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Scientific backgrounds

Parametric Helmholtz equations

Helmholtz equation:

2 W 2 _

[VZ+ (_c(x)) Ju(x) = p(x)

(subject to the Sommerfeld radiation condition at infinity) (1)
+ Perfectly Matched Layer (PML) BCs on domain Q

Parametric PDEs:

let x € RY be the grid points in the d-dimensional Q (d = 1,2,3);
u(x) : RY — C is the complex acoustic wavefield to be computed;
p(x) : R — C is the source function (could be fixed or not);

c(x) : RY — R, is a speed of sound distribution function (could be
fixed or not) and w =1 € R is an angular frequency of the source.

Part of the Physical Applications:
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Goal of this work

Learning parametric Helmholtz operators

Transfer the differential expression to the discrete form:
) W 2 _
[V + (7c(x)) ]u(x) p(x)
Parametric PDEs: ¢ + PML BCs on domain
Discrete derivatives || FEM, FDM, FFT, ...
A(c)u = b, with LinearOp A(c) € C™", u, be C"

After discretization, numerical linear algebra methods, like subspace
methods, can be used to solve the parametric Eq. (2). However,

m simply using subspace methods without preconditioning is much less
effective for solving the Helmholtz Egs.?;

m generate a properly algebraic preconditioner could be possible (if the
n is not too big) but is as challenging as solve the system directly;

m generally, the algebraic preconditioning needs to be re-generated for
each of the parametric Helmholtz Egs. (2).

ZErnst and Gander. Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods. 2012
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Goal of this work

Learning parametric Helmholtz operators

Transfer the differential expression to the discrete form:
) W 2 _
[V + (7c(x)) ]u(x) p(x)
Parametric PDEs: ¢ + PML BCs on domain
Discrete derivatives || FEM, FDM, FFT, ...
A(c)u = b, with LinearOp A(c) € C™", u, be C"

In recent decade, the thrived neural networks (NNs) solvers, like the
physics-informed neural networks (PINNs)?, is used to solve the
parametric Eq. (2) without discretization. However, these NNs solvers

m are usually costly in training®, and may fail to solve challenging
PDEs if without finely tuning of the hyper-parameters of the NNs;

m solve the PDEs without the theoretical convergence guarantee;

m generally reach limited accuracy and exhibit limited or NO network
generalizability, thus re-training is required even it is costly.

?Lu et al.,, Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SISC. 2021

&z’zm/-"sm.beu et al., Energy and policy considerations for deep learning in NLP. ACL meeting, Italy. 2019
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Goal of this work

Learning parametric Helmholtz operators

Transfer the differential expression to the discrete form:

2 W 2 _
[VZ+ (C(X)) Ju(x) = p(x)
Parametric PDEs: { T PML BCs on domain © (2)
Discrete derivatives || FEM, FDM, FFT, ...
A(c)u = b, with LinearOp A(c) € C™", u, be C"

* Goal of this work = To learn neural operator Fy that approximates

A(c)™! by Fo([b,c,(BCs)]) — ug ~ A(c) b
The learned Fy can be used as a flexible preconditioner for the subspace
methods (like FGMRES) to accelerate the solution of parametric Eq. (2)
with varying c, varying b and varying domain Q but without re-training.

* Loss-function: 1A b2
. Clug — 5

—_— = 3

AT )
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FGMRES: the flexible GMRES method
The generalized Arnoldi relation

Originally, the FGMRES method? have the generalized Arnoldi relation
AZm = Vm+1 I:Im7 (4)

where V11 = [va, ..., Vmy1] is the Krylov basis, and Z,, = [z, ..., Zy] is
the preconditioned Krylov basis.

In our FGMRES case, we have
Zj :fg(v,'), | = 1,...m, (5)

where Fj is the trained non-linear neural operator satisfies 75 ~ A~L.
This part is computed with single machine precision (float 32), the one
used in the training process, and other parts are in double precision.

= Given there is no information about the data structure of the Krylov
basis, the neural operator Fy is trained with randomly generated datasets.

. Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm. SISC. 1993
&z’z/a/— 4 /15



Training U-Net operator for Helmholtz equation on 2D

U-Net architecture

U-Net? architecture with 4 depth:

input Skip Connection
image |»|# > output
tile segmentation

map

Decoder
>

512 256 t
3 I‘I’l = conv 3x3, ReLU

copy and crop
# max pool 2x2

s 1C 43 3 4 up-conv 2x2
- E— — - conv 1x1

Bottleneck

Each blue box corresponds to a multi-channel feature map. The number of channels is
denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White

boxes represent copied feature maps. The arrows denote the different operations.

