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Overview of ML for scientific computing

Research on Machine Learning (ML), especially deep learning with

Deep Neural Networks (DNN), has been increasingly applied to scientific
computing (called Scientific Machine Learning - SciML), particularly
for problems related to solve the Partial Differential Equations (PDE).

Three main directions of this SciML trend:

1 ML algorithms for devising a recommendation system to assist the
optimal-selection of traditional methods (auto-selecting of the best
solvers/preconditioner/restart parameter etc.), such as the SALSA (2006) and

Lighthouse (2016) projects (Sood, 2019);
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Overview of ML for scientific computing

Research on Machine Learning (ML), especially deep learning with

Deep Neural Networks (DNN), has been increasingly applied to scientific
computing (called Scientific Machine Learning - SciML), particularly
for problems related to solve the Partial Differential Equations (PDE).

Three main directions of this SciML trend:

1 ML algorithms for devising a recommendation system to assist the
optimal-selection of traditional methods (auto-selecting of the best
solvers/preconditioner/restart parameter etc.), such as the SALSA (2006) and
Lighthouse (2016) projects (Sood, 2019);

2 Use data-driven DNN to build a solver directly for the simulations of PDE, such
as the Physics-Informed Neural Network (PINN) (Lu et al., 2020-2023, and
others), pure DNN solver for CFD problem (Tompson et al., 2017);
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Deep Neural Networks (DNN), has been increasingly applied to scientific
computing (called Scientific Machine Learning - SciML), particularly
for problems related to solve the Partial Differential Equations (PDE).

Three main directions of this SciML trend:

1 ML algorithms for devising a recommendation system to assist the
optimal-selection of traditional methods (auto-selecting of the best
solvers/preconditioner/restart parameter etc.), such as the SALSA (2006) and
Lighthouse (2016) projects (Sood, 2019);

2 Use data-driven DNN to build a solver directly for the simulations of PDE, such
as the Physics-Informed Neural Network (PINN) (Lu et al., 2020-2023, and
others), pure DNN solver for CFD problem (Tompson et al., 2017);

e Challenges (Stability, Accuracy, Computational cost, and Curse of
dimensionality, other black-boxes etc.), and mathematical interpretation of
SciML methods based on DNN (Adcock and Dexter’s recent work, 2020-2022);
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Overview of ML for scientific computing

Research on Machine Learning (ML), especially deep learning with

Deep Neural Networks (DNN), has been increasingly applied to scientific
computing (called Scientific Machine Learning - SciML), particularly
for problems related to solve the Partial Differential Equations (PDE).

Three main directions of this SciML trend:

1 ML algorithms for devising a recommendation system to assist the
optimal-selection of traditional methods (auto-selecting of the best
solvers/preconditioner/restart parameter etc.), such as the SALSA (2006) and
Lighthouse (2016) projects (Sood, 2019);

2 Use data-driven DNN to build a solver directly for the simulations of PDE, such
as the Physics-Informed Neural Network (PINN) (Lu et al., 2020-2023, and
others), pure DNN solver for CFD problem (Tompson et al., 2017);

e Challenges (Stability, Accuracy, Computational cost, and Curse of
dimensionality, other black-boxes etc.), and mathematical interpretation of
SciML methods based on DNN (Adcock and Dexter’s recent work, 2020-2022);

3 Hybrid SciML and the traditional methods (Rizzuti et al., 2019, lllarramendi et
al., 2020) < Our interests.
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Hybrid methods for the Helmholtz equation

A 2D Helmholtz equation with a heterogeneous sound speed distribution
(sequences of linear systems with multiple left hand sides) is described as

AOXO — p ¢ =1,2,... (family index), (1)

where A®) are slowly-varying complex sparse matrices, x®) is the complex
solution to be approximated (omit ) later), and b is the fixed right-hand side.
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Hybrid methods for the Helmholtz equation

A 2D Helmholtz equation with a heterogeneous sound speed distribution
(sequences of linear systems with multiple left hand sides) is described as

AOXEO — p ¢ =12 .. (family index), (1)

where A®) are slowly-varying complex sparse matrices, x®) is the complex
solution to be approximated (omit ) later), and b is the fixed right-hand side.
Candidate iterative methods (the traditional ones & the recently SciML):

— Krylov subspace methods: like GMRES (Saad book, 2003).

