Section 8.1] with zero shift σ = 0, which is usually a reasonable choice if one is
interested in computing the smallest eigenvalues of a symmetric eigenvalue problem [20, Section 4.5.1]
by LOBPCG [19]. For the SPD matrix, we consider an incomplete Cholesky factorization (denoted as
ichol(·)) as preconditioner for the preconditioned LOBPCG and sLOBPCG variants. For the SYS matrix,
we utilize two different preconditioning strategies. The first involves the Jacobi preconditioner, which
is constructed by the diagonal elements of the matrices. Alternatively, we also apply the incomplete LU
factorization, denoted as ilu(·), as a preconditioner.

Numerical results for both block solvers, with and without preconditioning, for solving SPD and SYS
matrices are presented in Table 3.6 and Table 3.7, respectively. Within these two tables, the superscript ∗(i/p)

indicates that i eigenpairs (0 < i ≤ p) out of the whole p have not met the stopping criteria within
the maximum number of iteration steps. The results indicate that a well-defined preconditioner can
enhance performance by reducing #iter and #time(s). However, we also noticed that an improper
preconditioner leads to the inverse situation, as exemplified by the results for nd24k (ichol(·)) and
ecology1 (Jacobi). Given that the definition of an appropriate preconditioner for an unknown
eigenvalue system still remains open [16, 32], for the remainder of this section, we assume that no
preconditioner is applied if the involved solvers can solve the problem effectively without preconditioning.

TABLE 3.6
Apply preconditioning for the involved block solvers for solving some SPD matrices listed in Table 3.1 with p = 10

eigenpairs to be computed, t = 3× tW = 9× p = 90 and ϵ = 10−4. The superscript ∗(i/p) indicates that i eigenpairs
(0 < i ≤ p) out of the whole p have not met the stopping criteria within the maximum number of iteration steps.

Matrix (Prec.)
#iter

LOBPCG / sLOBPCGe-s / sLOBPCG
#time(s)

LOBPCG / sLOBPCGe-s / sLOBPCG

af shell3 (no Prec.) 50000∗(p/p) / 6082 / 9053 57933.9212 / 6799.1055 / 7114.8465
cbuckle (no Prec.) 50000∗(p/p) / 50000∗(p/p) / 50000∗(p/p) 1270.5322 / 2802.4505 / 1769.5211
G2 circuit (no Prec.) 50000∗(1/p) / 33129 / 31790 4979.3799 / 7583.8969 / 4010.305
nd24k (no Prec.) 6137 / 7201 / 8353 1349.0702 / 2287.045 / 1739.8822

af shell3 (ichol(·)) 12979 / 5962 / 15002 6564.0368 / 6181.2708 / 8612.092
cbuckle (ichol(·)) 3517 / 2518 / 3134 62.8518 / 106.8719 / 73.6396
G2 circuit (ichol(·)) 8595 / 7838 / 7288 1841.5461 / 3387.5602 / 1825.1235
nd24k (ichol(·)) 10903 / 7910 / 6383 1780.6359 / 2307.3737 / 1446.8403

TABLE 3.7
Apply preconditioning for the involved block solvers for solving some SYS matrices listed in Table 3.2 with p = 10

eigenpairs to be computed, t = 3× tW = 9× p = 90 and ϵ = 10−4.

Matrix (Prec.)
#iter

LOBPCG / sLOBPCGe-s / sLOBPCG
#time(s)

LOBPCG / sLOBPCGe-s / sLOBPCG

Matrix1 (no Prec.) 1226 / 1237 / 1079 44.5212 / 66.9526 / 45.2689
ecology1 (no Prec.) 2043 / 1919 / 1907 3467.608 / 5365.1941 / 3763.6458

Matrix1 (Jacobi) 23 / 23 / 23 5.4774 / 2.2788 / 2.5094
ecology1 (ilu(·)) 909 / 987 / 797 1734.3426 / 2383.1438 / 1632.5837
ecology1 (Jacobi) 4145 / 14219 / 6470 7487.4844 / 29836.7152 / 8387.2694

3.5. Experiments on a massive large sparce SYS Hamiltonian matrices. In this section, we solve
the eigenvalue problem that arises in molecular simulations. Specifically, we provide a sequence of sparse
matrices, known as Hamiltonian matrices [12], which are symmetric and are derived from processes
describing the electronic properties of molecular systems encountered in quantum chemistry. We use
the LOBPCG and its sketched variants to solve the clustered eigenvalues of the Hamiltonian matrices.
Information about these large sparse symmetric Hamiltonian matrices is listed in Table 3.8. Numerical
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results are reported in Table 3.9, which follow similar observations concluded previously.

