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Introduction.

0-1. The study of Kronecker limit formulas for real
Initiated by |

to K. Hecke
Zagier [18].

quadratic fields was
€. Hecke [47] and has been developed by several authors. We refer

6], [7], G. Herglotz [8], C. Mevyer [10], C. L. Siegel (137 and D.

Applying the limit formula, they studied analytic expressions for the value
at s=1 of Hecke's L-geries Lg(s, 1) associated with a character X of the group
of the narrow ideal classes of a real quadratic field FCR modulo | (} is an
integral ideal of F). For an integral principal ideal {(y) of F, (1)) i3 given by
one of the following three formulas:

(0 x((e)=2xs(t),
(i) 2(()=2.(r) sgn N(p),

(i) 2((e))=x.(p) sgn (),

()" x((e))=xo(1) sgn (u"),

where X, is a character of the group of invertible residue classes modulo } of

F and N(p) is the norm of ¢. ‘Those authors studied Lz(1, ¥) mainly for ¥ of

type (i) or (ii) and obtained quite remarkable results. In this paper we present
a formula which represents Ly(1, x), for ¥ of type (iii), as a finite linear com.-

bination of special values of the logarithm of the double gamma function pre-
viously studied by E. W. Barnes.

0-2. For a pair w=(w,, w,) of positive numbers, set

2
1 i s nwz ) a)l } | n 1 _.10 ) ) -.-........T._......._.
s .y
—rulw)= w3 §1{¢( @, nw, v bw} @, =" @, W,
and

| = . , 1 1 1
—722((‘)): (31 El{(p( n(::): ) log( naC:? )+ 2::(1)3 } mT5 ( , + wg)log @,
1

o (r—log 2m + 2 tog (-)~ (44 3.

Wy, 5 w,

where 7 is the Euler constant and ¢ is the logarithmic derivative of the gamma
function.
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Further, put
22
A w) =2 €XPp {7’22(69)2‘!‘*2_‘?'21(@)}

il z Z ) z°
<11 (1 N, +mo, )exp{ nw,+mo, 2(nw,+ma,)’ }

where the product is over all pairs (n, m)=0 of non-negative integers. The
function I'.(z, @) is the double gamma function which was introduced and studied

in detail by E.W. Barnes in [1] and [2].
{t satisfies the following difference equations:

I, (z+4w,, w)= Jﬁl’(-—:);— —lfz(z, W) eXp {( % ;2 )log wz} ;

I (z+a, o)=+2rx T (—-5—1- Fll“z(z, @) e:)(p«fL -—%—— fj; )log wl}.

Iet F be the real quadratic field with discriminant d and let ¥ be a primitive
character of the group of ideal classes modulo i of F of type (iii). Set

L ; S s+1
&(s, )=n""(dN(N"L (T)F ( 5 )Le(s, %)
It is known that &(s, ) satisfies the following functional equation:

£(s, X)=w(x)&(l—s, X7,

where w(X) is a certain complex number of modulus 1. Let €>1 be the funda-

mental totally positive unit of F.
Choose integral ideals aj, @, -+, as, SO that they form a complete set of

representatives of the narrow ideal classes of F. For each & (1=Lk<h,), set
x, yeQ, 0<x<1, 0=5y<],
RGs, @)= {e=rtere@h ™ }
| a,5(z) is prime to |
We note that the set R(e, (af)™) is finite.

TueoreM. Notations being as above, the value of La(s, ¥) at s=1 1s gwen by

01w Yol Le(t, )

— :2_03 S yilz)log {I(z, (1, N2, (L, &N}

1 zER(s, (D™D

(z/ and ¢ are conjugates of z and e, respectively), where x,(z):z(a,,i(z)).

In particular, assume that X corresponds to, in class feld theory, a quadratic

.~ extension K of F with relative discriminant Y in which exactly one of the two

":"‘*'-.:..,.ﬁc;.a?chimedean primes of F ramifies. Let & he the fundamental unit of £/ and
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assume that &, is (up to +1) the m-th power (m=1) of a primitive unit 7, of
K and that », and » form a system of fundamental units of K. Denote by 7°
the conjugate of 7 with respect to F and assume that >[5’} >0.

COROLLARY TO THE THEOREM. Notations being as above,

h
(77/|)?°|)th I'i 11 {I"z(z, (1’ 8))[12(2", (1’ e’))}mhfzh“)

- k=1 ZER((-(Jk')_l)

where hy and hp are class numbers of K and F, respectively, and 1(2)=1(a,i(2)).

The formula (0-1) is further transformed into a linear combinations of
logarithms of the function F(z, (1, N)=I",(z, (1, )/ (14e—2, (1, &)).

0-3. As mentioned in the introduction to [4], the original motivation for
Hecke to undertake the study of Kronecker limit formulas for real quadratic
fields was to find transcendental functions suitable special values of which gener-
ate abelian extensions of real quadratic fields (cf. [14]). On the other hand,
it is conjectured that, if x is of type (iii), Le(1, ¥) would be a linear combina-
tion of the logarithms of units of certain abelian extensions of I (see [9] and
[15]). With these situations in mind, it would be not too optimistic to suppose
that the formula (0-1) suggests that double gamma functions may play a role

in arithmetic of real quadratic fields. A brief summary of the present paper
has been announced in [12].

0-4. The present article consists of three sections. The first section con-
sists of six subsections. In 1 and 2 the difference equations for the double
gamma function are proved. In 3 an integral representation for the logarithm
of the double gamma function is established. Both are due to Barnes (though
the proofs presented in this paper may be somewhat different from those of
Barnes). In 4, we derive a formula which represents the first derivative at

s=0 of the following Dirichlet series (0-2) in terms of the logarithms of the
double gamma function.

(0.2) (1L L(m, )"},

0 i=1

vk

m’

where L, and L, are inhoinogeneoue linear forms in m and n with positive co-
efficients. In 5, we obtain an asymptotic series for log ', which i1s useful for
the numerical computations. In 6, an infinite product expression for the func.
tion I',(z, @)/ (w,+w,—z, @) is proved. It is reminiscent of the infinite prod-
ucts for elliptic theta functions. The second section consists of four subsec-
tions. In 1, we show that any L-function of a real quadratic field is a finite
linear combination of Dirichlet series of type (0.2) (cf. [11] and [18]). In 2, 1t
is shown that if X is primitive and of type (iii), L#(1, X} coincides, up to an ele-
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mentary factor, with {(d/ds)Lg(s, ¥)},=e. Thus, the result of §1, 4 yields our
Theorem 1. In 3, the Corollary is derived. In 4, the formula (0.1) is transformed

into a more suggestive form (see Corollary 2 to Theorem 1). In section 3, we
discuss several numerical examples.

Notation. As usual, we denote by Z, @, R and C the ring of rational
integers, the rational number field, the real number field and the complex num-

ber field, respectively. We denote‘ by I'(2), £(s) and by B,(2) the gamma func-
tion, the Riemann zeta function and the k-th Bernoulli polynomial, respectively.
We set ¢(z)=1I "(2)/I'(z). The k-th Bernoulli number B, is given by B,=B,(0)

§1. The theory of double gamma functions was initiated and developed

by E. W. Barnes in his memoires 1] and [2]. In this section we discuss certain

properties of double gamma functions which are necessary for later applications.

Propositions 1 and 2 are due to Barnes, while Propositions 3, 4 and 5 seem {0
be new.

1. Let w=(w,, w, be a pair of positive numbers. Set

(1.1) "Tzz(w)—" W, 2{‘:[’( e ) log( L )+ anz }

1 1 —~log 2x)
+—2_-( O I wa)log e 20)1 (T g

t +——
w1

2

mi ivative
where we denote by 7 the Euler constant and by ¢ the logarithmic derivati
of the gamma function. Further, put

ont ]
12 —ral@=—r 210 (o) nwz}. log ws++

60_}1 (1}10)2 w1w2

ProoF. If 0<Re s<1,

oo ts-'l T r 2'—'5)?‘1“2 (n>0) .
|, meprdt=Tele

t — o—s)ttds  (0<ae<])
13 gO—tr=aer| L[ O E-are

1

T 27:7: Ret=0y

C(Z——S)F(S)F(Z-—-s)t“’ds—i—t"1 (1<0,<2).