— A recurrent Neural Network (NN) solver with non-linear fixed-point iterative
scheme (Stanziola et al., JCP, 2021) (x;: approximated x at the j-iteration):

= b— AXJ7
Ax; = fo(x5, 17),
X1 = X + Ax;.
— fg: NN with a modified U-Net architecture (Ronneberger et al., 2015)
— Loss function of NN: a physics-based loss function embed the residual r;
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Optimal step size w;

+ = Ti >@——

NN
hj+1

Tj+1 ——

(A, b) —>‘ ‘

The fy is the NN with a modified U-Net architecture and a physics-based loss function
embed the mean squared error (MSE) of the linear system residual r;

e Solution-update architecture of R(R-NN): xj11 = x; + Ax;
e Term R denotes Richardson-like iteration scheme, and R-NN stands for
corresponding NN-inference
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Optimal step size w;

argmin,, [|rj—

A iAT; T
— o w(AA:L‘j)H — WjAz; — + - Tj+1 —».—»

NN
h,;Hrl

Tj41 —>

(4, b) — ‘

The fy is the NN with a modified U-Net architecture and a physics-based loss function
embed the mean squared error (MSE) of the linear system residual r;

e Solution of MRR(MRR-NN): xj11 = xj + w;Ax; with w; = (Aij)Hrj/HAijHg

e Term MRR denotes Minimum Residual Richardson iteration scheme, and
MRR-NN stands for corresponding NN-inference
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Robustness of the training/validation process

Training loss
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Gradient update steps
R(R-NN):

e Many infinite values exist in the validation loss (poor robustness)
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Robustness of the training/validation process

Training loss
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Gradient update steps
R(R-NN):
e Many infinite values exist in the validation loss (poor robustness)

e Reach the smallest validation loss with value slightly lower than 10~* around
step 80000
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Robustness of the training/validation process

Training loss
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Validation loss

0 5060 10600 15600 20600 25000 30000 35000 40600
Gradient update steps

MRR(MRR-NN):

e Show more robustness with much less infinite values in the validation loss
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Robustness of the training/validation process

Training loss
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Validation loss

0 5000 10000 15000 20000 25000 30000 35000 40000
Gradient update steps

MRR(MRR-NN):
e Show more robustness with much less infinite values in the validation loss

e Reach the smallest validation loss with value lower than 10~ around step 35000
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Neural network as flexible preconditioner

The generalized Arnoldi relation when preconditioner is applied
in the Krylov subspace methods

AL = j-‘rlﬂjv Zj = [z1,- - 7zj]' (2)

FGMRES (Flexible GMRES) with varying preconditioner:
Xj = Xo + ZJyJ, yji= argminyHBel — HJyH (Minimal residual)
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Neural network as flexible preconditioner

The generalized Arnoldi relation when preconditioner is applied
in the Krylov subspace methods

AL = j-‘rlﬂjv Zj = [z1,- - 7zj]' (2)

FGMRES (Flexible GMRES) with varying preconditioner:
Xj = Xo + ZJyJ, yji= argminyHBel — HJyH (Minimal residual)

Strategies for using trained neural network f; as preconditioner

o Strategy 1: “Krylov driven” z; ~ A~1y;, compute z; = f(0, v;)
e Strategy 2: “NN driven”, compute z; = fy(xj—1, rj—1/|rj-1l)

Subspace methods with trained neural network preconditioner

o FGMRES(MRR-NN): Flexible GMRES method preconditioned by
the trained MRR-NN inference

e Only Strategy 2 for FGMRES(*) is presented in the rest of slides
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Improved convergence and attainable accuracy

Mean and median convergence for 1000 examples

— R(R-NN)
MRR(MRR-NN)

—— GMRES

—— FGMRES(R-NN)

FGMRES(MRR-NN)

104 4

10—5 R N I Dbk

_ 1A5—5ll,
b = "/,

107

200 400 600 800 1000
iterations

fp32/32-bit calculation (dashed line — mean; solid line — median):
e Better attainable accuracy of the MRR(MRR-NN), and the preconditioned
methods (FGMRES(R-NN) and FGMRES(MRR-NN) with Strategy 2)

e Plateaus in NN-solvers and preconditioned ones are caused by different reasons
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Improved convergence and attainable accuracy

Mean and median convergence for 1000 examples

10-° 4

10-11 4 — R(R-NN)

MRR(MRR-NN)
13| — GMRES

_ ||AXJ*bH2 1072 . FGMRES(R-NN)

b = 61, —— FGMRES(MRR-NN)
10-15 ¥ I | !
200 400 600 800 1000
iterations

mixed arithmetic calculation — fp32 & fp64 (fp32 only for the NN part):
e Plateaus of FGMRES(R-NN) and FGMRES(MRR-NN) are removed (except one
of FGMRES(MRR-NN) that is restricted by fp64 precision)

e No change in first three solvers because they already reach the best they could
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NN preconditioner VS Algebraic preconditioner

