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Scienti�c backgrounds

Parametric Helmholtz equations

Helmholtz equation:

Parametric PDEs:


[
∇2 +

( ω

c(x)

)2]
u(x) = ρ(x)

(subject to the Sommerfeld radiation condition at in�nity)

+ Perfectly Matched Layer (PML) BCs on domain Ω

(1)

let x ∈ Rd be the grid points in the d -dimensional Ω (d = 1, 2, 3);

u(x) : Rd → C is the complex acoustic wave�eld to be computed;

ρ(x) : Rd → C is the source function (could be �xed or not);

c(x) : Rd → R+ is a speed of sound distribution function (could be

�xed or not) and ω = 1 ∈ R+ is an angular frequency of the source.

Part of the Physical Applications:
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Goal of this work

Learning parametric Helmholtz operators

Transfer the di�erential expression to the discrete form:

Parametric PDEs:



[
∇2 +

( ω

c(x)

)2]
u(x) = ρ(x)

+ PML BCs on domain Ω

Discrete derivatives ⇓ FEM, FDM, FFT, ...

A(c)u = b, with LinearOp A(c) ∈ Cn×n, u, b ∈ Cn

(2)

After discretization, numerical linear algebra methods, like subspace
methods, can be used to solve the parametric Eq. (2). However,

simply using subspace methods without preconditioning is much less
e�ective for solving the Helmholtz Eqs.a;

generate a properly algebraic preconditioner could be possible (if the
n is not too big) but is as challenging as solve the system directly;

generally, the algebraic preconditioning needs to be re-generated for
each of the parametric Helmholtz Eqs. (2).

a
Ernst and Gander. Why it is Di�cult to Solve Helmholtz Problems with Classical Iterative Methods. 2012

3 / 15



Goal of this work

Learning parametric Helmholtz operators

Transfer the di�erential expression to the discrete form:

Parametric PDEs:



[
∇2 +

( ω

c(x)

)2]
u(x) = ρ(x)

+ PML BCs on domain Ω

Discrete derivatives ⇓ FEM, FDM, FFT, ...

A(c)u = b, with LinearOp A(c) ∈ Cn×n, u, b ∈ Cn

(2)

In recent decade, the thrived neural networks (NNs) solvers, like the
physics-informed neural networks (PINNs)a, is used to solve the
parametric Eq. (2) without discretization. However, these NNs solvers

are usually costly in trainingb, and may fail to solve challenging
PDEs if without �nely tuning of the hyper-parameters of the NNs;

solve the PDEs without the theoretical convergence guarantee;

generally reach limited accuracy and exhibit limited or NO network
generalizability, thus re-training is required even it is costly.

a
Lu et al., Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SISC. 2021

b
Strubell et al., Energy and policy considerations for deep learning in NLP. ACL meeting, Italy. 2019 3 / 15



Goal of this work

Learning parametric Helmholtz operators

Transfer the di�erential expression to the discrete form:

Parametric PDEs:



[
∇2 +

( ω

c(x)

)2]
u(x) = ρ(x)

+ PML BCs on domain Ω

Discrete derivatives ⇓ FEM, FDM, FFT, ...

A(c)u = b, with LinearOp A(c) ∈ Cn×n, u, b ∈ Cn

(2)

* Goal of this work ⇒ To learn neural operator Fθ that approximates

A(c)−1 by Fθ([b, c, (BCs)]) −→ uθ ∼ A(c)−1b

The learned Fθ can be used as a �exible preconditioner for the subspace
methods (like FGMRES) to accelerate the solution of parametric Eq. (2)
with varying c, varying b and varying domain Ω but without re-training.

* Loss-function:

min
θ

∥A(c)uθ − b∥22
∥b∥22

(3)

3 / 15



FGMRES: the �exible GMRES method

The generalized Arnoldi relation

Originally, the FGMRES methoda have the generalized Arnoldi relation

AZm = Vm+1H̄m, (4)

where Vm+1 = [v1, ..., vm+1] is the Krylov basis, and Zm = [z1, ..., zm] is
the preconditioned Krylov basis.

In our FGMRES case, we have

zi = Fθ(vi ), i = 1, . . .m, (5)

where Fθ is the trained non-linear neural operator satis�es Fθ ∼ A−1.
This part is computed with single machine precision (�oat 32), the one
used in the training process, and other parts are in double precision.

⇒ Given there is no information about the data structure of the Krylov
basis, the neural operator Fθ is trained with randomly generated datasets.

a
Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm. SISC. 1993
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Training U-Net operator for Helmholtz equation on 2D

U-Net architecture

U-Neta architecture with 4 depth:

Encoder

Bottleneck

Decoder

Skip Connection

Each blue box corresponds to a multi-channel feature map. The number of channels is

denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White

boxes represent copied feature maps. The arrows denote the di�erent operations.

a[Figure 1] Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image
Segmentation. 2015 5 / 15



Training U-Net operator for Helmholtz equation on 2D

U-Net with meshes in 2D (domain 64× 64)

Training (on 2 V100 GPUs, depth = 4, train. time: 49.83min):

Fixed grid point x ∈ Rn2 in the 2-dimensional domain (n = 64 for 2D case)

Random source term b ∈ Cn2 ∼ N (0, 1) satisfying normally distr.