K9
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Thus, if one puts f,(t)= 2{¢ (nt)

:::t }, one has

0=t S, LC—IOT I @9t ds

SO | v
=t o i LR—8)(S) (Y (2—s)t*ds+t ogt
e85= -0

2 "
gt log it 2= @— () ds
CI—-O'I

7{.2
=Gf? +1"log t +17%f,

Since

—Tzl(w):

W, 1 Y rt
a)‘% fl( wl ) wlwz log w2+ W +_'-"’>' y

1 Wy Wi

the equality 7,,(®,, w,)=7,,(w,, ®,) follows immediately from the equality f,(f)+
n?/6=n?/68+t"og t+172f,(1/1). It follows from (1.3) that

(1) 4t == —y 4 2m j . (2—5)F(s)[’(1——s)t"‘d5 (0<6,<1)
- | 1 | 1 _ _N\jpl-s
—=log t- 5F T Dns Rcs=02C(2 Y (1—=9)t'ds (2<0,<3).
Now put f,(f)= i‘. {d(nt)—log (n‘t)+l/2nt}. Then one has
n=1
o) = 2m ((s—1)ER—) () (1—s)t'*ds
Re s=a4
1
?,lt log t-{-—%‘wlog\/Zﬁr -~—2—~—+—2-~10g t—log v/ 2m -+ ZL
ol Es— 1) E@—s) [ () (1—s)ti~ds.
2Tt Re $=3-05
Thus,
(1.4) £(B)+log v/Zx —L——5-log ¢
1 1 I8 b -1
:T{f2< t) 5 -Hog\/?ﬂ'r 9 Iogi }
Since '

al@) = { (22 +10g VER ——5-10g ()}

L1 A
F 5 ( . log w+ s Iog%)
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the equality 7,,(w,, @;)=7(w,, w;) follows from (1.4).

2. For a pair w=(w,, w,) of positive numbers, set

(1.5) I3z, w)=2zexp {Tzz(w)z | 2; rn(w)}

2
} (e ) % by t o o )

where the product is taken over all pairs (m, n) of non-negative integers which

are not simultaneously equal to zero (7,{w) and 7, (w) are given by (1.1) and
(1.2) respectively).

PROPOSITION 1. As a function of z, I')(z, w)™* is an entire function of order
9 which is symmetric with respect to w; and w,. Moreover it satisfies the follow-

ing difference equations.
, . 1 2 1
FZ(ZT(DD CU) 1"'"_ ‘\/271_ Fil(zl fU)F( wz 2 )log wg})
_ § . z 2 1
I (z+ w,, w) ‘:WF21(2, w)f'(wl—) eXp{( o D )Iog m,}.
Proor. The first two assertions are immediate consequences of (1.5) and
Lemma 1. To prove the difference equations, set

’ | < < } 2
Ao, z)=211 <l ' omw,+nw, ) eXp{ ma,+nw, - 2(me,+nw,)? }
Then,

0 Z 22
log f(w, z)=log z+m§1{log (z-+mw,)—log (maw,) =y -+ T }

22
+ Z} Z {log (z4mw,+nw,)—log (mw,+nw,) ma, —i—nwz 2(mw1+nw2)2}

=] m=p

Recalling that log ['(2)=—log z—yz— E=1{log (n-+2z)~log n—(z/n)} and that ¢(2)
= —(1/2)—y— i}l{l/(n—l—z)—o(l/n)}, we have,

oo P 1 L
log z+m§1{log (z+mw,)~—log (mw,) mor T oM }

4 124 T 2
=—log I'(—5)+log &= 172

and

oq Z 1 zz }
mgo{log (z+mw,+nw,)—log (me,+nw,) o Faw, | 2(mw1+nw2)z

=l nwz ) log F( z+nw2> 1 nwg ) 20)2 ¢,< nw, )

(?7,:1, 21 3r ) '

Kronecker limit formula 173
Hence,
log f(w, 2)=log @,—log I'(-Z ) 1’5; :
BT T (2
Z?fwg T ana)z} w, n“{ ( nwz) lo g( n%): ang }
2cu1 n—{ ( nwz) nwwlz }
Hence,

2
log I'3'(z, w)= 2; log w, A ; ( j’l ’I j}2> log w,

1y 20w,

z — 1 , 1
20, (r+log 27) (C%leci’:)z 10g( wg) i |

E{log F( ) log F( B, )

n=1 wl

+log w,—log I'( 21 )+

1 Iog (—EE"J-) ]I ch }

2?10)2 2nw,w,

Thus,
log I'(z+w,, w)'—log I',(2, @)™

. log w,—0g w,%—é—log 21 Z}z log (-—%

2

—1-2{-—10 (FE22 ) tog ntlog (ot )+ )

(0, nw,

=log F( ;2) ‘;( :)2 é )Iog wz——%—log Lt

The first difference equation has been verified. Since [ ',(z, @) is symmetric with

respect to o, and @, the second difference equation is a consequence of the
first.

3. In this subsection, an integral representation for the logarithm of the

"double gamma function is derived. We begin with some notational preparations.

For a positive number 2<1, denote by I(4, o) (resp. I(4, 1)) the integral
path in the complex plane consisting of the oriented linear segment (=00, 4)
(resp. (1, 2)), the counterclockwise circle of radius 4 around the origin and
the oriented linear segment (4, +o0) (resp. (4,1)). The outline of the integral
path I(2, oo) (resp. 1(2, 1)) is indicated in Xigure 1 (resp. Figure 2).
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Figure 1, — A
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AU
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Figure 2. —2 e

Let {(s, 2)= Eo(n—l—z)" (Res>1, Re z>0) be the Riemann-Hurwitz zeta function.

Then the following formulas for L(s, 2) are well-known (see e.g. Chapter 13 of

[16). | ,
(1.6) o(s, 2)y=-2 L1~ f eXPL=2) iy (o< 2<2m).

v%iq) (o l—exp (—i)
(L.7) <€, 2, =log {-L2 ]
It follows from (1.6) and (1.7) that
I'y_ 1 exp(—=zt) logt e
(18)  log{-A}=grf EEEL B L gt (r—mi(4—2).

PROPOSITION 2. Let w=(w,, w,) be a pair of positive numbers. There exisls a
positive constant p,(w) which does not depend upon z such that

'z, w)7_ 1 _ exp {—z1) logt it
L) log{ ;2(0’) 27t J 1y {1—exp{(—w)} {1—exp(—w,t)} ¢
—1 Z Z
| (gwlzz) {Bz(-—co—l—)w?+251( wl)Blw1w2+Bzw§}
27T 27
(Rez>0, Q<AL o @ )

where logt is understood to be real valued on the upper linear segment (400, A)
of I(A, co),

ProoF. Denote by J(z, w) the right side of (1.9). Then it follows from the
equality (1.8) and Proposition 1 that

1 exp(—=zt) logt L TR o
Szt 0)—J(z)= 271 Lu,m, exp (—tw,)—1 t di 20, W, (220, — w,0,)

:-10g['( o )—Hog«/fz? | (% ;z)log(mz)

W,

:108' Fz(z+w1f Ct))_log F2(z: (t)) .

Thus the function J(z, w)~—log I' (2, ), which
plane, is continued analytical

Thus, if w, and w, are linearly independent over Q,

Since the left side of the above equality depends continuous!

oadne ¢ PG e Lt A

[y
.7
N .
73
0y
'1'
“
-
r
Y
AR
¢ R
)
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Hence,
./(z+w1: w)—log Fz(z"l"mu w)=J(z, w)ﬂlog Fz(zr ) .

Since J and log I’, are symmetric with respect t0 w, and w,,

](Z"l‘(l)z, a))—log F2(2+w2: m):](z, CU)““log Fe(Z, 0)) .

18 holomorphic in the right half
ly to an entire function with periods w, and w,.

Uz, )—log I'(z, ) =0.

y upon w,; and w,,

c;iz {J(z, w)—log [',(z, w)} =0, for any .

Thus, log p,(w)=log I'",(z, w)—J(z, w) does not depend upon z.

COROLLARY TO PROPOSITION 2. For any posiliwve number t,

log I'i(tz, tw)—log I'z, ) ={5-(—t—-)z— 52— 1} log?,
1
W

log p,(tw)—log pz(w):( 1(2%1 | 2w, iﬁ)logt.

