
On the discrete periodic Toda flow (and Gauß composition for quadratic forms) (2408.07315) Bora Yalkinoglu AMRI **Cnrs** Plan: 1) Motivation: Periodic box-ballsystem & number theory 2) Main protagonist: Discrete periodic Toda system Main Goul: 3) Linearization of aproda via Munford's Jarobian 4) pBB c dpToda 5) Outlook (or a dream)

St. Motivation: pBB & number theory
02 Yurn-Tokihiro "On a periodic soliton cellulus automata"
As abstract algorithm "equivalent" to anthunetic-harmonic mean algo. (Y.T '02) (2N)
17 hus essentially two sources KP, KdV, Toda
topicalization KY, KdV, Toda
Let V be 2-dim std rep. of Uq(sl2)
For NEW, refine the state space of PBB flow
$C_{N} = C_{rystul}(V^{\otimes N}) = \{0,1\}^{\times N}$ $C_{N} = C_{rystul}(V$
Rushiwara also defined action of extended affine Wext group
$W = W(\widehat{Sl_x}) = \langle w, \underline{S_0}, \underline{S_n} \rangle \cup V$ $e_{x^1} \cdot w_1^{1} \cdot (W(\widehat{Sl_x}) = \langle \underline{S_n} \rangle)$
Det: The periodic box-ball flow is defined by
B: (, -) (, 3= wos,

Def: (Fundamental cycle)

S1. Discrete periodic	Toda flow pBB c dpToda
There are many different flat	
quantum - clussical	~ quantum talinualan Withom
infinite - finite	Sato Grassmannian
periodic - open	Sato Grassmannian, twistor theory
cou hiruous - discrete - tropical	
Of central importance in inter	
There are very interesting links	with number theory, P.y.,
· Whithher fets (automorphic fe	ds) [Koslant,]
· (governlised) T-fcts	[Geracimov-Lebedev-Oblezin]
· regulators of number fields	[Butler]
· Random mutrix sheory	

Def: (Hinota)

foruEM

The discrete periodic Toda flow is the birational map

Coordinates $\underline{T}^{t} = (\underline{I}_{1}^{t}, ..., \underline{I}_{n}^{t})$ $V^{t} = (V_{1}^{t}, ..., V_{n}^{t})$

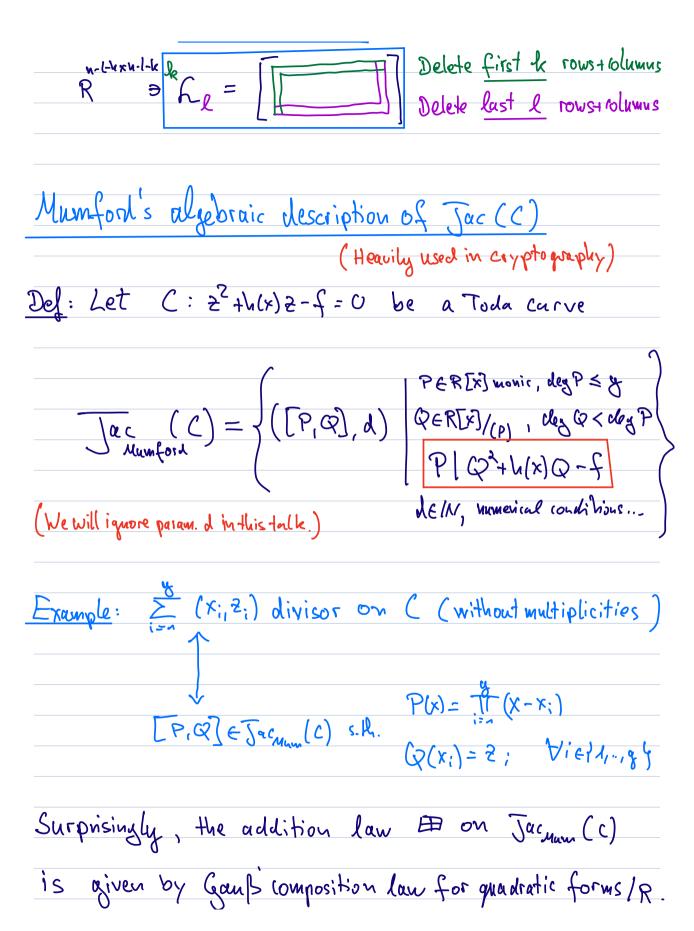
Discrete: te M= 20,1,.. }

Periodic: It = It Vin = Vi Vielly nt

defined by $T_{i}^{t+1} = T_{i}^{t} + V_{i}^{t} - V_{i}^{t+1}$ defined by $V_{i}^{t+1} = \frac{T_{i+1}^{t} V_{i}^{t}}{T_{i}^{t+1}} \qquad (defined flow)$

One can show

 $T_{i}^{t} = T_{i}^{t} \frac{T_{i}^{t} T_{i}^{t} \cdots T_{i+\lambda}^{t} + V_{i}^{t} T_{i}^{t} \cdots T_{i+\lambda}^{t} + \dots + V_{i}^{t} V_{i}^{t} \cdots V_{i+\lambda}^{t}}{T_{i}^{t} T_{i}^{t} \cdots T_{i+\lambda}^{t} + V_{i}^{t} T_{i}^{t} \cdots T_{i+\lambda}^{t} + \dots + V_{i}^{t} V_{i}^{t} \cdots V_{i+\lambda}^{t}}$


In particular, the dip Toda flow is highly non-linear.

