Institut de recherche mathématique avancée
L'institut
À la une
Agenda
-
Lundi 23 février 2026 - 14h00 Séminaire Géométrie et applications
-
Timothé Lemistre :
Volume of maximal representations into SO(2,3)
- Lieu : Salle de séminaires IRMA
-
Résumé : Maximal representations from the fundamental group of a surface group into a hermitian Lie group G form connected components of the character variety generalising the Teichmüller space. When G=SO(2,3), those representations act cocompactly on some convex in the pseudo-hyperbolic space (a pseudo-riemannian analogue of the hyperbolic space), and one can define a volume functional on the space of maximal representations. In this talk I will explain a surprising result concerning the boundedness of this volume functional.
-
Mardi 3 mars 2026 - 10h45 Séminaire Calcul stochastique
-
Madeleine Kubasch :
À venir
- Lieu : Salle de séminaires IRMA
-
Résumé : TBA
-
Mardi 3 mars 2026 - 14h00 Séminaire Equations aux dérivées partielles
-
Marie Boussard :
Estimation of numerical entropy loss via a projection method
- Lieu : Salle de conférences IRMA
-
Résumé : Ocean circulation models cover a spatial domain up to the planetary scale. Due to computational constraints, numerical simulations therefore rely on relatively coarse meshes, with cell areas of the order of 10 000 km^2. As a consequence, finite volume schemes used for discretization induce a significant numerical entropy loss. This phenomenon leads to unphysical behaviours in the simulation result, such as the mixing of water masses with distinct temperatures and salinities. To address this problem, referred to as "spurious mixing" by oceanographers, localizing and quantifying this numerical entropy loss in high-order codes is crucial. A method was proposed by Aguillon, Audusse, Desveaux and Salomon, but is limited to the one-dimensional case.
I will introduce a method suitable for simulations in two dimensions of space, including high order schemes and in the presence of source terms. This approach relies on projecting a consistent flux onto the set of fluxes satisfying a discrete entropy inequality. The projection is carried out by an optimization algorithm with inequality constraints. Then, I will discuss the theoretical guarantees provided by the method, in particular the establishment of a Lax-Wendroff-type theorem, and conclude with numerical results for the shallow water equations.
This is a joint work with Nina Aguillon and Julien Salomon.
-
Mardi 3 mars 2026 - 14h00 Séminaire ART
-
Julia Schneider :
Which Cremona groups are generated by involutions?
- Lieu : Salle de séminaires IRMA
-
Résumé : Résumé : The Cremona group of rank N over a field K is the group of birational transformations of the N-dimensional projective space over K. A classical theorem by Noether and Castelnuovo states that the Cremona group of rank 2 over the complex numbers is generated by the birational involution sending (x,y) onto (1/x,1/y) and PGL(3). In particular, it is generated by involutions. Over non-algebraically closed fields, and even more so in higher dimensions, generators are more difficult to describe. The group theoretic properties of Cremona groups often depend on the rank and on the field. In this talk, I will tell the story about two theorems: A) The Cremona group of rank 2 over any perfect field is generated by involutions [joint with S. Lamy]. B) The Cremona group of rank at least 4 over the complex numbers admits the free group over an uncountable set as a quotient [joint with J. Blanc and E. Yasinsky]. Both of these theorems rely on the Sarkisov program, which gives an interesting set of generators not of the Cremona group but of a larger groupoid.
-
Mardi 3 mars 2026 - 14h00 Séminaire ART
-
Caroline Lassueur :
Des tables de caractères des modules de p-permutation
- Lieu : Salle de séminaires IRMA
-
Résumé : Le but de cet exposé est de présenter certains résultats récents obtenus en vue du calcul des tables de caractères des modules de p-permutation de "petits" groupes finis et de la création d'une base de données de telles tables. On passera aussi en revue l'importance de telles classifications dans le contexte des équivalences de blocs d'algèbres de groupes finis.
-
Jeudi 5 mars 2026 - 09h00 Séminaire Sem in
-
Giulia Sambataro :
An introduction to reduced basis method
- Lieu : Salle de séminaires IRMA
-
Résumé : In this talk, I will give an introduction to a class of model reduction techniques for parametric partial differential equations, the so-called Reduced Basis (RB) method. Parameters can represent geometric configuration, physical properties, boundary conditions or source terms. These techniques are motivated by applications such as design, control or optimization: they provide low-dimensional and hence rapidly computable approximations for the solution. Important aspects are basis generation and certification of the simulation results by suitable a posteriori error control. I will close the presentation with a few of my research developments.