PROOF. The first equality follows immediately from the definition of the

double gamma function. It follows from (1.9) that

IOg{ I',(tz, tw) } log{ I',(z, w) }

p:(tw) 04(w)
_ (—logf)j exp (—zu) du
211 e (1—eXp(—w,u)} {lheXP(—wzu)} u -

A simple computation shows that

- (1.10) : 23 M 1) 2L

2L J ey {1—exp(—wu)} {l—exp(—w,u)} u

= 2w{wz By et 285 ) Buowat-Buoi)

(Rez>0, <AL on 22 )

w,

The second equality is now an easy consequence of the first equality.

4. Let a=(a,, a,) be a pair of positive numbers and let x=(x,, x,) be a pair
of non.negative numbers which do not vanish simultaneously. Set (s, a, x)

e 2

= > I {x,+m+{x,+n)a,}*. The Dirichlet series {(s, a, x) converges absolutely

m,n=0 k=1
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if Res>1 and is continued analytically to a meromorphic function in the whole
complex plane (see Proposition 1. of [11]).

PROPOSITION 3. Notations being as above,

-dS—C(s, a, x), )

F x1+xzan (l al))Fz(x1+x2azr (l az))
—-log{ 0,((1, ay)) (1, a2)) }+

“log (=) Bix),

(for the notation 0,((1, a)}, see Proposition 2).
Proor. Let us recall certain computations in the proof of Proposition L.

of [11]. Since

F(s)’ii [x,+m+(xFn)a} ™

"‘j j. (2.¢ ) exP{_'(t1+tz)(x1+m) (x2+n)(al 1+azta)}dt1dt2
(Re s>0),

we have, for Res>1,

(s, o, D= | (Wt "glty, t)dtdts,

where
€eXP {(1— xl)(t1+tg)‘|‘(1 x,){(a, t1+azf2)} .
gty 1= (T exp(t, L) {1~ exp(aty +0:1a)}
Set
Dlz{(tly iZ)ER?H tl_Z..tZ}
and

D,={(t,, t,) € I3, hEt) .

In D, (resp. D,), let us make the following change of variables: f;=f, t,=Iu

(resp. t,=tu, t,=t). Then we have

oo 1 d
r6es, o =] -9 urlate, n+atin, 915~

For a sufficiently small positive number 4, we have

1 ('—‘2?1'13) 2
(1.11) (s, 0, )="1g77 1o iy L A~

x [ y2a_dt f 9% (ot tu)+-g(tu, 1)
J(2,00) I(A 1)

(the integral path I(4, oo) (resp. I(4, 1)) is as ‘ndicated in Fig. 1 (resp. Fig. 230,

Applying residue calculus, we have
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-—éi—(:(s a, x) —'( 3ri-+2y)C(0, a, x)
exp H{l+4a,—(x,+x,a,)} logt
AT {J.m - lexp (H)—1}{exp (a,))—1} Otg —dt

exp tH{1+a,—(x,+x,a,)} logt
+L<m {exp (£)—1} {exp (a,t)—1} dt}

1 14u
T 41 5‘1(1 1){ 2 a,+au

Ba(x1)+81(x1)31(x2)+§ *ff “B,(x)} OB L gy

I 1 a u+02 log U
47l'1 JI(R 1){ 2 01 —}—(z2 2(x1) l_BI('xl)Bl( 2)"’ 2 1+ B ( 3)} u~~du,

where logt? (resp. logu) is understood to be real valued on the upper linear
segment (400, ) (resp. (1, 2)) of I(4, o) (resp. I(4, 1)). It follows from (L.10)
and (1.11) that

1 & 1 . 1
(0, 6, D=5 X (= Belm+ 50+ BiBi(xit 1a0,)+5-Ba04)

k=1

— i ( ;1 } jz )Bz(xl)-l-Bl(xl)Bl(xg)+%(ax+az)Bz(xz)-

Hence, Proposition 2 implies that

- : Fz(xl Xy, (1, al))F:e(xl *‘xzazv (1 2))
—miL(0, a, x)*rlog{ ;2((1 a)) Pz((l @) ’ }

1 log u ty 1+u |, 14u 1 1\ du 1
180, g, x) 211 jm.n U du+L | ) “82( -

a,+a,i e,u+a, a a, U

d
TC(Sr a, .7(') - —

On the other hand, simple computations show that

1 logu , _ .
277-'?: j‘(()' 1) U du—ﬂ'l

and

j‘1< 1t+u 1 \ du _ a,—a, log ( aﬁ—a2 )

a,u-+a, a, / U qQ,

Thus, the proposttion follows.

5. In this subsection, we derive an asymptotic series for log I'(z, w) which
is useful for the numerical computation of the double gamma function. We use

notations in 3 without further comment. For z>0, set

1 exp(—=zt) logt 7 — m i
(112)  LG(2)=_ jum e (= dt+ B.(z), (0<1<27),

where log ¢ is real valued on the upper linear segment (--co, 2) of I(4, oo).




Takuro SIUNTANM

173
AR
LEAMA 2 ) "j‘LG“" - 10g1 \”"J
d (8. 2 ’
i) LG(Z}'—' -By(z)— [7};’5(‘ “)],z_l

V—LG{z)=—2zlog2+2,

ainy LGz
: *—By(zlog z2—2) B) log z

. 2z W
iy LGlay=—-g-log - g &

=1 1 8’&*- e
P e ER R SR

-
she roewmatnder form RA(2) satisfies Lhe wequality

i, L1 4
] | Bon i
JAZh S 2 (2 2n+D(20--2) (z>0) .

Proor. The first (resp. second) assertion follows easily from (1.12) and
the third equality 1S an immediate

Since ,(o,z-rl)::g(s,z)~—

L8 iresp. (1.6)).
consequence of the second one. Set
5 [(2) _y B,; »
s.rislog e ~{(e- g lose—2}- B (gt

Then it is well-known (see e.g. Chapter 12 of [16]) that

213 'S (7)) ) Danta S1-2
! /| (9?1 LZ) 9}2 . 1) fOf AC,;’O a
i 0f (1%, there exists a constant ¢ (which is independent of z) such that
l.] l 13'7\'-:-—--22_ - 3 N Bo

e f3.
IR thkia YN |
o ()i’)(}/c’**—l"@k 9) g [{n(z)“'i_(f,

WIET B
BweEpuE R l-_J. S0t The inequality (1.13) ) implies that

On the other hand. it follows casily from (1.12) that

- 1
_1 L ey

balaletael e dn
' | \ L—exp (-7 "[

L

1 :p 1
3=~ 0, - exp(—2z) 7

) =
R tnzy S
d

A straightforvse i
ratgntiorward COTputation showg that

Thus, the constant ¢ in the equality (L11) is equal to zero
s and put =,
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e\ }{ Pt

ol
_ zZ" ; S I PTI
—_ — 7 IOgZ ,'-T.La-‘: —Uﬂ(\z log I—2— 2v_10g2 :"_.“;3" [j’z
Hence, we see that
(J
; BJ_IOg 2}‘_____0‘

alln LLCJ( ) Y ]O(; L= TZ Bﬂ:f]Og‘z._'z;, 5 )

“"}1 .

Let w=(w,, w,) be a pair of positive numbers and put
Nolations hewng as abore, 1f z. 0,

PROPOSITION -1,
2 _Z g B p i ,z._, .' [J._ TG
L [) ( )l ) , Q(Ult):[j‘( (ﬂ! )]jl ; )‘( J

_ [z, 0) _ _loge [,
(L15)  log——p tuy = T 2w, (N0
( [.oop 3

B gt B g

T . @)y

Z .o gy .
.‘t—) |- R;e(_z) =2, 3, 000)
(1)

o )(fu, Qi et o (o]

o+l
I l-
o if.r)HfH{'«

where Rp(2)= 9}1_‘1
fzuflm more, thwe rematning lerm I, salisfes

the integer part of )

na ineguality:
- ] : V] = - ( t "-3 )ib"_‘.n.
|[\n Z}|_" l)?I 1\(9'4_? 9\ - ' ",
PR g e . d 2
PROOF. Set w=2z/w; Proposition 2 and equalities (1.8 (1107 and (1.12)
imply that
f F"(Zr (')) 1— ({_ ‘?-_logf wl-) {() B : 'L')"'Z(H,(M.B [)_lf{ - 1.
(1.16)  logy\ 1wy T w01, !
g e*{p(—ﬂﬂ [ 8\9{;’”1 . _11 .,[51.-_.{j-'-.;-!}--’f‘.
_r_J-J 1 C\P("“ L exp : -
S ECRR G LYoy
—"—%’LG(“’)" 0% Vo b2
e
L AL B -2 i
the equality (L9

three times hoth sides of

r hand, differentmtm
- [t

On the othe
with respect to 2. Wt have
il e\p\ _ZE»’ . &

Wil Cexp (-unls :

A’ og {4z @)} ==, TiZexpi-enl

dc
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==2 2 (z4mw,+nw,)-*

=—lwy :@0 C3, w'+nry,

where we put 7/=-%

and w'=-% '
e w, na w @, A straightforward computation shows
s, 2= -2 o +oile  SGH(s+2) 0 By((u)
z 22 6 jo (u+z)™ du (RGS>"-2, z>0),

where we put {u} =1 Lu]. Taking into account (i)

| of Lemma 2, we have
(1-17) 123 lOg{Fz(Z, w))

Ire—

__ 1 1 3B T
w8 )= 88 W)= =T 0, w)+ B B (6, ot

x-d_s-\[i_ -_]:_. B2 e |
e LG(w)+ 5 log F(w)—~——2— rgb(w)-—%fo B,y({u})(3, w—i—ru)du}.