TABLE 3.8
Main characteristics of the SYS Hamiltonian matrices from quantum chemistry

Name Matrix n Nonzero Nonzero/n2

Hamiltonian matrix h2o 16,384 860,159 0.0032
Hamiltonian matrix h2oo2 16,384 761,855 0.0028
Hamiltonian matrix h2oQPKG 16,384 860,159 0.0032
Hamiltonian matrix h6 4096 342,015 0.0204
Hamiltonian matrix h10 1,048,576 744,226,815 6.7687e-04

TABLE 3.9
Numerical results of LOBPCG variants large sparce SYS Hamiltonian matrices listed in Table 3.8 with p = 10

eigenpairs to be computed, t = 3× tW = 9× p = 90, and ϵ = 10−4.

Matrix
#iter

LOBPCG / sLOBPCGe-s / sLOBPCG
#time(s)

LOBPCG / sLOBPCGe-s / sLOBPCG

h2o 868 / 634 / 619 12.3161 / 18.5988 / 12.2061
h2oo2 393 / 367 / 349 7.6044 / 14.1727 / 8.9917
h2oQPKG 825 / 628 / 668 11.5608 / 19.5286 / 12.5028
h6 136 / 92 / 135 3.6372 / 1.5948 / 1.5195
h10 96 / 108 / 97 1138.2359 / 1356.1257 / 1199.8351

3.6. Experiments on a massive large sparse SPD and SYS matrices. In this section, a more
exhaustive set of numerical results for solving the massive SPD matrices listed in Table 3.1 and the SYS
matrices in Table 3.2 are reported in Table 3.10 and Table 3.11, respectively. The superscript ∗(i/p) indicates
that there are i eigenpairs (0 < i ≤ p) out of the whole p are not converged within the maximal iteration
maxIters. From the results of af shell3 and G2 circuit showing in Table 3.10, we noticed that the
LOBPCG method fails to solve the problem, but the randomized variants of sLOBPCG can. This exhibits
the diverse advantages of using randomization for the deterministic algorithm. For the additional results of
the SPD examples and SYS cases presented in Table 3.10 and Table 3.11, the observations align closely
with those noted in the previous sections. The convergence histories for some of the listed matrices are
depicted in Figure 3.1 and Figure 3.2. We show the convergence history of the errors of approximated
eigenpairs (including the approximations of eigenvector and eigenvalue). From this, we observed that
the convergence rate for eigenvalues is faster than that for eigenvectors. Additionally, the final achieved
accuracy for eigenvalues is higher than that for eigenvectors.

Refer to Appendix C for the corresponding numerical results with t = 2×tW×log(n)/log(tW), which
is the sketching dimension used in [4] for the randomized Gram-Schmidt process.

4. Concluding remarks. The LOBPCG algorithm stands as one of the state-of-the-art eigensolver. In
this work, we successfully introduced the randomized variant of the LOBPCG algorithm with dimension
reduction techniques, denoted as sLOBPCG, for solving a group of eigenpairs of generalized eigenvalue
problems with symmetric coefficient matrices. Numerical results demonstrate that the sLOBPCG variant
exhibits comparable efficiency to the original LOBPCG method and, in certain instances, surpasses its
performance. Based on the trade-off between the cost of sketching (includes constructing and applying
sketching to vectors) and its benefits from implementing parts of operations in a reduced dimension, we
summary that it is more attractive to apply the sketching to algorithms with long-term recurrence rather
than the ones with short-term recurrence, even if their randomized variants can converge. In the future, the
block SRHT technique proposed in [3] should be considered to further reduce the sketching cost in this
work.
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TABLE 3.10
Numerical results of LOBPCG variants with chol for the B-/B-Θ-orthonormalization in terms of both #iter and

#time(s) for all SPD matrices listed in Table 3.1 with the p = 10 eigenpairs to be computed, t = 3×tW = 9×p = 90

and ϵ = 10−4. The stopping criterion is the residual norm satisfying max
i=1,...,p

η(λi
j , x

(i)
j ) ≤ ϵ.

Matrix
#iter

LOBPCG / sLOBPCGe-s / sLOBPCG
#time(s)

