EnglishEnglish version
Accueil CV Enseignement Recherche Exposés Liens
Pour télécharger l'ensemble de mes publications sur Arxiv, cliquez ici.


  1. An exponential inequality for orthomartingale differences random fields and some applications [pdf]

Articles acceptés pour publications

Titre Journal Volume Arxiv/HAL DOI
18. Change-Point Tests for the Tail Parameter of Long Memory Stochastic Volatility Time Series (avec Annika Betken et Rafal Kulik) Statistica Sinica à paraître [Arxiv] [DOI]
17. Bound on the maximal function associated to the law of the iterated logarithms for Bernoulli random fields, Stochastics 94 (2022), no. 2, 248–276. [Arxiv] [DOI]
16. An Exponential Inequality for \(U\)-Statistics of I.I.D. Data, Theory of Probability & Its Applications, 2021, Vol. 66, No. 3 : pp. 408-429 [Arxiv] [DOI]
15. Convergence of the empirical two-sample \(U\)-statistics with \(\beta\)-mixing data. (avec Herold Dehling et Olimjon Sharipov) Acta Math. Hungar. 164 (2021), no. 2, 377--412. [Arxiv] [DOI]
14. Limit theorems for \(U\)-statistics of Bernoulli data. ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021), no. 1, 793--828 [Arxiv] [DOI]
13. Maximal function associated to the bounded law of the iterated logarithms via orthomartingale approximation. J. Math. Anal. Appl. 496 (2021), no. 1, Paper No. 124792, 25 pp [Arxiv] [DOI]
12. Deviation inequalities for Banach space valued martingales differences sequences and random fields. ESAIM Probab. 23 (2019), 922--946. [Arxiv] [DOI]
11. Convergence rates in the central limit theorem for weighted sums of Bernoulli random fields Mod. Stoch. Theory Appl. 6 (2019), no. 2, 251–267. [HAL] [DOI]
10. Invariance principle via orthomartingale approximation Stoch. Dyn. 18 (2018), no. 6, 1850043, 29 pp. [HAL] [DOI]
9. Hölderian weak invariance principle under Maxwell and Woodroofe condition Brazilian Journal of Probability and Statistics 32 (2018), no. 1, 172–187. [HAL] [DOI]
8. Weak invariance principle in Besov spaces for stationary martingale differences (avec Alfredas Račkauskas) Lith. Math. J. 57 (2017), no. 4, 441--467. [HAL] [DOI]
7. Holderian weak invariance principle for stationary mixing sequences Journal of Theoretical Probability 30 (2017), no. 1, 196--211 [HAL] [DOI]
6. Integrability conditions on coboundary and transfer function for limit theorems ALEA, Lat. Am. J. Probab. Math. Stat. 13(1) (2016), 399–415 [HAL] [DOI]
5. Holderian weak invariance principle under a Hannan type condition Stochastic Processes and their Applications 126 (2016), 290-311 [HAL] [DOI]
4. Orthomartingale-coboundary decomposition for stationary random fields (avec Mohamed El Machkouri) Stochastics and Dynamics 16 (2016), no. 5, 1650017, 28 pp. [HAL] [DOI]
3. An improvement of the mixing rates in a counter-example to the weak invariance principle Comptes Rendus de l'Académie des Sciences 353 (2015), 953-958 [HAL] [DOI]
2. A strictly stationary \(\beta\)-mixing process satisfying the central limit theorem but not the weak invariance principle (avec Dalibor Volný) Stochastic Processes and their Applications 124 (2014), 3769-3781 [Arxiv] [DOI]
1. A counter example to the central limit theorem in Hilbert spaces under a strong mixing condition (avec Dalibor Volný) Electronic Communications in Probability 19 (2014) [Arxiv], [HAL] [DOI]