Preprints
-
M. Dumbser, M. Lukáčová-Medvid’ová, A. Thomann. Convergence of a Hyperbolic Thermodynamically Compatible Finite Volume scheme for the Euler equations, 2024. → ArXiv preprint
-
C. Berthon, V. Michel-Dansac, A. Thomann. An entropy-stable and fully well-balanced scheme for the Euler equations with gravity, 2024. → ArXiv preprint
-
V. Michel-Dansac, A. Thomann. An entropy-stable and fully well-balanced scheme for the Euler equations with gravity. II: General equations of state, 2024. → ArXiv preprint
Published and accepted articles
-
W. Boscheri, A. Thomann.
A structure-preserving semi-implicit IMEX finite volume scheme for ideal magnetohydrodynamics at all Mach and Alfvén numbers, J. Sci. Comput., 100, 67, 2024. → Link to the Article | ArXiv preprint -
M. Lukáčová-Medvid’ová, I. Peshkov, A. Thomann.
An implicit-explicit solver for a two-fluid single-temperature model
J. Comput. Phys. 498: p. 112696, 2024. → Link to the Article -
A. Thomann, M. Dumbser.
Thermodynamically compatible discretization of a compressible two-fluid model with two entropy inequalities,
J. Sci. Comput. 97(1), 9, 2023. → Link to the Article | HAL preprint -
A. Thomann, A. Iollo, G. Puppo.
Implicit relaxed all Mach number schemes for gases and compressible materials,
SIAM J. Sci. Comput., 45(5):A2632-A2656, 2023. → Link to the Article -
V. Michel-Dansac, A. Thomann.
TVD-MOOD schemes based on implicit-explicit time integration,
Appl. Mat. Comput., 433: p. 127397, 2022. → Link to the Article -
M. Lukáčová-Medvid’ová, G. Puppo, A. Thomann.
An all Mach number finite volume method for isentropic two-phase flow,
J. Numer. Math., 31(3):175-204, 2023. → Link to the Article -
A. Thomann, G. Puppo, C. Klingenberg.
An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity,
J. Comput. Phys. 420: p. 109723, 2020. → Link to the Article -
A. Thomann, M. Zenk, G. Puppo, C. Klingenberg.
An all speed second order IMEX relaxation scheme for the Euler equations,
Commun. Comput. Phys., 28(2):591–620, 2020. → Link to the Article -
A. Thomann, M. Zenk, C. Klingenberg.
A second-order positivity- preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria,
Int. J. Numer. Meth. Fl., 89(11):465–482, 2019. → Link to the Article -
A. Thomann, A. Borzì.
Stability and accuracy of a pseudospectral scheme for the Wigner function equation,
Numer. Methods Partial Differential Eq., 33: 62–87, 2017. → Link to the Article
Peer-reviewed Conference Proceedings
-
Iollo, A., Puppo, G., Thomann, A. (2023). Two-Dimensional Linear Implicit Relaxed Scheme for Hyperbolic Conservation Laws. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-40860-1_18
-
Dumbser, M., Busto, S., Thomann, A. (2023). On Thermodynamically Compatible Finite Volume Schemes for Overdetermined Hyperbolic Systems. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-40860-1_11
-
Michel-Dansac, A. Thomann. On high-precision L∞-stable IMEX schemes for scalar hyperbolic multi-scale equations. Proceedings of NumHyp 2019. SEMA SIMAI Springer Series. Springer International Publishing, 2019.
-
Klingenberg, A. Thomann. On computing compressible Euler equations with gravity. In XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications 2016 (pp. 159-166). Springer, Cham.
Oberwolfach Reports
- A. Thomann. All-speed IMEX schemes for two-fluid flows. in Oberwolfach report. doi: 10.14760/OWR-2024-10. Workshop 2409 Hyperbolic Balance Laws: Interplay between Scales and Randomness. Organized by R. Abgrall, M. Garavello, M. Lukáčová-Medvid’ová, K. Trivisa. 2024
PhD Thesis
Title: Numerical methods for all-speed flows for the Euler equations including well-balancing of source terms. → PDF University: Insubria University, DiSAT, Como, Italy, 2020.