Convergence for the first example

R(R-NN)
MRR(MRR-NN)
GMRES
FGMRES(GMRES(2))
FGMRES(GMRES(3))
FGMRES(GMRES(5))
FGMRES(GMRES(10))
FGMRES(R-NN)
FGMRES(MRR-NN)

A e

_ lag—5ll,
b = 5T,

200 400 600 800 1000
iterations

FGMRES with NN and GMRES(m) preconditioner (fp32):
e Preconditioned variant FGMRES(*-NN) with NNs still performs the best (in
terms of the final attainable accuracy 7, and the speed to reach the plateau)
e Increasing the value of m in FGMRES(GMRES(m)) can improve its performance
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NN preconditioner VS Algebraic preconditioner

Convergence for the first example

R(R-NN)
MRR(MRR-NN)
—— GMRES ~

FGMRES(GMRES(2)) ~
10-11 4 FGMRES(GMRES(3)) |
-~ FGMRES(GMRES(5)) ~
——- FGMRES(GMRES(10))

_ [lAax—ol, 1072 EGMRES(R-NN) \‘
b = 5T, —— FGMRES(MRR-NN)

10—15

10-° 4

200 400 600 800 1000
iterations

FGMRES with NN and GMRES(m) preconditioner (fp32 & fp64):
e Preconditioned variant FGMRES(*-NN) with NN still performs the best

o Increasing the value of m in FGMRES(GMRES(m)) can improve its performance

e Plateau of the preconditioned variants is restricted by the working precision
rd
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NN preconditioner VS Algebraic preconditioner

#

example Method o (fp32 / fp32&Lp64) #time(s)
R(R-NN) 3.36e-04 / 3.36e-04 7.66 / 10.48

1st MRR(MRR-NN) 3.27e-06 / 3.27e-06 9.52 / 14.07
GMRES 2.92¢-04 / 2.88¢-04 | 18.00 / 31.78

FGMRES(GMRES(2)) 1.39¢-05 / 1.57e-06 | 27.42 / 54.92
FGMRES(GMRES(3)) 8.50e-06 / 3.48¢-09 | 31.67 / 52.15
FGMRES(GMRES(5)) 5.64e-06 / 4.19¢-14 | 42.92 / 53.68
FGMRES(GMRES(10)) | 3.99¢-06 / 7.17e-15 | 79.13 / 95.33
FGMRES(R-NN) 5.69¢-06 / 1.48¢-10 | 24.58 / 30.39
FGMRES(MRR-NN) 4.720-06 / 7.82¢-15 | 24.23 / 31.04

TABLE 1

o FGMRES(GMRES(m)) could be as competitive as FGMRES(*-NN) if the value
of m is large. However, this also increases the implementation time

e Even FGMRES(GMRES(2)) requires more implementation time to reach a worse
attainable accuracy compared to FGMRES(R-NN)/FGMRES(MRR-NN)

e Observation in reaching better attainable accuracy with less implementation
time verifies the advantages of the NNs precondtioner
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Network generalizability I: Rectangular shape

Convergence for the rectangle example

— R(R-NN)
MRR(MRR-NN)

—— GMRES

—— FGMRES(R-NN)

FGMRES(MRR-NN)

104 4

10-5 4

_ 1A5—5ll,
b = "/,

107

200 400 600 800 1000
iterations

change geometric from circular or elliptic shape into rectangular shape (fp32):

e Better attainable accuracy of MRR(MRR-NN) but with more iterations

e Apply the trained NN-inferences as a preconditioner still works
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Network generalizability I: Rectangular shape

©) - @, @)
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e Rectangle example: Rectangular shape with a background sound speed of 2 m/s
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Network generalizability 1l: Large domain

Convergence for the large example

— R(R-NN)
MRR(MRR-NN)

—— GMRES

—— FGMRES(R-NN) 5

FGMRES(MRR-NN)

104 4

10-5 4

_ 1A5—5ll,
b = "/,

107

200 400 600 800 1000
iterations

from domain on 96 x 96 grid points to large domain on 480 x 480 (fp32):

e For some unknown reasons, MRR(MRR-NN) stagnates at the early iterations in
lower attainable accuracy, and thus sub-performances than R(R-NN)

e Apply the trained NN-inferences as a preconditioner still works
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Network generalizability 1l: Large domain