. ?[Figure 1] Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image

(2 zia5egmentation. 2015 5/15



Training U-Net operator for Helmholtz equation on 2D

U-Net with meshes in 2D (domain 64 x 64)

|Operatorleaming| | Outputs | | Loss-function |

- [ A(e)us — b3
min —————=
¢ [[BlI3

Update|
N [)

Training (on 2 V100 GPUs, depth = 4, train. time: 49.83min):

m Fixed grid point x € R" in the 2-dimensional domain (n = 64 for 2D case)

2
= Random source term b € C" ~ N/(0, 1) satisfying normally distr.

= Random speed of sound ¢ € R+ uniformly distributed on the interval [1, 2] and fixed
frequency of the source w =1 € Ry

= Function o(x) : R™ —» C"* used in the definition of the PML boundary condition

m U-Net 2d: Training with single machine precision (float 32); Trainable params. - 832 K

Testing:

© Trained U-Net preconditioner can accelerate the solution of Eq. (2) with varying b c,
domain size Q (bcf. the discretisation invariance property from the convolution property)

&z'z/a/- 6 /15
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Testing trained U-Net operator with N'(0,1) source function on 2D

Compare trained U-Net to algebraic preconditioner

Visualization of the first 150 sequential elements of a 642 x 642 matrix:
A with elements a;; to be placed in matrix M.

aji s if \|a,-;|| > thresh for i = j,
(1) M. J) = a, i M3l een for i £
[ERER

5.41 x 10~ 2 if thresh = 103,

2 A= Mie _ 1, 04 x 1073 if thresh = 10~ *
(a). Coefficient matrix A with T AllE : ! esh = ’
L": x % — 33.38% 1.81 x 10 *® if thresh = 10 °.
n

(b). M with thresh= 1073, (c). M with thresh= 10"%, (d). M with thresh= 105,
nnz nnz nnz
TX%:].IG% TX%=3.00% TX%=3.10%
n n n

za—
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Testing trained U-Net operator with N (0,1) source function on 2D

Compare trained U-Net to algebraic preconditioner

Solve A(c)u = b on 2D domain 64 x 64 (i.e., A(c) € Co4 *64%).

* All involved algorithms are run on the same CPUs/GPUs device with Python prototype.

*np = %‘TI’H. We stop the iteration when 1, < ¢ with ¢ = 10?3 by default.

. —— GMRES
L N NG PGMRES (thresh = 1073)
10-3 —.— PGMRES (thresh = 10~4)
---- PGMRES (thresh = 10-5)
1073+ 5.41 x 102 if thresh = 10~ 3,
A—M|F _ _
My 07 % = {2.04 x 10~ 3 if thresh = 10~ %,
F
10791 1.81 x 107 *° if thresh = 10" °.
10—11 4
10—13 4
0 500 1000 1500 2000
Iterations

PGMRES with varying thresh

m PGMRES: GMRES precondioned by spilu(M), which is realized by applying sparse ilu
- to the sparse matrix M with selected elements from coefficient matrix A
&z’zm/— 7/ 15



Testing trained U-Net operator with N (0,1) source function on 2D

Compare trained U-Net to algebraic preconditioner

Solve A(c)u = b on 2D domain 64 x 64 (i.e., A(c) € Co4 *64%).

* FGMRES is GMRES preconditioned by the trained U-Net with depth = 4.
* FGMRES is implemented by the mixed-precision calculation.

5.41 x 1072 if thresh = 1073,
o \ —-— PGMRES (thresh=10"%) | ||A — M|/F

— -3 . _ _a
1074 \\\ -~ PGMRES (thresh = 10-5) TAlF =4{2.04 x10 if thresh =10 ",
\
10-°4 FGMRES 1.81 x 107 *® if thresh = 107°.
-11 | \

10 \\
\
10-13 \‘

0 10 20 30 40 50 60
Iterations

FGMRES and PGMRES

m The effectiveness of trained U-Net preconditioner is close to (could be the same as)

spilu(M) with thresh= 10"° (the best algebra preconditioner for this example) ,
7 15



Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the source function b

Solve A(c)u = b on 2D domain 64 x 64 (i.e., A(c) € Co4 *64%).