LOBPCG / sLOBPCGe-s / sLOBPCG

af shell3 50000∗(p/p) / 6082 / 9053 57933.9212 / 6799.1055 / 7114.8465
apache1 8377 / 13776 / 15494 725.4148 / 2144.3237 / 1125.8208
bodyy4 3441 / 4091 / 2854 59.2036 / 198.0735 / 87.1804
bodyy5 10461 / 8798 / 8879 277.8127 / 612.168 / 365.6974
bodyy6 33744 / 36912 / 38371 1052.9205 / 2497.139 / 1513.675
boneS01 1807 / 2194 / 1577 303.1483 / 542.8065 / 318.026
cant 14364 / 17469 / 9605 1436.0213 / 2782.1994 / 1310.5358
cfd1 838 / 875 / 807 73.7969 / 174.7589 / 99.9543
cfd2 1816 / 1945 / 1759 454.1249 / 775.8414 / 517.9351
crystm02 1 / 1 / 1 0.24031 / 0.21692 / 0.26383
crystm03 1 / 1 / 1 0.21114 / 0.15974 / 0.61214
cbuckle 50000∗(p/p) / 50000∗(p/p) / 50000∗(p/p) 1270.5322 / 2802.4505 / 1769.5211
Dubcova1 184 / 189 / 184 7.3572 / 11.042 / 7.6365
Dubcova2 289 / 459 / 275 30.765 / 67.5034 / 35.1432
Dubcova3 258 / 292 / 227 53.7701 / 119.4949 / 67.1424
finan512 254 / 252 / 252 29.6269 / 66.274 / 40.9166
fv1 265 / 177 / 215 7.6579 / 10.4277 / 8.1682
fv2 140 / 179 / 171 6.0443 / 10.9361 / 7.3051
fv3 140 / 179 / 172 5.432 / 9.9826 / 6.8936
G2 circuit 50000∗(1/p) / 33129 / 31790 4979.3799 / 7583.8969 / 4010.305
Kuu 548 / 530 / 472 21.0454 / 25.7052 / 19.8174
minsurfo 1013 / 729 / 586 75.2789 / 120.6771 / 72.2686
nd6k 2712 / 2879 / 2447 231.7835 / 372.4913 / 249.8763
nd12k 4550 / 3503 / 3540 561.8281 / 724.5914 / 519.6452
nd24k 6137 / 7201 / 8353 1349.0702 / 2287.045 / 1739.8822
obstclae 556 / 444 / 446 37.4566 / 61.6425 / 41.746
Pres Poisson 2362 / 2686 / 2363 134.0578 / 197.2994 / 145.6456
pdb1HYS 1869 / 6183 / 3116 188.596 / 765.8501 / 315.1882
qa8fm 3 / 3 / 3 0.44156 / 0.7278 / 0.60673
ted B 10 / 10 / 10 0.63915 / 0.85769 / 0.72063
ted B unscaled 2 / 2 / 2 0.14342 / 0.1491 / 0.16716
thermal1 658 / 518 / 585 83.4554 / 150.7551 / 104.6225
torsion1 556 / 483 / 444 43.7442 / 71.6977 / 48.3775
wathen100 779 / 709 / 556 42.752 / 65.6416 / 37.9989
wathen120 339 / 427 / 305 28.4786 / 61.8549 / 33.9339
bundle1 16309 / 14296 / 16821 401.0694 / 595.0596 / 418.2936
shallow water1 713 / 664 / 731 50.2168 / 101.6753 / 56.5922
shallow water2 997 / 913 / 1185 122.8057 / 171.1286 / 117.3148

*Note that the scaled residual norm max
i=1,...,p

η(λ,x)(λ
(i)
j , x

(i)
j ) ≤ ϵ is considered as stopping criterion for matrices

bundle1, shallow water1 and shallow water2.
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TABLE 3.11
Numerical results of LOBPCG variants with chol for the B-/B-Θ-orthonormalization in terms of both #iter and

#time(s) for all SYS matrices listed in Table 3.2 with p = 10 eigenpairs to be computed, t = 3× tW = 9× p = 90,
and ϵ = 10−4. The stopping criterion is the residual norm satisfying max

i=1,...,p
η(λ

(i)
j , x

(i)
j ) ≤ ϵ.

Matrix
#iter

LOBPCG / sLOBPCGe-s / sLOBPCG
#time(s)

