Publications

Preprints

  • C. Berthon, V. Michel-Dansac, A. Thomann. An entropy-stable and fully well-balanced scheme for the Euler equations with gravity, 2024. → ArXiv preprint

  • V. Michel-Dansac, A. Thomann. An entropy-stable and fully well-balanced scheme for the Euler equations with gravity. II: General equations of state, 2024. → ArXiv preprint

Published and accepted articles

  1. W. Boscheri, A. Thomann.
    A structure-preserving semi-implicit IMEX finite volume scheme for ideal magnetohydrodynamics at all Mach and Alfvén numbers, J. Sci. Comput., 100, 67, 2024. → Link to the Article | ArXiv preprint

  2. M. Lukáčová-Medvid’ová, I. Peshkov, A. Thomann.
    An implicit-explicit solver for a two-fluid single-temperature model
    J. Comput. Phys. 498: p. 112696, 2024. → Link to the Article

  3. A. Thomann, M. Dumbser.
    Thermodynamically compatible discretization of a compressible two-fluid model with two entropy inequalities,
    J. Sci. Comput. 97(1), 9, 2023. → Link to the Article | HAL preprint

  4. A. Thomann, A. Iollo, G. Puppo.
    Implicit relaxed all Mach number schemes for gases and compressible materials,
    SIAM J. Sci. Comput., 45(5):A2632-A2656, 2023. → Link to the Article

  5. V. Michel-Dansac, A. Thomann.
    TVD-MOOD schemes based on implicit-explicit time integration,
    Appl. Mat. Comput., 433: p. 127397, 2022. → Link to the Article

  6. M. Lukáčová-Medvid’ová, G. Puppo, A. Thomann.
    An all Mach number finite volume method for isentropic two-phase flow,
    J. Numer. Math., 31(3):175-204, 2023. → Link to the Article

  7. A. Thomann, G. Puppo, C. Klingenberg.
    An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity,
    J. Comput. Phys. 420: p. 109723, 2020. → Link to the Article

  8. A. Thomann, M. Zenk, G. Puppo, C. Klingenberg.
    An all speed second order IMEX relaxation scheme for the Euler equations,
    Commun. Comput. Phys., 28(2):591–620, 2020. → Link to the Article

  9. A. Thomann, M. Zenk, C. Klingenberg.
    A second-order positivity- preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria,
    Int. J. Numer. Meth. Fl., 89(11):465–482, 2019. → Link to the Article

  10. A. Thomann, A. Borzì.
    Stability and accuracy of a pseudospectral scheme for the Wigner function equation,
    Numer. Methods Partial Differential Eq., 33: 62–87, 2017. → Link to the Article

Peer-reviewed Conference Proceedings

  1. Iollo, A., Puppo, G., Thomann, A. (2023). Two-Dimensional Linear Implicit Relaxed Scheme for Hyperbolic Conservation Laws. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-40860-1_18

  2. Dumbser, M., Busto, S., Thomann, A. (2023). On Thermodynamically Compatible Finite Volume Schemes for Overdetermined Hyperbolic Systems. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-40860-1_11

  3. Michel-Dansac, A. Thomann. On high-precision L∞-stable IMEX schemes for scalar hyperbolic multi-scale equations. Proceedings of NumHyp 2019. SEMA SIMAI Springer Series. Springer International Publishing, 2019.

  4. Klingenberg, A. Thomann. On computing compressible Euler equations with gravity. In XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications 2016 (pp. 159-166). Springer, Cham.

Oberwolfach Reports

  • A. Thomann. All-speed IMEX schemes for two-fluid flows. in Oberwolfach report. doi: 10.14760/OWR-2024-10. Workshop 2409 Hyperbolic Balance Laws: Interplay between Scales and Randomness. Organized by R. Abgrall, M. Garavello, M. Lukáčová-Medvid’ová, K. Trivisa. 2024

PhD Thesis

Title: Numerical methods for all-speed flows for the Euler equations including well-balancing of source terms. → PDF University: Insubria University, DiSAT, Como, Italy, 2020.