From (1.16) and (1.17) we infer that

[z,
(118) log{~2 20} logow,f 1 By(w)+2B,B,(w)+ By - LG(w)

N A B,t e
B, log {{ A2} Bz gy T By} )@, w-ru)du

In fact, (1.17) implies that the difference between the left side and the right side

of (1.1‘8) 1S a quadratic polynomial in z. On the other hand (1.16) implies that
the difference approaches 0 when z—-co. Hence the equality (1.18)
Applying the integration by part, we have

follows.

z; j:Bs{u} L3, w+Tu)du

=2 he R (21, w) 2‘rn+ : J‘:Bz,,“({u})qzwl, w+ru)du |

2n+1

Thus, we obtain (1.15). Set (2= 2; I J.:Bm,,l({u})C(2n+1, w-+tuw)du. Then

i
(119) R = Tyt (@], W)+ Rous(2).
On the other hand,

2n+2

Ru(2) =G5 | [ Bonsol (41)— Bones D020 +-2, wtru)du.

Since (—1)"[Bopsz— Bans{{u})]20, (—1)"R.(2)>0. H'ence R,(z) and Rn+;(z) have
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opposite signs. Thus, the equality (1.19) implies that

Ru(@)| <t (2t L w) (e 69, of [17];.

REMARK. If t=w,/o,<1 and if w=2z/w, is a large positive number, the

asymptotic series - (1.15) is quite useful for the numerical computation of
log [',(z, w).

6. So far, we have assumed that the parameters w, and w, of the double
gamma function [',(z, w) are both positive. However, analytic expressitons
defining [ ',(z, w), r.,(®) and 7,,(w) are all meaningful if w,/w, is not a negative
real number. [n this paragraph we assume that w, 1s posttive and o, s a
complex number which is not non-positive real. Then it i3 easy to see that
Lemma 1 and Proposition 1 are both true if log z is understood to be a holo-
morphic function on C—(—o0, 0] which is real valued on the positive real axis.
Set g=exp 2rw,/w,)) and ¢ =exp(—2ri(w,/w,)).

PROPOSITION 5. Notations being as above, assume that @w,>0 and lmw, >0.
Then

' (0 +w,—2, 0)

I',(z, w) |
= 21l
' 1'Q H(l—q" SRP e i 2° 1 1
:'—'\/?CXD Tl (l)z+ W, njo W, ’ exp { T Z},
12 \ w, a)z) H(l“-qm giéin i)mz) 2 lww, \w, w,
n=1 2

PrROOF. Set F(z, w)=1 (v, +w,~z, w)/l (z, ®). It follows easily from Prop-
osition 1 that

2 g F(z, w) —9ginTE

Feto, o) 2, 22 TFlte, ) m

The zero’s (resp. poles) of the function F(z, w) are all simple and located at
z=—(nw,+mw,) (n,m=0,1,2, ) (resp. z=nw,+mw, (n,m=1,72,3,-)). Set

fz, w)= I (1—q" exp (2ri/w,)z) and fo2, w)= ﬁl(l-—q’“ exp (2ri/w,)z). Then f,
n=0Q n=

and f, are entire functions of z which satisfy the following difference equations:

2

(;rj Z) :fl(zt (U) y

fHizt o, @)=f\(z, w), fi(z+w,, w)(l—e)(p

fletw, D=(1-exp 222 fz, w), Sz, @)=/dz, ).

Wy

The zero’s of f\(z, ») (resp. f{z, @)) are all simple and are located at z==nw,—-mw,
(neZ, m=0, 1, 2, --+), {resp. z=nw, +maw, (n=1, 2, -, meZ)). Set
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2

A, o= oy exo G- {r —(artan) )

it is now easily seen that F(z, w)/F(z, ) is an entire function of z with periods
w, and w, Hence, F(z, w)/ﬁ‘(z, w) does not depend upon z. On the other hand,

271’ > = 27Z'i 1;[;11 (l_ﬂqn)
lim F(z, )/z2=1"J{(@,+ v, a)):—\/ -—— and lim F(z, w)/z2= = . =Tt
=1

tollows from the transformation formula for the Dedekind 7-function that

exp( 12 o >H(1 q

Thus, we have

Fe, /88—, (2 oo {5 (220}

Proposition 5 has been proved.

1w,

12 W, ) H (1'_“'9!“) ’

n=1

§ 2.

1. Let F be a real quadratic field. We fix an embedding of F into R.
Denote by h, the number of narrow ideal classes of F' and choose integral ideals

a;, @, ***, Gy, SO that they form a complete set of representatives of narrow ideal
classes of F.

Denote by E (resp. E,) the group of units (resp. totally positive units) of
F Let ¢>1 be the generator of the infinite cyclic group E,. For each x€F,

we denote by x’ the conjugate of x. Let | be an integral ideal of . We

denote by R(e, (a,f)™) (1=k=<h,) the set consisting of all elements z ot (a,h)?
which satisfy the following conditions (2.1) and (2.2).

(2:1) The number z is of the form z=x-+¢y, where x and y are rational
numbers which satisfy the inequalities 0<x<1 and 05y<1.

(2:2) The integral ideal a,j(2) is prime to 1.

It is easy to see that R(e, (a,f)7?) is a finite subset of F. Let I(f) be the group
of fractional ideals of F which are prime to {. Further, let P(}) be the subgroup

of I(}) consisting of all the principal ideals generated by totally positive p

with the congruence condition g#=1 (mod. f). Then the group I(})/F() is the
group of narrow ideal classes modulo fof F. Let X be a character of the group

I§)/P(®). Denote by Lg(s, %) the Hecke L-function of F associated with the
character % : .

Le(s, 1)=x(g)N(a)~*, where the summation with respect to g is over all
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the integral ideals of F. If g is not prime to }, we put %(3)=0.

LEMMA 3. Notations being as above,
o

L, D=2 X @IV LG, (6 ), (x, 1))P (2= x b

k=1 zER(z,(ak{)"l)

Proor. It follows from the definition of Lz(s, x) that

Le(s, )= 33 eN@),

ko1 ﬂmkt
where the summation with respect to g=a,! is over all the integral ideals of i3
which are in the same narrow ideal class as aif. On the other hand

(2.3) > 2(BN(g)~*=Nauf) " Zaaf(p) IN()I ™,

ga,t

where the summation with respect to # is over all totally positive numbers in
(a,))~! which are not associated with each other under the action of £,. Denote
by R(e, (a,)™%) the set consisting of all z of (a,)"* which satisfy the condition
(2.1). Then it is easy to see that the mapping from E, X Re, (0, % Z% into
F given by (y, z, (m, n))—u{z+m-+ne) is a bijection from the former set onto
F.Nn{a D! (we denote by Z, the set of all non-negative integers and by F. the

set of all totally positive numbers of F). Moreover, since X 1S a character
modulo T,

wad(z+mtne))=x(a,}(z))  for any m, neZ,.

If the integral ideal a,j(z) is not prime to §, %(a,§(2))=0. Hence the right side
of (2.3) is equal to

N(a, )™ 24 (@ S, (e, &), (x4 Xy)) (2=x,+x,8).

zER(z.(aki)‘l)

Now, the lemma follows.