LOBPCG / sLOBPCGe-s / sLOBPCG

af shell1 50000∗(1/p) / 45669 / 49890 46236.8526 / 58860.5633 / 45243.2796
3dtube 521 / 1715 / 528 24.0123 / 111.8016 / 26.0017
barth5 263 / 296 / 299 4.6726 / 10.9263 / 7.021
bratu3d 312 / 327 / 248 6.5796 / 16.2949 / 7.8658
copter1 309 / 358 / 358 5.1692 / 16.5143 / 8.8232
c-55 2403 / 1330 / 1523 83.6103 / 157.9857 / 101.2861
darcy003 574 / 573 / 572 224.7753 / 410.7608 / 254.6734
d pretok 16536 / 16137 / 16041 3492.2297 / 6793.8573 / 4194.3284
ecology1 2043 / 1919 / 1907 3467.608 / 5365.1941 / 3763.6458
fcondp2 287 / 224 / 294 67.205 / 104.6558 / 83.3067
gearbox 137 / 140 / 178 36.8404 / 70.1701 / 51.4123
gupta1 68 / 68 / 68 2.4068 / 4.5253 / 2.9053
helm3d01 84 / 84 / 84 3.0172 / 5.7852 / 3.7592
helm2d03 627 / 639 / 711 304.2885 / 535.891 / 383.51
ins2 21 / 22 / 21 7.1605 / 14.6576 / 8.9926
k1 san 3079 / 929 / 759 134.2448 / 147.3192 / 72.9402
Lin 938 / 734 / 524 191.2753 / 301.9077 / 159.9025
lp1 47 / 47 / 47 32.9782 / 69.6037 / 43.0342
Matrix1 1226 / 1237 / 1079 44.5212 / 66.9526 / 45.2689
Matrix2 885 / 2631 / 807 437.6357 / 912.9141 / 450.2785
mario001 255 / 281 / 281 10.707 / 28.9492 / 17.4309
mario002 574 / 622 / 576 214.423 / 412.6486 / 256.2713
nemeth01 1175 / 2057 / 821 18.4736 / 56.3902 / 20.8356
nlpkkt200 2849 / 6883 / 2315 74011.3036 / 189761.5373 / 76346.272
onera dual 203 / 216 / 217 19.8809 / 42.4877 / 26.7851
pct20stif 438 / 312 / 312 16.8809 / 28.1619 / 16.332
pkustk03 406 / 368 / 394 18.3052 / 32.8197 / 20.0831
qa8fk 95 / 107 / 264 8.0801 / 21.2285 / 16.8266
rajat06 376 / 330 / 296 4.006 / 8.5767 / 4.347
rajat07 488 / 488 / 413 5.9975 / 12.7365 / 6.4456
rajat09 391 / 530 / 449 7.9094 / 23.5132 / 11.9886
rajat10 818 / 556 / 695 16.7092 / 27.2946 / 18.4342
saylr4 712 / 728 / 712 3.9722 / 6.7964 / 4.6907
struct3 110 / 141 / 121 7.0571 / 16.1062 / 9.5507
tandem vtx 319 / 298 / 308 5.0731 / 13.9556 / 7.1813
tuma1 260 / 236 / 219 6.5727 / 15.4335 / 8.9799
tuma2 237 / 228 / 199 3.6879 / 8.2879 / 5.0575
turon m 737 / 1524 / 860 184.5999 / 633.8368 / 223.5552
brainpc2 799 / 802 / 799 39.282 / 68.9912 / 44.6828
F1 45368 / 25909 / 50000∗(2/p) 17435.1166 / 23871.0552 / 22174.8263
kkt power 4216 / 4924 / 4034 20354.693 / 30367.5635 / 21193.3167

*Note that the scaled residual norm max
i=1,...,p

η(λ,x)(λ
(i)
j , x

(i)
j ) ≤ ϵ is considered as stopping criterion for matrices

brainpc2, F1 and kkt power.
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FIG. 3.1. History of two SPD matrices listed in Table 3.1 with p = 10 eigenpairs to be computed, t = 3×tW = 90,
and ϵ = 10−4. The chol is used for realizing the B-/B-Θ-orthonormalization.
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FIG. 3.2. History of two SYS matrices listed in Table 3.2 with p = 10 eigenpairs to be computed, t = 3× tW = 90,
and ϵ = 10−4. The chol is used for realizing the B-/B-Θ-orthonormalization.
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Appendix A. A robust version of LOBPCG [11, 28] (with B = In). Afther wide application of
Knyazev’s LOBPCG algorithm [17,18], some researchers noticed that an inappropriate choice of the basis of
the trial subspace can lead to ill-conditioned Gram matrices in the RR processes that can delay convergence
or produce inaccurate eigenpairs. For remedy, [11,28] proposed a robust version of LOBPCG with different
ways of the basis selection for the case of standard eigenvalue problem (i.e., B = In in Equation (1.1)).
For the sake of distinguish, we denote this robust version as rLOBPCG and describe its pseudocode in
Algorithm 4.

In rLOBPCG, the trial subspace is

Wj = Span{Xj , RjJ , PjJ} ∈ Rn×pYJ (pYJ
= pXj + pRjJ

+ pPjJ
≪ n) (A.1)

with solft-locking, the computed block eigenvector of the Gram matrices is Y in the form (2.7) according
to the number of columns in Xj , RjJ , and PjJ , and the way to update the eigenvector is

Xnew = XjYX +RjJYR + PjJYP = WjY.

Compared to Knyazev’s LOBPCG algorithm, there are two things listed below have changed within this
rLOBPCG algorithm.

The way to update the block search direction. With the above information about the trial subspace
and the computed block eigenvector, rLOBPCG updates the new block search direction at the end of j-th
iteration as

Pnew = Xnew −Xj = Xj(YX − I) +RjJYR + PjJYP = Wj Ỹ , (A.2)

with Ỹ = [YX−I;YR;YP ] ∈ RpYJ
×p. We noticed that this way of update Pnew in rLOBPCG can be viewed

as a special case for LOBPCG when the YX in the right-hand side of (2.11) satisfy YX = I. Note that the
Pnew will gradually converge to zero since the new approximated eigenvector Xnew and its previous value
Xj will get closer to each other along the iteration processes, so special measures need to be taken to
overcome the potential numerical instability. That is to let the new computed Pnew in Equation (A.2) be
orthogonal to Xnew, which is realized implicitly by applying the orthonormalization to the computed block
eigenvector Y of the Gram matrices as