Visualize ¢ unlformly distr. on [1 2] FGMRES with varying setting of b

10—1 4
10734

10—5 4
N

-7
10 normal N(O, 1) distr. b

14 10-9{ — 1dirac distr. b \
— 4 dirac distr. b
10-11 { — uniform [-1, 1] distr. b

12 —— normal N(1, 1) distr. b
107134 normal N(0, 2) distr. b
0 5 10 15 20 25
0 10 20 30 40 50 so Iterations
: : . 642 . .
(2). Visualize the fixed c € R (b). Relative residual of FGMRES

2
m Speed of sound ¢ € R%" is fixed and satisfying uniform distribution on interval [1, 2]
m Performance of trained U-Net preconditioner is independent from varying the datatype

2
&'z - of the b € C®" or varying the mean and median value of the normal setting of b

za— 8 /15



Testing trained U-Net operator with N'(0,1) source function on 2D

Network generalizability: varying the source function b

Visualize wavefiled u € C%* solved by 1 dirac for b € C8% (with fixed c):

Real part Image part

10 % 0.10 10

i, " ’ :
"2 @ IR T8 @ e
N &2

-0.10 -, - -0.10

FGMRES

0 1 20 30 40 50 60 0 1 20 30 40 50 60

Visualize wavefiled u € €4 solved by 4 dirac for b € C5 (with fixed c):

LA Nl e ,
Tokdolkay |- et |-
- e : '
(AT - ANaTa |-
- -

L -010
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the speed of sound ¢

Solve A(c)u = b on 2D domain 64 x 64 (i.e., A(c) € C64°x64%).

FGMRES with varying range of uniform c FGMRES with varying uniform c
N con|[l,2] - con(l,2]
10 — con(1.1,1.9] 107 — con(05,2]
10-3 — con[1.25,1.75] 10-31 square shape
— con[l,1.5]
10-° 1074
n n
* 1077 ® 107
107° 107+
10711 10711 4
10-13 10-134
0 10 20 30 40 0 50 100 150 200
Iterations Iterations
(a). shrink the interval (b). enlarge the interval & special structure

2
m Source function b € C®*" is fixed with 1 dirac setting, 1 in grid position (32, 32), the
center of domain 64 x 64, and 0 elsewhere in domain

= Square shape of ¢ € R%*: domain [20 : 44,20 : 44] = 2 and 1 elsewhere

m Varying the range of the c satisfying uniform distribution and varying the its shape can

&z - effect the performance of the trained U-Net preconditioner
za— 9/ 18



Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the speed of sound ¢

Visualize ¢ € R% with square shape:

Real part

o

Visualize complex wavefiled

10

u € C% solved by c € R in square shape:

Visualize square shape ¢

30

-0.05

-0.10

-0.15

60

20

10

Image part

-0.05

-0.10

-0.15
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the domain size

Solve A(c)u = b from 2D domain 64 x 64 until 512 x 512 (i.e., from
linear operator A(c) € C8% %64 o A(c) € C512°x512%).

Numerical results on different domain size

FGMRES
1071 4
—— FGMRES 22*
10-3 1 —— FGMRES 42*
— FGMRES 62* FGMRES — domain 64 x 64
1075 4 FGMRES 8%*
FGMRES 2°* — domain 128 x 128
1077 FGMRES 42* — domain 256 x 256
10-24 FGMRES 6°* — domain 384 x 384
10-11] FGMRES 8°* — domain 512 x 512
10—13 4
0 500 1000 1500 2000
Iterations

m U-Net trained on 2D domain 64 X 64 (with normal distr. A'(0, 1) b € €®** and uniform

2
, distr. ¢ € R®" in interval [1,2]) exhibits excellent network generalizability from the 4x
lrzia — larger domain 128 x 128 until the 64x larger domain 512 x 512

10 / 15



Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: Adult human skull example

Solve A(c)u = b with the structured dataset for both ¢ € R%2* and
b € R51%° on a 64x larger 2D domain 512 x 512 (A(c) € C512°x512%),

Visualize ¢ (real value) of the skull example 20 Visualize b (real value) of the skull example 10
0

10 o 100 200 300 400 500 0.0

This example is downloaded from the qure.ai dataset®

Recall part of the training settings:

® Random training datasets on domain 64 x 64: b € €% satisfies standard
Normal distr. A’(0, 1); ¢ € R®*” is Uniform distr. on interval [1,2]

lonate http://headctstudy.qure.ai/dataset
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: Adult human skull example

Solve A(c)u = b with the structured dataset for both ¢ and b on 2D
domain 512 x 512 (i.e., A(c) € C312*x512%).