2. Now we assume that Y is a primitive character of the narrow I1deal

class group modulo ¥ of F which is given by the following formula (2.4), if (x)
is a principal integral ideal of F:

(2.4) , 1{(g))=sgn (L) X1)

where ¥, is a character of the group of invertible residue classes modulo 1. It
is known that Lg(s, ¥) is an entire function of s. Furthermore, if one puts

(25) (s, D=r ANO) T (-5 )T (ZF)LeGs, 1),

where d is the discriminant of F, one knows that £ satisfies the following func-

(1) For the definition of {(s, (¢, '), (x4, x,)), see Proposition 3.

W —
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Lona!l equation

o
ALY

wWhere w(y) is g combplex n

:" g !
451 of Hecke 757,

THEOREM 1.

X be a primitipe character of the
1 0 the form (2.4), then

Eroud of narrow idea;

i qz L Xﬁziak?(z)) log {Fz(z' (1, 5))Fz(2’, (1, )} .
LAl S LONCF S b

PROOF. We note that the holomorphy of Lg(s, 1) at

cquation {2.6) implies that Le{0, 1)=0. Evaluating the b

tional eguation {2.6) at 5=, we have

$=1] and the functional
oth sides of the func-

VNG M) L, 0=20000 (5~ Lecs, x79) .

Hence,

/d N

== AN —{_d -1
W{Y) s Lp(1, X)'-{ 25 Lr(s, X )},,:0.

By Lemma 2,

27 Le(s,x =% v 1@ E@IN@ILS, (&, ), (3, 1)

k=1 2GR{c, (e, f)~1

We note that for any character ¢ of the group of narrow

X4 is always a primitive character of the
modulo ¥ of F of the form (2.4).

1deal classes of F,
group of narrow ideal classes
Since Lp(0, X~ '#)=0 for any such g, we have

2, ATHHENLO, G, @), (xy, 2))=0  for k=1,2, - h,.
ZGR(c.(.kf}_l)

Thus, we obtain

(2.8) w(X) ‘/‘fgf (1) L:(1, 1)

R

1 d / — .' v
= eyt @@L s (6 o), (n, m)} (=xten)

By Proposition 3, |
29) {4l e, O )} =log Ttz (U, Nz, (1, &)

—log{p.((1, &) p.((1, &)}

. e—¢’

4

B,(x,) log (/).

=t T 3 \;.-'
v !
_‘.: - - -'
.. » .

. - . . .
. " -
L L B - " e
{.‘.‘.'.,..‘.:.'" —A 1 E - PR -~ - )
- - . ¢

3 B R Oy I P
-; » -
NPRATRET

Kronecher it formulg

r -
We note that if e=xhex, e Re, (DY and if U< x,

Re, (a41)*) and 1 Ha,§(2)) =

=~ X714+ e 2))
(0<x;<1), then L—2z, 1+ ¢z and I e(l—z)e R(e (

=x(0»f(1+62))=——x(akf(l--#e(lwz))).
Taking these sity
(2.8) and (2.9) that

70 then 10 -
Furthermore if 2 X, -

Fir oo 1
.,\“‘.‘Sl

a7 and My aylt .o

ations into account, 1t is now €asy to infer, from Gt o

A e ¢ e e

w(x) 1Y g‘;’(?j Le(l, )

3. Let K be a quadratic extension of
assume that exactly one o

Further, let

with relative discriminant 5 anel
[ the two archimedean primes of I
X be the character of the narrow ide

corresponds to the extension K of F in class
and of the form (2.4). Denote b
for K (resp. F). Then

(2.10)

ramifies K.
al class group modulo » which
field theory. Then ¥ is primitive
y Cx(s) (resp. Zp(s)) the Dedekind zeta function

CK(S):CF(S)LF(S: 1) .
As is well-known, the functional equations for Gxl(s) and p(8), together with
the above equality, imply tHat the factor w(yx) in (2.6) is, in the present case,

equal to 1. As ig well-known, the residues of Cx(s) and Z,(s) at s=1

1S gven
by the following formula -

— zgmr\)fchz{_~ Hﬁ&c{'{g
SPOIEZ TG e Resllo=0nE

where Ry (resp. R;) and hg (resp. hg) are the regulator and the class number
of K (resp. F).

()= 2T R h
LF{].,A)—--—T‘-I;—_—::-—-— K K

VAN(d) Rr hp .
For each ye K, we denote Dy y7 the conjugate of y with respect to F. We fix
an embedding of K into the real number field R which extends the given em-
bedding of F into R. Let &>1 be the fundamental unit of F. A unit u in K
1s said to be primitive if u is not a power of any unit of K other than u or
u™'. Assume that =sz=» (m>0) be the m-th power of a primitive unit 7, of
K. Take a unit » of K which satisfies the {ollowing conditions (2.11) and 2.125.

(2.11) The group of units of K is generated by »,, » and +1.
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We note that, although m, and % are not uniquely determined, the positive

integer m and {n/7°| are uniquely determiined. Then we have

Ry _.| logly log | 7°| —logl ¢ llogln! | _ 1 i
AR = 1 1 _-\ -?'E. log( \7701 ).

Rr log &,
Thus,
(213 Le(l, 1) =i o tog ().
VAN(®) mhy |77

Comparing (2.13) with the formula of Theorem 1, we obtain the following :

COROLLARY 1 TO THEOREM L. Notations being as above,

7 P r o AN} MRt g (2
R I IR IR TR

r=1 r&R(s,{apbd™ )

where we put Xg(Z):X(ﬂab(Z))-

4. In this subsection we derive a modified version of Theorem 1 which
seems to be more suggestive and to be more convienient for the numerical com-
putation of L1, 7). In the following we use natations in § 2.3 without further
comment. Let f be an integral ideal of F. We assume that there is a character
y of the group of narrow ideal classes modulo T of F of type (2.4). Choose
integral ideals ay, -*, Oao of F so that they form a complete set of representa-
tives for narrow ideal classes of F. Set R,=R(e, (a1}, (1<kZhy). Let 2.1
be the group of all the totally positive units of F. For each ucE, and for
each ze R, there exists a unique uze R, such that Tz—uzeZ+Ze. 1t 15 easy

to see that E, acts on K, via the mapping : (¥, 2)—uz. Each E,-orbit in Ry 18

aaid to be a cycle. The value of ¥ at the integral ideal 0,j(z) (zE€R) depends

only upon the cycle which contains z. Ior each cycle C of R, set
1(C)=2(ai@) (z€0).

Tor a z=x+¢ey of Ky (x, ye@), put |

r 14e—2 if 0<x<1 and 0<y<1,

—z={ 1-—2Z if 0<x<1 and y=0,

C 14+e(l—y) if x=1 and 0<y<1.

The mapping: 2——2 induces a permutation of order 2 on R, For any cycle

C of R;,, set
—'C"_:{—:f; ZEC} .

It is easy to see that _C is also a cycle of R, and that

(2.14) 1 (—C)=—xC).

. s
....
-

\\\\\\
D 4
v
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Thus, the mapping: C——C induces a fixed point free permutation Ol order 4

on the set of all the cycles in R Hence, we can choose suitable cycles A
Cip. ..o, CIV of K, such that

(2.15) R, =CPU—C{P\J - UCE?U—-C‘;:’ (digjoint union) .

The cycle —C is said to be the opposite cycle of C. For cach z--xi yee Ry,

(x, yEQ), set
Y- xe if 0<x<1, 0<y<l,

=3 l4-xe if 0<x<d, y=0,

S if x=1, 0<y<t,

For each cycle C of R, put
C=1{z; zeC}.

We call C the conjugate of C. The conjugate of C 18 a cycle in the set

Re, (ay§)"), where a’ and §/ are conjugates of a, and 1.
Thus, the conjugate of C is not necessarily a subset of R,. However, if )

Fd

has a non-emply ‘ntersection with Ry, C is 2 cycle in K. Further, as in the
proof of Proposition 5, set

Iz o)
F(z, 0)="T Jw+w,—2, 0)

((U:-_—- (0)1, 0)2)) .

Then we have the following:

COROLLARY 2 TO THEOREM 1. Notations being as above,

()Y dz’z 1.1, 1)=

g
% $474(C) log { TLA, (1, ) TLICE, (L e}

k=1

ho
= T 1:HC) log {ng(Z’. (1, €)) HGF(%". (1, &N,

R

where the summation with respect 1o C is over all the cycles among G 0
such that C#—C.

