Survols

Les textes ci-dessous sont essentiellement des survols. Plusieurs d'entre eux, néanmoins, contiennent des résultats originiaux.


Exponents of Diophantine approximation.
In: Dynamics and Number Theory, Edited by D. Badziahin, A. Gorodnik, N. Peyerimhoff, pp. 96-135, Cambridge Univ. Press, 2016.


Expansions of algebraic numbers.
"Four Faces of Number Theory", 31-75, EMS Ser. Lect. Math., Eur. Math. Soc., Zurich, 2015.


Around the Littlewood conjecture in Diophantine approximation.
Publ. Math. Besançon, 5-18, 2014.


Transcendence of Stammering Continued Fractions.
"Number Theory and Related Fields", J. M. Borwein, I. Shparlinski and W. Zudilin (Eds), Springer Proceedings in Mathematics and Statistics 43, 2013, pp 129-141.


Hausdorff dimension and Diophantine approximation.
"Further Developments in Fractals and Related Fields", J. Barral, S. Seuret (Eds), Birkäuser, 2013, pp. 35-45.


Quantitative versions of the Subspace Theorem and applications.
J. Théorie Nombres Bordeaux 23 (2011), 35-57.


(avec B. Adamczewski) Transcendence and Diophantine approximation.
"Combinatorics, Automata and Number Theory", V. Berthé, M. Rigo (Eds), Encyclopedia of Mathematics and its Applications 135, Cambridge University Press (2010), 410-451. ( .pdf )


Multiplicative Diophantine approximation.
"Dynamical systems and Diophantine Approximation", Yann Bugeaud, Françoise Dal'Bo, Cornelia Drutu, eds. Société mathématique de France, Séminaires et Congrès 20 (2009), 107-127.


Linear forms in the logarithms of algebraic numbers close to 1 and applications to Diophantine equations.
Diophantine equations, 59--76, Tata Inst. Fund. Res. Stud. Math., 20, Tata Inst. Fund. Res., Mumbai, 2008.


(avec B. Adamczewski) A short proof of the transcendence of the Thue-Morse continued fractions.
Amer. Math. Monthly 114 (2007), 536-540.


(avec M. Laurent) Exponents of Diophantine approximation.
Proceedings of the trimester on Diophantine geometry, Pisa, pp. 101-121, CRM Series 4, Ed. Normale, Pisa, 2007. ( .pdf )


(avec F. S. Abu Muriefah) The Diophantine equation x^2+c=y^n.
Rev. Colombiana Mat. 40 (2006), 31-37. ( .pdf )


(avec B. Adamczewski) On the decimal expansion of algebraic numbers.
Fiz. Mat. Fak. Moskl. Semin. Darb. 8 (2005), 5-13. ( .pdf )


(avec M. Mignotte) L'équation de Nagell-Ljunggren (x^n - 1)/(x - 1) = y^q.
Enseign. Math. 48 (2002), 147--168.


Approximation diophantienne effective,
Mémoire d'habilitation, Strasbourg, Publication de l'I.R.M.A., 2000.


Diophantine equations over the twentieth century: a (very) brief overview.
Proceedings of the Number Theory conference held in Kyoto (2000).


(avec J.-P. Conze) Dynamics of some contracting linear functions modulo 1,
in : Noise, Oscillators and Algebraic Randomness, Lectures at Chapelle des Bois (France), 1999, Ed. M. Planat, pp. 379--387. Lecture Notes in Physics 550, Springer (2000).


Fundamental systems of S-units with small height and their application to Diophantine equations,
Publi. Math. Debrecen 56 (2000), 279--292.


Lower bounds for the greatest prime factor of a x^m + b y^n,
Proceedings of the Number Theory conference held in Ostravice, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 53-57.


Formes linéaires de logarithmes et applications,
Thèse de doctorat, Strasbourg, Publication de l'I.R.M.A., 1996.