Y P = Ỹ − Y Y T Ỹ (A.3)

such that Y TY P = 0. Then, change this new computed Y P into the Ỹ in (A.2) to update new search
direction as Pnew = WjY

P such that XnewTPnew = 0.
The B-orthonormalization of the block residual to a subspace spanned by the block eigenvector

and block search direction. Compared to the B-orthogonalization of the block residual Rj to the block
eigenvector Xj described in Section 2.1.2, the rLOBPCG implements the B-orthogonalization of Rj to
Span([Xj , PjJ ]) (a subspace spanned by the columns of block eigenvector and block search direction) as

RjJ = RjJ − [Xj , PjJ ]([Xj , PjJ ], RjJ)

such that [Xj , PjJ ]
TRjJ = 0. Because of this orthogonality and Xj

TPj = 0, the Gram matrix GB shown
in Equation (2.16) could be simplified as GB = IpYJ

when B = In.

Due to the aforementioned modifications, the trial subspace Wj ∈ Rn×pYJ of rLOBPCG shown
in (A.1) owns pYJ

orthonormal columns. In the contrast, for Knyazev’s LOBPCG, only each block vector
possesses orthonormal columns, and the entire set of columns in Wj is linearly independent.

Based on Section 2.3.1-2.3.3, it is easy to deduce the corresponding sketched version of the rLOBPCG
method. Thus we omit the details but refer the interested reader to Algorithm 5 of Appendix B for its
pseudocode under the case with B = In.
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Algorithm 4 rLOBPCG: A roubust version of LOBPCG (with B = In):
Require: As the Require described in the Algorithm 1

1: Step 1-5 of Algorithm 1
2: for j = 1, 2, . . . ,MaxIterations: do
3: Compute the active residuals: RJ = WjA −WjBΛj (we have RjJ⊥Xj because of Step 4)
4: full Xj(:, J) = Xj , full AXj(:, J) = WjA = AXj = WjA, full BXj(:, J) = WjB =

BXj , full Rj(:, J) = Rj , full Pj(:, J) = Pj , full APj(:, J) = QjA = APj , full BPj(:, J) =
QjB = BPj , full Λj(:, J) = Λj

5: Step 8 of Algorithm 1 for updating index set J
6: Compute the active vectors with the update index set J (here length(J) ≤ p):

Xj = full Xj(:, J); Λj = full Λj(:, J); RjJ = full Rj(:, J); PjJ = full Pj(:, J); QjAJ =
full APj(:, J); QjBJ = full BPj(:, J)

7: Step 10-11 of Algorithm 1
8: B-orthogonalize (s.t., [full Xj , PjJ ]⊥BRjJ ) the preconditioned active residuals to [full Xj , PjJ ]:

RjJ = RjJ − [full Xj , PjJ ]((B[full Xj , PjJ ])
TRjJ)

9: Compute ZjBJ as ZjBJ = BRjJ , and B-orthonormalize RjJ (s.t., (RjJ , ZjBJ) = I):
T = chol((RjJ , ZjBJ)); RjJ = RjJT

−1; ZjBJ = ZjBJT
−1; compute ZjAJ : ZjAJ = ARjJ

10: if j > 1 then
11: B-orthonormalize PjJ (s.t., (PjJ , QjBJ) = I): T = chol((PjJ , QjBJ))
12: Update PjJ = PjJT

−1; QjAJ = QjAJT
−1; QjBJ = QjBJT

−1

13: end if
/* Perform the RR procedure for the pencil A − BΛ in the B-orthonormalized subspace: Wj =
Span{Xj , RjJ , PjJ} ∈ RpYJ

×pYJ (pYJ
= pXj + pRjJ

+ pPjJ
≪ n) to update the activate Ritz

values ΛjJ and the corresponding Ritz vectors XjJ : */
14: Compute the symmetric Gram matrices GA described below, and GB = I:
15: if j > 1 then
16: GA ∈ RpYJ

×pYJ in (2.15) with J for columns of RjJ and PjJ
17: else
18: GA =

[
Λj (Xj , ZjAJ)

(RjJ ,WjA) (RjJ , ZjAJ)

]
∈ R(p+pRjJ

)×(p+pRjJ
)

19: end if
20: Solve the ordinary eigenvalue problem: GAY = Y Λj+1, where the first pJ eigenvalues in increasing

order are in the diagonal matrix Λj+1 ∈ RpJ×pJ , and the orthonormalized eigenvectors are the
columns of Y (i.e., (Y, Y ) = I, (Y,GAY ) = Λj+1)
/* Update Ritz vectors and the recycling tall matrices: */

21: if j > 1 then
22: Partition Y = [YX ;YR;YP ], Ỹ = [YX − I;YR;YP ] ∈ RpYJ

×p (pYJ
= 3 × p if no partial

convergence occurs) according to the number of columns in Xj , RjJ , and PjJ , respectively.
23: Compute Ỹ = ortho(Ỹ , Y ) (the ortho(·) is an orthonormalization process described in [28])
24: Update Xj+1 = [Xj , RjJ , PjJ ]Y ; Wj+1A = [WjA, ZjAJ , QjAJ ]Y ; Wj+1B =