ProOF. The equalities (2.14) and (2.15) imply that

(2.16) 2 v, }(2)) log {2, (1, eNL (2", (L, )
¢ X
4 H Fz(z, (1r 8))[12(2,! (1: 5’)) 3
. i‘\ (W) | f_eoik) - e o |
= 2 A (CM log | T TG, (L, Nz (L0 | -
| se(—c{*h ]
Let C=1{z,, -, Z,} bea cycle in R.. Set zy=x;+y€ (x;, e, 0<x 1, 0=y, <1,

We may assume, without loss of generality, that
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» | [ * (0<x:<1) o 1Zism
T T %=y ldex; |

if m<i<2m,

| if 2m<i<
Then we have. <isn.

C={1—x,, -, l-xm,.l-i.—e(l-‘—xl), o 14e(l—x,), ld+e—2z4m4q, o, I+e—2z,}
and

~ X;t-ey, (0<x<1, 0<y; <1)

:{1+'Ex1, ot y 1+8xm, xl’ “ap

\

;
y Xm,y €Z3ma1y Ty EZZ;} .

}

‘.
We note that if m>Q (namely if the cycle C contains.a rational
conjugate C of C coincides with C.

the double gamma function that

number), the
It follows from the difference equations of

y(x, (1, eNLa(1+ex, (1, &)
(1—x, (1, N (1+e(1—x), (1, &) -

=F(x (1,-a))F(1—{-ex, (1, s)) exp{(—-é——-'x)log 6} -

Since ee’'=1,

Fz(x, (1r .8))F2(1+éxr (13 s))l;,Z(xi (1: 6’))F2(1+81xr (lr 8,))
I'y(1—x, (1, N (14-e(1—x), (1, NL(1—x, (1, @N(1+e/(1—x), (, €))

=F(x, (1, 8))F(1+€X, (1, e)F(x, (1, &NFQ+e'x, (1, &)).
Thus,

Hfz(z (1, eNI’x(2', (1, &) F(z, (1, e)F(z’, (1, €)).
H I'(z, (1, eNIy(z/, (1, €)) “'H (2, (1, eNF(2', (1, &)

t(~0)

. , b ‘ - \'.J'
On the other hand it follows from Corollary to Proposition 2 that

F(z’ (1, e))=F(ez’, (1, s)).

Furthermore, the-difference equations satlsﬁed by F(z, (1, ¢)) (see the proof of
Proposition 5) imply that

(2.17) F(ex, (1, e))F(e+x, (1, ))=F(x, (1, e)F(14ex, (1, &) .
Thus, we have |

1 F(z, (1, eNF(z, (1, )= 1 F(z, (1 e)) IL F(Z, (1, &)

1 =1 % zéC
——HF(Z 1, eNILFE, (1, €)).
zEO
Hence, the right side of (2.16) is equal to
(2.18) St 2:4C®) tog { T I, () TP, 0.9

compiete. .

is 1. Put i=(4).
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L&

= 2 X' (C) log { 11 (2, (1, s’)) 11 F(Z7, (1, e}

—
—_—

" " zr:(‘s :EB{*
It follows easﬁy from the deﬁmtmn of and the equality (2.17) that

Hf‘(z & e)) {E%IC)F(Z (1 e))}" for any cycle C in R,.

'-0

re
{

Hem:e, in (2 18), -we may restrict the summation with respect to Ci* to those
cycles C for which C#—C. The proof of Corollary 2 to Theorem 1 is now

) ¢

Ia
LTS N N 4
{ - 7]
b
5 000
-
.

§ 3. We dlSCUSS several numerical examples.

We use notations introduced
in §2. 1»&% 24 w1thout further comment,

1. Set F=Q(+/5). The fundamental unit of F is ge={1+4/5)/2 and the

fundamental totally positive unit is e=el=(3+ v/5)/2. The class number of ¥
[t is easy to see that the group (o(F)/D* of invertible residue
classes modulo | of ¥, is isomorphic to the direct product of the group of order
2 generated by (—1) and the group of order 6 generated by &, (&, is the residue
class modulo . generated by &,). Hence, the group of narrow ideal classes

modulo | of F is isomorphic to Z/(2)X Z/(2). Denote by &,, and’ £, Characters

of the group (o(F)/T}*(given by the following formula: For
N p=(—1)%t mod. § (g, be Z),
550,1(.“):(""I)M.b ' Eo,z(#):("‘ 1)*.

We see there are 'exa{ctly 2 characters of the group of narrow ideal classes
modulo | of F of type (2.4). They are given by the following formula:

X:((p))=(sgn ©" )&, (10) ,
(1)) =(sgn p)&,,.(11) .

It is prgjired that the character ¥, (resp. ¥,) corresponds to the quadratic exten.
sion K'l-—-F(x'/E;) (resp. K,=F(+/¢,")) of F. The field K, is a biquadratic f{ield
with dlscrllmuiant —400 and the class number of K, is 1. Set m=4+/¢,. Then

it is known that a system of gengrators. for the group of units of K, is given
by {w, 1+w} (see tables of units in Bilevic [3]). For {=(4), we have

R(e, V)= {(m+ne)/d; m,neZ, 0<m=4, 0=n<4, m*+mn-+n® is odd) .

The set R(g, §79) consists of 4 cycles. More precisely, set

C={g 1+ 2

and
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1426 243e 143¢
Cz--{ S S } Hence, e
: ; 1’ — /D IN(3+/6)/24 —

Then the decomposition of R{e, i) into a disjoint union of cycles is given by po(1, €)) w(e’) (e 2 )

R(e, 7 H)=C,\J—C, JCN—C, . Furthermore, it follows from the equality (3.1) for general n that
It is easy to see that C,=C, and C,=—C, (for notations, see §2.4). Further. lo% 2, :IOga.(Iln ]“2( t-,ane (1, €)>p2( 1‘5':1”8' (1 8;))
more, for any z€C,, ¥, (}(z2))=1. Hence it follows from Corollaries 1 and 2 to aSmn

Theorem 1 that

(1 Var=F(+, (1, ) F(1+-2, (1, 9) F(3EE 1, 9)

~

—n*log {p(L, Npul(L, &N+ <75 log () = Bu(+).

where the summation with respect to ([, m) is over all pairs of integers which

4 / ’ ; 4 satisfy the inequalities 0</<n and 0£m<n. Thus we get
—r( ) R ) PR 0, ) ! e ;

where LT, )T, (1 e)=myrentmonvne.

Fiz, (1, )=priade) - e

A T Ty(lte—2, (1, €) 3 S
. 2. As in the previous example, set F=Q(~+5), ¢=(1++/5)/2, and e=
F(z, (1, )= T ({j_(zjilz’, 6({) 7 (34 +/5)/2. Furthermore, put {=(4—+/5). Then } is a prime ideal of F with
2 I } y

norm 11. Since =8 mod.}, the group (o(f)/})* of invertible residue classes
modulo { is a cyclic group of order 10 generated by &. The group I(})/P(1) of
narrow ideal classes modulo § is isomorphic to a cyclic group of order 2. Denote

Now we employ notations in §1.3. For any positive integer 7, the Dedekind
zeta-function {r(s) of F=Q(+/5) is given by

, ] ' by & a character of (o(F)/)* given by the following formula: For x=¢j mod.]T,
(3.1) Ce(s)= 2 12, (& e, (- 7)) . i .
- F o<z &G EL\T Ty /0 | E(x)=(—1)". The group I()/P() has only one character of type (2.4). It is
ST .
given by

Recall that ¢ is holomorphic except for a simple pole at s=1 with residue
2loge,/+/5 and satisfies the following functional equation:

x({x))=sgn (x")é(x) .
The character ¥ corresponds to a quadratic extension K=F(~(3 «/§-~l)/2)_. The

T8 /E F( % )2&(5):“,_1 51 ['< 1;5 A>2CF(1_S). | discriminant of the field K is —275 and the class number of X is 1. The funda-

mental unit €, of F remains to be a primitive unit in K. A table for units of

Thus quartic fields with r,=2 and r,=1 is given in [3]. In the table, K is described
{ i CF(S)}S_OZ IO% = ;: as a field generated over Q by a root p of the equation p'—p*+2p—-1=0. A

system of fundamental units of K is given as {p*+2, 2p°—p*—p+3}. It is easy
to see that one may put p—( 1_2‘/5 +\/3“/%_1 )/2 Then &/=p*/(p—1},

(p—D(p*+2)=—1, 20°—p*—p+3=p/(p—1)". Hence, the group of units of K is
generated by +s, and by o. The set R( "9 consists of two cycles C; and
C,=—C, where we put

It follows from Proposition 3 and the equality (3.1) for n=1 that

log &y __ Q)L L e) Vo 6= |1y
%8 L —log (- ey ST 08O

It follows from Corollary to Proposition 2 that

Iog{ Fz(l. (1, s’));} log{ I (g, (1, £)) }:0 .