Adult human skull example

10°4 —— GMRES
FGMRES
1014
Nb
10—2 4
10—3 4

0 2500 5000 7500 10000 12500 15000
Iterations

= Comparison of FGMRES (NNs trained on domain 64 X 64) to GMRES on solving the
skull example (on 512 x 512 from CQ500 with 491 scans) to reaching accuracy at 10~3
. m Consumed its & CPU time (Training time of U-Net on 2 V100 GPUs is 49.83min):

Crzia ~ FGMRES = 4097 & 4.24h; GMRES = 14849 & 13.16h

11 / 15
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: Adult human skull example

Visualization the structured dataset of the skull example on 2D domain 512 x 512:

Visualize c (real value) of the skull example 20 o Visualize b (real value) of the skull example 10

10 100 200 300 400 500 00

2
Visualize the complex wavefiled ¢ € R%*?" of human skull example solved by FGMRES:

Real part Image part
o 100 o 10.0
75 7.5
100 2 100
5.0 5.0
200 25 200 25
0
i
< 0.0 0.0
I
= 300 300
-25 -25
-5.0 -5.0
400 400
=75 =75
- 500 ~10.0 500 ~10.0

&1’ ’, 100 200 300 400 500 0 100 200 300 400 500 11/ 15
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Other neural networks architectures and training datasets

PINNs & DeepONet & FNO

Other neural networks (NNs) architectures for the parametric Helmholtz
equations:
= NNs solver:
m PINNs: Lu et al., Physics-Informed Neural Networks with Hard
Constraints for Inverse Design. SISC. 2021
m NNs operators:
m DeepONet: Lu et al., Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators. 2021;
m FNO: Kovachki et al., Neural Operator: Learning Maps Between
Function Spaces With Applications to PDEs. 2023
= Compare to above NNs architectures, U-Net is the optimal one that
meets all our goal and exhibits the robust preconditioning behavior

Three random setting for the source function b:

m Normal distr. A/(0,1): satisfying the standard normal distribution A/(0,1);

m Uniform distr. [—1,1]: satisfying the uniformly distribution on interval
[_17 1],

m Dirac setting: with one non-zero value in the random position in the 2D
domain;

12 / 15



Conclusions

Take home message of this work

Goal: To learn the optimal neural operator Fy for accelerating the
solution of the parametric Helmholtz Eqgs.

Training different neural networks (NNs) = choose the optimal NNs
architecture —> U-Net is the optimal one for our case

Training U-Net on 2D with different settings for b = choose the optimal
training dataset —> Standard Normal distr. N'(0,1) for b

= The performance of trained neural operator depends on:
m the choosing of NNs architecture;
m the setting of training datasets;
m the tuning of hyper-parameters of NNs;
m the utilities of training tools like pytorch-lightning.

® Research report version of this work will soon be accessible
online at HAL (https://inria.hal.science/) !

. — Yanfei Xiang (yanfei.xiang@inria.fr)
&zu’a/— 13 / 15
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Compare trained U-Net to algebraic preconditioner

Consuming time

Solve A(c)u = b on 2D domain 64 x 64 (A(c) € C54°x64%).

. —— GMRES .
L I 1N PGMRES (thresh = 103) 10
10-3 — PGMRES (thresh = 10~%) 10-3 ~\.\_\\
---- PGMRES (thresh =10%) N
107 1075 4N e PGMRES (thresh = 1073)
o P —— PGMRES (thresh = 107%)
-7 -7
10 10 ---- PGMRES (thresh = 10-)
1079 10-° FGMRES
10711 10711
10713 10712 X
0 500 1000 1500 2000 0 10 20 30 40 50 60
Iterations Iterations
(a). PGMRES with varying thresh (b). FGMRES and PGMRES

= PGMRES: GMRES precondioned by spilu(M), which is realized by applying sparse ilu
to the sparse matrix M with selected elements from coefficient matrix A

m The effectiveness of trained U-Net preconditioner is close to (could be the same as)
spilu(M) with thresh= 10"° (the best algebra preconditioner for this example)

m lterations & GPUs time: GMRES: 1978 & 141.8737s;
FGMRES: 29 & 4.3403s; PGMRES (thresh= 1073): 522 & 43.0996s;

. PGMRES (thresh= 10"%): 111 & 3.2276s; PGMRES (thresh= 10"5): 23 & 0.6582s
&zxz/a/— 1/1
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