License: Creative Commons Attribution 4.0 International License Copyright: © 2021 - 2023, Andrea Thomann

Andrea Thomann

Home

Welcome to my website!

I am currently a scientific researcher (Chargée de recherche) at Inria Nancy-Grand Est in the Tonus research team seated at IRMA of the University Strasbourg.

My research interests are in numerical methods for hyperbolic systems. In particular

  • Computational Fluid Dynamics for atmospheric flows, multi-phase flows and multi-material interactions
  • Robust numerical methods with the focus on all Mach number schemes using implicit and semi-implicit/implicit-explicit methods
  • Structure preserving numerical schemes with the focus on well-balancing, asymptotic preserving property, entropy stability, thermodynamic consistency
  • High order finite volume methods involving TVD-MOOD strategies

Funding

2023 PEPS JCJC

Project: Robust and Efficient numerical schemes for all-speed two-phase flows

2021 PROCOPE mobility grant for France

Project: Efficient numerical simulation of mono-materials and multi-material interactions.

2017-2020 : INdAM-DP-COFUND-2015 (Cofunded by Marie Skłodowska-Curie Actions)

INdAM Doctoral Programme in Mathematics and/or Applications
Project: Numerical methods for fluid flows around steady states in the low Mach regime of the Euler equations with gravity

Publications

Preprints

  • M. Lukáčová-Medvid’ová, I. Peshkov, A. Thomann. An implicit-explicit solver for a two-fluid single-temperature model, submitted, 2023. arXiv preprint

Published and accepted articles

  1. A. Thomann, M. Dumbser. Thermodynamically compatible discretization of a compressible two-fluid model with two entropy inequalities, accepted in Journal of Scientific Computing, 2023. HAL preprint
  2. A. Thomann, A. Iollo, G. Puppo. Implicit relaxed all Mach number schemes for gases and compressible materials, accepted in SIAM Journal on scientific computing, 2023. arXiv preprint
  3. V. Michel-Dansac, A. Thomann. TVD-MOOD schemes based on implicit-explicit time integration, Appl. Mat. Comput., 433: p. 127397, 2022.
  4. M. Lukáčová-Medvid'ová, G. Puppo, A. Thomann. An all Mach number finite volume method for isentropic two-phase flow, J. Numer. Math. in press, https://doi.org/10.1515/jnma-2022-0015, 2022.
  5. A. Thomann, G. Puppo, C. Klingenberg. An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity, J. Comput. Phys. 420: p. 109723, 2020.
  6. A. Thomann, M. Zenk, G. Puppo, C. Klingenberg. An all speed second order IMEX relaxation scheme for the Euler equations, Commun. Comput. Phys., 28(2):591–620, 2020.
  7. A. Thomann, M. Zenk, C. Klingenberg. A second-order positivity- preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria, Int. J. Numer. Meth. Fl., 89(11):465–482, 2019.
  8. A. Thomann, A. Borzì. Stability and accuracy of a pseudospectral scheme for the Wigner function equation, Numer. Methods Partial Differential Eq., 33: 62–87, 2017.

Peer reviewed Conference Proceedings

  1. A. Iollo, G. Puppo, A. Thomann. Two-dimensional linear implicit relaxed scheme for hyperbolic conservation laws, accepted to proceedings of FVCA X, Strasbourg, 2023.
  2. M. Dumbser, S. Busto, A. Thomann. On thermodynamically compatible finite volume schemes for overdetermined hyperbolic systems, accepted to proceedings of FVCA X, Strasbourg, 2023.
  3. V. Michel-Dansac, A. Thomann. On high-precision L∞-stable IMEX schemes for scalar hyperbolic multi-scale equations. Proceedings of NumHyp 2019. SEMA SIMAI Springer Series. Springer International Publishing, 2019.
  4. C. Klingenberg, A. Thomann. On computing compressible Euler equations with gravity. In XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications 2016 (pp. 159-166). Springer, Cham.

PhD Thesis

Title: Numerical methods for all-speed flows for the Euler equations including well-balancing of source terms. pdf
University: Insubria University, DiSAT, Como, Italy, 2020.