[WjB , ZjBJ , QjBJ ]Y

25: Update Pj+1 = [Xj , RjJ , PjJ ]Ỹ ; Qj+1A = [WjA, ZjAJ , QjAJ ]Ỹ ; Qj+1B =

[WjB , ZjBJ , QjBJ ]Ỹ
26: else
27: Partition Y = [YX ;YR], Ỹ = [YX − I;YR] ∈ R(p+pRJ

)×p; Ỹ = ortho(Ỹ , Y )
28: Update Xj+1 = [Xj , RjJ ]Y ; Wj+1A = [WjA, ZjAJ ]Y ; Wj+1A = [WjB , ZjBJ ]Y

29: Update Pj+1 = [Xj , RjJ ]Ỹ ; Qj+1A = [WjA, ZjAJ ]Ỹ ; Qj+1A = [WjB , ZjBJ ]Ỹ
30: end if
31: end for
32: return the approximations Λj+1 and Xj+1 to the smallest eigenvalues and corresponding eigenvectors
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Appendix B. The sketched version of rLOBPCG.

Algorithm 5 srLOBPCG: Sketched version of rLOBPCG with RR and implicitly compued sketched vectors
Require: As the Require described in the Algorithm 2

1: Step 1-5 of the Algorithm 1
2: Compute X1

Θ = ΘX1, W1B
Θ = ΘW1B ∈ Rt×p

3: Define the index set J of active iterates to be {1, ..., p}
4: for j = 1, 2, . . . ,MaxIterations: do
5: Step 7-11 of the Algorithm 1
6: Compute the sketched preconditioned active residuals RjJ

Θ = ΘRjJ
7: if j > 1 & B-Θ-orthogonalize preconditioned active residuals RjJ to subspace [WjB

Θ, PjJ
Θ] then

8: Compute RjJ
Θ = RjJ

Θ − [Xj
Θ, PjJ

Θ]([WjB
Θ, PjJ

Θ], RjJ
Θ), and update RjJ = RjJ −

[Xj , PjJ ]([WjB
Θ, PjJ

Θ], RjJ
Θ)

9: else if B-Θ-orthogonalize preconditioned active residuals RjJ to subspace WjB
Θ then

10: Compute RjJ
Θ = RjJ

Θ −Xj
Θ(WjB

Θ, RjJ
Θ), and update RjJ = RjJ −Xj(WjB

Θ, RjJ
Θ)

11: end if
12: Compute ZjBJ as ZjBJ = BRjJ , and sketch ZjBJ : ZjBJ

Θ = ΘZjBJ , B-Θ-orthonormalize RjJ
(s.t., (RjJ , ZjBJ)Θ = I) as process in Equation (2.22) in Section 2.3.1. Update RjJ

Θ = RjJ
Θ T−1,

ZjBJ
Θ = ZjBJ

Θ T−1 and compute ZjAJ as ZjAJ = ARjJ
13: if j > 1 then
14: B-Θ-orthonormalize PjJ (s.t., (PjJ , QjBJ)Θ = I) as process in Equation (2.23) in Section 2.3.1.

Update PjJ
Θ = PjJ

Θ T−1, QjB
Θ = QjB

Θ T−1, QjAJ
Θ = QjAJ

Θ T−1

15: end if
16: Step 14-20 of Algorithm 4: Perform the RR Procedure to solve a generalized eigenvalue problem

/* Update Ritz vectors and the recycling tall matrices: */
17: if j > 1 then
18: Partition Y = [YX ;YR;YP ] ∈ RpYJ

×p according to the number of columns in Xj , RjJ , and PjJ .

And define Ỹ = [YX − I;YR;YP ] ∈ RpYJ
×p

19: Compute and store Pj+1
Θ = RjJ

ΘYR +PjJ
ΘYP , Qj+1B

Θ = ZjBJ
ΘYR +QjB

ΘYP (for Step 8
and Step 14); Xj+1

Θ = Xj
ΘYX + Pj+1

Θ, Wj+1B
Θ = WjB

ΘYX +Qj+1B
Θ (for Step 8-10)

20: Update P̃j+1 = RjJYR+PjJYP , Q̃j+1A = ZjAJYR+QjAJYP , Q̃j+1B = ZjBJYR+QjBJYP

21: Update Xj+1 = XjYX + P̃j+1, Wj+1A = WjAYX + Q̃j+1A, Wj+1B = WjBYX + Q̃j+1A
22: if update Pj+1 by previous [RjJ , PjJ ] then
23: Update Pj+1 = P̃j+1, Qj+1A = Q̃j+1A, Qj+1B = Q̃j+1B
24: else if update Pj+1 by the trial space Wj = Span{Xj , RjJ , PjJ} ∈ Rn×pY (refer to [28]) then
25: Orthogonalize the Ỹ to the orthogonalized Y : Ỹ = Ỹ − Y (Y, Ỹ )
26: Update Pj+1 = Wj Ỹ = [Xj , RjJ , PjJ ]Ỹ , Qj+1A = AWj Ỹ = [WjA, ZjAJ , QjAJ ]Ỹ ,