Gees . ) RRRR A FOMRESIRNN FoMRES(MRRN)
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Fao 0. o 3 o 0 o 200 o8
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e & o ” s ‘ o ~ .
Gees ) RRRR A FOMRESIR NN FOMRES(MRR )
“ o & e » s v e —
s ) RRIMRRAN) FomRes(RNN FomREs(RR )

% 0 * 0 » s - e e

e Large example: expand to large domain on 480 x 480 grid points
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Conclusions & Perspectives
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Take home message of this work

Hybridization of subspace methods and machine learning:

Strategy 1, 2

Hybrid solvers:
FGMRES(R-NN);
FFOM(R-NN)

The DNN solver:
R(R-NN)

(C2): trained R-NN inference preconditioner

Traditional solvers:

- (C1): optimal step size »|
GMRES and Fom | (_) %P P

J«— (C2): trained MRR-NN inference preconditioner

Strategy 1, 2

e Two main contributions (simplified as C1 and C2) in hybridizing machine
learning and subspace methods (DNN refers to deep neural networks)
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Some further perspectives

For the scientific machine learning methods:
e Explore the balance between the better attainable accuracy
and the good generalizability of network;

e Address the vanishing gradient issue (especially when the
loss function is related to the PDE residual with a better
attainable accuracy);

e Devise the loss function with more information;
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Some further perspectives

For the scientific machine learning methods:

Explore the balance between the better attainable accuracy
and the good generalizability of network;

Address the vanishing gradient issue (especially when the
loss function is related to the PDE residual with a better
attainable accuracy);

Devise the loss function with more information;

Choose other neural network architectures;

Try other hyper-parameters (like optimizer, batch
size, learning rate, etc.) and study their effects in
performance.




Scientific machine learning part (Chapter 5) of my PhD thesis.
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Registration and travel support for this presentation was pro-
vided by the Society for Industrial and Applied Mathematics
& Concace team, Centre Inria de I'université de Bordeaux
Thank you Prof. Eric de Sturler for the invitation!

Scientific machine learning part (Chapter 5) of my PhD thesis.

Thank you for your attention!
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Back slides: Architecture of modified U-Net

Double Conv (DC) Encoding Block (EB)

| convad convad | ! concat S |
| | —) - . N
— -+ —T [t - —
| | | concat DC |
e - | o |
" | |
, DecodngBlack 0 — e
concat DC | h (delayed by one iteration) |
|

DC EB DB conv2d

— Yoo —

L EB DB J
L B DB —<|>
_—)
L EB DB J
Fig. 3. Architecture of the modified UNet used for the learned optimizer J. Each encoding block (EB) contains two double convolution (DC) layers, one to

compute the output passed to subsequent layers, and one to compute the hidden state h. The concat blocks stack the inputs in the channel dimension. The
network is lightweight, with only 8 channels per convolutional block at every scale and a total of 47k trainable parameters.
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Back slides: The idealized skulls

e Part examples of the heterogeneous sound speed distributions based on idealized
skulls used to train the two NN solvers. Each skull is created by summing up
several circular harmonics of random amplitude and phase, and then assigned a
random thickness between 2 and 10 pixels, and a random sound speed between
1.5 and 2 times the background value. (Fig.4. of Stanziola et al.,'s JCP, 2021)
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http://dx.doi.org/10.1016/j.jcp.2021.110430

Back slides: Wavefield in test data set

Convergence for the 865th example

— R(R-NN)
MRR(MRR-NN)

—— GMRES

—— FGMRES(R-NN)

FGMRES(MRR-NN)

104 4

10-5 4

107

T T T T
200 400 600 800 1000
iterations

test the 865th example with domain on 96 x 96 grid points (fp32):

e For some unknown reasons, MRR(MRR-NN) stagnates at the early iterations in
lower attainable accuracy, and thus sub-performances than R(R-NN)
e Apply the trained NN-inferences as a preconditioner still works
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Back slides:

Wavefield in

test data set
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Wwy))j| §-s 772 C7728) = (C772 ) 77208 =

e The 865th example selected from test data set with idealized skulls shapes and
a background sound speed of 1 m/s on a bounded domain 96 x 96 grid points
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e Rectangle example: Rectangular shape with a background sound speed of 2 m/s
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e Rectangle example: Rectangular shape with a background sound speed of 3 m/s
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e Rectangle example: Rectangular shape with a background sound speed of 4 m/s
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Convergence for the skull example

— R(R-NN)
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]

1074

500 1000 1500 2000 2500 3000
iterations

CT000100 (fp32):
e For some unknown reasons, MRR(MRR-NN) stagnates and R(R-NN) fails to
convergence
e Apply the trained NN-inferences as a preconditioner still works
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