B e 5+10e 1+2¢ 9+47¢ 4+8e 3+6e }

0,((1, €)) (1, €)) ' U 5 A § U VA § U U
Since I'y(1, (L, &)= v2r/e and I'y(e, (1, e))=~2r, ' _6+e 1049 2+4e 743 845
ince I,(1, (1, &) / 2 C, i1 ' 11 11’ 11 711

27 7 g—¢ 1
log {pa((l, e))zﬁ} (* 12 4 )Ioge. It is easy to see that x(C)=—x(C,)=1. Set




em ] that
~f 9+10
I3 D-#-ll £ )F( 1‘{]:?-8\‘)‘9(.9-1—]'-75 )F 4“1-186 )F 3—&1-}?5 i

XF( 10]-‘%156_')}3‘ zii-le )F | 749¢ )F( B-+4e )F 6-4-3¢
(345 -
(4 \/3\/3 b))z

3. Set,FzQ(Jﬁ). The fundamental unit of F ig totally positive and is
given by e=(5+4/21)/2. The class number of F is 1. Put 1=(3++/21)/2. Then
the group (o(F )/1)* of invertible residue classes modulo § of F is a cyclic group
of order 2. We note that e=1 mod. | and that the grou

p of narrow ideal c_lasses
modulo { of F is isomorphic to Z[(2)XZ/(2). Denote by £, the unique- non-

principal character of the group (o(F)/1)*. - It is easy to see that there are

exactly two characters of type (2.4) of the group of narrow ideal classes modulo
! of F. They are given by the following formula :

L) =9gn (uE(E),  Ll()=sgn (W),

The character ¥, (resp. X,) corresponds to the quadratic extension

IQ:F(,\/3+£/‘2_1 ) (reSp. Kng(\/3—£/ 211))

i:’ut a;:o(F ).and a,=f=(3-++/21)/2. Then a, and -az form a cqnl.plete set of
fepresentatives for narrow ideal classes of F. By suzple (;ornputatlonsé vs;e)/s;:e
that R(g, (a,))"V)={(1+2¢)/3, (2+¢€)/3} ‘and R(e, (a,)")={1/3, 1+<i/..?i’ (l+ ;)/3,}
2/3,'1%—(2/3)‘8, (1—{—5)/3}. The set R(e, (a,})" 1) consists (?f two cycles Cll = {(1+2¢
and C&":’{(Z-—i—s)/’B}. “The set R(e, {a,f)*) also cogsgts of t.wo cycles

Cgs)___{_é_,’ 14 g ’ 2 326 } and Cé”’::{-%)—, 1._“,_%6' 1?3‘8 }

We see that C-‘;’:——-Cﬁ”:éﬁ“ and that CP=—CP=—-C{®. For ianr;y.t;jebii-;
v.(a,}(z))=1 (for notations, see §2.4). It 1s easy to see ;hat ef r}c;m?S iy
primitive unit in K, It 1s proved that th.e.class num erdo h 112) S
Choose a unit » of K; which satisfies condmons. (2.11) ant .

Then Corollary 1 and Corollary 2 to Theorem 1 imply t_ha

2 . 2 2 2
2 |=F (4 @ ) Pt L 90) P55 0 9).
Y/ ,

v
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where F z, (1N =tz (e .
k b ( ( ; 8)) ,[z 1—{—5——~z’ (l’ 6)) ) and!(’f 1S

the conjugation with respect to

above equality. A numerjcal compiua--
hine) show that X+X"::}r;/;p“5 g
; 1Isomorphism from it
n £ Then (X4 X "
plex number of modulus |,
0Se conjugate js

;2.7912'87847 "+, while ¢=24.791287847 ... . Denote by = ap
in_to._Kz- which induces the non-trivial automorphism o
="/ 9"F 2 /7).  Since 7/7° is a com
that "X+ X! is ap integer in F wh

WE See
Thus we infer that X+ X-!

In the interval (- 2, 2).

=e—2=(1+/21)/2.
Hence,

. X={e—2++/e—1)/2= et ve—1

e o]

(e++/e—1) is a unit in F. Thus,

Therefore, n/i

R ) F(1+5 (1, )7 ( E 0, e)

:( H—E/?T +\/3+%/‘2T_>/2. |

Moreover, we have seen that the group of units of i, is generated by +¢ and
(1/2)(e+ Ve—1) (e==(5+4/21)/2). |

4. Set F:Q(x/g).' Then the fundamental unit of F is totally positive and

1S given e=2-+ /3. The class number of F is 1. Put 1=(4(1++/3)). Then the
mapping (/, m, n)»—+(‘—'-l)‘(2\/§~—3)”‘s" establishes an 1somorphic mapping from the
group Z/(2)XZ/(2)XZ/(4) onto the group (o(F)/P* of invertible residue

classes modulo §. The group of narrow ideal classes modulo | of F is isomor-

phic to Zi2QYX Z/(2Q)X Z/(2). Denote by &, and §, characters of the group
(o(F)/H)* given as follows

For x=(—1)(24/3 —3)™¢* modulo }.

E:(I):(*—l)‘
Eo(x)=(—=1)"*".

There are four characters ¥,, X2 X3 and X, of the group of narrow ideal classes
modulo T of F of type (24). They are given by the following formula -

X:((x)=sgn(x")§,(x)
X2{(x))=sgn(x’)¢,(x)
Xs((x))=sgn(x)§,(x)

X {(x)=sgn(x)&,(x) .
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The character X (resp. X _corresponds to the quadratic extension f=
F(VIFV3)(2++/3) (resp. 1f¢:f’(«/(_l-«/§)(2—-«/§)). The character X, (resp-
xs) corresponds tO the quadratic extension K,=F(«/1F~/3) (resp. K=
F(~/I=~/3)). The unit c=92--+/3 remains to be a primitive unit in K, and in
K, ~Furthermore class numbers of K, and K, are both equal to 1. As a com-
plete set of representatives for narrow ideal classes of F, we choose =00
and a;=(1++/3). Then the set R(e, (a,)") consists of four cycles C{?, Ci¥,

(—C{P) and (—C§"), where we put

wy_ f L€ 7+5¢ 3+3¢ 54-7¢
cp={—g g 8 ' 8 ;-
Cc(l)-— 5'1’_8 _7+8 7+35 5+33 }

pA 8 ¥ 8 ’ | 8 ) 8 .

—C§, The set R(e, (a,)™) consists of eight cycles

We have é(ll):cgl) and 651):
(—C$) and (—C{7), where We put

) p) 2
C](S)’ CEI ): C§2)’ c?): ('_Cg ))l ('_-Cé))$

L1 e Th4e 44Te
CE)—'{S,II 8: 8 ’ 8 }

9y - 3 3¢ 5+4¢ 4+4-5¢
Cg)-— "_8"', l+ 8 ) 8 ’ 8 }

o4+e T7+0e 2+7¢ 1-+6¢
C:(J2): o 8 ’ 8 ’ 8 3 8 }:

342s 643 5+2e 645€
cp={—5 "8 ' 8 8 b

’

@ (Pp=—C§ and C@=-—CP. Furthermore,

We see that CP=CP, CO=C,
%L O XI(CE""):L(C?’):I, XZ(C?’)=XZ(CE”)—-—"-Xs(CE”):1. |
Now let 7 (resp. 772) be 2@ qnit of K, (resp. K,) which satisfies the condi-

(2.11) and (2.12) tor K=K, (resp. K,). To simplify notations set

oz _
o= 0, V=T et 0

3e N2y 57\
e yr(Lg yr(ERE)F(E )

. 9 2
pe (P FCE T )

(YR FEF
imply that

t10ns

X=F(

. 2
__4-%58 ) .

= XY,

Kronecker limit formula 5
where o, (resp. G;) 1S the pon trivial automorphism of K, (resp. A, witn respect
to F. Numerical computations (which hvolve a computer maching, show that

X-1Y 4+ XY ~1:==12.92820323 - and XY-+X'Y" 1= 42.78460968 -
while 4/3 =1.7320508075 - .