Qj+1B = BWj Ỹ = [WjB , ZjBJ , QjBJ ]Ỹ
27: end if
28: else
29: Partition Y = [YX ;YR] ∈ R(p+pRjJ

)×p according to the number of columns in Xj and RjJ
30: Compute and store Pj+1

Θ = RjJ
ΘYR, Qj+1B

Θ = ZjBJ
ΘYR (or Step 8 and Step 14); Xj+1

Θ =
Xj

ΘYX , Wj+1B
Θ = WjB

ΘYX (for Step 8-10)

31: Update P̃j+1 = RjJYR; Q̃j+1A = ZjAJYR; Q̃j+1B = ZjBJYR

32: Update Xj+1 = XjYX + P̃j+1, Wj+1A = WjAYX + Q̃j+1A, Wj+1B = WjBYX + Q̃j+1A
33: Step 23 and Step 25-26: To update Pj+1, Qj+1A, Qj+1B
34: end if
35: end for
36: return the approximations Λj+1 and Xj+1 to the smallest eigenvalues and corresponding eigenvectors
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Appendix C. Numerical results of a massive large sparse matrices with t = l.

TABLE C.1
Numerical results of LOBPCG variants with chol for the B-/B-Θ-orthonormalization in terms of both #iter

and #time(s) for all SPD matrices listed in Table 3.1 with the p = 10 eigenparis to be computed, t = l = 2 ×m ×
log(n)/log(m), and ϵ = 10−4. The superscript ∗(i/p) indicates that there are i eigenpairs (0 < i ≤ p) out of the whole
p are not converged within the maximal iteration steps.

Matrix
#iter

LOBPCG / sLOBPCGe-s / sLOBPCG
#time(s)

LOBPCG / sLOBPCGe-s / sLOBPCG

af shell3 50000∗(p/p) / 50000∗(p/p) / 3060∗(p/p) 58191.7152 / 69959.9576 / 4042.0799
apache1 8377 / 25751 / 22577 685.5327 / 3127.6916 / 1485.2969
bodyy4 3441 / 2662 / 4515 60.8325 / 145.6819 / 108.3525
bodyy5 10461 / 10678 / 8814 223.9471 / 638.0448 / 332.9481
bodyy6 33744 / 31539 / 31507 815.3969 / 2270.9582 / 1410.8943
boneS01 1807 / 1692 / 1686 298.5458 / 487.6838 / 344.3694
cant 14364 / 16255 / 10790 1147.515 / 2236.4811 / 1134.2142
cbuckle 50000∗(p/p) / 50000∗(9/p) / 50000∗(p/p) 2578.0864 / 4179.9783 / 3126.4563
cfd1 838 / 825 / 781 72.6699 / 169.9087 / 98.0807
cfd2 1816 / 1827 / 1921 356.6375 / 630.0687 / 424.9975
crystm02 1 / 1 / 1 0.19666 / 0.18304 / 0.17966
crystm03 1 / 1 / 1 0.1176 / 0.11247 / 0.13536
Dubcova1 184 / 188 / 184 5.8309 / 9.4585 / 6.4943
Dubcova2 289 / 465 / 367 27.6319 / 63.9986 / 35.2451
Dubcova3 258 / 274 / 274 52.53 / 112.6756 / 67.4197
finan512 254 / 254 / 243 28.6832 / 60.4514 / 37.0953
fv1 265 / 182 / 215 5.9695 / 8.6119 / 6.6753
fv2 140 / 181 / 179 4.3522 / 9.138 / 6.4275
fv3 140 / 179 / 179 4.1413 / 9.1372 / 6.1779
G2 circuit 50000∗(1/p) / 50000∗(1/p) / 16508 4826.8928 / 12038.6758 / 3097.8449
Kuu 548 / 548 / 548 14.6049 / 22.3613 / 16.8009
minsurfo 1013 / 841 / 818 62.77 / 122.921 / 74.522
nd6k 2712 / 3370 / 2821 201.7934 / 366.1987 / 239.9164
nd12k 4550 / 4431 / 3377 489.68 / 746.0664 / 473.6129
nd24k 6137 / 7847 / 10616 1171.4693 / 2153.4075 / 1771.2421
obstclae 556 / 558 / 472 23.1745 / 57.7073 / 33.4985
Pres Poisson 2362 / 2694 / 2567 95.9393 / 168.3822 / 120.0484
pdb1HYS 1869 / 6827 / 2372 155.855 / 775.7444 / 238.2939
qa8fm 3 / 3 / 3 0.40802 / 0.67466 / 0.56305
ted B 10 / 10 / 10 0.49506 / 0.7511 / 0.6012
ted B unscaled 2 / 2 / 2 0.12105 / 0.14042 / 0.14559
thermal1 658 / 551 / 571 79.6275 / 154.2 / 98.3406
torsion1 556 / 486 / 443 37.1215 / 73.5062 / 44.8412
wathen100 779 / 1847 / 652 35.7605 / 126.2668 / 36.2006
wathen120 339 / 425 / 338 23.6703 / 59.8576 / 33.2119
bundle1 16309 / 15230 / 15776 411.8445 / 600.8327 / 409.1157
shallow water1 713 / 700 / 662 47.9217 / 104.2028 / 53.3687
shallow water2 997 / 982 / 953 106.8643 / 186.0694 / 106.6338
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TABLE C.2
Numerical results of LOBPCG variants with chol for the B-/B-Θ-orthonormalization in terms of both #iter

