Logo IRMA CNRS Logo UDS
EnglishEnglish version
Accueil CV Enseignement Recherche Exposés Liens
Pour télécharger l'ensemble de mes publications sur Arxiv, cliquez ici.

Preprints

  1. An exponential inequality for orthomartingale differences random fields and some applications [pdf]

Articles acceptés pour publications

Titre Journal Volume Arxiv/HAL DOI
18. Change-Point Tests for the Tail Parameter of Long Memory Stochastic Volatility Time Series (avec Annika Betken et Rafal Kulik) Statistica Sinica à paraître [Arxiv] [DOI]
17. Bound on the maximal function associated to the law of the iterated logarithms for Bernoulli random fields, Stochastics 94 (2022), no. 2, 248–276. [Arxiv] [DOI]
16. An Exponential Inequality for \(U\)-Statistics of I.I.D. Data, Theory of Probability & Its Applications, 2021, Vol. 66, No. 3 : pp. 408-429 [Arxiv] [DOI]
15. Convergence of the empirical two-sample \(U\)-statistics with \(\beta\)-mixing data. (avec Herold Dehling et Olimjon Sharipov) Acta Math. Hungar. 164 (2021), no. 2, 377--412. [Arxiv] [DOI]
14. Limit theorems for \(U\)-statistics of Bernoulli data. ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021), no. 1, 793--828 [Arxiv] [DOI]
13. Maximal function associated to the bounded law of the iterated logarithms via orthomartingale approximation. J. Math. Anal. Appl. 496 (2021), no. 1, Paper No. 124792, 25 pp [Arxiv] [DOI]
12. Deviation inequalities for Banach space valued martingales differences sequences and random fields. ESAIM Probab. 23 (2019), 922--946. [Arxiv] [DOI]
11. Convergence rates in the central limit theorem for weighted sums of Bernoulli random fields Mod. Stoch. Theory Appl. 6 (2019), no. 2, 251–267. [HAL] [DOI]
10. Invariance principle via orthomartingale approximation Stoch. Dyn. 18 (2018), no. 6, 1850043, 29 pp. [HAL] [DOI]
9. Hölderian weak invariance principle under Maxwell and Woodroofe condition Brazilian Journal of Probability and Statistics 32 (2018), no. 1, 172–187. [HAL] [DOI]
8. Weak invariance principle in Besov spaces for stationary martingale differences (avec Alfredas Račkauskas) Lith. Math. J. 57 (2017), no. 4, 441--467. [HAL] [DOI]
7. Holderian weak invariance principle for stationary mixing sequences Journal of Theoretical Probability 30 (2017), no. 1, 196--211 [HAL] [DOI]
6. Integrability conditions on coboundary and transfer function for limit theorems ALEA, Lat. Am. J. Probab. Math. Stat. 13(1) (2016), 399–415 [HAL] [DOI]
5. Holderian weak invariance principle under a Hannan type condition Stochastic Processes and their Applications 126 (2016), 290-311 [HAL] [DOI]
4. Orthomartingale-coboundary decomposition for stationary random fields (avec Mohamed El Machkouri) Stochastics and Dynamics 16 (2016), no. 5, 1650017, 28 pp. [HAL] [DOI]
3. An improvement of the mixing rates in a counter-example to the weak invariance principle Comptes Rendus de l'Académie des Sciences 353 (2015), 953-958 [HAL] [DOI]
2. A strictly stationary \(\beta\)-mixing process satisfying the central limit theorem but not the weak invariance principle (avec Dalibor Volný) Stochastic Processes and their Applications 124 (2014), 3769-3781 [Arxiv] [DOI]
1. A counter example to the central limit theorem in Hilbert spaces under a strong mixing condition (avec Dalibor Volný) Electronic Communications in Probability 19 (2014) [Arxiv], [HAL] [DOI]