Both X 'Y-+XY™ and XY-+X'Y™ are integers of F whose conjugates are in

the interval (*'2, 2) Hence we obtain X_IY'}‘/YY'IS(S*}-;} \/3 and XY Yoyt

—924-124/3.
Hence,

X1y =3+2+/3 +2+/513+/3
_(2+ /3 ++/5+3+/3)/(2+ V3 — /55373

and

XY =2+ /3 ¢+ ~3 1-24/3 A/1++/3 )
(V3 + VIFTDNVE—VIEVE).

1 4/3 4+ 4/5+34/3) and 7?2/(«/§+«/f?~\73:) are hoth units

Thus we see that TNAVA:
of F. Hence, the group of units of K, (resp. K,) is generated Dy ™2 and

v T+ /5FIVE (resp. VI +VITVI)

5. Set FiQ(\/ﬁ) The fundamental unit 1§ B0 /10 and the frinda-
5

e=ei=19+6+/10. The class number of s 2.
(1, mp—(—1)'eq establishes an isomorphic map-
of invertible residue

mental totally positive unit 18
pPut f=(4). Then the mapping:
g from the group Z/(2)yx Z{(4) onto the group (o(F)/D*
=9, ~/10). Then the integral ideal s is not

Thus we see that the group [(BPY ot

F is isomorphic to Z/(2)® Z]2) K 72, Yol

pin
classes modulo i of [, Set I
principal and pi=(3), 5=1 (mod. 1)
narrow ideal classes modulo | of
y={—1)'e" modulo 1, put

£ (x)={(—1*" and £,(x)=(—1) .

s of the group 1)/ P(f) of type (2.4). They are given

There are four character
For a=p;(x) (n=0, 1, x& F#* is prime to 1,

by the followtng formula :
1 (@)=sgn (&1

1 la)=sgn (xf)fi(x)
,(a)=Ssgn (x)'sz(x)( —1)"

y (Q)=sgn (0)&:(%) -
4 that the character X, (resp. “La) corresponds to the quadratic exten-

It i1s prove
)) of F and ‘hat the character Z. (resD. Lo

sion Kl--:F(«/E:) (resp. K3=F(«/E§



b 2¢€,) (resp K‘_:F.(\/geg)) of F.
2 | The @_scrimmants of K, and K, are bot}f?qs;ff; E?S(ifO;za;edbf;h egual to
SKi constants for K and K, are smaller thap 012 Hence. i n "~h . Minkow.
of K, or K,, there exists an integral idea] whose' norm is srr;alle:atim ldgé:illz e
=19.2. Prime ideals in F With norm pot greater tha 3 6 g0
Pis=(13, 6— Vv 10), D= 10

oA are 5,=(13, 64 /17y
=0 VI0), %,=(3, 14 vip) =0, 1-v10) and p,=(2, vip)

2:(p2’ \/E(:'ﬂl)
ideal in K. 1n i,
nd Pe=D.(10/2) Fémain to be p

€Nt primes ip

‘It is easy
the principa] ideals p,—

rime, while P D, and b split
the following manner : |

W= Ve, Vit

Dm:(pm» _\/5—0_‘6)(3313, \/é_o—{-ﬁ) ;

D::!:",(p;& \/—8_13—3)(1.):3! \ 4 EO-*-B) .
Now it is easy to see that . '

v ™~

Va—D=Bm, ve-1, -
(V104 V)=, Ve + 1) (D1, Ve —6) co

-..a n d \. r

(V/e—3)=B,(pls, v/—3)

Hence, prime ideals (4, v/&,—1), (9,5, v/5;—6) and (v,
class as B,. Since p,, ., and bl are all
that all'ideals in K, are either

v'e,—3) are all in the same
principal ideals in K|, we have seen

principal or equivalent to B,. Hence the class
number. of K, is equal to 2. In K, p.=(~+2¢,)=B2

where we put B,=(p,,
veo—2—1) '(Zeoz(éo—Z)((so——l)B)z). Since b, is not principal in F, B, is not prin-

cipal in K,. In K, principal ideals B, D1y, Pis all remain to be prime in f(;, while
b, and p; split into products of different primes in the following manner:

3:@3: ‘\/2}'—0 _1)@3, ‘\/EE;'{_ 1)

=5 v Ze;—1)(Ps, v/ Ze+1) .
Now it is easy to see that

t

(V2e,+1)={(0;, v2¢,+1)(Vs, v/ Zeo4-1)

and

(Veo—2—1)=B,(ps, V2¢,+1).

L] ‘
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either principai : :

Or equivalent to B Hence, the clasg number of K, is ¢qual tn
2. The fundamenta] unit ¢, of F Temains to be primitive K, On the other
hand, ¢, is the “quare of a primitive upiy Ve, in K,
=2, V10). Thep e, and a,

L Set q, (I and G, -
form a Complete set of
tdeal classes of £ . We see

R(e, (a,f) )=

k=1

G
VU (—Cpy
k=
where we put

O _. 2+§__ . 11+45 8‘:—_7-8_ 5%_106 )
; 12 1271 12 1
co—J 142 4+11¢ 7+8 10-+-5¢
: VA VA A VR R
1 € 3+2& 243
(1) e O |
C3 { 4 ¥ -]-+ 4 ’ 4 ¥ 4 } .

We omit the descriptions of the remaining cycles C
omitted three cycles, the relation C=—C holds.
SO far as the evaluation of L-functions at s—
Theorem 1). We note that 6{“:6‘
=X (C)=1 for r=1, 2 3.

The set R(e, (a,f

) G and C§". For these
Hence, they Mmay be neglected

1 is concerned (see Corollary 2 tp
7’ and C{P=C{. 1t iq €asy to see that %,(C}"

)7") consists of thirty six cycles:

18 18
Rie, @D ™H=y CPU U (~Cp),
where we put

cof 1T+e 4757 41493 93431
o

8 748 T 48 v dg )
o[ 1+17c  T+47c  25+4le 3L+23¢ |
YETE TR s e

2 9+e 15415 149 7=-7¢
R U T [ T [

O — 29+13e  354-43¢ 2-+37¢  11-4-19z

48 T 48 T 48 T qg o
) 13+2% 19+1le 37 +5¢  43+35¢ |
CP={— g 18 f
36+ 135 1ltlle 5413y
¢ = 316 S SN v e

3

' 19
: o Y ‘)
10t {1} L% - cles \J 'y o \"‘Ck
We omit the descriptions of the remaining twenty-four cy AT I

ion C nce tl . neglected
For these omitted cycles, the relation C-==—C holds. Hence they may be negle
so far as the computations of Lg(1, X =1, 2) are concerned.

).

-
—
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We note that C¥=C%, Cy?=CP, CP=C{, CP=CP. It is easy to see that

LCP)=— 1, (CP)=1 for k=1, -+, 6. Now set

F(Z)-—— 11 F:(Z, (11 8))

{Cre=z, (L ey  C=19F0VID)
J
X=T11 TI Fl2)
=1 el
and
6
Y=T1I II F(z)*.
. k=1 zec(kﬁ)

Furthermore denote by 7, (resp. »,) a unit of K, (resp. K,) which satisfies the
conditions (2.11) and (2.12) for K=K, (resp. K,). Let o, (resp. ¢,) be the non-

trivial automorphism of X, (resp. K,) with respect to F. Then it follows from
Corollaries 1 and 2 to Theorem 1 that

1 2 4 2 2_ X ?
() =y, (5) =) -

\

Numerical computations (which involve a computer machine) show that

(XY) +(XY)*=2629.50750 --

and

X, Y
5+~ =100.5964425 --- .

Both (XY)*4-(XY)? and (X/Y)+(Y/X) are integers in F whose conjugates are
in the interval (—2, 2). Hence we conclude that

(XY)*+(XY) 2=13144-416/10=(26+8~/10)*—2
and

X . ¥ —
7Ty =50+164/10.

Thus, we have

XY =13+44/10+(3+ +/10) V8(+/10—1)
— g, (e,—2)+ 2(e; — 1)V &,

and
4 —=25-184/104+4(34 +/10) v/ 1+ /10
=Va—a—z (&=ITVID.

[t follows that both »,/XY and n,/(~/&,—2+2) are units of /. Hence the group

—— ——— — ] A

of units of ]{1 (resp. [{2) are generated by i‘\/a (I‘CSD. ‘te,) and 50{31} --2)
+2(g,—1) e, (resp. 24+4/5,—2).

(1]
[ 2]
(3]

9]
L10]
[11]

[12]
[13]

[14]
[15]

16
17)
(187
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