and #time(s) for all SYS matrices listed in Table 3.2 with t = l = 2×m× log(n)/log(m), p = 10 eigenparis to be
computed, and ϵ = 10−4.

Matrix
#iter

LOBPCG / sLOBPCGe-s / sLOBPCG
#time(s)

LOBPCG / sLOBPCGe-s / sLOBPCG

af shell1 50000∗(1/p) / 49932 / 50000∗(p/p) 46519.4361 / 68531.5316 / 60187.0462
3dtube 521 / 537 / 1070 24.0108 / 45.7385 / 46.89
barth5 263 / 298 / 300 4.7017 / 11.0823 / 6.7026
bratu3d 312 / 194 / 163 6.5368 / 12.3161 / 7.0949
copter1 309 / 358 / 356 5.0411 / 16.997 / 8.4176
c-55 2403 / 1549 / 1702 83.01 / 171.5085 / 109.5617
darcy003 574 / 585 / 594 223.2386 / 393.775 / 260.8115
d pretok 16536 / 15914 / 16839 3476.9654 / 6896.7456 / 4648.0397
ecology1 2043 / 1937 / 1993 3463.2613 / 5400.2671 / 3987.438
fcondp2 287 / 293 / 249 67.0584 / 117.2711 / 71.6106
gearbox 137 / 178 / 132 32.9626 / 79.321 / 43.4845
gupta1 68 / 68 / 68 2.3454 / 4.3801 / 2.9343
helm3d01 84 / 84 / 84 2.8235 / 5.5746 / 3.5432
helm2d03 627 / 639 / 659 309.6515 / 556.4794 / 374.2936
ins2 21 / 23 / 24 7.2733 / 15.0166 / 9.814
k1 san 3079 / 1075 / 1367 121.9847 / 172.6896 / 91.3173
Lin 938 / 725 / 734 196.3639 / 288.7714 / 196.1482
lp1 47 / 47 / 47 33.1668 / 70.2819 / 42.6356
Matrix 1 1226 / 605 / 605 44.4931 / 44.3248 / 33.0606
Matrix 2 885 / 1163 / 1238 436.7147 / 561.2614 / 510.4952
mario001 255 / 281 / 281 10.7535 / 29.4323 / 17.1613
mario002 574 / 576 / 621 216.136 / 414.1154 / 256.4557
nemeth01 1175 / 1088 / 941 17.2773 / 38.6624 / 22.4024
nlpkkt200 2849 / 4147 / 2394 75324.8433 / 146130.2151 / 76235.5588
onera dual 203 / 223 / 220 19.6708 / 42.4751 / 27.4636
pct20stif 438 / 312 / 409 16.0717 / 88.4485 / 16.7503
pkustk03 406 / 394 / 394 18.3095 / 34.1514 / 20.3616
qa8fk 95 / 93 / 105 8.4976 / 19.7928 / 12.765
rajat06 376 / 376 / 309 3.7484 / 9.5159 / 4.6122
rajat07 488 / 489 / 489 5.6224 / 12.8694 / 7.1177
rajat09 391 / 541 / 563 7.8982 / 25.1533 / 13.8701
rajat10 818 / 345 / 706 16.2255 / 21.0323 / 18.3344
saylr4 712 / 634 / 797 3.7118 / 6.0596 / 4.7747
struct3 110 / 114 / 141 7.153 / 14.1237 / 10.7336
tandem vtx 319 / 461 / 325 5.0124 / 18.111 / 7.4846
tuma1 260 / 210 / 259 6.619 / 14.919 / 10.1883
tuma2 237 / 308 / 200 3.5863 / 10.364 / 4.9175
turon m 737 / 929 / 1666 187.289 / 380.0812 / 535.6576
brainpc2 799 / 796 / 812 38.9432 / 63.9516 / 40.8305
F1 45368 / 43432 / 31220 17554.6462 / 28925.5126 / 14462.9188
kkt power 4216 / 4392 / 4663 21004.9903 / 28198.4593 / 24128.138