Random speed of sound c ∈ Rn2+ uniformly distributed on the interval [1, 2] and �xed
frequency of the source ω = 1 ∈ R+

Function σ(x) : Rn2 → Cn2 used in the de�nition of the PML boundary condition

U-Net 2d: Training with single machine precision (�oat 32); Trainable params. - 832 K

Testing:

, Trained U-Net preconditioner can accelerate the solution of Eq. (2) with varying b c,
domain size Ω (bcf. the discretisation invariance property from the convolution property)
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Testing trained U-Net operator with N (0,1) source function on 2D

Compare trained U-Net to algebraic preconditioner

Visualization of the �rst 150 sequential elements of a 642 × 642 matrix:
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(a). Coe�cient matrix A with
nnz

n2
× % = 33.38%

A with elements aij to be placed in matrix M.

(1).M(i, j) =


aii , if ∥aii∥ ≥ thresh for i = j,

aij , if
∥aij∥

∥aii∥∥ajj∥
≥ thresh for i ̸= j.

(2).
∥A−M∥F

∥A∥F
=


5.41× 10−2 if thresh = 10−3

,

2.04× 10−3 if thresh = 10−4
,

1.81× 10−16 if thresh = 10−5
.
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(b). M with thresh= 10−3,
nnz

n2
× % = 1.16%
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(c). M with thresh= 10−4,
nnz

n2
× % = 3.00%
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(d). M with thresh= 10−5,
nnz
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× % = 3.10%
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Testing trained U-Net operator with N (0,1) source function on 2D

Compare trained U-Net to algebraic preconditioner

Solve A(c)u = b on 2D domain 64× 64 (i.e., A(c) ∈ C642×642):

* All involved algorithms are run on the same CPUs/GPUs device with Python prototype.

* ηb = ∥A(c)u−b∥
∥b∥ . We stop the iteration when ηb ≤ ε with ε = 10−13 by default.
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GMRES
PGMRES (thresh = 10 3)
PGMRES (thresh = 10 4)
PGMRES (thresh = 10 5)

PGMRES with varying thresh

∥A−M∥F
∥A∥F

=


5.41× 10−2 if thresh = 10−3

,

2.04× 10−3 if thresh = 10−4
,

1.81× 10−16 if thresh = 10−5
.

PGMRES: GMRES precondioned by spilu(M), which is realized by applying sparse ilu

to the sparse matrix M with selected elements from coe�cient matrix A
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Testing trained U-Net operator with N (0,1) source function on 2D

Compare trained U-Net to algebraic preconditioner

Solve A(c)u = b on 2D domain 64× 64 (i.e., A(c) ∈ C642×642):

* FGMRES is GMRES preconditioned by the trained U-Net with depth = 4.
* FGMRES is implemented by the mixed-precision calculation.
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PGMRES (thresh = 10 4)
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FGMRES

FGMRES and PGMRES

∥A−M∥F
∥A∥F

=


5.41× 10−2 if thresh = 10−3

,

2.04× 10−3 if thresh = 10−4
,

1.81× 10−16 if thresh = 10−5
.

The e�ectiveness of trained U-Net preconditioner is close to (could be the same as)

spilu(M) with thresh= 10−5 (the best algebra preconditioner for this example)
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the source function b

Solve A(c)u = b on 2D domain 64× 64 (i.e., A(c) ∈ C642×642):
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(a). Visualize the �xed c ∈ R64
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FGMRES with varying setting of b

normal N(0, 1) distr. b
1 dirac distr. b
4 dirac distr. b
uniform [-1, 1] distr. b
normal N(1, 1) distr. b
normal N(0, 2) distr. b

(b). Relative residual of FGMRES

Speed of sound c ∈ R64
2
is �xed and satisfying uniform distribution on interval [1, 2]

Performance of trained U-Net preconditioner is independent from varying the datatype

of the b ∈ C64
2
or varying the mean and median value of the normal setting of b
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the source function b

Visualize wave�led u ∈ C642 solved by 1 dirac for b ∈ C642 (with �xed c):
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Visualize wave�led u ∈ C642 solved by 4 dirac for b ∈ C642 (with �xed c):
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the speed of sound c

Solve A(c)u = b on 2D domain 64× 64 (i.e., A(c) ∈ C642×642):
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(a). shrink the interval
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(b). enlarge the interval & special structure

Source function b ∈ C64
2
is �xed with 1 dirac setting, 1 in grid position (32, 32), the

center of domain 64× 64, and 0 elsewhere in domain

Square shape of c ∈ R64
2
: domain [20 : 44, 20 : 44] = 2 and 1 elsewhere

Varying the range of the c satisfying uniform distribution and varying the its shape can
e�ect the performance of the trained U-Net preconditioner 9 / 15



Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the speed of sound c

Visualize c ∈ R642 with square shape:
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Visualize complex wave�led u ∈ C642 solved by c ∈ R642 in square shape:
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: varying the domain size

Solve A(c)u = b from 2D domain 64× 64 until 512× 512 (i.e., from

linear operator A(c) ∈ C642×642 to A(c) ∈ C5122×5122):
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Numerical results on different domain size
FGMRES
FGMRES 22*
FGMRES 42*
FGMRES 62*
FGMRES 82*

FGMRES − domain 64× 64

FGMRES 22* − domain 128× 128

FGMRES 42* − domain 256× 256

FGMRES 62* − domain 384× 384

FGMRES 82* − domain 512× 512

U-Net trained on 2D domain 64× 64 (with normal distr. N (0, 1) b ∈ C64
2
and uniform

distr. c ∈ R64
2
in interval [1,2]) exhibits excellent network generalizability from the 4x

larger domain 128× 128 until the 64x larger domain 512× 512 10 / 15



Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: Adult human skull example

Solve A(c)u = b with the structured dataset for both c ∈ R5122 and

b ∈ R5122 on a 64x larger 2D domain 512× 512 (A(c) ∈ C5122×5122):
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This example is downloaded from the qure.ai dataseta

Recall part of the training settings:

Random training datasets on domain 64× 64: b ∈ C64
2
satis�es standard

Normal distr. N (0, 1); c ∈ R64
2
is Uniform distr. on interval [1, 2]

ahttp://headctstudy.qure.ai/dataset
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: Adult human skull example

Solve A(c)u = b with the structured dataset for both c and b on 2D

domain 512× 512 (i.e., A(c) ∈ C5122×5122):

0 2500 5000 7500 10000 12500 15000
Iterations
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100

b

Adult human skull example
GMRES
FGMRES

Comparison of FGMRES (NNs trained on domain 64× 64) to GMRES on solving the

skull example (on 512× 512 from CQ500 with 491 scans) to reaching accuracy at 10−3

Consumed its & CPU time (Training time of U-Net on 2 V100 GPUs is 49.83min):
FGMRES = 4097 & 4.24h; GMRES = 14849 & 13.16h 11 / 15
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Testing trained U-Net operator with N (0,1) source function on 2D

Network generalizability: Adult human skull example

Visualization the structured dataset of the skull example on 2D domain 512× 512:
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Visualize the complex wave�led c ∈ R512
2
of human skull example solved by FGMRES:
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Other neural networks architectures and training datasets

PINNs & DeepONet & FNO

Other neural networks (NNs) architectures for the parametric Helmholtz
equations:

NNs solver:

PINNs: Lu et al., Physics-Informed Neural Networks with Hard
Constraints for Inverse Design. SISC. 2021

NNs operators:

DeepONet: Lu et al., Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators. 2021;
FNO: Kovachki et al., Neural Operator: Learning Maps Between
Function Spaces With Applications to PDEs. 2023

⇒ Compare to above NNs architectures, U-Net is the optimal one that
meets all our goal and exhibits the robust preconditioning behavior

Three random setting for the source function b:

Normal distr. N (0,1): satisfying the standard normal distribution N (0,1);

Uniform distr. [−1, 1]: satisfying the uniformly distribution on interval
[−1, 1];

Dirac setting: with one non-zero value in the random position in the 2D
domain; 12 / 15



Conclusions

Take home message of this work

Goal: To learn the optimal neural operator Fθ for accelerating the
solution of the parametric Helmholtz Eqs.

Training di�erent neural networks (NNs) ⇒ choose the optimal NNs
architecture �> U-Net is the optimal one for our case

Training U-Net on 2D with di�erent settings for b ⇒ choose the optimal
training dataset �> Standard Normal distr. N (0,1) for b

⇒ The performance of trained neural operator depends on:

the choosing of NNs architecture;

the setting of training datasets;

the tuning of hyper-parameters of NNs;

the utilities of training tools like pytorch-lightning.

� Research report version of this work will soon be accessible
online at HAL (https://inria.hal.science/) !

−→ Yanfei Xiang (yanfei.xiang@inria.fr)
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Compare trained U-Net to algebraic preconditioner

Consuming time

Solve A(c)u = b on 2D domain 64× 64 (A(c) ∈ C642×642):
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(a). PGMRES with varying thresh
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(b). FGMRES and PGMRES

PGMRES: GMRES precondioned by spilu(M), which is realized by applying sparse ilu

to the sparse matrix M with selected elements from coe�cient matrix A

The e�ectiveness of trained U-Net preconditioner is close to (could be the same as)

spilu(M) with thresh= 10−5 (the best algebra preconditioner for this example)

Iterations & GPUs time: GMRES: 1978 & 141.8737s;
FGMRES: 29 & 4.3403s; PGMRES (thresh= 10−3): 522 & 43.0996s;

PGMRES (thresh= 10−4): 111 & 3.2276s; PGMRES (thresh= 10−5): 23 & 0.6582s
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