License: Creative Commons Attribution 4.0 International License Copyright: © 2021 - 2024, Andrea Thomann

Andrea Thomann

Home

Welcome to my website!

I am currently a scientific researcher (Chargée de recherche) at the Inria center University of Lorraine and antenne University Strasbourg in the MACARON research team (formerly TONUS) seated at IRMA at the University Strasbourg.

My research interests are in numerical methods for hyperbolic systems. In particular

  • Computational Fluid Dynamics for atmospheric flows, multi-phase flows and multi-material interactions
  • Robust numerical methods with the focus on all Mach number schemes using implicit and semi-implicit/implicit-explicit methods
  • Structure preserving numerical schemes with the focus on well-balancing, asymptotic preserving property, entropy stability, thermodynamic consistency and involution constraints
  • High order finite volume methods involving time-limiting TVD-MOOD strategies

Contact

Address:
Institut de Recherche Mathématique Avancée
7 Rue René Descartes
67000 Strasbourg, France

Email address: andrea.thomann@inria.fr

Office: 207 at the UFR de mathématique et d’informatique building

Funding

2023 PEPS JCJC

Project: Robust and Efficient numerical schemes for all-speed two-phase flows

2021 PROCOPE mobility grant for France

Project: Efficient numerical simulation of mono-materials and multi-material interactions.

2017-2020 : INdAM-DP-COFUND-2015 (Cofunded by Marie Skłodowska-Curie Actions)

INdAM Doctoral Programme in Mathematics and/or Applications
Project: Numerical methods for fluid flows around steady states in the low Mach regime of the Euler equations with gravity

Publications

Preprints

  • C. Berthon, V. Michel-Dansac, A. Thomann. An entropy-stable and fully well-balanced scheme for the Euler equations with gravity, 2024.

  • W. Boscheri, A. Thomann. A structure-preserving semi-implicit IMEX finite volume scheme for ideal magnetohydrodynamics at all Mach and Alfvén numbers, 2024. arXiv preprint

Published and accepted articles

  1. M. Lukáčová-Medvid’ová, I. Peshkov, A. Thomann. An implicit-explicit solver for a two-fluid single-temperature model, J. Comput. Phys. 498: p. 112696, 2024. https://doi.org/10.1016/j.jcp.2023.112696 arXiv preprint
  2. A. Thomann, M. Dumbser. Thermodynamically compatible discretization of a compressible two-fluid model with two entropy inequalities, J. Sci. Comput. 97(1), 9, 2023. https://doi.org/10.1007/s10915-023-02321-3 HAL preprint
  3. A. Thomann, A. Iollo, G. Puppo. Implicit relaxed all Mach number schemes for gases and compressible materials, SIAM J. Sci. Comput., 45(5):A2632-A2656, 2023. https://doi.org/10.1137/21M146819X arXiv preprint
  4. V. Michel-Dansac, A. Thomann. TVD-MOOD schemes based on implicit-explicit time integration, Appl. Mat. Comput., 433: p. 127397, 2022. https://doi.org/10.1016/j.amc.2022.127397
  5. M. Lukáčová-Medvid'ová, G. Puppo, A. Thomann. An all Mach number finite volume method for isentropic two-phase flow, J. Numer. Math., 31(3):175-204, 2023. https://doi.org/10.1515/jnma-2022-0015
  6. A. Thomann, G. Puppo, C. Klingenberg. An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity, J. Comput. Phys. 420: p. 109723, 2020. https://doi.org/10.1016/j.jcp.2020.109723
  7. A. Thomann, M. Zenk, G. Puppo, C. Klingenberg. An all speed second order IMEX relaxation scheme for the Euler equations, Commun. Comput. Phys., 28(2):591–620, 2020. https://doi.org/10.4208/cicp.OA-2019-0123
  8. A. Thomann, M. Zenk, C. Klingenberg. A second-order positivity- preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria, Int. J. Numer. Meth. Fl., 89(11):465–482, 2019. https://doi.org/10.1002/fld.4703
  9. A. Thomann, A. Borzì. Stability and accuracy of a pseudospectral scheme for the Wigner function equation, Numer. Methods Partial Differential Eq., 33: 62–87, 2017. https://doi.org/10.1002/num.22072

Peer reviewed Conference Proceedings

  1. Iollo, A., Puppo, G., Thomann, A. (2023). Two-Dimensional Linear Implicit Relaxed Scheme for Hyperbolic Conservation Laws. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-40860-1\_18
  2. Dumbser, M., Busto, S., Thomann, A. (2023). On Thermodynamically Compatible Finite Volume Schemes for Overdetermined Hyperbolic Systems. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-40860-1\_11
  3. V. Michel-Dansac, A. Thomann. On high-precision L∞-stable IMEX schemes for scalar hyperbolic multi-scale equations. Proceedings of NumHyp 2019. SEMA SIMAI Springer Series. Springer International Publishing, 2019.
  4. C. Klingenberg, A. Thomann. On computing compressible Euler equations with gravity. In XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications 2016 (pp. 159-166). Springer, Cham.

Oberwolfach reports

  • A. Thomann. All-speed IMEX schemes for two-fluid flows. in Oberwolfach report. doi: 10.14760/OWR-2024-10. Workshop 2409 Hyperbolic Balance Laws: Interplay between Scales and Randomness. Organized by R. Abgrall, M. Garavello, M. Lukáčová-Medvid’ová, K. Trivisa. 2024

PhD Thesis

Title: Numerical methods for all-speed flows for the Euler equations including well-balancing of source terms. pdf file
University: Insubria University, DiSAT, Como, Italy, 2020.