Les textes ci-dessous sont essentiellement des survols. Plusieurs d'entre eux, néanmoins, contiennent des résultats originiaux.
Exponents of Diophantine approximation.
In: Dynamics and Number Theory, Edited by
D. Badziahin, A. Gorodnik, N. Peyerimhoff, pp. 96-135,
Cambridge Univ. Press, 2016.
Expansions of algebraic numbers.
"Four Faces of Number Theory",
31-75, EMS Ser. Lect. Math.,
Eur. Math. Soc., Zurich, 2015.
Around the Littlewood conjecture in Diophantine approximation.
Publ. Math. Besançon, 5-18, 2014.
Transcendence of Stammering Continued Fractions.
"Number Theory and Related Fields",
J. M. Borwein, I. Shparlinski and W. Zudilin (Eds),
Springer Proceedings in Mathematics and Statistics 43, 2013,
pp 129-141.
Hausdorff dimension and Diophantine approximation.
"Further Developments in Fractals and Related Fields",
J. Barral, S. Seuret (Eds), Birkäuser, 2013, pp. 35-45.
Quantitative versions of the Subspace Theorem and applications.
J. Théorie Nombres Bordeaux 23 (2011), 35-57.
(avec B. Adamczewski)
Transcendence and Diophantine approximation.
"Combinatorics, Automata and Number Theory",
V. Berthé, M. Rigo (Eds),
Encyclopedia of Mathematics and its Applications 135,
Cambridge University Press (2010), 410-451.
( .pdf )
Multiplicative Diophantine approximation.
"Dynamical systems and Diophantine Approximation",
Yann Bugeaud, Françoise Dal'Bo, Cornelia Drutu, eds.
Société mathématique de France,
Séminaires et Congrès 20 (2009), 107-127.
Linear forms in the logarithms of algebraic numbers
close to 1 and applications to Diophantine equations.
Diophantine equations, 59--76, Tata Inst. Fund. Res. Stud. Math., 20,
Tata Inst. Fund. Res., Mumbai, 2008.
(avec B. Adamczewski)
A short proof of the
transcendence of the Thue-Morse continued fractions.
Amer. Math. Monthly 114 (2007), 536-540.
(avec M. Laurent)
Exponents of Diophantine approximation.
Proceedings of the trimester on Diophantine geometry, Pisa,
pp. 101-121, CRM Series 4, Ed. Normale, Pisa, 2007.
(
.pdf )
(avec F. S. Abu Muriefah)
The Diophantine equation x^2+c=y^n.
Rev. Colombiana Mat. 40 (2006), 31-37.
(
.pdf )
(avec B. Adamczewski)
On the decimal expansion of algebraic numbers.
Fiz. Mat. Fak. Moskl. Semin. Darb. 8 (2005), 5-13.
(
.pdf )
(avec M. Mignotte)
L'équation de Nagell-Ljunggren (x^n - 1)/(x - 1) = y^q.
Enseign. Math. 48 (2002), 147--168.
Approximation diophantienne effective,
Mémoire
d'habilitation, Strasbourg, Publication de l'I.R.M.A., 2000.
Diophantine equations over the twentieth century: a (very) brief overview.
Proceedings of the Number Theory conference held in Kyoto (2000).
(avec J.-P. Conze)
Dynamics of some contracting linear functions
modulo 1,
in : Noise, Oscillators and Algebraic Randomness,
Lectures at Chapelle des Bois (France), 1999, Ed. M. Planat, pp. 379--387.
Lecture Notes in Physics 550, Springer (2000).
Fundamental systems of S-units
with small height and their
application to Diophantine equations,
Publi.
Math. Debrecen 56 (2000), 279--292.
Lower bounds for the greatest prime factor of
a x^m + b y^n,
Proceedings of the Number Theory conference
held in Ostravice, Acta Math. Inform. Univ. Ostraviensis 6
(1998), 53-57.
Formes linéaires de logarithmes et applications,
Thèse de doctorat, Strasbourg, Publication de l'I.R.M.A., 1996.