Les recherches de l’équipe couvrent une grande variété de sujets aussi bien géométriques qu’algébriques. Voici une liste des thèmes plus spécifiquement présents :
- géométrie algébrique, géométrie algébrique complexe, hyperbolicité,
- cohomologies p-adiques, D-modules arithmétiques, géométrie analytique rigide, espaces de Berkovich,
- motifs,
- formes automorphes, représentations galoisiennes, représentations modulaires,
- théorie algébrique des nombres, théorie d’Iwasawa, approximation diophantienne, transcendance, combinatoire,
- histoire des mathématiques.
The research of the team covers a large variety of topics from the more geometric to the more algebraic. Here is a list of the main subjects we work on :
- algebraic geometry, complex algebraic geometry, hyperbolicity,
- p-adic cohomologies, arithmetic D-modules, rigid analytic geometry, Berkovich spaces,
- motives,
- automorphic forms, Galois representations, modular representations,
- algebraic number theory, Iwasawa theory, diophantine approximation, transcendence, combinatorics,
- history of mathematics.