83. Linearization of aptoda flow I dea: Integrable flows are linearized on Jarobian of spectral curve. Better coordinates: (Munford-van Moerbeke) (~ Laxformelism) Define periodic Jacobi matrices (with spectral parameter 2) $R = \begin{cases} L_{t}(z) = M_{t}(z) R_{t}(z) & M_{t}(z) = M_{t}(z) \\ M_{t}(z) = M_{t}(z) R_{t}(z) & M_{t}(z) = M_{t}(z) \end{cases}$ $R_{t}(z) = \begin{bmatrix} J_{1}^{t} & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\frac{1}{1} + \frac{1}{1} + \frac{1$ factors switched < NCG! dpToduflow $\langle = \rangle$ $L_{tin}(z) = R_t(z) M_t(z)$ (fundamental matrix equation) (\pm) $L_{tin}(z) = R_{t}(z) L_{t}(z) R_{t}(z)^{1} (isopertal)$

Spectral Curve

Jacon

Let(2)
$$\mapsto$$
 (: $\frac{2}{3}$ + h(x) $\frac{1}{2}$ - f(x) = $\frac{1}{3}$ | $\frac{1}{2}$ | $\frac{1}{2}$ - x $\frac{1}{3}$ | \frac

Reminder: Inspired by Bhargava's famous work on Ganß composition /ze, one has the following generalization: Thm: (Wood 'M) Prim Quad (R,D) (R[y]/(y2-D)) ax+26xx+cx2 = [a, 26, c] (a, y-6) In our set-up: a=P(x), b=Q(x), i.e., [a,b] = Jacmum (y2-D=0) More concretely Gants composition consists of two steps: 1) Composition step + 2) Reduction step = In our framework, we have the following recipe: Let [P1,Q1], [P2,Q2] & Jac Man (C). $\lambda) \left(P_1 Q_1 \right) = \left[P_{n_1} Q_n \right] + \left[P_{n_1} Q_n \right]$ Find SER[x] movie, forfzer[x], s.H. S= gcd(P1,P2)= f1P1+f2P2

Then (P,Q)=[P,P2/52, (f,P,Q2+f,P2Q1)/cmodP] Composition

2)
$$[P,Q] = [P_1,Q_2] \oplus [P_2,Q_2]$$

Reduction

(Shows the genius of Ganß!)

Last ingredient: eigenvector map 4

Det: The eigenvector map 4 is defined by

<u>Lemma</u>: It is well-defined and injective Post: Main point u [v2+hv-f tollows from "tridiagonal" structure of 2+(t). Rm: [u(x),v(x)) enrodes eigenvector of Lt(2) with eigenvalue x! Finally, our main does not depend on t Theorem: (Y) Define D= ([x,(-1)],...In], 2) & Jac Mum (C). Then the diagram L Jucnum (C) 51. G. J. AD L 24 > Jacyum (C) commutes. 1.e., 5" (Lo(2)) = 4 (Lo(2)) = n.D. L" (2) Rm: 1) This give a new and completely algebraic linearization of dpTodaflow.

2) Earlies linearizations (Iwao '08) have a more

Dualytic flavour and use the theory of
$$\Theta$$
-fats

On Jac (C). (Difficult to use with computer.

Magnan contains Jackan (C))

Proof: (Sketch)

Need to show

 $T(T(I^c, V^c)) = T(I^c, V^c) \oplus D$
 $T(R_{L}(E)M_{L}(E))$ [u(x), u(x)] \oplus D

 $T(R_{L}(E)M_{L}(E))$ [u(x), v(x)]

 $T(X, V) = [u(x), v(x)] + D$ (comparition $T(X) = [v(x), V(x)] + D$ (comparition $T(X) =$

N=11

Observation: (Inoue-Kuniba-Takagi 12)
$C_N \stackrel{\mathcal{U}}{\longrightarrow} \mathbb{Q}(\tau)^{2n}$ $S_1 \qquad J_3 \qquad \text{does NOT commute in general!}$ $C_N \stackrel{\mathcal{U}}{\longrightarrow} \mathbb{Q}(\tau)^{2n}$
But: Define cyclic shift operator
6: (I; V;) H> (Iin Vin) (indices mod n)
Leuma: Spectoul curve Cis invariant undes 6 >> Le(2).
Prop: (IKT 12) T-adic valuation
The diagram CN (T) (T) / 29 N/26
3 CM CM D(T) Thop CM CM > D(T) M 2m
Commutes.
Question:

How does the cyclic action 6 act on Jacquer (C)?
Define the subgroup n-torsion part of Jac
= < ([1,0],2) > < Jacum (c) [n], ("generated" by action of 6 on Juchum (c))
Then we have
Theorem: The following diagram is commutative
CN crom Jack(c)/zn
3 (S) J. D. D. D. C.N. C.) / Zn
L.C., pBB flow can be expressed via Ganß composition for quadric forms!
\$5. Outlook (or a dream)
Recently Devalapurkas (2404.09853)
studied recent work of Ben-Evi-Sakellandis-Venhalesh on
"relative geometric languards" in the "non-group" set-up and

Observed that in the "simplest" example (PGL, /PGI, Miss) (spherical varieties)
Bhurgava's reformulation of Gauß composition of guidatic forms
via "Bruigava cubes" appears naturally.
Very roughly speaking, he observed that
Souls composition (à la Bhasgava) (a weighted version)
derived geometric Satable
derived geometric Satable (Bezrukarnikov-Finkelberg '08)
tensor product on Shappens (Gracia)
Cestain sheaves on affine Grasmanian of PGL2
Our lopeldream: Our set-up can be lifted to the
devived/weighted set-up of devived grown Sortishe
Completly new description of pBBR alpToda flows!

I hank you very much
for your interest and patience.